1
|
Parrott JL, Schock DM, Vander Meulen IJ, Mundy L, Pauli B, Peru K, Headley JV. Disrupted development in fathead minnow embryos exposed to wetland waters from the Athabasca Oil Sands Region, Alberta, Canada. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177407. [PMID: 39515383 DOI: 10.1016/j.scitotenv.2024.177407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/18/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
To assess aquatic toxicity of natural wetlands in the Athabasca oil sands region (AOSR) of northern Alberta, fifteen collected water samples were tested for their ability to affect survival and development of fathead minnow embryos. Wetland waters were also assessed for toxicants from natural oil sands bitumen deposits (Na, Cl, metals, naphthenic acids (NAs), naphthenic acid fraction compounds (NAFCs), polycyclic aromatic hydrocarbons (PAHs), and alkylated PAHs). Water samples from four wetlands caused toxicity to fish embryos. The most potent wetland water, HAT-S5, caused significantly decreased hatch success, decreased time-to-hatch, decreased embryonic heart rate and increased deformities (60 % vs controls 2 %). Exposure to wetland waters from Saline Lake (where conductivity was 2320 μS/cm and Na was high) resulted in fish with increased deformities (58 % vs controls 2 %) that were not the results of high conductivity alone. Two other wetland waters (Gateway Bridge and Crane Lake) also disrupted development in fathead minnow embryos. These combined findings suggest that for natural wetland waters causing effects in fish embryos, toxicants other than salinity/conductivity/ions were responsible for the observed effects. The general water chemistry of most wetlands was unremarkable. However, the most potent wetland, HATS5-wtl is a naturally occurring wetland with possible connections to ground water that makes contact with bitumen. The assessment of the toxicity and chemicals present in natural wetlands provides background data for future studies and for design of restoration wetlands for oil sands mining-disturbed landscapes.
Collapse
Affiliation(s)
- Joanne L Parrott
- Aquatic Contaminants Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| | - Danna M Schock
- Palustris Environmental, Athabasca, Alberta T9S 1H8, Canada
| | - Ian J Vander Meulen
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Lukas Mundy
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Bruce Pauli
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Kerry Peru
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - John V Headley
- Watershed Hydrology and Ecology Research Division, Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan S7N 3H5, Canada
| |
Collapse
|
2
|
Zhan F, Parajulee A, Binnington MJ, Gawor A, Wania F. A multi-pathway exposure assessment for polycyclic aromatic hydrocarbons among residents in the Athabasca oil sands region, Canada. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:755-766. [PMID: 36883478 DOI: 10.1039/d2em00526c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Due to increasing emissions from ongoing development of the oil sands in Northern Alberta, Canada, there is concern that local residents and organisms are experiencing elevated exposures to hazardous contaminants. We modified an existing human bioaccumulation model (ACC-Human) to represent the local food chain in the Athabasca oil sands region (AOSR), the focus of oil sands development in Alberta. We used the model to assess the potential exposure to three polycyclic aromatic hydrocarbons (PAHs) among local residents that have a high intake of locally sourced traditional foods. To place these estimates into context, we complemented them with estimated PAH intake through market foods and smoking. Our approach was able to produce realistic body burdens of the PAHs in aquatic and terrestrial wildlife and in humans, both in magnitude and with respect to the relative difference between smokers and non-smokers. Over the model simulation period (1967-2009), market food was the dominant dietary exposure route for phenanthrene and pyrene, while local food, and in particular local fish, dominated the intake of benzo[a]pyrene. Exposure to benzo[a]pyrene therefore was also predicted to increase over time in concert with expanding oil sands operations. Those smoking at the average rate of Northern Albertans take in an additional amount of all three PAHs that is at least as large as dietary intake. Estimated daily intake rates are below toxicological reference thresholds for all three PAHs. However, daily intake of BaP in adults is only ∼20 fold below those thresholds and is predicted to increase. Key uncertainties in the assessment included the effect of food preparation on the PAH content in food (e.g., smoking of fish), the limited availability of market food contamination data specific to Canada, and the PAH content of the vapor phase of first-hand cigarette smoke. Considering the satisfactory model evaluation, ACC-Human AOSR should be suited to making predictions of future contaminant exposure based on development scenarios in the AOSR or in response to potential emission reduction efforts. It should also be applicable to other organic contaminants of concern released by oil sands operations.
