1
|
Kong D, Xu L, Dai M, Ye Z, Ma B, Tan X. Deciphering the functional assembly of microbial communities driven by heavy metals in the tidal soils of Hangzhou Bay. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124671. [PMID: 39116926 DOI: 10.1016/j.envpol.2024.124671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024]
Abstract
Understanding the interaction between heavy metals and soil microbiomes is essential for maintaining ecosystem health and functionality in the face of persistent human-induced challenges. This study investigated the complex relationships between heavy metal contamination and the functional characteristics of soil microbial communities in the tidal soils of Hangzhou Bay, a region experiencing substantial environmental pressure due to its proximity to densely populated and industrialized regions. The north-shore sampling site showed moderate contaminations (mg/kg) of total arsenic (16.61 ± 1.13), cadmium (0.3 ± 0.05), copper (31.28 ± 1.23), nickel (37.44 ± 2.74), lead (34.29 ± 5.99), and zinc (120.8 ± 5.96), which are 1.29-2.94 times higher than the geochemical background values in Hangzhou Bay and adjacent areas. In contrast, the south-shore sampling site showed slightly higher levels of total arsenic (13.76 ± 1.35) and cadmium (0.13 ± 0.02) than the background values. Utilizing metagenomic sequencing, we decoded microbial functional genes essential for nitrogen, phosphorus, sulfur, and methane biogeochemical cycles. Although soil available nickel content was relatively low at 1 mg/kg, it exhibited strong associations with diverse microbial genes and biogeochemical pathways. Four key genes-hxlB, glpX, opd, and phny-emerged as pivotal players in the interactions with available nickel, suggesting the adaptability of microbial metabolic responses to heavy metal. Additionally, microbial genera such as Gemmatimonas and Ilumatobacter, which harbored diverse functional genes, demonstrated potential interactions with soil nickel. These findings highlight the importance of understanding heavy metal-soil microbiome dynamics for effective environmental management strategies in the tidal soils of Hangzhou Bay, with the goal of preserving ecosystem health and functionality amidst ongoing anthropogenic challenges.
Collapse
Affiliation(s)
- Dedong Kong
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Linya Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China; Nantong Cultivated Land Quality Protection Station, Nantong, Jiangsu, 226001, China
| | - Mengdi Dai
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Ziran Ye
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Bin Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Xiangfeng Tan
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China; Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
2
|
Coutts A, Zimmermann D, Davey A, Bowman JP, Ross DJ, Strain EMA. A comparison of visual and molecular methods for inferring biological communities in aquaculture enriched sediments - Impact assessment and cost-benefit analysis. MARINE POLLUTION BULLETIN 2024; 209:117172. [PMID: 39454403 DOI: 10.1016/j.marpolbul.2024.117172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
Nutrients introduced to the environment by finfish aquaculture pose environmental risks, which can be mitigated by robust environmental monitoring. Biological communities in soft sediments are good indicators of aquaculture derived environmental changes. Traditionally, monitoring programs have visually surveyed macrofauna communities. However, DNA metabarcoding is a potentially more efficient alternative. We compared alpha diversity, multivariate dispersion and taxonomic composition of macrofauna communities with metabarcoding derived bacterial and eukaryote communities along an organic enrichment gradient at a salmon farm in Tasmania, Australia. Additionally, we conducted a cost-benefit analysis comparing the approaches. All methods identified indicator taxa that changed in abundance over the enrichment gradient. Macrofauna analysis was the most sensitive method for detecting changes in alpha diversity, while metabarcoding was most sensitive for multivariate dispersion. Taxonomic composition of animal communities derived from the two methods differed drastically. Metabarcoding was cheaper than macrofauna for ≥93 samples and quicker for ≥14 samples.
Collapse
Affiliation(s)
- Alexander Coutts
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia.
| | - Danielle Zimmermann
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Adam Davey
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - John P Bowman
- Tasmanian Institute for Agriculture, University of Tasmania, Hobart, Tasmania, Australia
| | - Donald J Ross
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Elisabeth M A Strain
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
3
|
Wu D, Wang K, Fan W, Meng Q, Zhou F, Zheng M, Xu D. Response of bottom dissolved oxygen reduction to net ecosystem production observed by a wave-driven profiler in the Changjiang River Plume. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106794. [PMID: 39418966 DOI: 10.1016/j.marenvres.2024.106794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 09/19/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
Coastal hypoxia, exacerbated by the combined influence of eutrophication and global warming, presents a significant environmental challenge. However, the lag correlation between organic matter (OM) export from the upper layers and bottom dissolved oxygen (DOBOT) reduction still lack clear elucidation. This study investigated the coupling between net ecosystem production (NEP, representing the maximum OM export) and DOBOT in the Changjiang River plume (CRP), using a wave-driven profiler system. The high-resolution profiles revealed rhythmic fluctuations in water column NEP, with sediment-water exchange (-74.6%) and NEP (-4.0%) dominating DOBOT reduction. Notably, surface NEP impacts DOBOT with a lag time of 25.65 h, indicating an OM sinking speed of 1.32 mm s-1. NEP at a depth of 3.4 m exerted the most significant influence on DOBOT, explaining a 12% reduction. These findings elucidate the response mechanism of DOBOT reduction to upper OM export and provide insights for hypoxia prediction in coastal and estuarine areas.
Collapse
Affiliation(s)
- Di Wu
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Kui Wang
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, China; Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, China; Donghai Laboratory, Zhoushan, Zhejiang, 316021, China.
| | - Wei Fan
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, 316021, China
| | - Qicheng Meng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, China
| | - Feng Zhou
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, China
| | - Minhui Zheng
- Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, Zhejiang, 310012, China
| | - Dawei Xu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Dias VHV, Mattos JJ, Serafini PP, Lüchmann KH, Bainy ACD. A systematic review of the impact of chemical pollution on sea turtles: Insights from biomarkers of aquatic contamination. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135813. [PMID: 39298959 DOI: 10.1016/j.jhazmat.2024.135813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/09/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
Chemical anthropogenic contaminants in the marine environment pose a substantial threat to sea turtles. The current systematic review quantified the published literature on biomarkers of aquatic contamination in sea turtles. It examined the exposure and potential impacts of pollution at biochemical, molecular, and cellular levels, as indicated by these biomarkers. Eighty-seven primary peer-reviewed papers were included, most of which were published from 2013 onwards. Most studies focused on the species Chelonia mydas (n = 43 papers) and Caretta caretta (n = 36) and used blood samples for biomarker (n = 54) and chemical (n = 38) analyses. Chemical analyses were assessed alongside biomarker analyses in most studies (n = 71). Some studies indicated possible damage to the DNA, cells, oxidative balance, and reproduction of sea turtles associated with chemical contaminants as metals, emerging, and mixtures of organic pollutants. Research gaps and recommendations for future studies were addressed to help understand the toxicity of chemical pollutants in sea turtles. The purpose of this review is to contribute for supporting actions to mitigate the threats posed by pollution to these protected species, as well as to plan new studies in this research field for both conservation and biomonitoring purposes.
Collapse
Affiliation(s)
- Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Jacó Joaquim Mattos
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Patricia Pereira Serafini
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil
| | - Karim Hahn Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, CEP: 88035001, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry (LABCAI), Federal University of Santa Catarina, CEP:88037000, Brazil.
| |
Collapse
|
5
|
Li J, Wang S, Liu P, Peng J, Liu X, Sun Q, Zhou B, Lei K. Environmental DNA metabarcoding reveals the influence of environmental heterogeneity on microeukaryotic plankton in the offshore waters of East China Sea. ENVIRONMENTAL RESEARCH 2024; 262:119921. [PMID: 39233035 DOI: 10.1016/j.envres.2024.119921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/17/2024] [Accepted: 09/02/2024] [Indexed: 09/06/2024]
Abstract
Microeukaryotic plankton are essential to marine food webs and biogeochemical cycles, with coastal seas playing a critical role in aquatic ecosystems. Understanding the diversity of microeukaryotic plankton, deciphering their community structure and succession patterns, and identifying the key factors influencing these dynamics remain central challenges in coastal ecology. In this study, we examine patterns of biodiversity, community structure, and co-occurrence using environmental DNA (eDNA)-based methods. Our results show a linear correlation between α-diversity and distance from the shore, with nutrient-related factors, especially inorganic nitrogen, being the primary determinants of the spatial distribution of plankton communities. Alternation of coastal habitat have shifted the succession patterns of coastal eukaryotic plankton communities from stochastic to deterministic processes. Additionally, our observations indicate that the topology and structure of eukaryotic plankton symbiotic patterns and networks are significantly influenced by environmental heterogeneity such as nutrients, which increase the vulnerability and decrease the stability of offshore ecological networks. Overall, our study demonstrates that the distribution of microeukaryotic plankton communities is influenced by factors related to environmental heterogeneity.
Collapse
Affiliation(s)
- Jiangnan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266000, China; Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Shuping Wang
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Pengxia Liu
- Ecological Environment Monitoring and Scientific Research Center, Taihu Basin & East China Sea Ecological Environment Supervision and Administration Bureau, Ministry of Ecology and Environment, Shanghai, 200125, China
| | - Jiayu Peng
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Xinmei Liu
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Qianhang Sun
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266000, China; Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Bo Zhou
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China
| | - Kun Lei
- Chinese Research Academy of Environmental Sciences, Beijing, 100000, China.
| |
Collapse
|
6
|
Cruz de Carvalho R, Cardoso J, Carreiras JA, Santos P, Palma C, Duarte B. Persistent Organic Pollutants in Tagus Estuary Salt Marshes: Patterns of Contamination and Plant Uptake. J Xenobiot 2024; 14:1165-1186. [PMID: 39311145 PMCID: PMC11417836 DOI: 10.3390/jox14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/26/2024] [Accepted: 08/28/2024] [Indexed: 09/26/2024] Open
Abstract
The presence of anthropogenic compounds, including organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs), was studied in three salt marshes within the Tagus estuary, Portugal, along an anthropogenic pressure gradient. Results revealed differences in OCPs and PCBs among the marshes, with differing concentration levels. Specifically, one marsh, with surrounding agricultural activity, showed the highest OCP concentrations, while another, with a historical industrial past, exhibited elevated PCB levels. In contrast, a third marsh, part of a natural reserve, displayed comparatively lower concentrations of both substances. Sediment concentrations, likely influenced by agricultural practices, were found to be comparable to or higher than those observed in other Portuguese estuaries. The halophyte Spartina maritima was found to absorb OCPs, particularly in its aboveground tissues, suggesting bioaccumulation within the plant. Additionally, PCB levels appeared to be influenced by industrial history, with one marsh displaying notably higher concentrations. In conclusion, the persistence of organochlorine compounds in the salt marsh ecosystems notwithstanding the regulatory prohibitions implemented in the 1990s highlights the need for continuous monitoring and study of such sites and the necessity of remediation practices, which are imperative to mitigate ecological and health risks in these polluted salt marshes.
Collapse
Affiliation(s)
- Ricardo Cruz de Carvalho
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- cE3c—Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - João Cardoso
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - João Albuquerque Carreiras
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- BioISI—Biosystems and Integrative Sciences Institute, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | - Paula Santos
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - Carla Palma
- Instituto Hidrográfico, Rua das Trinas 49, 1249-093 Lisboa, Portugal; (P.S.); (C.P.)
| | - Bernardo Duarte
- MARE—Marine and Environmental Sciences Centre/ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; (J.C.); (J.A.C.); (B.D.)
- Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|
7
|
Meloni D, Mudadu AG, Abete MC, Bazzoni AM, Griglione A, Avolio R, Serra S, Fois N, Esposito G, Melillo R, Squadrone S. Seasonal variability of trace elements bioaccumulation in Pacific Oysters (Crassostrea gigas) from an experimental pilot farm in the Calich Lagoon (Sardinia, Italy). J Trace Elem Med Biol 2024; 85:127487. [PMID: 38908290 DOI: 10.1016/j.jtemb.2024.127487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
BACKGROUND Metals pollution is a worldwide environmental issue due to their persistence in the ecosystems, non-degradability, and bioaccumulation in marine biota. Pacific Oysters (Crassostrea gigas) are highly nutritious bivalve representing an important dietary constituent but may accumulate metals through feeding on suspended sediments from surrounding water, then represent a suitable tool for biomonitoring. MATERIALS AND METHODS The occurrence of trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Mo, Ni, Pb, Rb, Se, Sn, V, Zn) was investigated in Pacific Oysters (Cassostrea gigas) collected from Calich Lagoon in each season of 2019. Samples were homogenized and subjected to microwave acid digestion before being analyzed by inductively coupled plasma-mass spectrometer (ICP-MS). RESULTS The results showed a significant seasonal variation for temperature, dissolved oxygen, chlorophyll, and pH. Moreover, high significant seasonal variation in concentrations of Cd, Mn, Ni, and V was recorded. The highest values were found for Fe (128 mg kg⁻1 w.w.), and Al (112 mg kg⁻1 w.w.) in October, for Zn (113 mg kg⁻1 w.w.) in March and May. CONCLUSIONS Pacific Oysters were confirmed as suitable bioindicators of the health status of coastal lagoons; trace elements concentrations were highly affected by season of collection, and according to literature the highest values were recorded in autumn and summer. The EU legal limits for Cd and Pb were not exceeded, then the farmed oysters were safe to consumers.
