1
|
Hsu YH, Wu CY, Lee HL, Hsieh RL, Huang YL, Shiue HS, Lin YC, Chen MC, Hsueh YM. Combined effects of global DNA methylation, blood lead and total urinary arsenic levels on developmental delay in preschool children. Environ Health 2025; 24:2. [PMID: 39819460 PMCID: PMC11740333 DOI: 10.1186/s12940-024-01151-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 12/24/2024] [Indexed: 01/19/2025]
Abstract
DNA methylation is a critical step in brain development, 5-Methyl-2'-deoxycytidine (5mdC) is one of the global DNA methylation markers. Arsenic and lead exposures have been associated with neurotoxicity, which may be linked to epigenetic changes. Our research sought to investigate the correlation between 5mdC and developmental delay (DD) among preschoolers. Additionally, we assessed whether 5mdC modified the impacts of blood lead and total urinary arsenic levels on DD. We analyzed the concentrations of 5mdC, blood cadmium and lead, and total urinary arsenic in 174 children with DD and 88 healthy children. Global DNA methylation levels are expressed as the ratio 5mdC/2'-dexyguanosine (dG), called 5mdC (%). In our findings, elevated levels of blood lead and total urinary arsenic were significantly associated with DD risk among preschoolers. Furthermore, high 5mdC (%) was related with reduced risk of DD, with an odds ratio (OR) and 95% confidence interval (CI) of 0.14 (0.06 - 0.32). A notable multiplicative interaction was observed between low 5mdC (%) and elevated blood lead levels to increase OR of DD, with OR and 95% CI was 9.51 (4.18 - 21.64). The findings provide evidence of the combined effects of reduced 5mdC (%) and high blood lead concentrations, increasing the OR of DD.
Collapse
Affiliation(s)
- Yuu-Hueih Hsu
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Yin Wu
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ling Lee
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ru-Lan Hsieh
- Department of Physical Medicine and Rehabilitation, Su Memorial Hospital, Shin Kong Wu Ho, Taipei, Taiwan
- Department of Physical Medicine and Rehabilitation, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ya-Li Huang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Horng-Sheng Shiue
- Department of Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Chin Lin
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Family Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Geriatric Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Chieh Chen
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yu-Mei Hsueh
- Department of Family Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan.
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Gan Y, Zhang X, Cai P, Zhao L, Liu K, Wang H, Xu D. The Role of Oxidative Stress and DNA Hydroxymethylation in the Pathogenesis of Benzo[a]pyrene-Impaired Reproductive Function in Male Mice. ENVIRONMENTAL TOXICOLOGY 2024; 39:5039-5047. [PMID: 39037180 DOI: 10.1002/tox.24384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/08/2023] [Accepted: 06/01/2024] [Indexed: 07/23/2024]
Abstract
Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon, is known to cause teratogenesis. Environmental exposure of BaP has led to wide public concerns due to their potential risk of reproductive toxicity. However, the exact mechanism is still not clear. We aimed to explore the alterations of oxidative stress and DNA hydroxymethylation during BaP-impaired reproductive function. BALB/c mice were intragastrically administered with different doses of BaP (0.01, 0.1, and 1 mg/kg/day, once a day), while control mice were administered with corn coil. Then, the reproductive function, alterations of oxidative stress, DNA methylation, and DNA hydroxymethylation of testis tissues were evaluated. We found that BaP caused obvious histopathological damages of testis tissues. As for sperm parameters after BaP administration, testis weight and the rate of teratosperm were increased, as well as sperm count and motility were decreased. In mechanism, BaP upregulated HO-1 and MDA levels and downregulated SOD and CAT activity and GSH content in testis tissues, indicating that oxidative stress was induced by BaP. Furthermore, a significant induction of hydroxymethylation and inhibition of methylation were observed in testis tissues after BaP exposure. Collectively, BaP-induced oxidative stress and hydroxymethylation were involved in impairing reproductive function, which may be the mechanism of the male infertility.
Collapse
Affiliation(s)
- Yu Gan
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Xiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Panyuan Cai
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Long Zhao
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Kaiyong Liu
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Hua Wang
- Experimental Teaching Demonstration Center for Public Health and Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| | - Dexiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Yang X, Chu F, Jiao Z, Yu H, Yang W, Li Y, Lu C, Ma H, Wang S, Liu Z, Qin S, Sun H. Ellagic acid ameliorates arsenic-induced neuronal ferroptosis and cognitive impairment via Nrf2/GPX4 signaling pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116833. [PMID: 39128446 DOI: 10.1016/j.ecoenv.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/22/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024]
Abstract
Arsenic, a neurotoxic metalloid, poses significant health risks. However, ellagic acid, renowned for its antioxidant properties, has shown potential in neuroprotection. This study aimed to investigate the neuroprotective effects of ellagic acid against arsenic-induced neuronal ferroptosis and cognitive impairment and elucidate the underlying mechanisms. Using an arsenic-exposed Wistar rat model and an arsenic-induced HT22 cells model, we assessed cognitive ability, measured serum and brain arsenic levels, and evaluated pathological damage through histological analysis and transmission electron microscopy. Additionally, we examined oxidative stress and iron ion levels using GSH, MDA, ROS and tissue iron biochemical kits, and analyzed the expression of ferroptosis-related markers using western blot and qRT-PCR. Our results revealed that arsenic exposure increased both serum and brain arsenic levels, resulting in hippocampal pathological damage and subsequent decline in learning and memory abilities. Arsenic-induced neuronal ferroptosis was mediated by the inhibition of the xCT/GSH/GPX4/Nrf2 signaling axis and disruption of iron metabolism. Notably, ellagic acid intervention effectively reduced serum and brain arsenic levels, ameliorated neuronal damage, and improved oxidative stress, ferroptosis, and cognitive impairment. These beneficial effects were associated with the activation of the Nrf2/Keap1 signaling pathway, upregulation of GPX4 expression, and enhanced iron ion excretion. In conclusion, ellagic acid demonstrates promising neuroprotective effects against arsenic-induced neurotoxicity by mitigating neuronal ferroptosis and cognitive impairment.
Collapse
Affiliation(s)
- Xiyue Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Fang Chu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhe Jiao
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Yu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Wenjing Yang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Yang Li
- The First Affiliated Hospital of Nanchang University, 17 Yongwai Street, Donghu Distinct, Nanchang, Jiangxi 330006, China
| | - Chunqing Lu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hao Ma
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Sheng Wang
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Zhipeng Liu
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Shaoxiao Qin
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China
| | - Hongna Sun
- Institute for Endemic Fluorosis Control, Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin, Heilongjiang 150081, China; NHC Key Laboratory of Etiology and Epidemiology (Harbin Medical University) & Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health & Key Laboratory of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, China.
| |
Collapse
|
4
|
Najafi N, Barangi S, Moosavi Z, Aghaee-Bakhtiari SH, Mehri S, Karimi G. Melatonin Attenuates Arsenic-Induced Neurotoxicity in Rats Through the Regulation of miR-34a/miR-144 in Sirt1/Nrf2 Pathway. Biol Trace Elem Res 2024; 202:3163-3179. [PMID: 37853305 DOI: 10.1007/s12011-023-03897-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/29/2023] [Indexed: 10/20/2023]
Abstract
Arsenic (As) exposure is known to cause several neurological disorders through various molecular mechanisms such as oxidative stress, apoptosis, and autophagy. In the current study, we assessed the effect of melatonin (Mel) on As-induced neurotoxicity. Thirty male Wistar rat were treated daily for 28 consecutive days. As (15 mg/kg, gavage) and Mel (10 and 20 mg/kg, i.p.) were administered to rats. Morris water maze test was done to evaluate learning and memory impairment in training days and probe trial. Oxidative stress markers including MDA and GSH levels, SOD activity, and HO-1 levels were measured. Besides, the levels of apoptosis (caspase 3, Bax/Bcl2 ratio) and autophagy markers (Sirt1, Beclin-1, and LC3 II/I ratio) as well as the expression of miR-144 and miR-34a in cortex tissue were determined. As exposure disturbed learning and memory in animals and Mel alleviated these effects. Also, Mel recovered cortex pathological damages and oxidative stress induced by As. Furthermore, As increased the levels of apoptosis and autophagy proteins in cortex, while Mel (20 mg/kg) decreased apoptosis and autophagy. Also, Mel increased the expression of miR-144 and miR-34a which inhibited by As. In conclusion, Mel administration attenuated As-induced neurotoxicity through anti-oxidative, anti-apoptotic, and anti-autophagy mechanisms, which may be recommended as a therapeutic target for neurological disorders.
Collapse
Affiliation(s)
- Nahid Najafi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samira Barangi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Moosavi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Hamid Aghaee-Bakhtiari
- Bioinformatics Research Group, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Dhapola R, Sharma P, Kumari S, Bhatti JS, HariKrishnaReddy D. Environmental Toxins and Alzheimer's Disease: a Comprehensive Analysis of Pathogenic Mechanisms and Therapeutic Modulation. Mol Neurobiol 2024; 61:3657-3677. [PMID: 38006469 DOI: 10.1007/s12035-023-03805-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/13/2023] [Indexed: 11/27/2023]
Abstract
Alzheimer's disease is a leading cause of mortality worldwide. Inorganic and organic hazards, susceptibility to harmful metals, pesticides, agrochemicals, and air pollution are major environmental concerns. As merely 5% of AD cases are directly inherited indicating that these environmental factors play a major role in disease development. Long-term exposure to environmental toxins is believed to progress neuropathology, which leads to the development of AD. Numerous in-vitro and in-vivo studies have suggested the harmful impact of environmental toxins at cellular and molecular level. Common mechanisms involved in the toxicity of these environmental pollutants include oxidative stress, neuroinflammation, mitochondrial dysfunction, abnormal tau, and APP processing. Increased expression of GSK-3β, BACE-1, TNF-α, and pro-apoptotic molecules like caspases is observed upon exposure to these environmental toxins. In addition, the expression of neurotrophins like BDNF and GAP-43 have been found to be reduced as a result of toxicity. Further, modulation of signaling pathways involving PARP-1, PGC-1α, and MAPK/ERK induced by toxins have been reported to contribute in AD pathogenesis. These pathways are a promising target for developing novel AD therapeutics. Drugs like epigallocatechin-gallate, neflamapimod, salsalate, dexmedetomidine, and atabecestat are in different phases of clinical trials targeting the pathways for possible treatment of AD. This review aims to culminate the correlation between environmental toxicants and AD development. We emphasized upon the signaling pathways involved in the progression of the disease and the therapeutics under clinical trial targeting the altered pathways for possible treatment of AD.