Collapse
Affiliation(s)
- Faqiang Zhan
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| | - Abha Parajulee
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| | - Matthew J Binnington
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| | - Anya Gawor
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario, Canada M1C 1A4.
| |
Collapse
|
3
|
Roberts DR, Bayne EM, Beausoleil D, Dennett J, Fisher JT, Hazewinkel RO, Sayanda D, Wyatt F, Dubé MG. A synthetic review of terrestrial biological research from the Alberta oil sands region: 10 years of published literature. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:388-406. [PMID: 34510725 PMCID: PMC9292629 DOI: 10.1002/ieam.4519] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 05/05/2023]
Abstract
In the past decade, a large volume of peer-reviewed papers has examined the potential impacts of oil and gas resource extraction in the Canadian oil sands (OS). A large proportion focuses on terrestrial biology: wildlife, birds, and vegetation. We provide a qualitative synthesis of the condition of the environment in the oil sands region (OSR) from 2009 to 2020 to identify gaps and progress cumulative effects assessments. Our objectives were to (1) qualitatively synthesize and critically review knowledge from the OSR; (2) identify consistent trends and generalizable conclusions; and (3) pinpoint gaps in need of greater monitoring or research effort. We visualize knowledge and terrestrial monitoring foci by allocating papers to a conceptual model for the OS. Despite a recent increase in publications, focus has remained concentrated on a few key stressors, especially landscape disturbance, and a few taxa of interest. Stressor and response monitoring is well represented, but direct monitoring of pathways (linkages between stressors and responses) is limited. Important knowledge gaps include understanding effects at multiple spatial scales, mammal health effects monitoring, focused monitoring of local resources important to Indigenous communities, and geospatial coverage and availability, including higher attribute resolution in human footprint, comprehensive land cover mapping, and up-to-date LiDAR coverage. Causal attribution based on spatial proximity to operations or spatial orientation of monitoring in the region is common but may be limited in the strength of inference that it provides. Integr Environ Assess Manag 2022;18:388-406. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | - Erin M. Bayne
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Jacqueline Dennett
- Department of Renewable ResourcesUniversity of AlbertaEdmontonAlbertaCanada
| | - Jason T. Fisher
- School of Environmental StudiesUniversity of VictoriaVictoriaBritish ColumbiaCanada
| | | | | | | | | |
Collapse
|
4
|
Thomas PJ, Eickmeyer DC, Eccles KM, Kimpe LE, Felzel E, Brouwer A, Letcher RJ, Maclean BD, Chan LHM, Blais JM. Paleotoxicity of petrogenic and pyrogenic hydrocarbon mixtures in sediment cores from the Athabasca oil sands region, Alberta (Canada). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118271. [PMID: 34627963 DOI: 10.1016/j.envpol.2021.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Despite the economic benefits of the oil and gas industry in Northern Alberta, significant concerns exist regarding the impacts of increased oil production on the environment and human health. Several studies have highlighted increases in the concentrations of polycyclic aromatic compounds (PACs) and other hydrocarbons in the atmosphere, water, soil and sediments, plants, wildlife and fish in the Athabasca Oil Sands Region (AOSR) as a result of oil sands industrial activity. Sediment cores can provide information on the temporal trends of contaminants to the environment and provide important baseline information when monitoring data are absent. Here we combined analytical chemistry and a mammalian cell-based bioassay in dated lake sediment cores to assess paleotoxicity in freshwater systems in the AOSR. Sediment intervals were radiometrically dated and subsequently analysed for PACs. PAC extracts from select dated intervals were used in cell-based bioassays to evaluate their endocrine disrupting properties. We demonstrated spatial and temporal variability in the PAC composition of sediment cores around the AOSR with some of the highest concentrations of PACs detected near oil sands industrial activity north of Fort McMurray (AB) in La Saline Natural Area. Recent sediment had positive enrichment factors across most PAC analytes at this site with heavier pyrogenic compounds such as benz(a)anthracene/chrysene and benzofluoranthene/benzopyrene dominating. Our study is the first to link chemical analysis of sediment cores with biological effect assessments of endocrine activity showing feasibility of extending the usefulness of sediment cores in monitoring programs interested in complex mixture assessments. While we observed no spatial or temporal differences in ERα mediated signaling, AhR CALUX results mirrored those of the chemical analysis, demonstrating the utility of coupling biological effects assessments to historical reconstructions of contaminant inputs to the natural environment.