Collapse
Affiliation(s)
- Domenico Meloni
- Università degli Studi di Sassari, Dipartimento di Medicina Veterinaria, Via Vienna 2, Sassari 07100, Italy
| | - Alessandro Graziano Mudadu
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, Sassari 07100, Italy
| | - Maria Cesarina Abete
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Anna Maria Bazzoni
- ARPAS-Agenzia Regionale per la Protezione dell'Ambiente della Sardegna, Via Rockefeller 58/60, Sassari 07100, Italy
| | - Alessandra Griglione
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Rosa Avolio
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Simonetto Serra
- AGRIS SARDEGNA - Agenzia per la ricerca in agricoltura, Centro di ricerca di Bonassai, località Bonassai SS 291 km 18,6, Olmedo, SS 07040, Italy
| | - Nicola Fois
- AGRIS SARDEGNA - Agenzia per la ricerca in agricoltura, Centro di ricerca di Bonassai, località Bonassai SS 291 km 18,6, Olmedo, SS 07040, Italy
| | - Giuseppe Esposito
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy
| | - Rita Melillo
- Istituto Zooprofilattico Sperimentale della Sardegna, Struttura Complessa di Microbiologia e Ispezione degli Alimenti di Origine Animale, Via Duca degli Abruzzi 8, Sassari 07100, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Via Bologna, 148, Torino 10154, Italy.
| |
Collapse
|
8
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
9
|
Soloperto S, Renaux M, Lecarpentier L, Minier C, Aroua S, Halm-Lemeille MP, Jozet-Alves C. 17α-Ethinylestradiol exposure disrupts anxiety-like behaviours but not social preference in sea bass larvae (Dicentrarchus labrax). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55708-55719. [PMID: 39243328 DOI: 10.1007/s11356-024-34922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are widespread pollutants known to interfere with hormonal pathways and to disrupt behaviours. Standardised behavioural procedures have been developed in common fish model species to assess the impact of various pollutants on behaviours such as locomotor activity and anxiety-like as well as social behaviours. These procedures need now to be adapted to improve our knowledge on the behavioural effects of EDCs on less studied marine species. In this context, the European sea bass (Dicentrarchus labrax) is emerging as a valuable species representative of the European marine environment. Here, we designed and validated a two-step procedure allowing to sequentially assess anxiety-like behaviours (novel tank test) and social preference (visual social preference test) in sea bass. Thereafter, using this procedure, we evaluated whether social behavioural disruption occurs in 2-month-old larvae after an 8-day exposure to a xenoestrogen, the 17α-ethinylestradiol (EE2 at 0.5 and 50 nM). Our results confirmed previous studies showing that exposure to 50 nM of EE2 induces a significant increase in anxiety-like behaviours in sea bass larvae. On the contrary, social preference seemed unaffected whatever the EE2 concentration, suggesting that social behaviour has more complex mechanical regulations than anxiety.
Collapse
Affiliation(s)
- Sofia Soloperto
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France.
| | - Maelle Renaux
- Unité Littoral Ifremer, LITTORAL, 14520, Port-en-Bessin, France
| | - Lucas Lecarpentier
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| | - Christophe Minier
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | - Salima Aroua
- Normandie Univ, UNIHAVRE, UMR-I 02 INERIS-URCA-ULH SEBIO, FR CNRS 3730 Scale, 25, Rue Philippe Lebon, 76063, Le Havre Cedex, France
| | | | - Christelle Jozet-Alves
- Normandie Univ, Unicaen, CNRS, 14000, Caen, EthoS, France
- Univ Rennes, CNRS, EthoS (Éthologie Animale Et Humaine) - UMR 6552, 35000, Rennes, France
| |
Collapse
|
10
|
Kim JH, Choi KS, Yang HS, Kang HS, Hong HK. In vitro impact of Bisphenol A on the immune functions of primary cultured hemocytes of Pacific abalone (Haliotis discus hannai). MARINE POLLUTION BULLETIN 2024; 206:116770. [PMID: 39053261 DOI: 10.1016/j.marpolbul.2024.116770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
This study investigated the toxic effects of Bisphenol A (BPA) on the Pacific abalone (Haliotis discus hannai) using in vitro assays with primary cultured hemocytes. The abalone hemocytes were exposed to BPA concentrations up to 100 μM to assess cytotoxicity. Subsequently, hemocytes were exposed to sublethal BPA concentrations (LC20 = 2.3 μM and LC50 = 5.8 μM) for 48 h, and we evaluated the cellular immune responses of hemocytes via flow cytometry. Results showed no significant differences between LC20 and control groups, but LC50 exposure significantly reduced phagocytosis and oxidative capacities while increasing nitric oxide production. These findings suggest that BPA exposure negatively affects the immune system of the Pacific abalone, which makes them more susceptible to infections and other stressors in their natural environment. The study also implies that in vitro assays utilizing primary cultured abalone hemocytes may serve as effective proxies for quantifying the cytotoxic effects of chemical pollutants.
Collapse
Affiliation(s)
- Jeong-Hwa Kim
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Kwang-Sik Choi
- Department of Marine Life Science (BK21 FOUR), Marine Science Institute, Jeju National University, Jeju 63243, Republic of Korea
| | - Hyun-Sung Yang
- Tropical & Subtropical Research Center, Korea Institute of Ocean Science and Technology (KIOST), Jeju 63349, Republic of Korea
| | - Hyun-Sil Kang
- Subtropical Fisheries Research Institute, National Institute of Fisheries Science (NIFS), Jeju 63068, Republic of Korea
| | - Hyun-Ki Hong
- Department of Marine Biology and Aquaculture, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
11
|
Petrangeli Papini M, Cerra S, Feriaud D, Pettiti I, Lorini L, Fratoddi I. Biochar/Biopolymer Composites for Potential In Situ Groundwater Remediation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3899. [PMID: 39203078 PMCID: PMC11355651 DOI: 10.3390/ma17163899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/03/2024]
Abstract
This study explores the use of pine wood biochar (BC) waste gasified at 950 °C as fillers in polymer matrices to create BC@biopolymer composites with perspectives in groundwater remediation. Four biochar samples underwent different sieving and grinding processes and were extensively characterized via UV-Vis, FTIR, and FESEM-EDS, highlighting the fact that that BCs are essentially graphitic in nature with a sponge-like morphology. The grinding process influences the particle size, reducing the specific surface area by about 30% (evaluated by BET). The adsorption performances of raw BC were validated via an adsorption isotherm using trichloroethylene (TCE) as a model contaminant. A selected BC sample was used to produce hydrophilic, stable polymer composites with chitosan (CS), alginate (ALG), potato starch (PST), and sodium carboxymethylcellulose (CMC) via a simple blending approach. Pilot sedimentation tests over 7 days in water identified BC@PST and BC@CMC as the most stable suspensions due to a combination of both hydrogen bonds and physical entrapment, as studied by FTIR. BC@CMC showed optimal distribution and retention properties without clogging in breakthrough tests. The study concludes that biopolymer-based biochar composites with improved stability in aqueous environments hold significant promise for addressing various groundwater pollution challenges.
Collapse
Affiliation(s)
- Marco Petrangeli Papini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Sara Cerra
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Damiano Feriaud
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ida Pettiti
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Laura Lorini
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.P.); (I.P.); (L.L.); (I.F.)
- Research Center for Applied Sciences to the Safeguard of Environment and Cultural Heritage (CIABC), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
- Research Center for Nanotechnology Applied to Engineering of Sapienza (CNIS), Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
12
|
Ben-Haddad M, Abelouah MR, Hajji S, Abou Oualid J, Ait Alla A, Rangel-Buitrago N. Scenic degradation and visual pollution along the Agadir coastline (Morocco): Analysis and management. MARINE POLLUTION BULLETIN 2024; 205:116629. [PMID: 38917496 DOI: 10.1016/j.marpolbul.2024.116629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/16/2024] [Indexed: 06/27/2024]
Abstract
Visual pollution refers to the degradation of landscape aesthetics, manifesting as visible deterioration. On the Agadir coast in Morocco, factors such as urbanization, erosion, marine wracking, litter, sewage, beach driving, and animal waste contribute to this issue, which detracts from coastal scenery. This study employs the coastal scenery evaluation system (CSES) to conduct a scenic assessment of 40 coastal sites, aiming to describe the current state of visual pollution and inform management interventions. The CSES utilizes a checklist comprising 18 physical and 8 human parameters to calculate a scenic evaluation index (D value), which categorizes coastal sites into five classes. These range from Class I - typically undisturbed natural areas with pristine scenic qualities - to Class V - which are degraded natural areas significantly impacted by human activities. The scenic evaluation classified these sites into three classes. Four sites (10 %) were classified as Class III, fifteen (37.5 %) as Class IV, and twenty-one (52.5 %) as Class V. No sites were classified as Classes I or II. The assessments presented here offer a comprehensive overview of the Agadir coastal scenery and establish a baseline for developing strategies to address visual pollution.
Collapse
Affiliation(s)
- Mohamed Ben-Haddad
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Mohamed Rida Abelouah
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Sara Hajji
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Jaouad Abou Oualid
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Aicha Ait Alla
- Laboratory of Aquatic Systems, Marine and Continental Environments (AQUAMAR), Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| | - Nelson Rangel-Buitrago
- Programa de Física, Facultad de Ciencias Basicas, Universidad del Atlantico, Barranquilla, Atlantico, Colombia.
| |
Collapse
|
13
|
Thirunavukkarasu S, Hwang JS. Genotoxic effects of marine pollutants on coastal meso-zooplankton populations - A mini-review. MARINE POLLUTION BULLETIN 2024; 205:116548. [PMID: 38941804 DOI: 10.1016/j.marpolbul.2024.116548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/30/2024]
Abstract
Meso-zooplankton plays a vital role in maintaining healthy marine ecosystems, and some of the taxa provide biological indications for the monitoring of environmental and climate change. Recently, several newly emerging stressors were shown to impact marine and coastal meso-zooplankton in some ways. Marine organisms' genomic core, tightly packed with high-level integrity, can be damaged by anthropogenic activities in coastal zones worldwide and impact their integrity. Genomic integrity loss leads to a cascade of effects on the destruction of the food chain sequences, from primary producers to higher invertebrates. Therefore, monitoring genomic integrity loss using ecotoxicological approaches that focus on genetic changes appears to be a suitable approach. A literature review shows that different stressors severely impact genomic integrity through DNA damage at different concentrations and exposure times. Contaminated sediments also strongly impact the genomic integrity of estuaries and adjacent coastal meso-zooplankton communities.
Collapse
Affiliation(s)
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung 20224, Taiwan.
| |
Collapse
|
14
|
Zhang T, Liu H, Lu Y, Wang Q, Loh YC, Li Z. IMPACT OF CLIMATE CHANGE ON COASTAL ECOSYSTEM AND OUTDOOR ACTIVITIES: A COMPARATIVE ANALYSIS AMONG FOUR LARGEST COASTLINE COVERING COUNTRIES. ENVIRONMENTAL RESEARCH 2024; 250:118405. [PMID: 38365060 DOI: 10.1016/j.envres.2024.118405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 02/01/2024] [Indexed: 02/18/2024]
Abstract
Climate change and coastal ecosystems have become challenging subjects for world sustainability. Humans, animals, and other ocean habitats are primarily affected by the harmful changes in climate. Coastal ecosystems support biodiversity and a wide range of species that serve as habitats for many commercially important fish species and enhance human activities in coastal areas. By engaging in coastal outdoor activities, individuals can experience numerous physical and mental health benefits, foster environmental awareness. This study provided valuable insights into the importance of coastal outdoor activities and their potential to improve our quality of life. This study undertook a challenging subject where we graphically and econometrically analyze the relationship and linkages among coastal indicators with other climate-concerning factors. The study comprises the ordinary regression and comparative analysis among the four largest coastline countries in the world. The study took a sample from Canada, Indonesia, Norway, and the Russian Federation from 1990 to 2022. The data is selected on a convenient basis. Results declared that each country has its unique challenges and opportunities in mitigating adverse climate change and retaining a sustainable coastal ecosystem. The study surprisingly revealed that climate change insignificantly affects the coastal ecosystem in Indonesia and the Russian Federation while it inversely affects the coastal ecosystem in Canada and Norway, showed that climate change on average declines coastal production by 0.0041922 and 0.0261104 in Canada and Norway respectively. The detailed review is given in the results section; however, the pooling analysis proved that at the aggregate level, a one percent increase in climate change caused a 0.02266-tonne decline in coastal ecosystems in the four largest coastline nations. There is a need for policies tend to increase CAP activities by implementing practical marine protected areas. Furthermore, scientific research and monitoring will be beneficial in restoring coastal sustainability.