Collapse
Affiliation(s)
- Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, 151 401, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, Central University of Punjab, Bathinda, 151 401, India.
| |
Collapse
|
6
|
Besong EE, Akhigbe TM, Obimma JN, Obembe OO, Akhigbe RE. Acetate Abates Arsenic-Induced Male Reproductive Toxicity by Suppressing HDAC and Uric Acid-Driven Oxido-inflammatory NFkB/iNOS/NO Response in Rats. Biol Trace Elem Res 2024; 202:2672-2687. [PMID: 37726447 DOI: 10.1007/s12011-023-03860-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/11/2023] [Indexed: 09/21/2023]
Abstract
Arsenic is associated with male reproductive toxicity through histone deacetylation and oxido-inflammatory injury. Notwithstanding, short-chain fatty acids such as acetate exert anti-oxido-inflammatory activities and inhibit histone deacetylation. This study investigated the impact of acetate on arsenic-induced male reproductive toxicity. Forty eight adult male Wistar rats were allotted into any of these four groups (n = 12 rats per group): vehicle-treated, sodium acetate-treated, arsenic-exposed, and arsenic-exposed + sodium acetate-treated. The results revealed that arsenic exposure prolonged the latencies of mount, intromission, and ejaculation and reduced the frequencies of mount, intromission, and ejaculation, as well as mating and fertility indices, litter size and weight, anogenital distance, anogenital index, and survival rate in male F1 offspring at weaning. Also, arsenic reduced the circulating levels of gonadotropin-releasing hormone, luteinizing hormone, follicle-stimulating hormone, and testosterone and testicular 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase activities. In addition, arsenic reduced the daily and total spermatid production, sperm count, motility, and viability but increased the percentage of sperm cells with abnormal morphology. Furthermore, arsenic increased testicular xanthine oxidase activity, uric acid, and malondialdehyde levels, and reduced glutathione content, superoxide dismutase and catalase activities, total antioxidant capacity, and Nrf2 level. More so, arsenic exposure increased testicular iNOS activity and nitric oxide (NO), TNF-α, IL-1β, IL-6, and NFkB levels as well as Bax, caspase 9, and caspase 3 activities, and reduced Bcl-2. These findings were associated with arsenic-induced increase in testicular arsenic concentration, histone deacetylase activity, and reduced testicular weight. Histopathological examination revealed that arsenic also disrupted testicular histoarchitecture, which was accompanied by altered testicular planimetry and reduced spermatogenic cells. Notwithstanding, sodium acetate alleviated arsenic-induced sexual dysfunction as well as biochemical and histological alterations. These were accompanied acetate-driven downregulation of histone deacetylase (HDAC) activity. Succinctly, acetate attenuated arsenic-induced male reproductive toxicity by suppressing HDAC and uric acid-driven oxido-inflammatory NFkB/iNOS/NO response.
Collapse
Affiliation(s)
- E E Besong
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - T M Akhigbe
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osogbo, Osun State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - J N Obimma
- Department of Physiology, Faculty of Basic Medical Sciences, Ebonyi State University, Abakaliki, Nigeria
| | - O O Obembe
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Osun State University, Osogbo, Osun State, Nigeria
| | - R E Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria.
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria.
| |
Collapse
|
7
|
Hua W, Han X, Li F, Lu L, Sun Y, Hassanian-Moghaddam H, Tian M, Lu Y, Huang Q. Transgenerational Effects of Arsenic Exposure on Learning and Memory in Rats: Crosstalk between Arsenic Methylation, Hippocampal Metabolism, and Histone Modifications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6475-6486. [PMID: 38578163 DOI: 10.1021/acs.est.3c07989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Arsenic (As) is widely present in the natural environment, and exposure to it can lead to learning and memory impairment. However, the underlying epigenetic mechanisms are still largely unclear. This study aimed to reveal the role of histone modifications in environmental levels of arsenic (sodium arsenite) exposure-induced learning and memory dysfunction in male rats, and the inter/transgenerational effects of paternal arsenic exposure were also investigated. It was found that arsenic exposure impaired the learning and memory ability of F0 rats and down-regulated the expression of cognition-related genes Bdnf, c-Fos, mGlur1, Nmdar1, and Gria2 in the hippocampus. We also observed that inorganic arsenite was methylated to DMA and histone modification-related metabolites were altered, contributing to the dysregulation of H3K4me1/2/3, H3K9me1/2/3, and H3K4ac in rat hippocampus after exposure. Therefore, it is suggested that arsenic methylation and hippocampal metabolism changes attenuated H3K4me1/2/3 and H3K4ac while enhancing H3K9me1/2/3, which repressed the key gene expressions, leading to cognitive impairment in rats exposed to arsenic. In addition, paternal arsenic exposure induced transgenerational effects of learning and memory disorder in F2 male rats through the regulation of H3K4me2 and H3K9me1/2/3, which inhibited c-Fos, mGlur1, and Nmdar1 expression. These results provide novel insights into the molecular mechanism of arsenic-induced neurotoxicity and highlight the risk of neurological deficits in offspring with paternal exposure to arsenic.
Collapse
Affiliation(s)
- Weizhen Hua
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- Department of Health Inspection and Quarantine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xuejingping Han
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Fuping Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Lu Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yiqiong Sun
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hossein Hassanian-Moghaddam
- Department of Clinical Toxicology, Shohada-e Tajrish Hospital, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yanyang Lu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
8
|
Yu G, Wu L, Su Q, Ji X, Zhou J, Wu S, Tang Y, Li H. Neurotoxic effects of heavy metal pollutants in the environment: Focusing on epigenetic mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123563. [PMID: 38355086 DOI: 10.1016/j.envpol.2024.123563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 02/04/2024] [Accepted: 02/11/2024] [Indexed: 02/16/2024]
Abstract
The pollution of heavy metals (HMs) in the environment is a significant global environmental issue, characterized by its extensive distribution, severe contamination, and profound ecological impacts. Excessive exposure to heavy metal pollutants can damage the nervous system. However, the mechanisms underlying the neurotoxicity of most heavy metals are not completely understood. Epigenetics is defined as a heritable change in gene function that can influence gene and subsequent protein expression levels without altering the DNA sequence. Growing evidence indicates that heavy metals can induce neurotoxic effects by triggering epigenetic changes and disrupting the epigenome. Compared with genetic changes, epigenetic alterations are more easily reversible. Epigenetic reprogramming techniques, drugs, and certain nutrients targeting specific epigenetic mechanisms involved in gene expression regulation are emerging as potential preventive or therapeutic tools for diseases. Therefore, this review provides a comprehensive overview of epigenetic modifications encompassing DNA/RNA methylation, histone modifications, and non-coding RNAs in the nervous system, elucidating their association with various heavy metal exposures. These primarily include manganese (Mn), mercury (Hg), lead (Pb), cobalt (Co), cadmium (Cd), nickel (Ni), sliver (Ag), toxic metalloids arsenic (As), and etc. The potential epigenetic mechanisms in the etiology, precision prevention, and target therapy of various neurodevelopmental disorders or different neurodegenerative diseases are emphasized. In addition, the current gaps in research and future areas of study are discussed. From a perspective on epigenetics, this review offers novel insights for prevention and treatment of neurotoxicity induced by heavy metal pollutants.
Collapse
Affiliation(s)
- Guangxia Yu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Lingyan Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Qianqian Su
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Xianqi Ji
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Jinfu Zhou
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Fujian Maternity and Child Hospital College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China
| | - Siying Wu
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou 350122, China
| | - Ying Tang
- Fujian Center for Prevention and Control Occupational Diseases and Chemical Poisoning, Fuzhou 350125, China
| | - Huangyuan Li
- Key Lab of Environment and Health, School of Public Health, Fujian Medical University, Fuzhou 350122, China; Department of Preventive Medicine, School of Public Health, Fujian Medical University, Fuzhou 350122, China.
| |
Collapse
|
9
|
Yan X, Zhang J, Li J, Zhang X, Wang Y, Chen X, Luo P, Hu T, Cao X, Zhuang H, Tang X, Yao F, He Z, Ma G, Ran X, Shen L. Effects of arsenic exposure on trace element levels in the hippocampus and cortex of rats and their gender differences. J Trace Elem Med Biol 2023; 80:127289. [PMID: 37660573 DOI: 10.1016/j.jtemb.2023.127289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
BACKGROUND Exposure to arsenic (As) is a major public health challenge worldwide. Chronic exposure to As can cause various human health effects, including skin diseases, cardiovascular disease, neurological disorders, and cancer. Studies have shown that As exposure can lead to disturbances in the balance of trace elements in the body. Moreover, As readily crosses the blood-brain barrier and can be enriched in the hippocampus and cortex, causing neurotoxic damage. At present, there are few reports on the effect of As on trace element levels in the central nervous system (CNS). Therefore, we sought to explore As-induced neurotoxicity and the effects of As on CNS trace element levels. METHODS An As-induced neurological injury model in rats was established by feeding As chow for 90 days of continuous exposure, and 19 elements were detected in the hippocampus and cortex of As-exposed rats by inductively coupled plasma mass spectrometry. RESULTS The results showed that the As levels in the hippocampus and cortex of As-exposed rats were significantly higher than those in the control group, The As levels in the cortex were significantly higher than in the hippocampus group. The levels of Cd, Ho, and Rb were increased in the hippocampus and decreased in Au, Ba, Ce, Cs, Pd, Se, Sr, and Tl in the As-exposed group, while the levels of Cd and Rb were increased and Se and Au were decreased in the cortex. Significant gender differences in the effects of As on hippocampal Cd, Ba, Rb, and Sr, and cortical Cd and Mo. CONCLUSION It is suggested that elemental imbalance may be a risk factor for developing As toxicity plays a synergistic or antagonistic role in As-induced toxicity and is closely related to As-induced CNS damage.