Collapse
Affiliation(s)
- Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Raven Road, Ottawa, ON, K1A 0H3, Canada; Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - David C Eickmeyer
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Kristin M Eccles
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, L5L 1C6, Canada
| | - Linda E Kimpe
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Emiel Felzel
- BioDetection Systems, Science Park 406, 1098 XH, Amsterdam, the Netherlands
| | - Abraham Brouwer
- BioDetection Systems, Science Park 406, 1098 XH, Amsterdam, the Netherlands
| | - Robert J Letcher
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Raven Road, Ottawa, ON, K1A 0H3, Canada
| | - Bruce D Maclean
- Maclean Environmental Consulting (for Mikisew Cree First Nation), 812 Jubilee Avenue, Winnipeg, MB, R3L 1P9, Canada
| | - Laurie H M Chan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
5
|
Richard FJ, Southern I, Gigauri M, Bellini G, Rojas O, Runde A. Warning on nine pollutants and their effects on avian communities. Glob Ecol Conserv 2021. [DOI: 10.1016/j.gecco.2021.e01898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|
6
|
Takeshita R, Bursian SJ, Colegrove KM, Collier TK, Deak K, Dean KM, De Guise S, DiPinto LM, Elferink CJ, Esbaugh AJ, Griffitt RJ, Grosell M, Harr KE, Incardona JP, Kwok RK, Lipton J, Mitchelmore CL, Morris JM, Peters ES, Roberts AP, Rowles TK, Rusiecki JA, Schwacke LH, Smith CR, Wetzel DL, Ziccardi MH, Hall AJ. A review of the toxicology of oil in vertebrates: what we have learned following the Deepwater Horizon oil spill. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2021; 24:355-394. [PMID: 34542016 DOI: 10.1080/10937404.2021.1975182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the wake of the Deepwater Horizon (DWH) oil spill, a number of government agencies, academic institutions, consultants, and nonprofit organizations conducted lab- and field-based research to understand the toxic effects of the oil. Lab testing was performed with a variety of fish, birds, turtles, and vertebrate cell lines (as well as invertebrates); field biologists conducted observations on fish, birds, turtles, and marine mammals; and epidemiologists carried out observational studies in humans. Eight years after the spill, scientists and resource managers held a workshop to summarize the similarities and differences in the effects of DWH oil on vertebrate taxa and to identify remaining gaps in our understanding of oil toxicity in wildlife and humans, building upon the cross-taxonomic synthesis initiated during the Natural Resource Damage Assessment. Across the studies, consistency was found in the types of toxic response observed in the different organisms. Impairment of stress responses and adrenal gland function, cardiotoxicity, immune system dysfunction, disruption of blood cells and their function, effects on locomotion, and oxidative damage were observed across taxa. This consistency suggests conservation in the mechanisms of action and disease pathogenesis. From a toxicological perspective, a logical progression of impacts was noted: from molecular and cellular effects that manifest as organ dysfunction, to systemic effects that compromise fitness, growth, reproductive potential, and survival. From a clinical perspective, adverse health effects from DWH oil spill exposure formed a suite of signs/symptomatic responses that at the highest doses/concentrations resulted in multi-organ system failure.