Collapse
Affiliation(s)
- Tiejun Zhang
- Institute of Physical Education, Henan University of Economics and Law, Zheng zhou 450067, Henan, China.
| | - Huarong Liu
- School of Physical Education, China University of Geosciences, Wuhan, Hubei Province, China.
| | - Yi Lu
- Sports Teaching and Research Section, Wuhan University of Communication, Wuhan 430205, China.
| | - Qinglei Wang
- Faculty of Sports and Exercise Science, Universiti Malaya, Kuala Lumpur, Malaysia.
| | - Yean Chun Loh
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia; School of Chemical Sciences, Universiti Sains Malaysia, 11800, Minden, Penang, Malaysia.
| | - Zeyun Li
- Geography Section, School of Humanities, Universiti Sains Malaysia, Penang, Malaysia.
| |
Collapse
|
15
|
Wang Z, Zhang M, Cui Z, Wei Y, Bai Y, Qu K. Coastal ecological security assessment in Laizhou Bay, China: from the perspective of demographic-social-economic-natural complex ecosystem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:39232-39247. [PMID: 38814554 DOI: 10.1007/s11356-024-33703-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/13/2024] [Indexed: 05/31/2024]
Abstract
Assessment of ecological security is essential for understanding the status of bay ecosystem and developing appropriate management strategy. Based on the driving force-pressure-state-impact-response (DPSIR) model, the demographic, economic, social, and ecological data of Laizhou Bay and its three neighboring counties were selected for the period from 2015 to 2021. An ecological security evaluation index system of Laizhou Bay containing 26 indicators was established, and the weights of each indicator were determined by the methods of AHP and EWM, and a comprehensive evaluation of the ecological security of Laizhou Bay was carried out by ESI. Correlations between indicators were analyzed by the Spearman's rank coefficient of correlation. The results showed that there were significant correlations between marine conditions and indicators such as population size in the surrounding area, mariculture area, industrial and domestic wastewater discharge, and treatment rate. Overall, from 2015 to 2021, the ecological security of Laizhou Bay showed a favorable trend, from a relatively unsafe level to a generally safe level, and then to a relatively safe level. Through the comprehensive evaluation of the ecological security of Laizhou Bay, we can recognize the utilization of marine resources and ecological carrying capacity, guide the rational development and utilization of marine resources, and promote the sustainable development of the marine economy.
Collapse
Affiliation(s)
- Zhanying Wang
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China
| | - Meng Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China
- Fushan Road Sub District Office, Licang District, Qingdao, 266121, Shandong, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China.
| | - Yuqiu Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China
| | - Ying Bai
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China
| | - Keming Qu
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Laboratory for Marine Fisheries Science and Food Production Processes, Laoshan Laboratory, Qingdao, 266071, Shandong, China
| |
Collapse
|
16
|
Wan X, Lu X, Zhu L, Feng J. Relative prevalence of top-down versus bottom-up control in planktonic ecosystem under eutrophication and climate change: A comparative study of typical bay and estuary. WATER RESEARCH 2024; 255:121487. [PMID: 38518414 DOI: 10.1016/j.watres.2024.121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
Eutrophication and climate change may affect the top-down versus bottom-up controls in aquatic ecosystems. However, the relative prevalence of the two controls in planktonic ecosystems along the eutrophication and climate gradients has rarely been addressed. Here, using the field surveys of 17 years in a typical bay and estuary, we test two opposite patterns of trophic control dominance and their response to regional temporal eutrophication and climate fluctuations. It was found that trophic control of planktonic ecosystems fluctuated between the dominance of top-down and bottom-up controls on time scales in both the bay and estuary studied. The relative prevalence of these two controls in both ecosystems was significantly driven directly by regional dissolved inorganic nitrogen but, for the estuary, also by the nonlinear effects of regional sea surface temperature. In terms of indirect pathways, community relationships (synchrony and grazing pressure) in the bay are driven by both regional dissolved inorganic nitrogen - soluble reactive phosphorus ratio and sea surface temperature, but this drive did not continue to be transmitted to the trophic control. Conversely, trophic control in estuary was directly related to grazing pressure and indirectly related to synchrony. These findings support the view that eutrophication and climate drive the relative prevalence of top-down versus bottom-up controls at ecosystem and temporal scales in planktonic ecosystems, which has important implications for predicting the potential impacts of anthropogenic and environmental perturbations on the structure and function of marine ecosystems.
Collapse
Affiliation(s)
- Xuhao Wan
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Xueqiang Lu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Lin Zhu
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China
| | - Jianfeng Feng
- College of Environmental Science and Engineering, Nankai University, Tianjin, PR China.
| |
Collapse
|
17
|
Muliari M, Mahdaliana, Irfannur I, Akmal Y, Batubara AS. Pollutant levels in the waters of the industrial area of North Aceh and Lhokseumawe Regency, Indonesia. MARINE POLLUTION BULLETIN 2024; 201:116170. [PMID: 38382320 DOI: 10.1016/j.marpolbul.2024.116170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/23/2024]
Abstract
This research was conducted from June to August 2023. Data and samples were collected using an exploratory survey method in four locations around the industrial area, namely PT. ASEAN Aceh Fertilizer and PT. Kertas Kraft Aceh in North Aceh Regency, while PT. Pupuk Iskandar Muda and PT. Harun NGL in Lhokseumawe Regency, Indonesia. Observations of physico-chemical parameters including measurements of salinity, bicarbonate, calcium, magnesium, nitrate, nitrite, orthophosphate, total alkalinity, and total ammonia were analyzed in the Laboratory of PT Intraco Agroindustri, Langkat Regency, North Sumatra, Indonesia. Microplastic analysis was carried out at the Faculty of Marine and Fisheries, Universitas Syiah Kuala, Banda Aceh, Indonesia. The biological parameters measured in this research include the chlorophyll concentration in the water locations observed. Based on the results of the analysis, it shows that the calcium, magnesium, orthophosphate content at the four research locations has exceeded the quality standards, while the nitrate content is only at PT. ASEAN Aceh Fertilizer and PT. Kertas Kraft Aceh that exceeds the quality standards. The bicarbonate, nitrite, salinity, total alkalinity, and total ammonia content at the four research locations were under normal conditions. The chlorophyll content in the four research locations was categorized as low fertility (oligotrophic). Based on the analysis, it also shows that the four research locations were contaminated with microplastics with a range of 2.78-5.49 particles/l.
Collapse
Affiliation(s)
- Muliari Muliari
- Department of Marine Science, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia.
| | - Mahdaliana
- Department of Aquaculture, Faculty of Agriculture, Universitas Malikussaleh, Aceh Utara, Indonesia
| | - Irfannur Irfannur
- Department of Aquaculture, Faculty of Agriculture, Universitas Almuslim, Bireuen, Indonesia
| | - Yusrizal Akmal
- Department of Aquaculture, Faculty of Agriculture, Universitas Almuslim, Bireuen, Indonesia
| | - Agung Setia Batubara
- Department of Biology, Faculty of Mathematics and Natural Sciences, Universitas Negeri Medan, North Sumatra, Indonesia
| |
Collapse
|
18
|
Balakrishnan Nair TM, Sarma VVSS, Lotliker AA, Muraleedharan KR, Samanta A, Baliarsingh SK, Shivaprasad S, Gireeshkumar TR, Raulo S, Vighneshwar SP, Shesu RV, Krishna M, Kumar NK, Naik RC, Joseph S, Annapurnaiah K, Rao EPR, Srinivasa Kumar T. An integrated buoy-satellite based coastal water quality nowcasting system: India's pioneering efforts towards addressing UN ocean decade challenges. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 354:120477. [PMID: 38417362 DOI: 10.1016/j.jenvman.2024.120477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/15/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
The Indian coastal waters are stressed due to a multitude of factors, such as the discharge of industrial effluents, urbanization (municipal sewage), agricultural runoff, and river discharge. The coastal waters along the eastern and western seaboard of India exhibit contrasting characteristics in terms of seasonality, the magnitude of river influx, circulation pattern, and degree of anthropogenic activity. Therefore, understanding these processes and forecasting their occurrence is highly necessary to secure the health of coastal waters, habitats, marine resources, and the safety of tourists. This article introduces an integrated buoy-satellite based Water Quality Nowcasting System (WQNS) to address the unique challenges of water quality monitoring in Indian coastal waters and to boost the regional blue economy. The Indian National Centre for Ocean Information Services (INCOIS) has launched a first-of-its-kind WQNS, and positioned the buoys at two important locations along the east (Visakhapatnam) and west (Kochi) coast of India, covering a range of environmental conditions and tourist-intensive zones. These buoys are equipped with different physical-biogeochemical sensors, data telemetry systems, and integration with satellite-based observations for real-time data transmission to land. The sensors onboard these buoys continuously measure 22 water quality parameters, including surface current (speed and direction), salinity, temperature, pH, dissolved oxygen, phycocyanin, phycoerythrin, Coloured Dissolved Organic Matter, chlorophyll-a, turbidity, dissolved methane, hydrocarbon (crude and refined), scattering, pCO2 (water and air), and inorganic macronutrients (nitrite, nitrate, ammonium, phosphate, silicate). This real-time data is transmitted to a central processing facility at INCOIS, and after necessary quality control, the data is disseminated through the INCOIS website. Preliminary results from the WQNS show promising outcomes, including the short-term changes in the water column oxic and hypoxic regimes within a day in coastal waters off Kochi during the monsoon period, whereas effluxing of high levels of CO2 into the atmosphere associated with the mixing of water, driven by local depression in the coastal waters off Visakhapatnam. The system has demonstrated its ability to detect changes in the water column properties due to episodic events and mesoscale processes. Additionally, it offers valuable data for research, management, and policy development related to coastal water quality.
Collapse
Affiliation(s)
- T M Balakrishnan Nair
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - V V S S Sarma
- CSIR-National Institute of Oceanography, Regional Centre, Visakhapatnam, 530017, India
| | - Aneesh A Lotliker
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - K R Muraleedharan
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, India
| | - Alakes Samanta
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - Sanjiba Kumar Baliarsingh
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India.
| | - S Shivaprasad
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - T R Gireeshkumar
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, 682018, India
| | - Susmita Raulo
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - S P Vighneshwar
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - R Venkat Shesu
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - Murali Krishna
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - N Kiran Kumar
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - R Chandrasekhar Naik
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - Sudheer Joseph
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - K Annapurnaiah
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - E Pattabhi Rama Rao
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| | - T Srinivasa Kumar
- Indian National Centre for Ocean Information Services, Ministry of Earth Sciences, Govt. of India, Hyderabad, 500090, India
| |
Collapse
|
19
|
Hua T, He L, Jiang Q, Chou LM, Xu Z, Yao Y, Ye G. Spatio-temporal coupling analysis and tipping points detection of China's coastal integrated land-human activity-ocean system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169981. [PMID: 38215845 DOI: 10.1016/j.scitotenv.2024.169981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The coastal zone is typically highly developed and its ocean environment is vastly exposed to the onshore activities. Land-based pollution, as the "metabolite" of terrestrial human activities, significantly impacts the ocean environment. Although numerous studies have investigated these effects, few have quantified the interactions among land-human activity-ocean across both spatial and temporal scales. In this study, we have developed a land-human activity-ocean systemic framework integrating the coupling coordination degree model and tipping point to quantify the spatiotemporal dynamic interaction mechanism among the land-based pollution, human activities, and ocean environment in China from 2001 to 2020. Our findings revealed that the overall coupling coordination degree of the China's coastal zone increased by 36.9 % over last two decades. Furthermore, the effect of human activities on China's coastal environment remained within acceptable thresholds, as no universal tipping points for coastal pollution or ocean environment has been found over the 20-year period. Notably, the lag time for algal blooms, the key indicator of ocean environment health, was found to be 0-3 years in response to the land economic development and 0-4 years in response to land-based pollution. Based on the differences in spatiotemporal interactions among land-human activity-ocean system, we employed cluster analysis to categorize China's coastal provinces into four types and to develop appropriate management measures. Quantifying the interaction mechanism within the land-human activity-ocean system could aid decision-makers in creating sustainable coastal development strategies. This enables efficient use of land and ocean resources, supports coastal conservation and restoration efforts, and fosters effective management recommendations to enhance coastal sustainability and resilience.
