1
|
Kim NY, Loganathan BG, Kim GB. Assessment of toxicity potential of freely dissolved PAHs using passive sampler in Kentucky Lake and Ohio River. MARINE POLLUTION BULLETIN 2024; 207:116833. [PMID: 39159572 DOI: 10.1016/j.marpolbul.2024.116833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/21/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are characterized with high KOW values, which lead to their recalcitrant nature, bioaccumulation, and biotoxicity, adversely affects the environment. Passive samplers (PS) have proven effective in measuring bioavailable PAH concentrations for toxicity assessments. In this study, we used low-density polyethylene (LDPE) to measure freely dissolved PAH concentrations (Cfree) in Kentucky Lake (KL) and Ohio River (OH), USA. PAHs toxicity potential in sediment was assessed using equilibrium partitioning sediment benchmarks toxic units (ESBTUs) and the interstitial water toxic units (IWTUs) that were derived from OC-normalized concentration (COC) and Cfree, respectively. The Cfree in April and June were 127 and 97 times higher in OH than in KL, respectively. Moreover, ESBTUs were higher in both the KL and OH compared to the IWTUs, suggesting that ESBTUs overestimate the toxicity potential to organisms. These results indicate that PS provides a reliable method for assessing the toxicity potential in sediments.
Collapse
Affiliation(s)
- Na Yeong Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea
| | - Bommanna G Loganathan
- Department of Chemistry and Watershed Studies Institute, Murray State University, Murray, KY 42071, USA
| | - Gi Beum Kim
- Department of Marine Environmental Engineering, Gyeongsang National University, Tongyeong 53064, Republic of Korea.
| |
Collapse
|
2
|
Baldwin AK, Corsi SR, Alvarez DA, Villeneuve DL, Ankley GT, Blackwell BR, Mills MA, Lenaker PL, Nott MA. Potential Hazards of Polycyclic Aromatic Hydrocarbons in Great Lakes Tributaries Using Water Column and Porewater Passive Samplers and Sediment Equilibrium Partitioning. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1509-1523. [PMID: 38860662 DOI: 10.1002/etc.5896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 06/12/2024]
Abstract
The potential for polycyclic aromatic hydrocarbon (PAH)-related effects in benthic organisms is commonly estimated from organic carbon-normalized sediment concentrations based on equilibrium partitioning (EqP). Although this approach is useful for screening purposes, it may overestimate PAH bioavailability by orders of magnitude in some sediments, leading to inflated exposure estimates and potentially unnecessary remediation costs. Recently, passive samplers have been shown to provide an accurate assessment of the freely dissolved concentrations of PAHs, and thus their bioavailability and possible biological effects, in sediment porewater and overlying surface water. We used polyethylene passive sampling devices (PEDs) to measure freely dissolved porewater and water column PAH concentrations at 55 Great Lakes (USA/Canada) tributary locations. The potential for PAH-related biological effects using PED concentrations were estimated with multiple approaches by applying EqP, water quality guidelines, and pathway-based biological activity based on in vitro bioassay results from ToxCast. Results based on the PED-based exposure estimates were compared with EqP-derived exposure estimates for concurrently collected sediment samples. The results indicate a potential overestimation of bioavailable PAH concentrations by up to 960-fold using the EqP-based method compared with measurements using PEDs. Even so, PED-based exposure estimates indicate a high potential for PAH-related biological effects at 14 locations. Our findings provide an updated, weight-of-evidence-based site prioritization to help guide possible future monitoring and mitigation efforts. Environ Toxicol Chem 2024;43:1509-1523. © 2024 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Austin K Baldwin
- Idaho Water Science Center, U.S. Geological Survey, Boise, Idaho
| | - Steven R Corsi
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - David A Alvarez
- Columbia Environmental Research Center, U.S. Geological Survey, Columbia, Missouri
| | - Daniel L Villeneuve
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Gerald T Ankley
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Brett R Blackwell
- Great Lakes Toxicology and Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota
| | - Marc A Mills
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio
| | - Peter L Lenaker
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| | - Michelle A Nott
- Upper Midwest Water Science Center, U.S. Geological Survey, Madison, Wisconsin
| |
Collapse
|
3
|
Song M, Su Y, Jiang L, Peng K, Li J, Liu S, Sun Y, Chen CE, Luo C. Assessing the bioavailability of antibiotics in soil with the diffusive gradients in thin films (DGT). JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130935. [PMID: 36860072 DOI: 10.1016/j.jhazmat.2023.130935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
The diffusive gradients in thin films (DGT) technique is an excellent method for investigating the dynamic processes of antibiotics in soils. However, whether it is applicable in antibiotic bioavailability assessment is yet to be disclosed. This study employed DGT to determine the antibiotic bioavailability in soil, and compared the results with plant uptake, soil solutions, and solvent extraction methods. DGT exhibited predictive capability for plant taking in antibiotics proved by the significant linear relationship between the DGT based concentration (CDGT) and antibiotic concentration in roots and shoots. Although the performance of soil solution was acceptable based on linear relationship analysis, its stability was weaker than DGT. The results based on plant uptake and DGT indicated the bioavailable antibiotic contents in different soils were inconsistent because of the distinct mobility and resupply of sulphonamides and trimethoprim in different soils, as represented by Kd and Rds, which were affected by soil properties. Plant species played an important role in antibiotic uptake and translocation. Antibiotic uptake by plants depends on antibiotic, plant and soil. These results confirmed the capability of DGT in determining antibiotic bioavailability for the first time. This work provided a simple and powerful tool for environmental risk evaluation of antibiotics in soils.