Collapse
Affiliation(s)
- Xi Yan
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Jun Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Junyu Li
- Shenzhen Customs Food Inspection and Quarantine Technology Centre, Shenzhen 518000, PR China
| | - Xinglai Zhang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Yi Wang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaolu Chen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Peng Luo
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Ting Hu
- School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xueshan Cao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Hongbin Zhuang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoxiao Tang
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Fang Yao
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Zhijun He
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Guanwei Ma
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Xiaoqian Ran
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; School of Public Health, the key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China
| | - Liming Shen
- College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, PR China.
| |
Collapse
|
10
|
Hu X, Yuan X, Yang M, Han M, Ommati MM, Ma Y. Arsenic exposure induced anxiety-like behaviors in male mice via influencing the GABAergic Signaling in the prefrontal cortex. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86352-86364. [PMID: 37402917 DOI: 10.1007/s11356-023-28426-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Arsenic contamination in drinking water causes a global public health problem. Emerging evidence suggests that arsenic may act as an environmental risk factor for anxiety disorders. However, the exact mechanism underlying the adverse effects has not been fully elucidated. This study aimed to evaluate the anxiety-like behaviors of mice exposed to arsenic trioxide (As2O3), to observe the neuropathological changes, and to explore the link between the GABAergic system and behavioral manifestations. For this purpose, male C57BL/6 mice were exposed to various doses of As2O3 (0, 0.15, 1.5, and 15 mg/L) through drinking water for 12 weeks. Anxiety-like behaviors were assessed using the open field test (OFT), light/dark choice test, and elevated zero maze (EZM). Neuronal injuries in the cerebral cortex and hippocampus were assessed by light microscopy with H&E and Nissl staining. Ultrastructural alteration in the cerebral cortex was assessed by transmission electron microscope (TEM). The expression levels of GABAergic system-related molecules (i.e., glutamate decarboxylase, GABA transporter, and GABAB receptor subunits) in the prefrontal cortex (PFC) were determined by qRT-PCR and western blotting. Arsenic exposure showed a striking anxiogenic effect on mice, especially in the group exposed to 15 mg/L As2O3. Light microscopy showed neuron necrosis and reduced cell counts. TEM revealed marked ultrastructural changes, including the vacuolated mitochondria, disrupted Nissl bodies, an indentation in the nucleus membrane, and delamination of myelin sheath in the cortex. In addition, As2O3 influenced the GABAergic system in the PFC by decreasing the expression of the glutamate decarboxylase 1 (GAD1) and the GABAB2 receptor subunit, but not the GABAB1 receptor subunit. To sum up, sub-chronic exposure to As2O3 is associated with increased anxiety-like behaviors, which may be mediated by altered GABAergic signaling in the PFC. These findings shed light on the mechanisms responsible for the neurotoxic effects of arsenic and therefore more cautions should be taken.
Collapse
Affiliation(s)
- Xin Hu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaohong Yuan
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingyu Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mingsheng Han
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yanqin Ma
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
11
|
Li N, Wen L, Shen Y, Li T, Wang T, Qiao M, Song L, Huang X. Differential expression of SLC30A10 and RAGE in mouse pups by early life lead exposure. J Trace Elem Med Biol 2023; 79:127233. [PMID: 37315391 DOI: 10.1016/j.jtemb.2023.127233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
BACKGROUND SLC30A10 and RAGE are widely recognized as pivotal regulators of Aβ plaque transport and accumulation. Prior investigations have established a link between early lead exposure and cerebral harm in offspring, attributable to Aβ buildup and amyloid plaque deposition. However, the impact of lead on the protein expression of SLC30A10 and RAGE has yet to be elucidated. This study seeks to confirm the influence of maternal lead exposure during pregnancy, specifically through lead-containing drinking water, on the protein expression of SLC30A10 and RAGE in mice offspring. Furthermore, this research aims to provide further evidence of lead-induced neurotoxicity. METHODS Four cohorts of mice were subjected to lead exposure at concentrations of 0 mM, 0.25 mM, 0.5 mM, and 1 mM over a period of 42 uninterrupted days, spanning from pregnancy to the weaning phase. On postnatal day 21, the offspring mice underwent assessments. The levels of lead in the blood, hippocampus, and cerebral cortex were scrutinized, while the mice's cognitive abilities pertaining to learning and memory were probed through the utilization of the Morris water maze. Furthermore, Western blotting and immunofluorescence techniques were employed to analyze the expression levels of SLC30A10 and RAGE in the hippocampus and cerebral cortex. RESULTS The findings revealed a significant elevation in lead concentration within the brains and bloodstreams of mice, mirroring the increased lead exposure experienced by their mothers during the designated period (P < 0.05). Notably, in the Morris water maze assessment, the lead-exposed group exhibited noticeably diminished spatial memory compared to the control group (P < 0.05). Both immunofluorescence and Western blot analyses effectively demonstrated the concomitant impact of varying lead exposure levels on the hippocampal and cerebral cortex regions of the offspring. The expression levels of SLC30A10 displayed a negative correlation with lead doses (P < 0.05). Surprisingly, under identical circumstances, the expression of RAGE in the hippocampus and cortex of the offspring exhibited a positive correlation with lead doses (P < 0.05). CONCLUSION SLC30A10 potentially exerts distinct influence on exacerbated Aβ accumulation and transportation in contrast to RAGE. Disparities in brain expression of RAGE and SLC30A10 may contribute to the neurotoxic effects induced by lead.
Collapse
Affiliation(s)
- Ning Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| | - Liuding Wen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Yue Shen
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tiange Li
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Tianlin Wang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Mingwu Qiao
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Lianjun Song
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China
| | - Xianqing Huang
- Henan Engineering Technology Research Center of Food Processing and Circulation Safety Control, College of Food Science and Technology, Henan Agricultural University, Nongye Road, Zhengzhou, Henan, 450002, PR China.
| |
Collapse
|
12
|
Wu Y, Wang R, Liu R, Ba Y, Huang H. The Roles of Histone Modifications in Metal-Induced Neurological Disorders. Biol Trace Elem Res 2023; 201:31-40. [PMID: 35129806 DOI: 10.1007/s12011-022-03134-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
Increasing research is illuminating the intricate roles of metal ions in neural development as well as neurological disorders, which may stem from misregulation or dysfunction of epigenetic modifiers. Lead (Pb), cadmium (Cd), aluminum (Al), and arsenic were chosen for critical review because they have become serious public health concerns due to globalization and industrialization. In this review, we will introduce various modes of action of metals and consider the role of two posttranslational modifications: histone acetylation and methylation and how each of them affects gene expression. We then summarize the findings from previous studies on the neurological outcomes and histone alterations in response to the metals on each of the previously described histone modifications mechanisms. Understanding metal-induced histone modifications changes could provide better insight on the mechanism through which neurotoxicity occurs, to propose and validate these modifications as possible biomarkers for early identification of neurological damage, and can help model targeted therapies for the diseases of the brain.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
13
|
Speer RM, Zhou X, Volk LB, Liu KJ, Hudson LG. Arsenic and cancer: Evidence and mechanisms. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 96:151-202. [PMID: 36858772 PMCID: PMC10860672 DOI: 10.1016/bs.apha.2022.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Arsenic is a potent carcinogen and poses a significant health concern worldwide. Exposure occurs through ingestion of drinking water and contaminated foods and through inhalation due to pollution. Epidemiological evidence shows arsenic induces cancers of the skin, lung, liver, and bladder among other tissues. While studies in animal and cell culture models support arsenic as a carcinogen, the mechanisms of arsenic carcinogenesis are not fully understood. Arsenic carcinogenesis is a complex process due its ability to be metabolized and because of the many cellular pathways it targets in the cell. Arsenic metabolism and the multiple forms of arsenic play distinct roles in its toxicity and contribute differently to carcinogenic endpoints, and thus must be considered. Arsenic generates reactive oxygen species increasing oxidative stress and damaging DNA and other macromolecules. Concurrently, arsenic inhibits DNA repair, modifies epigenetic regulation of gene expression, and targets protein function due its ability to replace zinc in select proteins. While these mechanisms contribute to arsenic carcinogenesis, there remain significant gaps in understanding the complex nature of arsenic cancers. In the future improving models available for arsenic cancer research and the use of arsenic induced human tumors will bridge some of these gaps in understanding arsenic driven cancers.
Collapse
Affiliation(s)
- Rachel M Speer
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Xixi Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Lindsay B Volk
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States; Stony Brook Cancer Center, Renaissance School of Medicine, State University of New York Stony Brook, Stony Brook, NY, United States.
| | - Laurie G Hudson
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
14
|
Svoboda LK, Perera BPU, Morgan RK, Polemi KM, Pan J, Dolinoy DC. Toxicoepigenetics and Environmental Health: Challenges and Opportunities. Chem Res Toxicol 2022; 35:1293-1311. [PMID: 35876266 PMCID: PMC9812000 DOI: 10.1021/acs.chemrestox.1c00445] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The rapidly growing field of toxicoepigenetics seeks to understand how toxicant exposures interact with the epigenome to influence disease risk. Toxicoepigenetics is a promising field of environmental health research, as integrating epigenetics into the field of toxicology will enable a more thorough evaluation of toxicant-induced disease mechanisms as well as the elucidation of the role of the epigenome as a biomarker of exposure and disease and possible mediator of exposure effects. Likewise, toxicoepigenetics will enhance our knowledge of how environmental exposures, lifestyle factors, and diet interact to influence health. Ultimately, an understanding of how the environment impacts the epigenome to cause disease may inform risk assessment, permit noninvasive biomonitoring, and provide potential opportunities for therapeutic intervention. However, the translation of research from this exciting field into benefits for human and animal health presents several challenges and opportunities. Here, we describe four significant areas in which we see opportunity to transform the field and improve human health by reducing the disease burden caused by environmental exposures. These include (1) research into the mechanistic role for epigenetic change in environment-induced disease, (2) understanding key factors influencing vulnerability to the adverse effects of environmental exposures, (3) identifying appropriate biomarkers of environmental exposures and their associated diseases, and (4) determining whether the adverse effects of environment on the epigenome and human health are reversible through pharmacologic, dietary, or behavioral interventions. We then highlight several initiatives currently underway to address these challenges.