Collapse
Affiliation(s)
- Tianran Hua
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, Hainan, China
| | - Liuyue He
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China; Donghai Laboratory, Zhoushan, Zhejiang, China
| | - Qutu Jiang
- Department of Geography, The University of Hong Kong, Hong Kong
| | | | - Zhenci Xu
- Department of Geography, The University of Hong Kong, Hong Kong
| | - Yanming Yao
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China
| | - Guanqiong Ye
- Ocean College, Zhejiang University, Zhoushan, Zhejiang, China; Hainan Institute of Zhejiang University, Sanya, Hainan, China; Second Institute of Oceanography of MNR, Hanghou, Zhejiang, China.
| |
Collapse
|
20
|
Dong WS, Ismailluddin A, Yun LS, Ariffin EH, Saengsupavanich C, Abdul Maulud KN, Ramli MZ, Miskon MF, Jeofry MH, Mohamed J, Mohd FA, Hamzah SB, Yunus K. The impact of climate change on coastal erosion in Southeast Asia and the compelling need to establish robust adaptation strategies. Heliyon 2024; 10:e25609. [PMID: 38375273 PMCID: PMC10875370 DOI: 10.1016/j.heliyon.2024.e25609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 01/22/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024] Open
Abstract
Climate change alters the climate condition and ocean environment, leading to accelerated coastal erosion and a shift in the coastline shape. From previous studies, Southeast Asia's coastal region is suffering from severe coastal erosion. It is most sensitive and vulnerable to climate change, has broad and densely populated coastlines, and is under ecological pressure. Efforts to systematically review these studies are still insufficient despite many studies on the climate change linked to coastal erosion, the correlation between coastal erosion and coastal communities, and the adaptative measures to address these issues and their effectiveness in Southeast Asia. Therefore, by analyzing the existing literature, the purpose of this review was to bridge the knowledge gap and identify the link between climate change and coastal erosion in Southeast Asia in terms of sea-level rise, storm surge, and monsoon patterns. The RepOrting standards for Systematic Evidence Syntheses (ROSES) guided the study protocol, including articles from the Scopus and Dimension databases. There were five main themes considered: 1) climate change impact, 2) contributing factors to coastal erosion, 3) coastal erosion impact on coastal communities, 4) adaptation measure and 5) effectiveness of adaptation measure using thematical analysis. Subsequently, nine sub-themes were produced from the themes. Generally, in Southeast Asia, coastal erosion was reflected by the rising sea level. Throughout reviewing past literature, an interesting result was explored. Storm surges also had the potential to affect coastal erosion due to alterations of the atmospheric system and seasonal monsoon as the result of climate change. Meanwhile, an assessment of current erosion control strategies in relation to the relative hydrodynamic trend was required to avoid the failure of defence structures and the resulting danger to coastal communities. Systematically reviewing the existing literature was critical, hence it could significantly contribute to the body of knowledge. It provides valuable information for interested parties, such as authorities, the public, researchers, and environmentalists, while comprehending existing adaptation practices. This kind of review could strategize adaptation and natural resource management in line with coastal communities' needs, abilities, and capabilities in response to environmental and other change forms.
Collapse
Affiliation(s)
- Wan Shiao Dong
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Aminah Ismailluddin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Lee Shin Yun
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Effi Helmy Ariffin
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
- Institute of Oceanography and Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Cherdvong Saengsupavanich
- Faculty of International Maritime Studies, Kasetsart University, Sri Racha Campus, 199 Moo 6 Sukhumvit Rd., Tungsukla, Sri Racha, Chonburi, 20230, Thailand
| | - Khairul Nizam Abdul Maulud
- Department of Civil Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
- Earth Observation Centre, Institute of Climate Change, Universiti Kebangsaan Malaysia, 43600, UKM, Bangi, Selangor, Malaysia
| | - Muhammad Zahir Ramli
- Institute of Oceanography & Maritime Studies, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Mohd Fuad Miskon
- Institute of Oceanography & Maritime Studies, Kulliyyah of Science, International Islamic University Malaysia, 25200, Kuantan, Malaysia
| | - Muhammad Hafeez Jeofry
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - Juliana Mohamed
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang, Malaysia
| | - Fazly Amri Mohd
- Centre of Studies for Surveying Science & Geomatics, Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Perlis, 02600, Arau, Perlis, Malaysia
| | - Saiful Bahri Hamzah
- National Water Research Institute of Malaysia, Ministry of Energy Transition and Water Transformation, 43300, Seri Kembangan, Selangor, Malaysia
| | - Kamaruzzaman Yunus
- Kulliyyah of Science, International Islamic University Malaysia, Kuantan Campus, Kuantan, Pahang, Malaysia
| |
Collapse
|
21
|
Beca-Carretero P, Marín C, Azcárate-García T, Cara CL, Brun F, Stengel DB. Ecotype-Specific and Correlated Seasonal Responses of Biomass Production, Non-Structural Carbohydrates, and Fatty Acids in Zostera marina. PLANTS (BASEL, SWITZERLAND) 2024; 13:396. [PMID: 38337929 PMCID: PMC10856944 DOI: 10.3390/plants13030396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Seagrasses, which are marine flowering plants, provide numerous ecological services and goods. Zostera marina is the most widely distributed seagrass in temperate regions of the northern hemisphere, tolerant of a wide range of environmental conditions. This study aimed to (i) examine seasonal trends and correlations between key seagrass traits such as biomass production and biochemical composition, and (ii) compare seasonal adaptation of two ecotypes of Z. marina exposed to similar environmental conditions on the west coast of Ireland. During summer, plants accumulated higher levels of energetic compounds and levels of unsaturated fatty acids (FAs) decreased. Conversely, the opposite trend was observed during colder months. These findings indicate a positive seasonal correlation between the production of non-structural carbohydrates and saturated fatty acids (SFAs), suggesting that seagrasses accumulate and utilize both energetic compounds simultaneously during favorable and unfavorable environmental conditions. The two ecotypes displayed differential seasonal responses by adjusting plant morphology and production, the utilization of energetic reserves, and modulating unsaturation levels of fatty acids in seagrass leaves. These results underscore the correlated seasonal responses of key compounds, capturing ecotype-specific environmental adaptations and ecological strategies, emphasizing the robust utility of these traits as a valuable eco-physiological tool.
Collapse
Affiliation(s)
- Pedro Beca-Carretero
- Botany and Plant Science, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland (D.B.S.)
- Department of Theoretical Ecology and Modelling, Leibniz Centre for Tropical Marine Research, 28359 Bremen, Germany
- Centro de Investigación Marina, Facultad de Ciencias del Mar, Universidad de Vigo, 36310 Vigo, Spain;
| | - Clara Marín
- Centro de Investigación Marina, Facultad de Ciencias del Mar, Universidad de Vigo, 36310 Vigo, Spain;
| | - Tomás Azcárate-García
- Department of Evolutionary Biology, Ecology and Environmental Sciences & Biodiversity Research Institute (IRBio), University of Barcelona, 08028 Barcelona, Spain;
- Department of Marine Biology and Oceanography, Institute of Marine Sciences (ICM-CSIC), 08003 Barcelona, Spain
| | - Claudia L. Cara
- Botany and Plant Science, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland (D.B.S.)
| | - Fernando Brun
- Department of Biology, Division of Ecology, Faculty of Marine and Environmental Sciences, University of Cadiz, 11510 Puerto Real, Spain;
| | - Dagmar B. Stengel
- Botany and Plant Science, School of Natural Sciences, University of Galway, H91 TK33 Galway, Ireland (D.B.S.)
| |
Collapse
|
22
|
Lansu EM, Reijers VC, Höfer S, Luijendijk A, Rietkerk M, Wassen MJ, Lammerts EJ, van der Heide T. A global analysis of how human infrastructure squeezes sandy coasts. Nat Commun 2024; 15:432. [PMID: 38199992 PMCID: PMC10781753 DOI: 10.1038/s41467-023-44659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Coastal ecosystems provide vital services, but human disturbance causes massive losses. Remaining ecosystems are squeezed between rising seas and human infrastructure development. While shoreline retreat is intensively studied, coastal congestion through infrastructure remains unquantified. Here we analyse 235,469 transects worldwide to show that infrastructure occurs at a median distance of 392 meter from sandy shorelines. Moreover, we find that 33% of sandy shores harbour less than 100 m of infrastructure-free space, and that 23-30% of this space may be lost by 2100 due to rising sea levels. Further analyses show that population density and gross domestic product explain 35-39% of observed squeeze variation, emphasizing the intensifying pressure imposed as countries develop and populations grow. Encouragingly, we find that nature reserves relieve squeezing by 4-7 times. Yet, at present only 16% of world's sandy shores have a protected status. We therefore advocate the incorporation of nature protection into spatial planning policies.
Collapse
Affiliation(s)
- Eva M Lansu
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands.
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| | - Valérie C Reijers
- Faculty of Geosciences, Department of Physical Geography, Utrecht University, Utrecht, The Netherlands
| | - Solveig Höfer
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Arjen Luijendijk
- Department of Resilient Ports and Coasts, Deltares, Delft, The Netherlands
- Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, The Netherlands
| | - Max Rietkerk
- Copernicus Institute of Sustainable Development, Environmental Sciences Group, Utrecht University, Utrecht, The Netherlands
| | - Martin J Wassen
- Copernicus Institute of Sustainable Development, Environmental Sciences Group, Utrecht University, Utrecht, The Netherlands
| | | | - Tjisse van der Heide
- Department of Coastal Systems, Royal Netherlands Institute for Sea Research (NIOZ), Den Burg, The Netherlands.
- Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
23
|
Lincoln S, Chowdhury P, Posen PE, Robin RS, Ramachandran P, Ajith N, Harrod O, Hoehn D, Harrod R, Townhill BL. Interaction of climate change and marine pollution in Southern India: Implications for coastal zone management practices and policies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166061. [PMID: 37543339 DOI: 10.1016/j.scitotenv.2023.166061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Climate change and marine litter are inextricably linked, and their interaction manifests differently depending on the specific environmental and biological characteristics, and other human activities taking place. The negative impacts resulting from those synergistic interactions are threatening coastal and marine ecosystems and the many goods and services they provide. This is particularly pervasive in the coastal zone of the Indian subcontinent. India is already experiencing severe climate change impacts, which are projected to worsen in the future. At the same time, the country is gripped by a litter crisis that is overwhelming authorities and communities and hindering the country's sustainable development goals. The coastal environment and communities of the southern states of Kerala and Tamil Nadu are particularly vulnerable to the impacts of climate change. While these state governments and authorities are stepping up efforts to improve the management of their coastal zones, the scale and severity of these issues are mounting. Here we review the combined effects of climate change and marine litter pollution in Southern India, focusing on the Gulf of Mannar Reserve in Tamil Nadu and the Malabar Coast in Kerala. Finally, we discuss effective management options that could help improve resilience and sustainability.
Collapse
Affiliation(s)
- Susana Lincoln
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom.
| | - Piyali Chowdhury
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Paulette E Posen
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Purvaja Ramachandran
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Nithin Ajith
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600 025, India
| | - Olivia Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Danja Hoehn
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Richard Harrod
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| | - Bryony L Townhill
- International Marine Climate Change Centre, The Centre for Environment, Fisheries and Aquaculture Science (Cefas), Cefas Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, United Kingdom
| |
Collapse
|
24
|
Su C, Zheng D, Zhang H, Liang R. The past 40 years' assessment of urban-rural differences in Benzo[a]pyrene contamination and human health risk in coastal China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165993. [PMID: 37536607 DOI: 10.1016/j.scitotenv.2023.165993] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/10/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
China has implemented many environmental regulations to battle against polycyclic aromatic hydrocarbon (PAH) contamination since the 1990s. It remains unclear how the exposure levels of PAHs changed quantitatively since reform and opening up in 1978 in China, whether the human health risks decreased or not, and how about the discrepancy between urban and rural areas. Here, taking Benzo[a]pyrene (BaP) in the rapidly urbanized Bohai region of China as a case, we used the improved Berkeley-Trent-Urban-Rural model to simulate the multimedia concentrations of BaP from 1980 to 2020 based on BaP emissions at a regional scale. The total emission of BaP in 1990 was the highest, with a value of 240 t, while the urban emission peaked in 2010. The BaP emissions from rural areas were two to seven times higher than urban areas, and the differences became smaller over time. Despite this, the average modeled BaP concentrations in urban air and soil were two to tens fold higher than in rural areas, particularly in highly urbanized or industrialized cities. Mostly, the concentrations of BaP in rural areas peaked in 1990, while those in urban areas peaked in 1990 or 2010. Early urbanized Beijing and Tianjin were the hot-spot cities of BaP contamination before 2000, while after 2010, higher concentrations were found in late industrialized Shandong and Hebei. BaP posed potential cancer risks to local residents, and air inhalation accounted for more than 80 % of the total risk. Under the stronger implementation of environmental regulations since the 1990s, it showed great health benefits, particularly for the urban residents in Beijing and Tianjin. The biggest decline in cancer risk was found in the period 2010-2020, and the average decreasing rates were 61.4 % and 57.4 % for urban and rural areas, respectively.