Collapse
Affiliation(s)
- Ryan Takeshita
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Steven J Bursian
- Department of Animal Science, Michigan State University, East Lansing, Michigan, United States
| | - Kathleen M Colegrove
- College of Veterinary Medicine, Illinois at Urbana-Champaign, Brookfield, Illinois, United States
| | - Tracy K Collier
- Zoological Pathology Program, Huxley College of the Environment, Western Washington University, Bellingham, Washington, United States
| | - Kristina Deak
- College of Marine Sciences, University of South Florida, St. Petersburg, Florida, United States
| | | | - Sylvain De Guise
- Department of Pathobiology and Veterinary Sciences, University of Connecticut, Storrs, Connecticut, United States
| | - Lisa M DiPinto
- Office of Response and Restoration, NOAA, Silver Spring, Maryland, United States
| | - Cornelis J Elferink
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas, United States
| | - Andrew J Esbaugh
- Marine Science Institute, University of Texas at Austin, Port Aransas, Texas, United States
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Gulfport, Mississippi, United States
| | - Martin Grosell
- RSMAS, University of Miami, Miami, Florida, United States
| | | | - John P Incardona
- NOAA Environmental Conservation Division, Northwest Fisheries Science Center, Seattle, Washington, United States
| | - Richard K Kwok
- Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, North Carolina, United States
| | | | - Carys L Mitchelmore
- University of Maryland Center of Environmental Science, Chesapeake Biological Laboratory, Solomons, Maryland, United States
| | - Jeffrey M Morris
- Health and Environment Division, Abt Associates, Boulder, Colorado, United States
| | - Edward S Peters
- Department of Epidemiology, LSU School of Public Health, New Orleans, Louisiana, United States
| | - Aaron P Roberts
- Advanced Environmental Research Institute and Department of Biological Sciences, University of North Texas, Denton, Texas, United States
| | - Teresa K Rowles
- NOAA Office of Protected Resources, National Marine Fisheries Service, Silver Spring, Maryland, United States
| | - Jennifer A Rusiecki
- Department of Preventive Medicine and Biostatistics, Uniformed Services University, Bethesda, Maryland, United States
| | - Lori H Schwacke
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Cynthia R Smith
- Conservation Medicine, National Marine Mammal Foundation, San Diego, California, United States
| | - Dana L Wetzel
- Environmental Laboratory of Forensics, Mote Marine Laboratory, Sarasota, Florida, United States
| | - Michael H Ziccardi
- School of Veterinary Medicine, One Health Institute, University of California, Davis, California, United States
| | - Ailsa J Hall
- Sea Mammal Research Unit, Scottish Oceans Institute, University of St Andrews, St Andrews, UK
| |
Collapse
|
7
|
King MD, Elliott JE, Williams TD. Effects of petroleum exposure on birds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142834. [PMID: 33109373 DOI: 10.1016/j.scitotenv.2020.142834] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/14/2020] [Accepted: 10/02/2020] [Indexed: 06/11/2023]
Abstract
Birds are vulnerable to petroleum pollution, and exposure has a range of negative effects resulting from plumage fouling, systemic toxicity, and embryotoxicity. Recent research has not been synthesized since Leighton's 1993 review despite the continued discharge of conventional petroleum, including high-volume oil spills and chronic oil pollution, as well as the emergence of understudied unconventional crude oil types. To address this, we reviewed the individual-level effects of crude oil and refined fuel exposure in avifauna with peer-reviewed articles published 1993-2020 to provide a critical synthesis of the state of the science. We also sought to answer how unconventional crude petroleum effects compare with conventional crude oil. Relevant knowledge gaps and research challenges were identified. The resulting review examines avian exposure to petroleum and synthesizes advances regarding the physical effects of oil hydrocarbons on feather structure and function, as well the toxic effects of inhaled or ingested oil, embryotoxicity, and how exposure affects broader scale endpoints related to behavior, reproduction, and survival. Another outcome of the review was the knowledge gaps and challenges identified. The first finding was a paucity of oil ingestion rate estimates in birds. Characterizing environmentally realistic exposure and ingestion rates is a higher research priority than additional conventional oral dosing experiments. Second, there is an absence of toxicity data for unconventional crude petroleum. Although the effects of air and water contamination in the Canadian oil sands region have received attention, toxicity data for direct exposure to unrefined bitumen produced there in high volumes and other such unconventional oil types are needed. Third, we encountered barriers to the interpretation, replication, broad relevance, and comparability of studies. We therefore propose best practices and promising technological advancements for researchers. This review consolidates our understanding of petroleum's effects on birds and points a way forward for researchers and resource managers.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC V4K 3N2, Canada.