Collapse
Affiliation(s)
- Laurie K Svoboda
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Bambarendage P U Perera
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Rachel K Morgan
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Katelyn M Polemi
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Junru Pan
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Dana C Dolinoy
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Du X, Luo L, Huang Q, Zhang J. Cortex metabolome and proteome analysis reveals chronic arsenic exposure via drinking water induces developmental neurotoxicity through hnRNP L mediated mitochondrial dysfunction in male rats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153325. [PMID: 35074374 DOI: 10.1016/j.scitotenv.2022.153325] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/09/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Lots of people are at the risk of arsenic-contaminated drinking water. Arsenic exposure was confirmed to be closely linked to neurocognitive deficits, particularly during childhood. The multi-omics approaches are known be well suitable for toxicological research. Thus, this study aimed to explore the molecular mechanisms of arsenic-induced learning and memory function impairments through the integrative proteome and metabolome analysis of cortex in rats. The weaned rats were exposed to arsenic-contaminated drinking water for six months to mimic the developmental exposure. 220 differential proteins and 19 differential metabolites were identified in the cortex, and nine potential biomarkers were found to be related to impaired Morris water maze (MWM) indicators. Chronic arsenic exposure affected the cognitive function by inducing the overproduction of amyloid-β (Aβ) peptides and the redox imbalance in the mitochondria. Glycolysis and tricarboxylic acid (TCA) cycle enhancement driven by the increased heterogeneous nuclear ribonucleoprotein L (hnRNP L) is a low-dose protective mechanism against arsenic-induced ATP deficiency and oxidative stress. Moreover, apoptosis is another important pathway of arsenic-induced neurotoxicity. This study provides new evidence about the alterations of proteins and metabolites in the cortex of the exposed rats under arsenic toxicity. These findings suggest hnRNP L could be a potential target for the treatment of arsenic-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyan Du
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China; Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Lianzhong Luo
- Department of Pharmacy, Xiamen Medical College, China
| | - Qingyu Huang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, China
| | - Jie Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, China.
| |
Collapse
|
16
|
Domingo-Relloso A, Bozack A, Kiihl S, Rodriguez-Hernandez Z, Rentero-Garrido P, Casasnovas JA, Leon-Latre M, Garcia-Barrera T, Gomez-Ariza JL, Moreno B, Cenarro A, de Marco G, Parvez F, Siddique AB, Shahriar H, Uddin MN, Islam T, Navas-Acien A, Gamble M, Tellez-Plaza M. Arsenic exposure and human blood DNA methylation and hydroxymethylation profiles in two diverse populations from Bangladesh and Spain. ENVIRONMENTAL RESEARCH 2022; 204:112021. [PMID: 34516978 PMCID: PMC8734953 DOI: 10.1016/j.envres.2021.112021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Associations of arsenic (As) with the sum of 5-mC and 5-hmC levels have been reported; however, As exposure-related differences of the separated 5-mC and 5-hmC markers have rarely been studied. METHODS In this study, we evaluated the association of arsenic exposure biomarkers and 5-mC and 5-hmC in 30 healthy men (43-55 years) from the Aragon Workers Health Study (AWHS) (Spain) and 31 healthy men (31-50 years) from the Folic Acid and Creatinine Trial (FACT) (Bangladesh). We conducted 5-mC and 5-hmC profiling using Infinium MethylationEPIC arrays, on paired standard and modified (ox-BS in AWHS and TAB in FACT) bisulfite converted blood DNA samples. RESULTS The median for the sum of urine inorganic and methylated As species (ΣAs) (μg/L) was 12.5 for AWHS and 89.6 for FACT. The median of blood As (μg/L) was 8.8 for AWHS and 10.2 for FACT. At a statistical significance p-value cut-off of 0.01, the differentially methylated (DMP) and hydroxymethylated (DHP) positions were mostly located in different genomic sites. Several DMPs and DHPs were consistently found in AWHS and FACT both for urine ΣAs and blood models, being of special interest those attributed to the DIP2C gene. Three DMPs (annotated to CLEC12A) for AWHS and one DHP (annotated to NPLOC4) for FACT remained statistically significant after false discovery rate (FDR) correction. Pathways related to chronic diseases including cardiovascular, cancer and neurological were enriched. CONCLUSIONS While we identified common 5-hmC and 5-mC signatures in two populations exposed to varying levels of inorganic As, differences in As-related epigenetic sites across the study populations may additionally reflect low and high As-specific associations. This work contributes a deeper understanding of potential epigenetic dysregulations of As. However, further research is needed to confirm biological consequences associated with DIP2C epigenetic regulation and to investigate the role of 5-hmC and 5-mC separately in As-induced health disorders at different exposure levels.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain; Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Statistics and Operations Research, University of Valencia, Spain
| | - Anne Bozack
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA; Department of Environmental Health Sciences, School of Public Health, University of California, Berkeley, USA
| | - Samara Kiihl
- Department of Statistics, State University of Campinas, Brazil
| | - Zulema Rodriguez-Hernandez
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, Biomedical Research Institute Hospital Clinic de Valencia INCLIVA, Valencia, Spain
| | - J Antonio Casasnovas
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Montserrat Leon-Latre
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Tamara Garcia-Barrera
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - J Luis Gomez-Ariza
- Research Center on Natural Resources, Health and the Environment, Department of Chemistry, University of Huelva, Huelva, Spain
| | - Belen Moreno
- Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Department of Microbiology, Pediatrics, Radiology and Public Health, University of Zaragoza, Zaragoza, Spain
| | - Ana Cenarro
- CIBERCV, And Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain; Aragon Health Research Institute Foundation (IIS Aragon), University of Zaragoza, Zaragoza, Spain
| | - Griselda de Marco
- Genomics Area, Foundation for the Promotion of Health and Biomedical Research of the Valencian Region (FISABIO), Valencia, Spain
| | - Faruque Parvez
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Abu B Siddique
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Hasan Shahriar
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Mohammad N Uddin
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Tariqul Islam
- Columbia University Arsenic Project in Bangladesh, Dhaka, Bangladesh
| | - Ana Navas-Acien
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Mary Gamble
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, USA
| | - Maria Tellez-Plaza
- Integrative Epidemiology Group, Department of Chronic Diseases Epidemiology, National Center for Epidemiology, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Chakraborty A, Ghosh S, Biswas B, Pramanik S, Nriagu J, Bhowmick S. Epigenetic modifications from arsenic exposure: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151218. [PMID: 34717984 DOI: 10.1016/j.scitotenv.2021.151218] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Arsenic is a notorious element with the potential to harm exposed individuals in ways that include cancerous and non-cancerous health complications. Millions of people across the globe (especially in South and Southeast Asian countries including China, Vietnam, India and Bangladesh) are currently being unknowingly exposed to precarious levels of arsenic. Among the diverse effects associated with such arsenic levels of exposure is the propensity to alter the epigenome. Although a large volume of literature exists on arsenic-induced genotoxicity, cytotoxicity, and inter-individual susceptibility due to active research on these subject areas from the last millennial, it is only recently that attention has turned on the ramifications and mechanisms of arsenic-induced epigenetic changes. The present review summarizes the possible mechanisms involved in arsenic induced epigenetic alterations. It focuses on the mechanisms underlying epigenome reprogramming from arsenic exposure that result in improper cell signaling and dysfunction of various epigenetic components. The mechanistic information articulated from the review is used to propose a number of novel therapeutic strategies with a potential for ameliorating the burden of worldwide arsenic poisoning.
Collapse
Affiliation(s)
- Arijit Chakraborty
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Soma Ghosh
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Bratisha Biswas
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Sreemanta Pramanik
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India
| | - Jerome Nriagu
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, 109 Observatory Street, Ann Arbor, MI 48109-2029, USA
| | - Subhamoy Bhowmick
- Kolkata Zonal Center, CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata, West Bengal 700107, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
18
|
Wang Q, Wang W, Sun B, Zhang A. Genomic DNA hydroxymethylation reveals potential role in identification of lung injury in coal-burning arsenicosis populations. ENVIRONMENTAL RESEARCH 2022; 204:112053. [PMID: 34536373 DOI: 10.1016/j.envres.2021.112053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/11/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is a toxic metalloid element that causes lung cancer and multiple non-malignant respiratory diseases. The toxicity of arsenic is mediated in part by epigenetic mechanisms, such as alterations in DNA methylation. While increasing studies have highlighted the potential importance of arsenic exposure to DNA methylation patterns and the subsequent risks for arsenic toxicity, there has been little focus on DNA hydroxymethylation-a negative regulation mechanism of DNA methylation. Therefore, this study aimed to investigate the relationship between genomic DNA methylation/hydroxymethylation and lung injury in arsenicosis populations. First, an increased risk of lung injury and exacerbation of lung function impairment in the arsenicosis population was confirmed. Levels of 5-methylcytosine/deoxycytidine (5 mC/dC), 5-hydroxymethylcytosine/deoxycytidine (5 hmC/dC) and 5 hmC/5 mC in genomic DNA of peripheral blood were decreased in the arsenicosis population compared to in the control. Additionally, multivariate logistic regression models showed an increased risk of chest digital radiography (DR) abnormalities when 5 hmC/dC and 5 hmC/5 mC levels were lower (OR = 3.12 and 3.96, all P < 0.001). For 3 years follow-up, regression analysis showed that a decline in 5 hmC/dC was significantly associated with the decline of lung function parameters [forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1) and maximal mid-expiratory flow (MMEF); β = 0.167, 0.122 and 0.073, respectively; all P < 0.05]. Using the receiver operating characteristic (ROC) curve, a combination of 5 hmC/5 dC and 5 hmC/5 mC obtained the highest value for distinguishing lung injury in all subjects (AUC = 0.82, P < 0.01). In contrast, in arsenicosis subjects, 5 hmC/dC was better at distinguishing lung injury (AUC = 0.84, P < 0.01). Together, the results revealed that a decrease in genomic DNA hydroxymethylation markers was associated with lung injury in coal-burning arsenicosis populations. Genomic DNA hydroxymethylation could be a novel biomarker for identifying the risk of lung injury caused by coal-burning arsenicosis.
Collapse
Affiliation(s)
- Qingling Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Baofei Sun
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China
| | - Aihau Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, PR China.
| |
Collapse
|
19
|
Lv JW, Song YP, Zhang ZC, Fan YJ, Xu FX, Gao L, Zhang XY, Zhang C, Wang H, Xu DX. Gestational arsenic exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 227:112901. [PMID: 34673408 DOI: 10.1016/j.ecoenv.2021.112901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/28/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
Several studies found that reduction of 5-hydroxymethylcytosine (5hmC), a marker of DNA hydroxymethylation highly enriched in developing brain, is associated with anxiety-like behaviors. This study aimed to investigate whether gestational arsenic (As) exposure induces anxiety-like behaviors in adult offspring by reducing DNA hydroxymethylation in the developing brain. The dams drank ultrapure water containing NaAsO2 (15 mg/L) throughout pregnancy. Anxiety-like behaviors were evaluated and developing brain 5hmC was detected. Results showed that anxiety-like behaviors were observed in As-exposed adult offspring. In addition, 5hmC content was reduced in As-exposed fetal brain. Despite no difference on Tet1, Tet2 and Tet3 expression, TET activity was suppressed in As-exposed fetal brain. Mechanistically, alpha-ketoglutarate (α-KG), a cofactor for TET dioxygenases, was reduced and Idh2, a key enzymatic gene for mitochondrial α-KG synthesis, was downregulated in As-exposed fetal brain. Of interest, ascorbic acid, a cofactor for TET dioxygenases, reversed As-induced suppression of TET activity. Moreover, ascorbic acid attenuated As-induced reduction of 5hmC in fetal brain. In addition, ascorbic acid alleviated As-induced anxiety-like behaviors in adult offspring. Taken together, these results suggest that gestational As exposure induces anxiety-like behaviors in adult offspring, possibly at part, by inhibiting DNA hydroxymethylation in developing brain.