Collapse
Affiliation(s)
- Chao Su
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China.
| | - Danfeng Zheng
- Institute of Loess Plateau, Shanxi University, Taiyuan 030006, China
| | - Hong Zhang
- College of Environmental & Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Ruoyu Liang
- School of Biosciences, The University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
25
|
Lopes C, Rodrigues ACM, Pires SFS, Campos D, Soares AMVM, Vieira HC, Bordalo MD. Responses of Mytilus galloprovincialis in a Multi-Stressor Scenario: Effects of an Invasive Seaweed Exudate and Microplastic Pollution under Ocean Warming. TOXICS 2023; 11:939. [PMID: 37999591 PMCID: PMC10675577 DOI: 10.3390/toxics11110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
Microplastic pollution, global warming, and invasive species are known threats to marine biota, but the impact of their simultaneous exposure is still not well understood. This study investigated whether the toxic effects posed by the invasive red seaweed Asparagopsis armata exudate (2%) to the mussel Mytilus galloprovincialis are amplified by a 96 h exposure to increased temperature (24 °C) and polyethylene microplastics (PE-MPs, 1 mg/L). Biochemical (neurotoxicity, energy metabolism, oxidative stress, and damage) and physiological (byssal thread production) responses were evaluated. The number of produced byssus greatly decreased under concomitant exposure to all stressors. The antioxidant defences were depleted in the gills of mussels exposed to temperature rises and PE-MPs, regardless of exudate exposure, preventing oxidative damage. Moreover, the heat shock protein content tended to decrease in all treatments relative to the control. The increased total glutathione in the mussels' digestive gland exposed to 24 °C, exudate, and PE-MPs avoided oxidative damage. Neurotoxicity was observed in the same treatment. In contrast, the energy metabolism remained unaltered. In conclusion, depending on the endpoint, simultaneous exposure to A. armata exudate, PE-MPs, and warming does not necessarily mean an amplification of their single effects. Studies focusing on the impact of multiple stressors are imperative to better understand the underlying mechanisms of this chronic exposure.
Collapse
Affiliation(s)
- Cristiana Lopes
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Andreia C. M. Rodrigues
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Sílvia F. S. Pires
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Diana Campos
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Amadeu M. V. M. Soares
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Hugo C. Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| | - Maria D. Bordalo
- CESAM—Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (A.C.M.R.); (S.F.S.P.); (D.C.); (A.M.V.M.S.); (H.C.V.)
| |
Collapse
|
26
|
Chen X, Cui Z, Zhang Y, Zhang X, Chen J, Wei Y. Contrasting effects of river inflow and seawater intrusion on zooplankton community structure in Jiaozhou bay, the Yellow Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 192:106194. [PMID: 37752026 DOI: 10.1016/j.marenvres.2023.106194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/21/2023] [Accepted: 09/20/2023] [Indexed: 09/28/2023]
Abstract
Environmental changes associated with river inflow and seawater intrusion are known to affect zooplankton communities in coastal systems, but how zooplankton respond to these environmental changes remains unclear at present. Here we explored the effects of river inflow and seawater intrusion on zooplankton community structure in Jiaozhou Bay. The results showed that the river inflow and seawater intrusion are key in driving zooplankton dynamics, but with contrasting effects. According to the distinct hydrographic conditions, the sampling area could be geographically divided into the river inflow area with low-salinity and high-nutrient conditions (i.e., EIZ) and the seawater intrusion zone with high-salinity and low-nutrient conditions (i.e., SIZ). There were significant differences in zooplankton communities (e.g., abundance and species composition) between the two regions with seasonal changes. For example, the zooplankton abundance was significantly higher in the SIZ than in the EIZ during spring, whereas an opposite pattern was observed for the summer season. In contrast, the species richness was higher in the EIZ than in the SIZ in spring, while an opposite variation trend was observed during summer. These results together suggested that the river inflow and seawater intrusion had contrasting effects on zooplankton community structure in different seasons. According to the canonical correspondence analysis, we observed that the zooplankton community structure was mainly driven by temperature, chlorophyll a (Chl a), and nutrients in the EIZ, but it was largely affected by salinity in the SIZ. The implication is that changes in temperature, Chl a, and nutrients as a result of river inflow and changes in salinity as a consequence of seawater intrusion are key in driving the dynamics of zooplankton communities in Jiaozhou Bay.
Collapse
Affiliation(s)
- Xueyang Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yan Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Xuzhi Zhang
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jufa Chen
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Yuqiu Wei
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China; Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China.
| |
Collapse
|
27
|
Zhang L, Guo Y, Xiao K, Pan F, Li H, Li Z, Xu H. Extreme rainstorm reshuffles the spatial distribution of heavy metals and pollution risk in sediments along the mangrove tidal flat. MARINE POLLUTION BULLETIN 2023; 194:115277. [PMID: 37480789 DOI: 10.1016/j.marpolbul.2023.115277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/24/2023]
Abstract
Mangroves as typical blue carbon ecosystems exhibit a high level of heavy metal accumulation capability. In this study, we investigated how extreme rainstorm effects the spatial variability and pollution risk of sediment heavy metals (i.e., Fe, Mn, Cr, Cu, Zn, Cd, Pb, As and Hg) at different compartments of a typical tidal flat, including the bare mudflat, mangrove zone, and tidal creek in Shenzhen Bay, China. The results showed that the extreme rainstorm can change the sediment particle size, which further regulated the spatial distribution, and source-sink pattern of heavy metals. Due to the strong rainstorm flushing, the concentrations of most heavy metals increased toward the sea and the comprehensive pollution level increased by 8.3 % after the extreme rainstorm. This study contributes to better understanding of how extreme rainstorm regulates heavy metal behavior in mangrove sediments to achieve sustainable development of mangroves under the pressures of extreme weather events.
Collapse
Affiliation(s)
- Licong Zhang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Yuehua Guo
- CCCC-FHEC Ecological Engineering Co. Ltd., Shenzhen 518107, PR China
| | - Kai Xiao
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China.
| | - Feng Pan
- College of the Environment & Ecology, Xiamen University Xiamen 361102, PR China
| | - Hailong Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Zhenyang Li
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, PR China
| | - Hualin Xu
- Guangdong Neilingding Futian National Nature Reserve, Shenzhen 518048, PR China
| |
Collapse
|
28
|
El-Sokkary SG, El-Wakeil KFA, Obuid-Allah AH, Omer MY. Influences of habitat and seasonal changes on gonadal maturation of Echinometra mathaei (Echinodermata: Echinoidea) and Tridacna squamosa (Mollusca: Bivalvia) in the Red Sea, Egypt. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:1088. [PMID: 37615753 PMCID: PMC10449673 DOI: 10.1007/s10661-023-11713-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023]
Abstract
The present work is aimed at investigating the effects of seasonal changes and habitat conditions on reproductive state and gonadal development of two macrobenthic fauna. Echinometra mathaei and Tridacna squamosa were collected seasonally (summer and winter) in July 2019 and January 2020 from three sites along the Red Sea coast, Egypt: Hamraween, Sedy Malek, and Porto Ghalb. Sexual differences and gonadal maturation in the two species were determined by performing biopsies of their gonads followed by morphologic analyses. Hematoxylin and eosin-stained gonadal sections were examined and analyzed. In E. mathaei, reproductive behavior was more active in the summer than in the winter; in T. squamosa, reproductive behavior was active almost all the year, especially during the winter. The reproductive activity and gonadal maturation of both species were affected by environmental factors. The results indicated that temperature is a vital factor affecting the reproductive activity of both species. This study concluded that temperature fluctuations may pose significant challenges to coastal marine ecosystems.
Collapse
Affiliation(s)
- Samaa G El-Sokkary
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | | | - Ahmad H Obuid-Allah
- Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, Egypt
| | - Mohsen Y Omer
- National Institute of Oceanography and Fisheries (NIOF), Red Sea Branch, Hurghada, Egypt
| |
Collapse
|
29
|
Sarly MS, Pedro CA, Bruno CS, Raposo A, Quadros HC, Pombo A, Gonçalves SC. Use of the gonadal tissue of the sea urchin Paracentrotus lividus as a target for environmental contamination by trace metals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:89559-89580. [PMID: 37454008 PMCID: PMC10412469 DOI: 10.1007/s11356-023-28472-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 06/23/2023] [Indexed: 07/18/2023]
Abstract
Many environmental monitoring works have been carried out using biomarkers as a tool to identify the effects of oil contamination on marine organisms; however, only a few studies have used sea urchin gonadal tissue for this purpose. Within this context, the present work aimed to understand the impact of an oil spill, proposing the use of sea urchin gonadal tissue as a biomarker for environmental contamination by trace metals in the species Paracentrotus lividus. Biometric analysis, quantification analyses of the elements Cd, Pb, Ni, Fe, Mn, Zn, and Cu, as well as histopathological evaluations were performed in gonads of P. lividus collected from an area affected by hydrocarbons, named as impacted shore (IS) and an area not affected, named reference shore (RS). The results showed that carapace diameter (DC), total wet weight (WW), and Cd concentrations in the gonads were significantly influenced by the interaction between the rocky shores of origin, the months of sampling, and by the sex of the individuals. Moreover, from July until September, the levels of Zn and Cd were significantly lower in male than in female gonads. In July (the month of the oil spill), the indexes of histopathological alterations (IHPA) of membrane dilation were significantly higher in individuals from the IS, compared to the individuals from the RS. In addition, there were significant correlations between biometric variables (wet weight, diameter of carapace, gonadal weight, and gonadosomatic index) and the elements Cd, Cu, Ni, and Mn concentrations. Lastly, a delay in the gametogenic cycle of the sea urchins from IS was also observed. Taken together, these findings suggest that direct exposure to trace metals induces histopathological lesions in P. lividus' gonads and affects its reproductive cycle.
Collapse
Affiliation(s)
- Monique S Sarly
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Carmen A Pedro
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Catarina S Bruno
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Andreia Raposo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Helenita C Quadros
- Gonçalo Moniz Institute - Oswaldo Cruz Foundation (Fiocruz), Salvador, 40296-710, Brazil
| | - Ana Pombo
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sílvia C Gonçalves
- MARE - Marine and Environmental Sciences Centre, ESTM - School of Tourism and Maritime Technology, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
- MARE - Marine and Environmental Sciences Centre, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3004-517, Coimbra, Portugal.
| |
Collapse
|
30
|
Ramos BD, Costa MFD. BeachLog: A multiple uses and interactive beach picture. MARINE POLLUTION BULLETIN 2023; 193:115156. [PMID: 37331276 DOI: 10.1016/j.marpolbul.2023.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/20/2023]
Abstract
There are some tools in place that classifies and/or rank beaches according to a series of parameters. It is possible to identify a gap in the development of tools that map and describe beaches without putting the results into a classification status of good or bad. Since beaches are important from different points of views such as ecology, tourism, economy, pollution or invasive species studies and management, fisheries, estate development, protected areas, among others it is relevant to describe and understand parameters in detail. This work offers a multi-purpose and interactive beach descriptor called BeachLog. It can be used by beachgoers to keep their own records in the same way a diver uses a Diver's LogBook, managers can use the tool to support coastal management projects, long-term monitoring, and beach description baseline. Also, BeachLog can be a didactic tool to aiming to bring environmental sciences closer to technology through the use of spreadsheets and dashboards. BeachLog is based on the more frequent parameters in the literature, selected, organized, accounted for, and altered/added according to expert opinion. We created a list of 28 parameters, all of which were described in details of what is expected to be observed by the user. They were divided into 5 groups (Environmental characteristics, Services & Infrastructure, Information & Security, Planning & Management, and Descriptive). Here, we describe 14 Brazilian beaches using the BeachLog by inputting the results as parameters presence or absence (0/1) and descriptives in a table that can be transformed into an interactive dashboard for better/easier visualization. Planning & Management was absent on all 14 beaches studied, pointing out the relevance and gaps in this group. In the other groups it was possible to observe variation in the parameter occurrence, indicating that each beach is different and it is important to observe parameters individually. Beach Litter and Invasive Species parameters from the Environmental characteristics group were present in all beaches. BeachLog showed as an easy way to describe a beach and can be a tool to support diagnosis and understanding of the beach's status.