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|
8
|
Dale C, Reudink M, Ratcliffe L, McKellar A. Effects of urbanization and nest-box design on reproduction vary by species in three cavity-nesting passerines in the Okanagan Valley, British Columbia, Canada. CAN J ZOOL 2021. [DOI: 10.1139/cjz-2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Artificial nest boxes provide an important resource for secondary cavity-nesting passerines, whose populations may be limited by the availability of nesting sites. However, previous studies have demonstrated that the design and placement of boxes may affect the reproductive success of the birds that use them. In this study, we asked whether the habitat surrounding a nest box or the type of box influenced reproduction in three cavity-nesting passerines. We studied Western Bluebirds (Sialia mexicana Swainson, 1832), Mountain Bluebirds (Sialia currucoides (Bechstein, 1798)), and Tree Swallows (Tachycineta bicolor (Vieillot, 1808)) breeding in artificial nest boxes at sites across 70 km of the Okanagan Valley of British Columbia, Canada. Sites varied in their degree of urbanization, from relatively undisturbed ranchland, to cultivated vineyards, to frequently disturbed “suburban” habitat, and boxes varied in type of entrance (slot or hole). Western Bluebirds nested earlier in vineyards, and Tree Swallows produced significantly fewer fledglings in suburban habitat. In addition, Tree Swallows nested earlier and produced more fledglings in slot boxes. Our results suggest that conservation actions for cavity-nesting passerines may depend on the target species, which in turn should dictate the appropriate box type and habitat when erecting or replacing nest boxes.
Collapse
Affiliation(s)
- C.A. Dale
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada
| | - M.W. Reudink
- Department of Biological Sciences, Thompson Rivers University, 805 TRU Way, Kamloops, BC V2C 0C8, Canada
| | - L.M. Ratcliffe
- Department of Biology, Queen’s University, 116 Barrie Street, Kingston, ON K7L 3N6, Canada
| | - A.E. McKellar
- Canadian Wildlife Service, Environment and Climate Change Canada, 115 Perimeter Road, Saskatoon, SK, S7N 0X4, Canada
| |
Collapse
|
9
|
Thomas PJ, Newell EE, Eccles K, Holloway AC, Idowu I, Xia Z, Hassan E, Tomy G, Quenneville C. Co-exposures to trace elements and polycyclic aromatic compounds (PACs) impacts North American river otter (Lontra canadensis) baculum. CHEMOSPHERE 2021; 265:128920. [PMID: 33213878 DOI: 10.1016/j.chemosphere.2020.128920] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 05/05/2023]
Abstract
Environmental loadings of polycyclic aromatic compounds (PACs) and trace elements are increasing in areas with marked oil and gas extraction, such as in the Athabasca oil sands region, Alberta, Canada. Some of these chemicals are recognized as potent endocrine disrupting compounds (EDCs). The impacts of co-exposure to PACs and metals on free-ranging wildlife is of considerable concern. River otters (Lontra canadensis) are sentinel species of aquatic ecosystem health. The baculum (penile bone) is an important part of the reproductive system in otters that ensures successful copulation. Although baculum health is critical to male reproductive success and is sensitive to exposure to EDCs, there is no information available regarding the impact of PAC and metal exposures on measures of baculum health. River otter baculum and livers were dissected from carcasses obtained from the fur trade. Trace element and PAC analyses were carried out in liver with matching baculums subjected to dimensional analysis, bone mineral density (BMD) and mechanical loading testing. Trace elements and select PACs exhibited both protective and deleterious effects on baculum bone health metrics. Alkylated four ring PACs were negatively associated with baculum bone material properties (ex: C4-Chrysene and C4-pyrene). The same compounds have been shown to exhibit strong anti-androgenic activities. Few comparable studies exist related to contamination and adverse effects of PACs in wild terrestrial mammals. Baculum health metrics may be an important tool to include in biomonitoring studies as to date, there are limited means to assess male reproductive performance in wildlife biomonitoring programs.