Collapse
Affiliation(s)
- Jin-Wei Lv
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Zhi-Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yi-Jun Fan
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Fei-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Lan Gao
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yi Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Cheng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hua Wang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
20
|
Mehta K, Kaur B, Pandey KK, Dhar P, Kaler S. Resveratrol protects against inorganic arsenic-induced oxidative damage and cytoarchitectural alterations in female mouse hippocampus. Acta Histochem 2021; 123:151792. [PMID: 34634674 DOI: 10.1016/j.acthis.2021.151792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 01/04/2023]
Abstract
Prolonged inorganic arsenic (iAs) exposure is widely associated with brain damage particularly in the hippocampus via oxidative and apoptotic pathways. Resveratrol (RES) has gained considerable attention because of its benefits to human health. However, its neuroprotective potential against iAs-induced toxicity in CA1 region of hippocampus remains unexplored. Therefore, we investigated the neuroprotective efficacy of RES against arsenic trioxide (As2O3)-induced adverse effects on neuronal morphology, apoptotic markers and oxidative stress parameters in mouse CA1 region (hippocampus). Adult female Swiss albino mice of reproductive maturity were orally exposed to either As2O3 (2 and 4 mg/kg bw) alone or in combination with RES (40 mg/kg bw) for a period of 45 days. After animal sacrifice on day 46, the perfusion fixed brain samples were used for the observation of neuronal morphology and studying the morphometric features. While the freshly dissected hippocampi were processed for biochemical estimation of oxidative stress markers and western blotting of apoptosis-associated proteins. Chronic iAs exposure led to significant decrease in Stratum Pyramidale layer thickness along with reduction in cell density and area of Pyramidal neurons in contrast to the controls. Biochemical analysis showed reduced hippocampal GSH content but no change in total nitrite (NO) levels following iAs exposure. Western blotting showed apparent changes in the expression levels of Bax and Bcl-2 proteins following iAs exposure, however the change was statistically insignificant. Contrastingly, iAs +RES co-treatment exhibited substantial reversal in morphological and biochemical observations. Together, these findings provide preliminary evidence of neuroprotective role of RES on structural and biochemical alterations pertaining to mouse hippocampus following chronic iAs exposure.
Collapse
Affiliation(s)
- K Mehta
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - B Kaur
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - K K Pandey
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - P Dhar
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India
| | - S Kaler
- Department of Anatomy, All India Institute of Medical Sciences (AIIMS), New Delhi 110029, India.
| |
Collapse
|
21
|
Tinkov AA, Nguyen TT, Santamaria A, Bowman AB, Buha Djordjevic A, Paoliello MMB, Skalny AV, Aschner M. Sirtuins as molecular targets, mediators, and protective agents in metal-induced toxicity. Arch Toxicol 2021; 95:2263-2278. [PMID: 34028595 DOI: 10.1007/s00204-021-03048-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/01/2021] [Indexed: 02/06/2023]
Abstract
Metal dyshomeostasis, and especially overexposure, is known to cause adverse health effects due to modulation of a variety of metabolic pathways. An increasing body of literature has demonstrated that metal exposure may affect SIRT signaling, although the existing data are insufficient. Therefore, in this review we discuss the available data (PubMed-Medline, Google Scholar) on the influence of metal overload on sirtuin (SIRT) signaling and its association with other mechanisms involved in metal-induced toxicity. The existing data demonstrate that cadmium (Cd), mercury (Hg), arsenic (As), lead (Pb), aluminium (Al), hexavalent chromium (CrVI), manganese (Mn), iron (Fe), and copper (Cu) can inhibit SIRT1 activity. In addition, an inhibitory effect of Cd, Pb, As, and Fe on SIRT3 has been demonstrated. In turn, metal-induced inhibition of SIRT was shown to affect deacetylation of target proteins including FOXO, PGC1α, p53 and NF-kB. Increased acetylation downregulates PGC1α signaling pathway, resulting in cellular altered redox status and increased susceptibility to oxidative stress, as well as decreased mitochondrial biogenesis. Lower rates of LKB1 deacetylation may be responsible for metal-induced decreases in AMPK activity and subsequent metabolic disturbances. A shift to the acetylated FOXO results in increased expression of pro-apoptotic genes which upregulates apoptosis together with increased p53 signaling. Correspondingly, decreased NF-kB deacetylation results in upregulation of target genes of proinflammatory cytokines, enzymes, and cellular adhesion molecules thus promoting inflammation. Therefore, alterations in sirtuin activity may at least partially mediate metal-induced metabolic disturbances that have been implicated in neurotoxicity, nephrotoxicity, cardiotoxicity, and other toxic effects of heavy metals.
Collapse
Affiliation(s)
- Alexey A Tinkov
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.,Yaroslavl State University, Yaroslavl, Russia
| | - Thuy T Nguyen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Abel Santamaria
- Laboratorio de Aminoácidos Excitadores, Instituto Nacional de Neurología y Neurocirugía, S.S.A., Mexico City, Mexico
| | - Aaron B Bowman
- School of Health Sciences, Purdue University, West Lafayette, USA
| | - Aleksandra Buha Djordjevic
- Department of Toxicology "Akademik Danilo Soldatović", Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Monica Maria Bastos Paoliello
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.,Graduate Program in Public Health, Center of Health Sciences, State University of Londrina, Londrina, PR, Brazil
| | - Anatoly V Skalny
- K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russia.,World-Class Research Center "Digital Biodesign and Personalized Healthcare", IM Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Michael Aschner
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia. .,Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
22
|
TET-mediated DNA demethylation plays an important role in arsenic-induced HBE cells oxidative stress via regulating promoter methylation of OGG1 and GSTP1. Toxicol In Vitro 2021; 72:105075. [DOI: 10.1016/j.tiv.2020.105075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 12/12/2020] [Accepted: 12/29/2020] [Indexed: 12/11/2022]
|
23
|
Inesta-Vaquera F, Navasumrit P, Henderson CJ, Frangova TG, Honda T, Dinkova-Kostova AT, Ruchirawat M, Wolf CR. Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116053. [PMID: 33213951 DOI: 10.1016/j.envpol.2020.116053] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/02/2020] [Accepted: 11/06/2020] [Indexed: 05/26/2023]
Abstract
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs's effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK.
| | - Panida Navasumrit
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Colin J Henderson
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tanya G Frangova
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Tadashi Honda
- Department of Chemistry and Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY, 11794-3400, USA
| | - Albena T Dinkova-Kostova
- Department of Molecular Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| | - Mathuros Ruchirawat
- Laboratory of Environmental Toxicology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - C Roland Wolf
- Department of Systems Medicine. School of Medicine. University of Dundee, Ninewells Hospital, Dundee, DD1 9SY, UK
| |
Collapse
|
24
|
Xiao T, Zou Z, Xue J, Syed BM, Sun J, Dai X, Shi M, Li J, Wei S, Tang H, Zhang A, Liu Q. LncRNA H19-mediated M2 polarization of macrophages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115810. [PMID: 33162208 DOI: 10.1016/j.envpol.2020.115810] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/02/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
Arsenic is a potent toxicant, and long-term exposure to inorganic arsenic causes lung damage. M2 macrophages play an important role in the pathogenesis of pulmonary fibrosis. However, the potential connections between arsenic and M2 macrophages in the development of pulmonary fibrosis are elusive. C57BL/6 mice were fed with drinking water containing 0, 10 and 20 ppm arsenite for 12 months. We have found that, in lung tissues of mice, arsenite, a biologically active form of arsenic, elevated H19, c-Myc, and Arg1; decreased let-7a; and caused pulmonary fibrosis. For THP-1 macrophages (THP-M) and bone-marrow-derived macrophages (BMDMs), 8 μM arsenite increased H19, c-Myc, and Arg1; decreased let-7a; and induced M2 polarization of macrophages, which caused secretion of the fibrogenic cytokine, TGF-β1. Down-regulation of H19 or up-regulation of let-7a reversed the arsenite-induced M2 polarization of macrophages. Arsenite-treated THP-M and BMDMs co-cultured with MRC-5 cells or primary lung fibroblasts (PLFs) elevated levels of p-SMAD2/3, SMAD4, α-SMA, and collagen I in lung fibroblasts and resulted in the activation of lung fibroblasts. Knockout of H19 or up-regulation of let-7a in macrophages reversed the effects. The results indicated that H19 functioned as an miRNA sponge for let-7a, which was involved in arsenite-induced M2 polarization of macrophages and induced the myofibroblast differentiation phenotype by regulation of c-Myc. In the sera of arseniasis patients, levels of hydroxyproline and H19 were higher, and levels of let-7a were lower than levels in the controls. These observations elucidate a possible mechanism for arsenic exposure-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Tian Xiao
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Junchao Xue
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Binafsha Manzoor Syed
- Medical Research Centre, Liaquat University of Medical & Health Sciences, Jamshoro, 76090, Sindh, Pakistan
| | - Jing Sun
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Xiangyu Dai
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Ming Shi
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Junjie Li
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China
| | - Shaofeng Wei
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Huanwen Tang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, 523808, Guangdong, People's Republic of China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, Guizhou, People's Republic of China
| | - Qizhan Liu
- Center for Global Health, The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China; Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, People's Republic of China.
| |
Collapse
|
25
|
Naqvi S, Kumar P, Flora SJS. Comparative efficacy of Nano and Bulk Monoisoamyl DMSA against arsenic-induced neurotoxicity in rats. Biomed Pharmacother 2020; 132:110871. [PMID: 33069968 DOI: 10.1016/j.biopha.2020.110871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/30/2020] [Accepted: 10/07/2020] [Indexed: 10/23/2022] Open
Abstract
Chelation therapy is considered as a safe and effective strategy to combat metal poisoning. Arsenic is known to cause neurological dysfunctions such as impaired memory, encephalopathy, and peripheral neuropathy as it easily crosses the blood-brain barrier. Oxidative stress is one of the mechanisms suggested for arsenic-induced neurotoxicity. We prepared Solid Lipid nanoparticles loaded with Monoisoamyl 2, 3-dimercaptosuccinic acid (Nano-MiADMSA), and compared their efficacy with bulk MiADMSA for treating arsenic-induced neurological and other biochemical effects. Solid lipid nanoparticles entrapping MiADMSA were synthesized and particle characterization was carried out by transmission electron microscopy (TEM) and dynamic light scattering (DLS). An in vivo study was planned to investigate the therapeutic efficacy of MiADMSA-encapsulated solid lipid nanoparticles (Nano-MiADMSA; 50 mg/kg orally for 5 days) and compared it with bulk MiADMSA against sodium meta-arsenite exposed rats (25 ppm in drinking water, for 12 weeks) in male rats. The results suggested the size of Nano-MiADMSA was between 100-120 nm ranges. We noted enhanced chelating properties of Nano-MiADMSA compared with bulk MiADMSA as evident by the reversal of oxidative stress variables like blood δ-aminolevulinic acid dehydratase (δ-ALAD), Reactive Oxygen Species (ROS), Catalase activity, Superoxide Dismutase (SOD), Thiobarbituric Acid Reactive Substances (TBARS), Reduced Glutathione (GSH) and Oxidized Glutathione (GSSG), Glutathione Peroxidase (GPx), Glutathione-S-transferase (GST) and efficient removal of arsenic from the blood and tissues. Recoveries in neurobehavioral parameters further confirmed nano-MiADMSA to be more effective than bulk MiADMSA. We conclude that treatment with Nano-MiADMSA is a better therapeutic strategy than bulk MiADMSA in reducing the effects of arsenic-induced oxidative stress and associated neurobehavioral changes.