Collapse
Affiliation(s)
- Bruna de Ramos
- Departamento de Oceanografia, Universidade Federal de Pernambuco - UFPE, Recife, Pernambuco 50740-550, Brazil.
| | - Monica Ferreira da Costa
- Departamento de Oceanografia, Universidade Federal de Pernambuco - UFPE, Recife, Pernambuco 50740-550, Brazil
| |
Collapse
|
31
|
Romero-Murillo P, Gallego JL, Leignel V. Marine Pollution and Advances in Biomonitoring in Cartagena Bay in the Colombian Caribbean. TOXICS 2023; 11:631. [PMID: 37505596 PMCID: PMC10385514 DOI: 10.3390/toxics11070631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/29/2023]
Abstract
Coastal zones sustain extensive biodiversity, support key processes for ocean dynamics, and influence the balance of the global environment. They also provide resources and services to communities, determine their culture, and are the basis for their economic growth. Cartagena Bay in the Colombian Caribbean is the place of the establishment of one of the country's main cities, which has a great historical and tourist attraction, and it is also the location of the main commercial port and a great variety of industries. Historically, it has been affected by several environmental impacts and intense pollution. This situation has gained the attention of different researchers, so herein is presented a literature review with a systematic approach using RStudio's bibliometrix on the presence of pollutants and the impact on biodiversity in recent decades, providing a critical analysis of the state of Cartagena Bay and its future needs to ensure its recovery and conservation. In addition, the socioeconomic dynamics related to the environmental state of Cartagena Bay are presented from the framework drivers, pressures, status, impacts, and responses (DPSIR). The update and critical understanding of the sources, fate, and effects of pollution are important not only for the knowledge of the status of this singular ecosystem but also to encourage future research and entrench evidence to support decision makers' actions. This review highlights that several pollutants that have been detected exceeding sediment quality guidelines, like As, Cd, Hg, and PAH, are also reported to bioaccumulate and cause damage throughout the trophic levels of the coastal environment. In addition, the potential use of sentinel species and biomarkers for their monitoring is discussed. Finally, the factors that cause pollution and threaten the state of the bay continue to exert pressure and impact; thus, there is a call for the further monitoring of this ecosystem and the strengthening of policies and regulations.
Collapse
Affiliation(s)
- Patricia Romero-Murillo
- Escuela de Biología Marina, Grupo de Investigación GIBEAM, Universidad del Sinú Seccional Cartagena, Av. El Bosque Trans, 54 N° 30-453 Santillana, Cartagena de Indias 130014, Colombia
| | - Jorge L Gallego
- Grupo de Investigaciones y Mediciones Ambientales GEMA, Facultad de Ingenierías, Universidad de Medellín, Carrera 87 N° 30-65, Medellín 050026, Colombia
| | - Vincent Leignel
- Laboratoire BIOSSE, Le Mans Université, Avenue O Messiaen, 72000 Le Mans, France
| |
Collapse
|
32
|
Morais T, Moleiro P, Leite C, Coppola F, Pinto J, Henriques B, Soares AMVM, Pereira E, Freitas R. Ecotoxicological impacts of metals in single and co-exposure on mussels: Comparison of observable and predicted results. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163165. [PMID: 37003315 DOI: 10.1016/j.scitotenv.2023.163165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/22/2023] [Accepted: 03/26/2023] [Indexed: 06/01/2023]
Abstract
Used in high-tech and everyday products, mercury (Hg), cobalt (Co), and nickel (Ni) are known to be persistent and potentially toxic elements that pose a serious threat to the most vulnerable ecosystems. Despite being on the Priority Hazardous Substances List, existing studies have only assessed the individual toxicity of Co, Ni and Hg in aquatic organisms, with a focus on the latter, ignoring potential synergistic effects that may occur in real-world contamination scenarios. The present study evaluated the responses of the mussel Mytilus galloprovincialis, recognized as a good bioindicator of pollution, after exposure to Hg (25 μg/L), Co (200 μg/L) and Ni (200 μg/L) individually, and to the mixture of the three metals at the same concentration. The exposure lasted 28 days at 17 ± 1 °C, after which metal accumulation and a set of biomarkers related to organisms' metabolic capacity and oxidative status were measured. The results showed that the mussels could accumulate metals in both single- and co-exposure conditions (bioconcentration factors between 115 and 808) and that exposure to metals induced the activation of antioxidant enzymes. Although Hg concentration in organisms in the mixture decreased significantly compared to single exposure (9.4 ± 0.8 vs 21 ± 0.7 mg/kg), the negative effects increased in the mixture of the three elements, resulting in depletion of energy reserves, activation of antioxidants and detoxification enzymes, and cellular damage, with a hormesis response pattern. This study underscores the importance of risk assessment studies that include the effects of the combination of pollutants and demonstrates the limitations of applying models to predict metal mixture toxicity, especially when a hormesis response is given by the organisms.
Collapse
Affiliation(s)
- Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Bruno Henriques
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
33
|
Page CE, Ainsworth TD, Leggat W, Egan S, Gupta AS, Raoult V, Gaston TF. Localising terrestrially derived pollution inputs to threatened near-shore coral reefs through stable isotope, water quality and oceanographic analysis. MARINE POLLUTION BULLETIN 2023; 193:115193. [PMID: 37399735 DOI: 10.1016/j.marpolbul.2023.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 06/15/2023] [Indexed: 07/05/2023]
Abstract
Near-shore coral reefs are at high-risk of exposure to pollution from terrestrial activities. Pollution impacts can vary with site-specific factors that span sources, rainfall and oceanographic characteristics. To effectively manage pollution, we need to understand how these factors interact. In this study, we detect terrestrially derived nutrient inputs on near-shore reefs at Norfolk Island, South Pacific by analysis of dissolved inorganic nitrogen (DIN) and stable isotopes. When compared to a reef site with predominantly oceanic inputs, we found that both the lagoon and a small reef adjacent to a catchment have signatures of human-derived DIN shown through depleted δ15N signatures in macroalgae. We find pollution exposure of reef sites is associated with known and unknown sources, rainfall and mixing of water with the open ocean. In characterising exposure of reef sites we highlight the role of site-specific context in influencing pollution exposure for benthic communities even in remote island systems.
Collapse
Affiliation(s)
- C E Page
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia.
| | - T D Ainsworth
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - W Leggat
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| | - S Egan
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - A Sen Gupta
- School of Biological, Earth and Environmental Sciences (BEES), UNSW, Kensington, NSW 2033, Australia
| | - V Raoult
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia; Marine Ecology Group, School of Natural Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| | - T F Gaston
- University of Newcastle, School of Environmental and Life Sciences, University Dr, Callaghan, NSW 2308, Australia
| |
Collapse
|
34
|
Barbosa H, Leite C, Pinto J, Soares AMVM, Pereira E, Freitas R. Are Lithium batteries so eco-friendly? Ecotoxicological impacts of Lithium in estuarine bivalves. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023:104197. [PMID: 37356678 DOI: 10.1016/j.etap.2023.104197] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 06/27/2023]
Abstract
Lithium (Li) is now widely used in green energies/clean technologies, although its inefficient recycling and treatment means it is an emerging contaminant in aquatic systems. Bivalves, such as clams, are considered good bioindicators of pollution, hence we evaluated the biochemical effects of Li in the clam Venerupis corrugata. Clams were exposed (14 days) to an increasing Li gradient (0, 200, 400, 800µg/L). Bioconcentration capacity tended to decrease with increasing Li exposure possibly due to efforts to eliminate Li from the cells, to avert damage. No influences on the clams' metabolic capacity and protein content were observed. Antioxidant and detoxification defences were activated, especially at 400 and 800µg/L of Li, avoiding lipid damage while protein injuries were observed at higher concentrations. Furthermore, a loss of redox balance was observed. This study highlights the importance of preventing and regulating Li discharges into the environment, avoiding adverse consequences to aquatic ecosystems.
Collapse
Affiliation(s)
- Helena Barbosa
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carla Leite
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João Pinto
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry and REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
35
|
Munschy C, Bely N, Héas-Moisan K, Olivier N, Pollono C, Govinden R, Bodin N. Species-specific bioaccumulation of persistent organohalogen contaminants in a tropical marine ecosystem (Seychelles, western Indian Ocean). CHEMOSPHERE 2023; 336:139307. [PMID: 37354954 DOI: 10.1016/j.chemosphere.2023.139307] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Affiliation(s)
- C Munschy
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France.
| | - N Bely
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - K Héas-Moisan
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - N Olivier
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - C Pollono
- Ifremer, CCEM Contamination Chimique des Ecosystèmes Marins, F-44000, Nantes, France
| | - R Govinden
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles
| | - N Bodin
- SFA (Seychelles Fishing Authority), Fishing Port, Victoria, Mahé, Seychelles; Institute for Research and Development (IRD), Fishing Port, Victoria, Mahé, Seychelles; Sustainable Ocean Seychelles (SOS), BeauBelle, Mahé, Seychelles
| |
Collapse
|
36
|
Wei Y, Chen X, Liu Y, Wang Y, Qu K, Sun J, Cui Z. Key determinants controlling the seasonal variation of coastal zooplankton communities: A case study along the Yellow Sea. MARINE POLLUTION BULLETIN 2023; 193:115175. [PMID: 37348278 DOI: 10.1016/j.marpolbul.2023.115175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/04/2023] [Accepted: 06/11/2023] [Indexed: 06/24/2023]
Abstract
Zooplankton play key top-down and bottom-up regulatory roles in aquatic food webs, and are also ecologically indicative in marine ecosystems. However, there are relatively limited data on the effects of environmental changes on natural zooplankton communities, especially in coastal ecosystems. In the present study, we systematically evaluated the potential effects of various environmental variables, such as temperature, salinity, and nutrients, on the zooplankton communities along the coastal Yellow Sea during spring, summer, and fall. The results showed that the average abundance of zooplankton decreased in general from spring to autumn, but the biomass exhibited a different seasonal variation trend, with the highest in summer and the lowest in fall. Throughout the three seasons, copepods were the most dominant species within the zooplankton communities, followed by Pelagic larvae and Hydromedusae. However, Noctiluca miliaris accounted for a large proportion of zooplankton abundance during spring. Moreover, the correlation analysis was applied to explore the potential effects of environmental factors on the seasonal variation of zooplankton communities. The results showed that chlorophyll a (Chl a) and salinity were significantly correlated with zooplankton abundance and biomass during spring. The implication is that high phytoplankton biomass (expressed as Chl a) and salinity would benefit the growth of zooplankton in spring. During summer and fall, the effects of dissolved inorganic phosphate (DIP) on the zooplankton abundance and biomass showed a significant positive correlation, indicating that zooplankton were better able to tolerate high DIP during summer and fall. Taken together, Chl a, salinity, and DIP may be the key determinants controlling the seasonal dynamics of zooplankton communities in the coastal Yellow Sea.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Xueyang Chen
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Ying Liu
- Qingdao Marine Management Support Center, Qingdao 266071, China
| | - Yingzhe Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China.
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
37
|
Zribi I, Ellouzi H, Mnasri I, Abdelkader N, Ben Hmida A, Dorai S, Debez A, Charfi-Cheikhrouha F, Zakhama-Sraieb R. Effect of shading imposed by the algae Chaeotomorpha linum loads on structure, morphology and physiology of the seagrass Cymodocea nodosa. MARINE ENVIRONMENTAL RESEARCH 2023; 188:106001. [PMID: 37121172 DOI: 10.1016/j.marenvres.2023.106001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 06/11/2023]
Abstract
In shallow coastal waters, seagrass and macroalgae occur together but under eutrophic conditions, bloom-forming algae can take over seagrasses causing an irreversible regime shift. Understanding the effect of macroalgae loads on seagrass meadows at an early stage can help prevent the loss of these ecosystems and the services they provide. In the present study, in situ experiments were conducted for 90 days in Bekalta (eastern coast of Tunisia) to assess the response of the seagrass Cymodocea nodosa when challenged with shading induced by filamentous macroalgae Chaetomorpha linum. Structural, morphological and physiological variables were regularly measured during the experiment. Shaded plants showed a sharp decline in shoot density, growth rate, and above-ground biomass, the impact being more pronounced on the physiological traits. Besides, shading by C. linum induced a significant increase in the contents of leaf photosynthetic pigments and phenolic compounds, whereas causing a decrease in soluble protein and sugar concentrations. Thus, shading imposed by C. linum loads appeared to induce a phoadpatative response in C. nodosa concomitant with carbon mobilization.
Collapse
Affiliation(s)
- Imen Zribi
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia
| | - H Ellouzi
- Laboratory of Extremophile Plants (LPE), Center of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050, Hammam-Lif, Tunisia
| | - I Mnasri
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia
| | - N Abdelkader
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia
| | - A Ben Hmida
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia; Coastal Protection and Development Agency (APAL), 5000, Monastir, Tunisia
| | - S Dorai
- Association ''Notre Grand Bleu'' (NGB, NGO), Diar El Marina, 5000, Monastir, Tunisia
| | - A Debez
- Laboratory of Extremophile Plants (LPE), Center of Biotechnology of Borj-Cedria (CBBC), BP 901, 2050, Hammam-Lif, Tunisia
| | - F Charfi-Cheikhrouha
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia
| | - R Zakhama-Sraieb
- University of Tunis El Manar, Faculty of Sciences of Tunis, Laboratory of Diversity, Management and Conservation of Biological Systems, LR18ES06, Tunis, Tunisia; University of Manouba, High Institute of Biotechnology of Sidi Thabet, BiotechPôle, BP-66, 2020, Sidi Thabet, Ariana, Tunisia.
| |
Collapse
|
38
|
Zhang D, Wang Y, Jiang X, Cao K, Yin P, Zhao Z, Fan Y, Liu N. Distribution, sources and risk assessment of polycyclic aromatic hydrocarbons in surface sediments from the Yellow Sea coast, China. MARINE POLLUTION BULLETIN 2023; 192:115001. [PMID: 37156126 DOI: 10.1016/j.marpolbul.2023.115001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 04/06/2023] [Accepted: 04/25/2023] [Indexed: 05/10/2023]
Abstract
To study the distribution, sources, ecological/health risks, and the impact of regional economic variations on polycyclic aromatic hydrocarbons (PAHs) contaminations along the coast of the Yellow Sea in China, sediments from a broad coastal coverage were collected and analyzed. The total contents of 16 priority PAHs varied between 1.4 and 1675.9 ng/g except in the site of H18 (3191.4 ng/g) adjacent to Qingdao City, with an average value of 295.7 ng/g. PAH pollution along the coast presented a distinctive geographical feature, which was closely linked to local human activities, such as Rongcheng with industrial zones and aquacultural areas, and Yancheng Wetland with developed aquaculture. The source analysis results indicated that PAHs were mainly from pyrolytic sources, with smaller contributions from petroleum spills and combustion. Risk assessment suggested that PAH pollution along the Yellow Sea coast showed negligible biological risks and health risks in most areas.