Collapse
Affiliation(s)
- Philippe J Thomas
- Science and Technology Branch, Environment and Climate Change Canada, National Wildlife Research Center, 1125 Colonel By Drive, Raven Road, Ottawa, ON, Canada, K1A 0H3.
| | - Emily E Newell
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| | - Kristin Eccles
- Department of Geography, Geomatics and Environment, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, ON, Canada, L5L 1C6
| | - Alison C Holloway
- Department of Obstetrics and Gynecology, McMaster University, 1280 Main Street W, Hamilton, ON, L8S 4L8, Canada
| | - Ifeoluwa Idowu
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Zhe Xia
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Elizabeth Hassan
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| | - Gregg Tomy
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, 584 Parker Building, Winnipeg, MB, R3T 2N2, Canada
| | - Cheryl Quenneville
- Department of Mechanical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8; School of Biomedical Engineering, McMaster University, 1280 Main Street W, Hamilton, ON, Canada, L8S 4L8
| |
Collapse
|
10
|
Custer CM, Custer TW, Dummer PM, Schultz S, Tseng CY, Karouna-Renier N, Matson CW. Legacy and Contaminants of Emerging Concern in Tree Swallows Along an Agricultural to Industrial Gradient: Maumee River, Ohio. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:1936-1952. [PMID: 32495340 DOI: 10.1002/etc.4792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Exposure to multiple classes of contaminants, both legacy and contaminants of emerging concern (CECs), were assessed in tree swallow (Tachycineta bicolor) tissue and diet samples from 6 sites along the Maumee River, Ohio, USA, to understand both exposure and possible effects of exposure to those CECs for which there are little avian data. The 6 sites represented a gradient from intensive agriculture upstream to highly urbanized and industrial landscapes downstream; 1 or 2 remote Wisconsin lakes were assessed for comparative purposes. Cytochrome P450 induction, DNA damage, and thyroid function were also assessed relative to contaminant exposure. Bioaccumulative CECs, such as polybrominated diphenyl ethers (PBDEs) and perfluorinated substances, did not follow any upstream to downstream gradient; but both had significantly greater concentrations along the Maumee River than at the remote lake sites. Greater exposure to PBDEs was apparent in swallows at or near wastewater-treatment facilities than at other sites. Total polychlorinated biphenyl and total polycyclic aromatic hydrocarbon concentrations were greater in swallows at downstream locations compared to upstream sites and were associated with higher ethoxyresorufin-O-dealkylase activity. Few herbicides or nonorganochlorine insecticides were detected in swallow tissues or their food, except for atrazine and its metabolite desethylatrazine. Few pharmaceuticals and personal care products were detected except for DEET and iopamidol. Both were detected in most liver samples but not in eggs, as well as detected at the remote lake sites. This is one of the most comprehensive assessments to date of exposure and effects of a wide variety of CECs in birds. Environ Toxicol Chem 2020;39:1936-1952. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Christine M Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Thomas W Custer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Paul M Dummer
- Upper Midwest Environmental Sciences Center, US Geological Survey, La Crosse, Wisconsin
| | - Sandra Schultz
- Patuxent Wildlife Research Center, US Geological Survey, Beltsville, Maryland
| | - Chi Yen Tseng
- Department of Environmental Science and Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| | | | - Cole W Matson
- Department of Environmental Science and Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas, USA
| |
Collapse
|
11
|
Davidson CJ, Foster KR, Tanna RN. Forest health effects due to atmospheric deposition: Findings from long-term forest health monitoring in the Athabasca Oil Sands Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134277. [PMID: 31689668 DOI: 10.1016/j.scitotenv.2019.134277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 05/05/2023]
Abstract
Oil sands developments release acidifying compounds (SO2 and NO2) with the potential for acidifying deposition and impacts to forest health. This article integrates the findings presented in the Oil Sands Forest Health Special Issue, which reports on the results of 20 years of forest health monitoring, and addresses the key questions asked by WBEA's Forest Health Monitoring (FHM) Program: 1) is there evidence of deposition affecting the environment?, 2) have there been changes in deposition or effects over time?, 3) do acid deposition levels require management intervention?, 4) what are major sources of deposited substances? and 5) how can the program be improved? Deposition of sulphur, nitrogen, base cations (BC), polycyclic aromatic compounds and trace elements decline exponentially with distance from sources. There is little evidence for acidification effects on forest soils or on understory plant communities or tree growth, but there is evidence of nitrogen accumulation in jack pine needles and fertilization effects on understory plant communities. Sulphur, BC and trace metal concentrations in lichens increased between 2008 and 2014. Source apportionment studies suggest fugitive dust in proximity to mining is a primary source of BC, trace element and organic compound deposition, and BC deposition may be neutralizing acidifying deposition. Sulphur accumulation in soils and nitrogen effects on vegetation may indicate early stages of acidification. Deposition estimates for sites close to emissions sources exceed proposed regulatory trigger levels, suggesting a detailed assessment of acidification risk close to the emission sources is warranted. However, there is no evidence of widespread acidification as suggested by recent modeling studies, likely due to high BC deposition. FHM Program evolution should include continued integration with modeling approaches, ongoing collection and assessment of monitoring data and testing for change over time, and addition of monitoring sites to fill gaps in regional coverage.