Collapse
Affiliation(s)
- Saba Naqvi
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India
| | - Prince Kumar
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India
| | - S J S Flora
- National Institute of Pharmaceutical Education and Research (NIPER-Raebareli), Bijnor-Sisendi Road, CRPF Base Camp, P.O. Mati, Sarojini Nagar, Lucknow, UP, 226002, India.
| |
Collapse
|
26
|
Environmental Epigenetics of Diesel Particulate Matter Toxicogenomics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17207386. [PMID: 33050454 PMCID: PMC7650680 DOI: 10.3390/ijerph17207386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 11/17/2022]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by disruptions in social communication and behavioral flexibility. Both genetic and environmental factors contribute to ASD risk. Epidemiologic studies indicate that roadway vehicle exhaust and in utero exposure to diesel particulate matter (DPM) are associated with ASD. Using the Comparative Toxicogenomics Database (CTD), we identified genes connected to DPM exposure and ASD, extracted the known enhancers/promoters of the identified genes, and integrated this with Assay for Transposase Accessible Chromatin (ATAC-seq) data from DPM-exposed human neural progenitor cells. Enhancer/promoter elements with significantly different chromosome accessibility revealed enriched DNA sequence motifs with transcription factor binding sites for EGR1. Variant extraction for linkage disequilibrium blocks of these regions followed by analysis through Genome Wide Association Studies (GWAS) revealed multiple neurological trait associations including exploratory eye movement and brain volume measurement. This approach highlights the effects of pollution on the regulatory regions of genes implicated in ASD by genetic studies, indicating convergence of genetic and environmental factors on molecular networks that contribute to ASD. Integration of publicly available data from the CTD, cell culture exposure studies, and phenotypic genetics synergize extensive evidence of chemical exposures on gene regulation for altered brain development.
Collapse
|
27
|
Kochmanski J, Bernstein AI. The Impact of Environmental Factors on 5-Hydroxymethylcytosine in the Brain. Curr Environ Health Rep 2020; 7:109-120. [PMID: 32020534 PMCID: PMC7809708 DOI: 10.1007/s40572-020-00268-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE OF REVIEW The aims of this review are to evaluate the methods used to measure 5-hydroxymethylcytosine (5-hmC), and then summarize the available data investigating the impact of environmental factors on 5-hydroxymethylcytosine (5-hmC) in the brain. RECENT FINDINGS Recent research has shown that some environmental factors, including exposure to exogenous chemicals, stress, altered diet, and exercise, are all associated with 5-hmC variation in the brain. However, due to a lack of specificity in the methods used to generate a majority of the available data, it cannot be determined whether environment-induced changes in 5-hmC occur in specific biological pathways. Environment appears to shape 5-hmC levels in the brain, but the available literature is hampered by limitations in measurement methods. The field of neuroepigenetics needs to adopt new tools to increase the specificity of its data and enhance biological interpretation of exposure-related changes in 5-hmC. This will help improve understanding of the potential roles for environmental factors and 5-hmC in neurological disease.
Collapse
Affiliation(s)
- Joseph Kochmanski
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA
| | - Alison I Bernstein
- Department of Translational Neuroscience, Grand Rapids Research Center, Michigan State University College of Human Medicine, 400 Monroe Ave NW, Grand Rapids, MI, 49503, USA.
| |
Collapse
|
28
|
Efimova OA, Koltsova AS, Krapivin MI, Tikhonov AV, Pendina AA. Environmental Epigenetics and Genome Flexibility: Focus on 5-Hydroxymethylcytosine. Int J Mol Sci 2020; 21:E3223. [PMID: 32370155 PMCID: PMC7247348 DOI: 10.3390/ijms21093223] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/13/2022] Open
Abstract
Convincing evidence accumulated over the last decades demonstrates the crucial role of epigenetic modifications for mammalian genome regulation and its flexibility. DNA methylation and demethylation is a key mechanism of genome programming and reprogramming. During ontogenesis, the DNA methylome undergoes both programmed changes and those induced by environmental and endogenous factors. The former enable accurate activation of developmental programs; the latter drive epigenetic responses to factors that directly or indirectly affect epigenetic biochemistry leading to alterations in genome regulation and mediating organism response to environmental transformations. Adverse environmental exposure can induce aberrant DNA methylation changes conducive to genetic dysfunction and, eventually, various pathologies. In recent years, evidence was derived that apart from 5-methylcytosine, the DNA methylation/demethylation cycle includes three other oxidative derivatives of cytosine-5-hydroxymethylcytosine (5hmC), 5-formylcytosine, and 5-carboxylcytosine. 5hmC is a predominantly stable form and serves as both an intermediate product of active DNA demethylation and an essential hallmark of epigenetic gene regulation. This makes 5hmC a potential contributor to epigenetically mediated responses to environmental factors. In this state-of-the-art review, we consolidate the latest findings on environmentally induced adverse effects on 5hmC patterns in mammalian genomes. Types of environmental exposure under consideration include hypnotic drugs and medicines (i.e., phenobarbital, diethylstilbestrol, cocaine, methamphetamine, ethanol, dimethyl sulfoxide), as well as anthropogenic pollutants (i.e., heavy metals, particulate air pollution, bisphenol A, hydroquinone, and pentachlorophenol metabolites). We put a special focus on the discussion of molecular mechanisms underlying environmentally induced alterations in DNA hydroxymethylation patterns and their impact on genetic dysfunction. We conclude that DNA hydroxymethylation is a sensitive biosensor for many harmful environmental factors each of which specifically targets 5hmC in different organs, cell types, and DNA sequences and induces its changes through a specific metabolic pathway. The associated transcriptional changes suggest that environmentally induced 5hmC alterations play a role in epigenetically mediated genome flexibility. We believe that knowledge accumulated in this review together with further studies will provide a solid basis for new approaches to epigenetic therapy and chemoprevention of environmentally induced epigenetic toxicity involving 5hmC patterns.
Collapse
Affiliation(s)
- Olga A. Efimova
- D. O. Ott Research Institute of Obstetrics, Gynecology and Reproductology, Mendeleevskaya line 3, 199034 St. Petersburg, Russia; (A.S.K.); (M.I.K.); (A.V.T.); (A.A.P.)
| | | | | | | | | |
Collapse
|
29
|
Zhang C, Zhang J, Zhu L, Du Z, Wang J, Wang J, Li B, Yang Y. Fluoxastrobin-induced effects on acute toxicity, development toxicity, oxidative stress, and DNA damage in Danio rerio embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 715:137069. [PMID: 32041080 DOI: 10.1016/j.scitotenv.2020.137069] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 06/10/2023]
Abstract
Strobilurin fungicides (SFs), the most commonly used fungicides, pose threats for controlling fungal diseases. The fungicides were monitored in aquatic ecosystems and may have negative effects on nontarget organisms. This project was undertaken to monitor the toxic effects of fluoxastrobin (FLUO) on Danio rerio embryos and to evaluate the SF risks in aquatic ecosystems. The 96-hour median lethal concentration (96 h LC50), hatching rates, and morphological abnormalities were used to analyze acute toxicity and teratogenicity of FLUO to Danio rerio embryos at an FLUO dose of 0.549 mg/L (95% confidence limits: 0.423 to 0.698 mg/L); the results showed that FLUO has high toxicity in embryos that is analogous to the toxicity observed in adult Danio rerio. Fluoxastrobin may lead embryos to delayed hatching at concentrations >0.6 mg/L, and it may lead to teratogenicity (i.e., pericardial edema and spinal curvature). Based on the 96 h LC50 results, the following parameters were evaluated in Danio rerio: development-related indicators (body length and heart rates), reactive oxygen species (ROS) levels, lipid peroxidation (LPO) levels, the levels of three antioxidants, 8-hydroxy-2-deoxyguanosine (8-OHdG), and apoptosis. The results elucidated that FLUO inhibition of spinal and heart development may be induced by oxidative stress. In addition, FLUO induced a notable climb in ROS content, LPO, the activated activity of superoxide dismutase (SOD) and catalase (CAT), and it inhibited glutathione peroxidase (GSH-PX) activity. Fluoxastrobin led to DNA damage (i.e., a notable climb of 8-OHdG contents and apoptotic cells). Collectively, FLUO posed threats to Danio rerio embryos at multiple levels, and this investigation could be a reminder for people to be more judicious in SF-use to avoid or relieve SF toxicity to nontarget organisms.
Collapse
Affiliation(s)
- Cheng Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jingwen Zhang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Lusheng Zhu
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Zhongkun Du
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Jun Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Jinhua Wang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China.
| | - Bing Li
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Taian 271018, China
| | - Yue Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
30
|
He Y, Zhang R, Chen J, Tan J, Wang M, Wu X. The ability of arsenic metabolism affected the expression of lncRNA PANDAR, DNA damage, or DNA methylation in peripheral blood lymphocytes of laborers. Hum Exp Toxicol 2020; 39:605-613. [PMID: 31885278 DOI: 10.1177/0960327119897101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Arsenic has been associated with significant effects on human health. Exposure to inorganic arsenic has been associated with the changes in gene expression. Promoter of CDKN1A antisense DNA damage activated RNA (PANDAR) expression is induced by p53 protein and DNA damage response. Here, we investigated whether the ability of arsenic metabolism in individuals affected the expression of PANDAR, DNA damage, and DNA methylation. Levels of gene expression and DNA damage were examined by the quantitative polymerase chain reaction and DNA methylation was measured by the methylation-sensitive high-resolution melting curve. In our study, we demonstrated that arsenic exposure increased PANDAR expression and DNA damage among arsenic smelting plant laborers. The PANDAR expression and DNA damage were positively linked to monomethylarsonic acid % (R = 0.25, p < 0.05 and R = 0.32, p < 0.01) and negatively linked to dimethylarsinic acid % (R = -0.21, p < 0.05 and R = -0.31, p < 0.01). Subjects with low primary methylation index had increased levels of DNA damage (51.62 ± 2.96 vs. 60.93 ± 3.10, p < 0.05) and methylation (17.14 (15.88-18.51) vs. 15.83 (14.82-18.00), p < 0.05). Subjects with low secondary methylation index had increased levels of PANDAR expression (4.88 ± 0.29 vs. 4.07 ± 0.23, p < 0.01) and DNA damage (17.38 (15.88-19.29) vs. 15.83 (14.82-17.26), p < 0.01). DNA methylation of PANDAR gene was linked to the regulation of its expression in peripheral blood lymphocytes among laborers (Y = -2.08 × X + 5.64, p < 0.05). These findings suggested arsenic metabolism ability and exposure affected the expression of PANDAR, DNA damage, and DNA methylation.