Collapse
Affiliation(s)
- Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao 266071, China
| | - YaoYao Wang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Xuejun Jiang
- Qingdao Institute of Marine Geology, Qingdao 266071, China
| | - Ke Cao
- Qingdao Institute of Marine Geology, Qingdao 266071, China.
| | - Ping Yin
- Qingdao Institute of Marine Geology, Qingdao 266071, China
| | - Zongshan Zhao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China.
| | - Ying Fan
- Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China; School of Water Resources and Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Na Liu
- Qingdao Institute of Marine Geology, Qingdao 266071, China
| |
Collapse
|
39
|
Ke Z, Tang J, Yang L, Sun J, Xu Y. Linking pharmaceutical residues to dissolved organic matter and aquatic bacterial communities in a highly urbanized bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162027. [PMID: 36740058 DOI: 10.1016/j.scitotenv.2023.162027] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Pharmaceuticals are causing environmental concerns associated with their widespread distribution in aquatic ecosystems. The environmental fate and behavior of pharmaceutical residues are related to dissolved organic matter and bacterial communities, both of which are strongly influenced by human activities. However, the relationships among pharmaceutical pollution, dissolved organic matter pool, and bacterial community structure under the pressure of human activities are still unclear, especially in highly urbanized bay areas. In this study, we investigated the occurrence and distribution of 35 pharmaceuticals in a typical urbanized bay (Hangzhou Bay) in Eastern China, and analyzed their relationships with dissolved organic matter and aquatic bacterial community structure. The target pharmaceuticals were ubiquitously detected in surface water samples, with their concentrations ranging from undetectable to 263 ng/L. The detected pharmaceuticals were mostly sulfonamides, macrolides, antidepressants, and metabolites of stimulants. Significant positive correlations were observed between the concentrations of pharmaceuticals and the intensity of human activities. Strong correlations also emerged between the concentration of antidepressants and the speed of urban expansion, as well as between the concentration of cardiovascular drugs and the population density or nightlight index. Three fluorescent components (protein-like C1, terrestrial humic-like C2, protein tryptophan-like C3) were significantly positively correlated with the total concentration of pharmaceuticals. Pharmaceutical pollution reshaped aquatic bacterial communities, based on the close correlation observed between pharmaceutical concentration and bacterial community structure. The results elucidate the potential dynamics of dissolved organic matter pool and aquatic bacterial communities in response to pharmaceutical pollution in urbanized bay ecosystems.
Collapse
Affiliation(s)
- Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China.
| | - Lei Yang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu 610225, China
| | - Yaoyang Xu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315800, China
| |
Collapse
|
40
|
Smaili SM, Gam I. Dynamic effect of exchange rate depreciation on carbon emission in the Mediterranean basin: fresh insights from linear and non-linear ARDL approaches. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:59481-59498. [PMID: 37010683 DOI: 10.1007/s11356-023-26674-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 03/23/2023] [Indexed: 05/10/2023]
Abstract
The key objective of this study is to explore the relationship between economic growth, renewable and non-renewable energy consumption, exchange rate variation, and environmental pollution by carbon dioxide (CO2) emissions in 19 coastline Mediterranean countries over the period 1995-2020. We suggest the application of two different approaches, namely, the symmetric autoregressive-distributed lag (ARDL) and the non-linear ARDL (NARDL) model. These methods distinguished from traditional ones by the fact that they assess both the long and short run dynamics among variables. More importantly, the NARDL method is the only technique enabling us to test the asymmetric effects of a shock in independent variables on dependent ones. Our results indicate that the long-term pollution is positively correlated with exchange rate for developed countries and negatively correlated for developing ones. Since environmental degradation in developing countries is more vulnerable to any fluctuation in exchange rate, we suggest that policymakers in Mediterranean developing countries must pay more attention to exchange rate variation as well as boosting renewable energy consumption in order to decrease CO2 emissions.
Collapse
Affiliation(s)
- Sarra Majoul Smaili
- LAREQUAD Laboratory, FSEGT Tunis, University of Tunis El Manar, Tunis, Tunisia
- UTC Tunis, University of Tunis Carthage, Tunis, Tunisia
| | - Imen Gam
- QUARG Laboratory, ESCT Tunis, University of Manouba, Manouba, Tunisia.
- ISAAS Sfax, University of Sfax, Sfax, Tunisia.
| |
Collapse
|
41
|
Freitas R, Arrigo F, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. Combined effects of temperature rise and sodium lauryl sulfate in the Mediterranean mussel. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 100:104132. [PMID: 37088267 DOI: 10.1016/j.etap.2023.104132] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/03/2023]
Abstract
Personal care products (PCPs) are those compounds used daily (e.g., soaps, shampoos, deodorants, and toothpaste), explaining their frequent detection in aquatic systems. Still, scarce information is available on their effects on inhabiting wildlife. Among the most commonly used PCPs is the surfactant Sodium Lauryl Sulfate (SLS). The present study investigated the influence of temperature (CTL 17 ºC vs 22 ºC) on the effects of SLS (0 mg/L vs 4 mg/L) in the mussel species Mytilus galloprovincialis. Mussels' general health status was investigated, assessing their metabolic and oxidative stress responses. Higher biochemical alterations were observed in SLS-exposed mussels and warming enhanced the impacts, namely in terms of biotransformation capacity and loss of redox homeostasis, which may result in consequences to population maintenance, especially if under additional environmental stressors. These results confirm M. galloprovincialis as an excellent bioindicator of PCPs pollution, and the need to consider actual and predicted climate changes.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Federica Arrigo
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122 San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128 Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy
| |
Collapse
|
42
|
Citterich F, Lo Giudice A, Azzaro M. A plastic world: A review of microplastic pollution in the freshwaters of the Earth's poles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161847. [PMID: 36709890 DOI: 10.1016/j.scitotenv.2023.161847] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/08/2023] [Accepted: 01/22/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is of great environmental concern. MPs have been found all over the Earth, including in the poles, which is indicative for the important threat they constitute. Yet, while the ocean is object of major interest, the data available in the literature about MP pollution in the freshwaters of the Earth's poles are still limited. Here, we review the current knowledge of MP pollution in the freshwaters of the Arctic, Antarctica and Third Pole, and we assess its ecological implications. This review highlights the presence of MPs in the lakes, rivers, snow, and glaciers of the investigated sites, questions the transport patterns through which MPs reach these remote areas, and illustrates that MP pollution is a real problem not only in marine systems, but also in the freshwater environments of the Earth's poles. MPs can indeed be ingested by animals and can physically damage their digestive tracts, as well as escalate the trophic levels. MPs can also alter microbial communities by serving as surfaces onto which microbes can grow and develop, and can enhance ice melting when trapped in glaciers. Hence, considered the limited data available, we encourage more research on the theme.
Collapse
Affiliation(s)
- Federico Citterich
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| | - Angelina Lo Giudice
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy.
| | - Maurizio Azzaro
- Institute of Polar Sciences (ISP), National Research Council (CNR-ISP), Spianata S. Raineri 86, 98122 Messina, Italy
| |
Collapse
|
43
|
Sun J, Ke Z, Zhang Y, Wu Q, Chen Y, Tang J. Pharmaceutical active compounds in a heavily industrialized and urbanized bay, Eastern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51624-51637. [PMID: 36811780 DOI: 10.1007/s11356-023-26019-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Bays are transition zones connecting freshwater ecosystems and marine ecosystems, and they are strongly influenced by intensive human activities. Pharmaceuticals are of concern in bay aquatic environments because of their potential threat to marine food web. We studied the occurrence, spatial distribution, and ecological risks of 34 pharmaceutical active compounds (PhACs) in Xiangshan Bay, a heavily industrialized and urbanized area in Zhejiang Province, Eastern China. PhACs were ubiquitously detected in the coastal waters of the study area. A total of twenty-nine compounds were detected in at least one sample. Carbamazepine, lincomycin, diltiazem, propranolol, venlafaxine, anhydro erythromycin, and ofloxacin had the highest detection rate (≥ 93%). These compounds were detected with maximum concentrations of 31, 127, 0.52, 1.96, 2.98, 75, and 98 ng/L, respectively. Human pollution activities included marine aquacultural discharge and effluents from the local sewage treatment plants. These activities were the most influential sources in this study area based on principal component analysis. Lincomycin was an indicator of veterinary pollution of coastal aquatic environment, and the concentrations of lincomycin were positively related to the total phosphorus in this area (r = 0.28, p < 0.05). Typical PhACs such as venlafaxine, ofloxacin, norfloxacin, roxithromycin, and clarithromycin were significantly and positively correlated with nitrate and total nitrogen (r > 0.26, p < 0.05) based on Pearson's correlation analysis. Carbamazepine was negatively correlated with salinity (r < - 0.30, p < 0.01). Land use pattern was also correlated with the occurrence and distribution of PhACs in the Xiangshan Bay. Some PhACs, i.e., ofloxacin, ciprofloxacin, carbamazepine, and amitriptyline posed medium to high ecological risks to this coastal environment. The results of this study could be helpful to understand the levels of pharmaceuticals, potential sources, and ecological risks in marine aquacultural environment.
Collapse
Affiliation(s)
- Jing Sun
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Ziyan Ke
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, China
| | - Yujie Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Qin Wu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Yihua Chen
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, China
| | - Jianfeng Tang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No 1799 Jimei Road, Xiamen, 361021, China.
| |
Collapse
|
44
|
Moopantakath J, Imchen M, Anju VT, Busi S, Dyavaiah M, Martínez-Espinosa RM, Kumavath R. Bioactive molecules from haloarchaea: Scope and prospects for industrial and therapeutic applications. Front Microbiol 2023; 14:1113540. [PMID: 37065149 PMCID: PMC10102575 DOI: 10.3389/fmicb.2023.1113540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/14/2023] [Indexed: 04/03/2023] Open
Abstract
Marine environments and salty inland ecosystems encompass various environmental conditions, such as extremes of temperature, salinity, pH, pressure, altitude, dry conditions, and nutrient scarcity. The extremely halophilic archaea (also called haloarchaea) are a group of microorganisms requiring high salt concentrations (2-6 M NaCl) for optimal growth. Haloarchaea have different metabolic adaptations to withstand these extreme conditions. Among the adaptations, several vesicles, granules, primary and secondary metabolites are produced that are highly significant in biotechnology, such as carotenoids, halocins, enzymes, and granules of polyhydroxyalkanoates (PHAs). Among halophilic enzymes, reductases play a significant role in the textile industry and the degradation of hydrocarbon compounds. Enzymes like dehydrogenases, glycosyl hydrolases, lipases, esterases, and proteases can also be used in several industrial procedures. More recently, several studies stated that carotenoids, gas vacuoles, and liposomes produced by haloarchaea have specific applications in medicine and pharmacy. Additionally, the production of biodegradable and biocompatible polymers by haloarchaea to store carbon makes them potent candidates to be used as cell factories in the industrial production of bioplastics. Furthermore, some haloarchaeal species can synthesize nanoparticles during heavy metal detoxification, thus shedding light on a new approach to producing nanoparticles on a large scale. Recent studies also highlight that exopolysaccharides from haloarchaea can bind the SARS-CoV-2 spike protein. This review explores the potential of haloarchaea in the industry and biotechnology as cellular factories to upscale the production of diverse bioactive compounds.