Collapse
Affiliation(s)
| | | | - Rajiv N Tanna
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
12
|
Brook JR, Cober SG, Freemark M, Harner T, Li SM, Liggio J, Makar P, Pauli B. Advances in science and applications of air pollution monitoring: A case study on oil sands monitoring targeting ecosystem protection. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2019; 69:661-709. [PMID: 31082314 DOI: 10.1080/10962247.2019.1607689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The potential environmental impact of air pollutants emitted from the oil sands industry in Alberta, Canada, has received considerable attention. The mining and processing of bitumen to produce synthetic crude oil, and the waste products associated with this activity, lead to significant emissions of gaseous and particle air pollutants. Deposition of pollutants occurs locally (i.e., near the sources) and also potentially at distances downwind, depending upon each pollutant's chemical and physical properties and meteorological conditions. The Joint Oil Sands Monitoring Program (JOSM) was initiated in 2012 by the Government of Canada and the Province of Alberta to enhance or improve monitoring of pollutants and their potential impacts. In support of JOSM, Environment and Climate Change Canada (ECCC) undertook a significant research effort via three components: the Air, Water, and Wildlife components, which were implemented to better estimate baseline conditions related to levels of pollutants in the air and water, amounts of deposition, and exposures experienced by the biota. The criteria air contaminants (e.g., nitrogen oxides [NOx], sulfur dioxide [SO2], volatile organic compounds [VOCs], particulate matter with an aerodynamic diameter <2.5 μm [PM2.5]) and their secondary atmospheric products were of interest, as well as toxic compounds, particularly polycyclic aromatic compounds (PACs), trace metals, and mercury (Hg). This critical review discusses the challenges of assessing ecosystem impacts and summarizes the major results of these efforts through approximately 2018. Focus is on the emissions to the air and the findings from the Air Component of the ECCC research and linkages to observations of contaminant levels in the surface waters in the region, in aquatic species, as well as in terrestrial and avian species. The existing evidence of impact on these species is briefly discussed, as is the potential for some of them to serve as sentinel species for the ongoing monitoring needed to better understand potential effects, their potential causes, and to detect future changes. Quantification of the atmospheric emissions of multiple pollutants needs to be improved, as does an understanding of the processes influencing fugitive emissions and local and regional deposition patterns. The influence of multiple stressors on biota exposure and response, from natural bitumen and forest fires to climate change, complicates the current ability to attribute effects to air emissions from the industry. However, there is growing evidence of the impact of current levels of PACs on some species, pointing to the need to improve the ability to predict PAC exposures and the key emission source involved. Although this critical review attempts to integrate some of the findings across the components, in terms of ECCC activities, increased coordination or integration of air, water, and wildlife research would enhance deeper scientific understanding. Improved understanding is needed in order to guide the development of long-term monitoring strategies that could most efficiently inform a future adaptive management approach to oil sands environmental monitoring and prevention of impacts. Implications: Quantification of atmospheric emissions for multiple pollutants needs to be improved, and reporting mechanisms and standards could be adapted to facilitate such improvements, including periodic validation, particularly where uncertainties are the largest. Understanding of baseline conditions in the air, water and biota has improved significantly; ongoing enhanced monitoring, building on this progress, will help improve ecosystem protection measures in the oil sands region. Sentinel species have been identified that could be used to identify and characterize potential impacts of wildlife exposure, both locally and regionally. Polycyclic aromatic compounds are identified as having an impact on aquatic and terrestrial wildlife at current concentration levels although the significance of these impacts and attribution to emissions from oil sands development requires further assessment. Given the improvement in high resolution air quality prediction models, these should be a valuable tool to future environmental assessments and cumulative environment impact assessments.