Collapse
Affiliation(s)
- Y He
- School of Public Health, Kunming Medical University, Kunming, China
| | - R Zhang
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Chen
- School of Public Health, Kunming Medical University, Kunming, China
| | - J Tan
- School of Public Health, Kunming Medical University, Kunming, China
| | - M Wang
- School of Public Health, Kunming Medical University, Kunming, China
| | - X Wu
- School of Public Health, Kunming Medical University, Kunming, China
| |
Collapse
|
31
|
The Role of Reactive Oxygen Species in Arsenic Toxicity. Biomolecules 2020; 10:biom10020240. [PMID: 32033297 PMCID: PMC7072296 DOI: 10.3390/biom10020240] [Citation(s) in RCA: 211] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
Arsenic poisoning is a global health problem. Chronic exposure to arsenic has been associated with the development of a wide range of diseases and health problems in humans. Arsenic exposure induces the generation of intracellular reactive oxygen species (ROS), which mediate multiple changes to cell behavior by altering signaling pathways and epigenetic modifications, or cause direct oxidative damage to molecules. Antioxidants with the potential to reduce ROS levels have been shown to ameliorate arsenic-induced lesions. However, emerging evidence suggests that constructive activation of antioxidative pathways and decreased ROS levels contribute to chronic arsenic toxicity in some cases. This review details the pathways involved in arsenic-induced redox imbalance, as well as current studies on prophylaxis and treatment strategies using antioxidants.
Collapse
|
32
|
Garza-Lombó C, Pappa A, Panayiotidis MI, Gonsebatt ME, Franco R. Arsenic-induced neurotoxicity: a mechanistic appraisal. J Biol Inorg Chem 2019; 24:1305-1316. [PMID: 31748979 DOI: 10.1007/s00775-019-01740-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 10/24/2019] [Indexed: 12/19/2022]
Abstract
Arsenic is a metalloid found in groundwater as a byproduct of soil/rock erosion and industrial and agricultural processes. This xenobiotic elicits its toxicity through different mechanisms, and it has been identified as a toxicant that affects virtually every organ or tissue in the body. In the central nervous system, exposure to arsenic can induce cognitive dysfunction. Furthermore, iAs has been linked to several neurological disorders, including neurodevelopmental alterations, and is considered a risk factor for neurodegenerative disorders. However, the exact mechanisms involved are still unclear. In this review, we aim to appraise the neurotoxic effects of arsenic and the molecular mechanisms involved. First, we discuss the epidemiological studies reporting on the effects of arsenic in intellectual and cognitive function during development as well as studies showing the correlation between arsenic exposure and altered cognition and mental health in adults. The neurotoxic effects of arsenic and the potential mechanisms associated with neurodegeneration are also reviewed including data from experimental models supporting epidemiological evidence of arsenic as a neurotoxicant. Next, we focused on recent literature regarding arsenic metabolism and the molecular mechanisms that begin to explain how arsenic damages the central nervous system including, oxidative stress, energy failure and mitochondrial dysfunction, epigenetics, alterations in neurotransmitter homeostasis and synaptic transmission, cell death pathways, and inflammation. Outlining the specific mechanisms by which arsenic alters the cell function is key to understand the neurotoxic effects that convey cognitive dysfunction, neurodevelopmental alterations, and neurodegenerative disorders.
Collapse
Affiliation(s)
- Carla Garza-Lombó
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.,Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Aglaia Pappa
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| | | | - María E Gonsebatt
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA. .,School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA.
| |
Collapse
|
33
|
Masjosthusmann S, Siebert C, Hübenthal U, Bendt F, Baumann J, Fritsche E. Arsenite interrupts neurodevelopmental processes of human and rat neural progenitor cells: The role of reactive oxygen species and species-specific antioxidative defense. CHEMOSPHERE 2019; 235:447-456. [PMID: 31272005 DOI: 10.1016/j.chemosphere.2019.06.123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 05/10/2023]
Abstract
Arsenic exposure disturbs brain development in humans. Although developmental neurotoxicity (DNT) of arsenic has been studied in vivo and in vitro, its mode-of-action (MoA) is not completely understood. Here, we characterize the adverse neurodevelopmental effects of sodium arsenite on developing human and rat neural progenitor cells (hNPC, rNPC). Moreover, we analyze the involvement of reactive oxygen species (ROS) and the role of the glutathione (GSH)-dependent antioxidative defense for arsenite-induced DNT in a species-specific manner. We determined IC50 values for sodium arsenite-dependent (0.1-10 μM) inhibition of hNPC and rNPC migration (6.0 μM; >10 μM), neuronal (2.7 μM; 4.4 μM) and oligodendrocyte (1.1 μM; 2.0 μM) differentiation. ROS involvement was studied by quantifying the expression of ROS-regulated genes, measuring glutathione (GSH) levels, inhibiting GSH synthesis and co-exposing cells to the antioxidant N-acetylcysteine. Arsenite reduces NPC migration, neurogenesis and oligodendrogenesis of differentiating hNPC and rNPC at sub-cytotoxic concentrations. Species-specific arsenite cytotoxicity and induction of antioxidative gene expression is inversely related to GSH levels with rNPC possessing >3-fold the amount of GSH than hNPC. Inhibition of GSH synthesis increased the sensitivity towards arsenite in rNPC > hNPC. N-acetylcysteine antagonized arsenite-mediated induction of HMOX1 expression as well as reduction of neuronal and oligodendrocyte differentiation in hNPC suggesting involvement of oxidative stress in arsenite DNT. hNPC are more sensitive towards arsenite-induced neurodevelopmental toxicity than rNPC, probably due to their lower antioxidative defense capacities. This species-specific MoA data might be useful for adverse outcome pathway generation and future integrated risk assessment strategies concerning DNT.
Collapse
Affiliation(s)
- Stefan Masjosthusmann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Clara Siebert
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ulrike Hübenthal
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Farina Bendt
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Jenny Baumann
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Ellen Fritsche
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany; Heinrich-Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| |
Collapse
|
34
|
Bai L, Tang Q, Zou Z, Meng P, Tu B, Xia Y, Cheng S, Zhang L, Yang K, Mu S, Wang X, Qin X, Lv B, Cao X, Qin Q, Jiang X, Chen C. m6A Demethylase FTO Regulates Dopaminergic Neurotransmission Deficits Caused by Arsenite. Toxicol Sci 2019; 165:431-446. [PMID: 29982692 DOI: 10.1093/toxsci/kfy172] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Arsenite exposure is known to increase the risk of neurological disorders via alteration of dopamine content, but the detailed molecular mechanisms remain largely unknown. In this study, using both dopaminergic neurons of the PC-12 cell line and C57BL/6J mice as in vitro and in vivo models, our results demonstrated that 6 months of arsenite exposure via drinking water caused significant learning and memory impairment, anxiety-like behavior and alterations in conditioned avoidance and escape responses in male adult mice. We also were the first to reveal that the reduction in dopamine content induced by arsenite mainly resulted from deficits in dopaminergic neurotransmission in the synaptic cleft. The reversible N6- methyladenosine (m6A) modification is a novel epigenetic marker with broad roles in fundamental biological processes. We further evaluated the effect of arsenite on the m6A modification and tested if regulation of the m6A modification by demethylase fat mass and obesity-associated (FTO) could affect dopaminergic neurotransmission. Our data demonstrated for the first time that arsenite remarkably increased m6A modification, and FTO possessed the ability to alleviate the deficits in dopaminergic neurotransmission in response to arsenite exposure. Our findings not only provide valuable insight into the molecular neurotoxic pathogenesis of arsenite exposure, but are also the first evidence that regulation of FTO may be considered as a novel strategy for the prevention of arsenite-associated neurological disorders.
Collapse
Affiliation(s)
- LuLu Bai
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qianghu Tang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Zhen Zou
- Institute of Life Sciences, Chongqing Medical University, Chongqing, People's Republic of China
| | - Pan Meng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Baijie Tu
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Lina Zhang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Kai Yang
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Shaoyu Mu
- Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xuefeng Wang
- Chongqing Key Laboratory of Neurology, Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Xia Qin
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People's Republic of China
| | - Bo Lv
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Xianqing Cao
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China
| | - Qizhong Qin
- Center of Experimental Teaching for Public Health
| | - Xuejun Jiang
- Center of Experimental Teaching for Public Health.,Laboratory of Tissue and Cell Biology, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health and Management, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing Medical University, Chongqing, People's Republic of China.,Post-doctoral Research Stations of Nursing Science, School of Nursing, Chongqing Medical University, Chongqing, People's Republic of China
| |
Collapse
|
35
|
Schofield K. An Important Need to Monitor from an Early Age the Neurotoxins in the Blood or by an Equivalent Biomarker. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16183425. [PMID: 31527390 PMCID: PMC6766009 DOI: 10.3390/ijerph16183425] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 12/17/2022]
Abstract
An overwhelming amount of evidence now suggests that some people are becoming overloaded with neurotoxins. This is mainly from changes in their living environment and style, coupled with the fact that all people are different and display a broad distribution of genetic susceptibilities. It is important for individuals to know where they lie concerning their ability to either reject or retain toxins. Everyone is contaminated with a certain baseline of toxins that are alien to the body, namely aluminum, arsenic, lead, and mercury. Major societal changes have modified their intake, such as vaccines in enhanced inoculation procedures and the addition of sushi into diets, coupled with the ever-present lead, arsenic, and traces of manganese. It is now apparent that no single toxin is responsible for the current neurological epidemics, but rather a collaborative interaction with possible synergistic components. Selenium, although also a neurotoxin if in an excessive amount, is always present and is generally more present than other toxins. It performs as the body’s natural chelator. However, it is possible that the formation rates of active selenium proteins may become overburdened by other toxins. Every person is different and it now appears imperative that the medical profession establish an individual’s neurotoxicity baseline. Moreover, young women should certainly establish their baselines long before pregnancy in order to identify possible risk factors.