Collapse
Affiliation(s)
- Jamseel Moopantakath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
| | - Madangchanok Imchen
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - V. T. Anju
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Siddhardha Busi
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Madhu Dyavaiah
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Rosa María Martínez-Espinosa
- Biochemistry, Molecular Biology, Edaphology and Agricultural Chemistry Department, Faculty of Sciences, University of Alicante, Alicante, Spain
- Multidisciplinary Institute for Environmental Studies “Ramón Margalef”, University of Alicante, Alicante, Spain
| | - Ranjith Kumavath
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kerala, India
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Puducherry, India
| |
Collapse
|
45
|
Aboal JR, Pacín C, García-Seoane R, Varela Z, González AG, Fernández JA. Global decrease in heavy metal concentrations in brown algae in the last 90 years. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130511. [PMID: 36463737 DOI: 10.1016/j.jhazmat.2022.130511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 11/14/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
In the current scenario of global change, heavy metal pollution is of major concern because of its associated toxic effects and the persistence of these pollutants in the environment. This study is the first to evaluate the changes in heavy metal concentrations worldwide in brown algae over the last 90 years (>15,700 data across the globe reported from 1933 to 2020). The study findings revealed significant decreases in the concentrations of Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb and Zn of around 60-84% (ca. 2% annual) in brown algae tissues. The decreases were consistent across the different families considered (Dictyotaceae, Fucaceae, Laminariaceae, Sargassaceae and Others), and began between 1970 and 1990. In addition, strong relationships between these trends and pH, SST and heat content were detected. Although the observed metal declines could be partially explained by these strong correlations, or by adaptions in the algae, other evidences suggest an actual reduction in metal concentrations in oceans because of the implementation of environmental policies. In any case, this study shows a reduction in metal concentrations in brown algae over the last 50 years, which is important in itself, as brown algae form the basis of many marine food webs and are therefore potential distributors of pollutants.
Collapse
Affiliation(s)
- J R Aboal
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - C Pacín
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - R García-Seoane
- Instituto Español de Oceanografía, IEO-CSIC, Centro Oceanográfico de A Coruña, 15001 A Coruña, Spain.
| | - Z Varela
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| | - A G González
- Instituto de Oceanografía y Cambio Global, IOCAG. Universidad de Las Palmas de Gran Canaria, ULPGC, Spain
| | - J A Fernández
- CRETUS. Ecology Section. Universidade de Santiago de Compostela, Spain
| |
Collapse
|
46
|
Liang H, de Haan WP, Cerdà-Domènech M, Méndez J, Lucena F, García-Aljaro C, Sanchez-Vidal A, Ballesté E. Detection of faecal bacteria and antibiotic resistance genes in biofilms attached to plastics from human-impacted coastal areas. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120983. [PMID: 36596379 DOI: 10.1016/j.envpol.2022.120983] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Plastics have been proposed as vectors of bacteria as they act as a substrate for biofilms. In this study, we evaluated the abundance of faecal and marine bacteria and antibiotic resistance genes (ARGs) from biofilms adhered to marine plastics. Floating plastics and plastics from sediments were collected in coastal areas impacted by human faecal pollution in the northwestern Mediterranean Sea. Culture and/or molecular methods were used to quantify faecal indicators (E. coli, Enterococci and crAssphage), and the ARGs sulI, tetW and blaTEM and the 16S rRNA were detected by qPCR assays. Pseudomonas and Vibrio species and heterotrophic marine bacteria were also analysed via culture-based methods. Results showed that, plastic particles covered by bacterial biofilms, primarily consisted of marine bacteria including Vibrio spp. Some floating plastics had a low concentration of viable E. coli and Enterococci (42% and 67% of the plastics respectively). Considering the median area of the plastics, we detected an average of 68 cfu E. coli per item, while a higher concentration of E. coli was detected on individual plastic items, when compared with 100 ml of the surrounding water. Using qPCR, we quantified higher values of faecal indicators which included inactive and dead microorganisms, detecting up to 2.6 × 102 gc mm-2. The ARGs were detected in 67-88% of the floating plastics and in 29-57% of the sediment plastics with a concentration of up to 6.7 × 102 gc mm-2. Furthermore, enrichment of these genes was observed in biofilms compared with the surrounding water. These results show that floating plastics act as a conduit for both the attachment and transport of faecal microorganisms. In contrast, low presence of faecal indicators was detected in plastic from seafloor sediments. Therefore, although in low concentrations, faecal bacteria, and potential pathogens, were identified in marine plastics, further suggesting plastics act as a reservoir of pathogens and ARGs.
Collapse
Affiliation(s)
- Hongxia Liang
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain; College of Resources and Environment, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - William P de Haan
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Marc Cerdà-Domènech
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Javier Méndez
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Francisco Lucena
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Cristina García-Aljaro
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain
| | - Anna Sanchez-Vidal
- GRC Geociències Marines, Departament de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de La Terra, Universitat de Barcelona, E-08028, Barcelona, Spain
| | - Elisenda Ballesté
- Departament de Genètica, Microbiologia I Estadística, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, E-08028, Barcelona, Spain.
| |
Collapse
|
47
|
Cao X, Li W, Song S, Wang C, Khan K. Source apportionment and risk assessment of soil heavy metals around a key drinking water source area in northern China: multivariate statistical analysis approach. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:343-357. [PMID: 35380377 DOI: 10.1007/s10653-022-01251-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
With the intensive urbanization and industrialization in recent years, lots of products containing heavy metals (HMs) have brought in severe environment problems. Yuqiao Reservoir (YQR) is an important drinking water source area in Tianjin of China, and the soil environmental quality of YQR is vital for human health. The goal of this study was to identify the priority control pollutants and hotspots of HMs contamination of YQR catchment. Thus, an integrated field investigation was conducted to analyze the major elements such as As, Cd, Cr, Cu, Hg, Ni, Pb and Zn in soils around YQR. Geoaccumulation index (Igeo), enrichment factor (EF) and potential ecological risk index (PERI) were employed to assess the contamination status of HMs. The average contents of these elements were given as follows: As 7.97 mg/kg, Cd 0.31 mg/kg, Cr 86.1 mg/kg, Cu 24.7 mg/kg, Hg 0.044 mg/kg, Ni 30.7 mg/kg, Pb 27.3 mg/kg and Zn 76.7 mg/kg. According to geoaccumulation index (Igeo) and enrichment factor (EF) values, Cd, Cr, Pb and As showed a prominent enrichment. The result of multivariate statistics showed that Cd, Cr, Cu, As, Ni, Pb and Zn concentrations were mainly affected by human activities, whereas Hg was mainly from natural release. The anthropogenic activities were the major sources with a contribution of 91.46%, while natural origins only contributed 8.54%. And agricultural fertilization, mining and traffic activities are the most probable sources of these heavy metals in the soil. The PERI values indicated that 65.7% of total HMs were at low risk, 22.5% in moderate risk and 11.8% in considerable risk. To ensure soil environmental quality and human health, cadmium should be listed as a priority control pollutant. Spatial maps of HMs and their integrated PERI provided clear hotspots that indicated lower risk in the region close to YQR but higher risk in the region far from YQR.
Collapse
Affiliation(s)
- Xianghui Cao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing, 100012, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Li
- Tianjin Eco-Environment Monitoring Center, Tianjin, 300000, China
| | - Shuai Song
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chenchen Wang
- College of Environment and Ecology, Chongqing University, Chongqing, 400030, China
| | - Kifayatullah Khan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan
| |
Collapse
|
48
|
Wei Y, Ding D, Gu T, Xu Y, Sun X, Qu K, Sun J, Cui Z. Ocean acidification and warming significantly affect coastal eutrophication and organic pollution: A case study in the Bohai Sea. MARINE POLLUTION BULLETIN 2023; 186:114380. [PMID: 36459769 DOI: 10.1016/j.marpolbul.2022.114380] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/19/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Most coastal ecosystems are faced with novel challenges associated with human activities and climate change such as ocean acidification, warming, eutrophication, and organic pollution. However, data on the independent or combined effects of ocean acidification and warming on coastal eutrophication and organic pollution at present are relatively limited. Here, we applied the generalized additive models (GAMs) to explore the dynamics of coastal eutrophication and organic pollution in response to future climate change in the Bohai Sea. The GAMs reflected the fact that acidification alone favors eutrophication and organic pollution, while warming alone inhibits these two variables. Differently, the interactions between acidification and warming in the future may further exacerbate the organic pollution but may mitigate the progress of eutrophication. These different responses of eutrophication and organic pollution to acidification and warming may be attributed to algae growth and microbial respiration, as well as some physical processes such as stratification.
Collapse
Affiliation(s)
- Yuqiu Wei
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Dongsheng Ding
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Ting Gu
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yong Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Xuemei Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Keming Qu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Jun Sun
- Institute for Advanced Marine Research, China University of Geosciences, Guangzhou 511462, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhengguo Cui
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
49
|
Iordache V, Neagoe A. Conceptual methodological framework for the resilience of biogeochemical services to heavy metals stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 325:116401. [PMID: 36279774 DOI: 10.1016/j.jenvman.2022.116401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 09/21/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
The idea of linking stressors, services providing units (SPUs), and ecosystem services (ES) is ubiquitous in the literature, although is currently not applied in areas contaminated with heavy metals (HMs), This integrative literature review introduces the general form of a deterministic conceptual model of the cross-scale effect of HMs on biogeochemical services by SPUs with a feedback loop, a cross-scale heuristic concept of resilience, and develops a method for applying the conceptual model. The objectives are 1) to identify the clusters of existing research about HMs effects on ES, biodiversity, and resilience to HMs stress, 2) to map the scientific fields needed for the conceptual model's implementation, identify institutional constraints for inter-disciplinary cooperation, and propose solutions to surpass them, 3) to describe how the complexity of the cause-effect chain is reflected in the research hypotheses and objectives and extract methodological consequences, and 4) to describe how the conceptual model can be implemented. A nested analysis by CiteSpace of a set of 16,176 articles extracted from the Web of Science shows that at the highest level of data aggregation there is a clear separation between the topics of functional traits, stoichiometry, and regulating services from the typical issues of the literature about HMs, biodiversity, and ES. Most of the resilience to HMs stress agenda focuses on microbial communities. General topics such as the biodiversity-ecosystem function relationship in contaminated areas are no longer dominant in the current research, as well as large-scale problems like watershed management. The number of Web of Science domains that include the analyzed articles is large (26 up to 87 domains with at least ten articles, depending on the sub-set), but thirteen domains account for 70-80% of the literature. The complexity of approaches regarding the cause-effect chain, the stressors, the biological and ecological hierarchical level and the management objectives was characterized by a detailed analysis of 60 selected reviews and 121 primary articles. Most primary articles approach short causal chains, and the number of hypotheses or objectives by article tends to be low, pointing out the need for portfolios of complementary research projects in coherent inter-disciplinary programs and innovation ecosystems to couple the ES and resilience problems in areas contaminated with HMs. One provides triggers for developing innovation ecosystems, examples of complementary research hypotheses, and an example of technology transfer. Finally one proposes operationalizing the conceptual methodological model in contaminated socio-ecological systems by a calibration, a sensitivity analysis, and a validation phase.
Collapse
Affiliation(s)
- Virgil Iordache
- University of Bucharest, Department of Systems Ecology and Sustainability, and "Dan Manoleli" Research Centre for Ecological Services - CESEC, Romania.
| | - Aurora Neagoe
- University of Bucharest, "Dan Manoleli" Research Centre for Ecological Services - CESEC and "Dimitrie Brândză" Botanical Garden, Romania.
| |
Collapse
|
50
|
Borges FO, Lopes VM, Santos CF, Costa PR, Rosa R. Impacts of Climate Change on the Biogeography of Three Amnesic Shellfish Toxin Producing Diatom Species. Toxins (Basel) 2022; 15:9. [PMID: 36668829 PMCID: PMC9863508 DOI: 10.3390/toxins15010009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Harmful algal blooms (HABs) are considered one of the main risks for marine ecosystems and human health worldwide. Climate change is projected to induce significant changes in species geographic distribution, and, in this sense, it is paramount to accurately predict how it will affect toxin-producing microalgae. In this context, the present study was intended to project the potential biogeographical changes in habitat suitability and occurrence distribution of three key amnesic shellfish toxin (AST)-producing diatom species (i.e., Pseudo-nitzschia australis, P. seriata, and P. fraudulenta) under four different climate change scenarios (i.e., RCP-2.6, 4.5, 6.0, and 8.5) up to 2050 and 2100. For this purpose, we applied species distribution models (SDMs) using four abiotic predictors (i.e., sea surface temperature, salinity, current velocity, and bathymetry) in a MaxEnt framework. Overall, considerable contraction and potential extirpation were projected for all species at lower latitudes together with projected poleward expansions into higher latitudes, mainly in the northern hemisphere. The present study aims to contribute to the knowledge on the impacts of climate change on the biogeography of toxin-producing microalgae species while at the same time advising the correct environmental management of coastal habitats and ecosystems.
Collapse
Affiliation(s)
- Francisco O. Borges
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Vanessa M. Lopes
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Frazão Santos
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Pedro Reis Costa
- IPMA—Portuguese Institute for the Sea and Atmosphere, 1749-077 Lisboa, Portugal
- S2AQUA—Collaborative Laboratory, Association for a Sustainable and Smart Aquaculture, 8700-194 Olhão, Portugal
- CCMAR—Centre of Marine Sciences, Campus de Gambelas, University of Algarve, 8005-139 Faro, Portugal
| | - Rui Rosa
- MARE—Marine and Environmental Sciences Centre & ARNET—Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|