Collapse
Affiliation(s)
- J R Brook
- a Dalla Lana School of Public Health and Department of Chemical Engineering and Applied Chemistry, University of Toronto , Toronto , Ontario , Canada
| | - S G Cober
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - M Freemark
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| | - T Harner
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - S M Li
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - J Liggio
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - P Makar
- b Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario , Canada
| | - B Pauli
- c National Wildlife Research Centre, Environment and Climate Change, Ottawa , Canada
| |
Collapse
|
13
|
Fernie KJ, Marteinson SC, Chen D, Palace V, Peters L, Soos C, Smits JEG. Changes in thyroid function of nestling tree swallows (Tachycineta bicolor) in relation to polycyclic aromatic compounds and other environmental stressors in the Athabasca Oil Sands Region. ENVIRONMENTAL RESEARCH 2019; 169:464-475. [PMID: 30530086 DOI: 10.1016/j.envres.2018.11.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 05/05/2023]
Abstract
In the Canadian Athabasca Oil Sands Region (AOSR), nestling tree swallows (Tachycineta bicolor) raised near mining-related activities accumulated greater concentrations of polycyclic aromatic compounds (PACs) that contributed to their poorer condition, growth, and reproductive success. Here, we report changes in thyroid function of the same 14 day old (do) nestlings (N ≤ 68) at these mining-related sites (OS1, OS2) compared to reference nestlings (REF1), and in relation to multiple environmental stressors that influence avian thyroid function. Thyroid function was compromised for OS1 nestlings but generally comparable between OS2 and REF1 chicks. In 2012, circulating total triiodothyronine (TT3) and thyroxine (TT4) were similar among all nestlings. The OS1 chicks had more active thyroid glands based on histological endpoints. Hepatic T4 outer-ring deiodinase (T4-ORD) activity was suppressed in OS1 and OS2 chicks. Despite inter-annual differences, OS1 chicks continued experiencing compromised thyroid function with significantly higher circulating TT4 and more active thyroid glands in 2013. The OS2 chicks had less active thyroid glands, which conceivably contributed to their suppressed growth (previously reported) relative to the heavier OS1 nestlings with more active thyroid glands. Thyroid gland activity was more influenced by the chicks' accumulation of (muscle), than exposure (feces) to naphthalene, C2-naphthalenes, and C1-fluorenes. Of four major volatile organic contaminants, sulfur dioxide (SO2) primarily influenced thyroid gland activity and structure, supporting previous findings with captive birds. When collectively considering environmental-thyroidal stressors, chicks had a greater thyroidal response when they experienced colder temperatures, accumulated more C2-naphthalenes, and consumed aquatic-emerging insects with higher PAC burdens than terrestrial insects (carbon (δ13C)). We hypothesize that the more active thyroid glands and higher circulating TT4 of the OS1 chicks supported their growth and survival despite having the highest PAC burdens, whereas the lack of thyroid response in the OS2 chicks combined with high PAC burdens, contributed to their smaller size, poorer condition and poorer survival.
Collapse
Affiliation(s)
- K J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada L7R 1A2.
| | - S C Marteinson
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario, Canada L7R 1A2
| | - D Chen
- School of Environment, Guangzhou Key Laboratory of Environmental Exposure and Health, and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | - V Palace
- International Institute for Sustainable Development - Experimental Lakes Area, 111 Lombard Avenue, Suite 325, Winnipeg, Manitoba, Canada R3B 0T4
| | - L Peters
- Riddell Faculty of Earth Environment and Resources, University of Manitoba, 125 Dysart Road, Winnipeg, Manitoba, Canada R3T 2N2
| | - C Soos
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, 115 Perimeter Rd, Saskatoon, Saskatchewan, Canada S7N 0X4
| | - J E G Smits
- Department of Ecosystem and Public Health, Faculty of Veterinary Medicine, University of Calgary, 3280 Hospital Drive NW, Calgary, Alberta, Canada T2N 4Z6
| |
Collapse
|