Collapse
Affiliation(s)
- Keith Schofield
- Materials Research Laboratory, University of California Santa Barbara, Santa Barbara, CA 93106-5121, USA.
| |
Collapse
|
36
|
Chen Z, Liu C, An L, Zhang N, Ren D, Yuan F, Yuan R, Bi Y, Sun Q, Ji L, Guo Z, Ma G, Xu F, Shi L, Yang F, Du L, Zhu L, Xu Y, He L, Bai B, Yu T, Li X, He G. Single nucleotide polymorphism rs11191454 in arsenite methyltransferase is associated with flow in Chinese students: a genetic study on flow experience. JOURNAL OF BIO-X RESEARCH 2019; 02:140-144. [DOI: 10.1097/jbr.0000000000000042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Flow has been widely studied in the field of positive psychology. However, little is known regarding its biological mechanism. This study aimed to ascertain flow-related gene loci. We investigated the association between flow and five single nucleotide polymorphisms associated with common mental disorders among a sample of 870 healthy 1
st
year students of Jining Medical University, Shandong Province, China. This study was approved by the Ethics Committee of Jining Medical University (approval number: JNMC-2016-KY-001) on June 1, 2016. rs11191454 demonstrated significant statistical association with flow after adjusting for age and gender (
P
= 0.004). The allele carriers achieved higher scores in all 4 dimensions of flow: merging of action and awareness, challenge-skill balance, sense of control, and clear goals. This biological research article indicates that rs11191454 in the arsenite methyltransferase (
AS3MT
) gene might be associated with flow in a Chinese Han population, and that might result from altered arsenic metabolism.
Collapse
Affiliation(s)
- Zhixuan Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Chuanxin Liu
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Lin An
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Naixin Zhang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ruixue Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qianqian Sun
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Gaini Ma
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fei Xu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Li Du
- Shanghai Center for Women and Children’s Health, Shanghai, China
| | - Liping Zhu
- Shanghai Center for Women and Children’s Health, Shanghai, China
| | - Yifeng Xu
- Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lin He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Bo Bai
- School of Mental Health, Jining Medical University, Jining, Shandong Province, China
| | - Tao Yu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; School of Mental Health, Jining Medical University, Jining, Shandong Province, China; Shanghai Center for Women and Children’s Health, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, China; Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
37
|
Lin YC, Chung CJ, Huang YL, Hsieh RL, Huang PT, Wu MY, Ao PL, Shiue HS, Huang SR, Su CT, Lin MI, Mu SC, Hsueh YM. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch Toxicol 2019; 93:2535-2544. [DOI: 10.1007/s00204-019-02540-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/14/2019] [Indexed: 12/15/2022]
|
38
|
Ahmed RG, El-Gareib AW. Gestational Arsenic Trioxide Exposure Acts as a Developing Neuroendocrine-Disruptor by Downregulating Nrf2/PPARγ and Upregulating Caspase-3/NF-ĸB/Cox2/BAX/iNOS/ROS. Dose Response 2019; 17:1559325819858266. [PMID: 31258454 PMCID: PMC6589982 DOI: 10.1177/1559325819858266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 12/13/2022] Open
Abstract
The goal of this investigation was to evaluate the effects of gestational administrations of arsenic trioxide (ATO; As2O3) on fetal neuroendocrine development (the thyroid-cerebrum axis). Pregnant Wistar rats were orally administered ATO (5 or 10 mg/kg) from gestation day (GD) 1 to 20. Both doses of ATO diminished free thyroxine and free triiodothyronine levels and augmented thyrotropin level in both dams and fetuses at GD 20. Also, the maternofetal hypothyroidism in both groups caused a dose-dependent reduction in the fetal serum growth hormone, insulin growth factor-I (IGF-I), and IGF-II levels at embryonic day (ED) 20. These disorders perturbed the maternofetal body weight, fetal brain weight, and survival of pregnant and their fetuses. In addition, destructive degeneration, vacuolation, hyperplasia, and edema were observed in the fetal thyroid and cerebrum of both ATO groups at ED 20. These disruptions appear to depend on intensification in the values of lipid peroxidation, nitric oxide, and H2O2, suppression of messenger RNA (mRNA) expression of nuclear factor erythroid 2-related factor 2 and peroxisome proliferator-activated receptor gamma, and activation of mRNA expression of caspase-3, nuclear factor kappa-light-chain-enhancer of activated B cells, cyclooxygenase-2, Bcl-2–associated X protein, and inducible nitric oxide synthase in the fetal cerebrum. These data suggest that gestational ATO may disturb thyroid-cerebrum axis generating fetal neurodevelopmental toxicity.
Collapse
Affiliation(s)
- R G Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|
39
|
Wang H, Zhu H. A Comparison Study on the Arsenate Adsorption Behavior of Calcium-Bearing Materials. MATERIALS (BASEL, SWITZERLAND) 2019; 12:ma12121936. [PMID: 31208107 PMCID: PMC6631780 DOI: 10.3390/ma12121936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
The calcium-bearing adsorbents are widely used in the treatment of arsenic-containing wastewater due to their excellent treatment effect and economy. In order to obtain high-efficient adsorbents for arsenate (As(V)) removal, the adsorption behavior of calcium oxide (CaO), calcium fluoride (CaF2) and calcium carbonate (CaCO3) on As(V) in aqueous solution at different concentrations were explored. The adsorption mechanism was also explored based on surface characteristics: morphology, specific surface area, as well as their effective calcium content. Not only that, the chemical stability of these materials was further studied. Results exhibited that the As(V) removal capability of these materials is in the following order, CaO > CaF2 > CaCO3. When CaO served as an absorbent, As(V) with initial concentration of 0.2 mg/L can be reduced to 0.383 × 10-3 mg/L in 10 min. Moreover, the capabilities of CaO, CaF2 and CaCO3 for removing As(V) are positively correlated with their effective calcium content in aqueous solution, which provide the basis for selecting calcium-bearing materials with excellently comprehensive properties for the field of As(V) removal in aqueous solution. What's more, all three materials exhibit great chemical stability after adsorption of As(V).
Collapse
Affiliation(s)
- Han Wang
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Hong Zhu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
40
|
Huang Y, Lin S, Jin L, Wang L, Ren A. Decreased global DNA hydroxymethylation in neural tube defects: Association with polycyclic aromatic hydrocarbons. Epigenetics 2019; 14:1019-1029. [PMID: 31179819 DOI: 10.1080/15592294.2019.1629233] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
5-Hydroxymethylcytosine (5hmC), a distinct epigenetic marker that plays a role in DNA active demethylation, has been reported to be important for embryonic development and may respond to environmental exposure. No studies have evaluated the association between DNA hydroxymethylation and the risk for fetal neural tube defects (NTDs), with consideration of prenatal exposure to polycyclic aromatic hydrocarbons (PAHs), a risk factor for NTDs. We measured the global levels of 5hmC% in neural tissue from 92 terminated NTD cases and 33 terminated non-malformed fetuses. A lower level of 5hmC% was found in the NTD cases (median [interquartile range]: 0.25 [0.12-0.39]) compared to the controls (0.45 [0.19-1.00]). After adjusting for periconceptional folate supplementation, risk for NTDs increased with decreasing tertiles of 5hmC% (odds ratio: 7.89, 95% confidence interval: 2.32, 26.86, for the lowest tertile relative to the top tertile; pfor trend = 0.002). Linear regression revealed that concentrations of high-molecular-weight PAHs (H_PAHs) in fetal liver tissue were negatively associated with log2-transformed 5hmC%. Superoxide dismutase activity and 5hmC% were positively correlated in fetal neural tissue (rs = 0.64; p < 0.05). A mouse whole-embryo culture model was used for further validation. Decreased levels of 5hmC% and increased levels of reactive oxygen species were found in mouse embryos treated with BaP, a well-studied PAH. Taken together, levels of 5hmC% in fetal neural tissue were inversely associated with the risk for NTDs, and this association may be related to oxidative stress induced by exposure to PAHs.
Collapse
Affiliation(s)
- Yun Huang
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Shanshan Lin
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China.,b Division of Birth Cohort Study, Guangzhou Women and Children's Medical Center , Guangzhou Medical University, Guangzhou , China
| | - Lei Jin
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Linlin Wang
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| | - Aiguo Ren
- a Institute of Reproductive and Child Health, National Health Commission Key Laboratory of Reproductive Health, and Department of Epidemiology and Biostatistics, School of Public Health, Peking University Health Science Center , Beijing , China
| |
Collapse
|
41
|
Alamdar A, Tian M, Huang Q, Du X, Zhang J, Liu L, Shah STA, Shen H. Enhanced histone H3K9 tri-methylation suppresses steroidogenesis in rat testis chronically exposed to arsenic. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 170:513-520. [PMID: 30557709 DOI: 10.1016/j.ecoenv.2018.12.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/19/2018] [Accepted: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Arsenic poses a profound health risk including male reproductive dysfunction upon prolonged exposure. Histone methylation is an important epigenetic driver; however, its role in arsenic- induced steroidogenic pathogenesis remains obscure. In current study, we investigated the effect of histone H3K9 tri-methylation (H3K9me3) on expression pattern of steroidogenic genes in rat testis after long-term arsenic exposure. Our results revealed that arsenic exposure down-regulated the mRNA expressions of all studied steroidogenic genes (Lhr, Star, P450scc, Hsd3b, Cyp17a1, Hsd17b and Arom). Moreover, arsenic significantly increased the H3K9me3 level in rat testis. The plausible explanation of increased H3K9me3 was attributable to the up-regulation of histone H3K9me3 methyltransferase, Suv39h1 and down-regulation of demethylase, Jmjd2a. Since H3K9me3 activation leads to gene repression, we further investigated whether the down-regulation of steroidogenic genes was ascribed to the increased H3K9me3 level. To elucidate this, we determined the H3K9me3 levels in steroidogenic gene promoters, which also showed significant increase of H3K9me3 in the investigated regions after arsenic exposure. In conclusion, arsenic exposure suppressed the steroidogenic gene expression by activating H3K9me3 status, which contributed to steroidogenic inhibition in rat testis.
Collapse
Affiliation(s)
- Ambreen Alamdar
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China; Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Meiping Tian
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Qingyu Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| | - Xiaoyan Du
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Jie Zhang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | - Liangpo Liu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China
| | | | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, PR China.
| |
Collapse
|
42
|
Cacabelos R, Carril JC, Sanmartín A, Cacabelos P. Pharmacoepigenetic Processors: Epigenetic Drugs, Drug Resistance, Toxicoepigenetics, and Nutriepigenetics. PHARMACOEPIGENETICS 2019:191-424. [DOI: 10.1016/b978-0-12-813939-4.00006-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
43
|
R G A, El-Gareib AW. WITHDRAWN: Toxic effects of gestational arsenic trioxide on the neuroendocrine axis of developing rats. Food Chem Toxicol 2018:S0278-6915(18)30663-X. [PMID: 30218683 DOI: 10.1016/j.fct.2018.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 08/29/2018] [Accepted: 09/10/2018] [Indexed: 11/19/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Ahmed R G
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - A W El-Gareib
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Cairo University, Egypt
| |
Collapse
|