Collapse
Affiliation(s)
- Mengke Song
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yicheng Su
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Ke Peng
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Li
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Sisi Liu
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yingtao Sun
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Chang-Er Chen
- Environmental Research Institute/School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Chunling Luo
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China; State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China.
| |
Collapse
|
4
|
Chai G, Wang D, Shan J, Jiang C, Yang Z, Liu E, Meng H, Wang H, Wang Z, Qin L, Xi J, Ma Y, Li H, Qian Y, Li J, Lin Y. Accumulation of high-molecular-weight polycyclic aromatic hydrocarbon impacted the performance and microbial ecology of bioretention systems. CHEMOSPHERE 2022; 298:134314. [PMID: 35292274 DOI: 10.1016/j.chemosphere.2022.134314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/13/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Bioretention has been considered as an effective management practice for urban stormwater in the removal of pollutants including polycyclic aromatic hydrocarbons (PAHs). However, the accumulation of high-molecular-weight (HMW) PAHs in bioretention systems and their potential impact on the pollutants removal performance and microbial ecology are still not fully understood. In this study, comparisons of treatment effectiveness, enzyme activity and microbial community in bioretention systems with different types of media amendments were carried out at different spiking levels of pyrene (PYR). The results showed that the removal efficiencies of chemical oxygen demand (COD) and total nitrogen in the bioretention systems were negatively impacted by the PYR levels. The relative activities of soil dehydrogenase and urease were increasingly inhibited by the elevated PYR level, indicating the declining microbial activity regarding organic matter decomposition. The spiking of PYR negatively affected microbial diversity, and distinct time- and influent-dependent changes in microbial communities were observed. The relative abundance of PAH-degrading microorganisms increased in PYR-spiked systems, while the abundance of nitrifiers decreased. The addition of media amendments was beneficial for the enrichment of microorganisms that are more resistant to PYR-related stress, therefore elevating the COD concentration removal rate by ∼50%. This study gives new insight into the multifaceted impacts of HMW PAH accumulation on microbial fingerprinting and enzyme activities, which may provide guidance on better stormwater management practices via bioretention in terms of improved system longevity and performance.
Collapse
Affiliation(s)
- Guodong Chai
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Dongqi Wang
- Shaanxi Key Laboratory of Water Resources and Environment, Xi'an University of Technology, Xi'an, Shaanxi 710048, China; Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Jiaqi Shan
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhangjie Yang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Enyu Liu
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Hui Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Lu Qin
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Jiayao Xi
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Yuenan Ma
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| | - Huaien Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China
| | - Yishi Qian
- Xi'an Modern Chemistry Research Institute, Xi'an, Shaanxi 710065, China
| | - Jiake Li
- Department of Municipal and Environmental Engineering, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, Shaanxi 710048, China.
| | - Yishan Lin
- State Key Laboratory of Pollution Control & Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu, 210023, China.
| |
Collapse
|
5
|
Jesus F, Pereira JL, Campos I, Santos M, Ré A, Keizer J, Nogueira A, Gonçalves FJM, Abrantes N, Serpa D. A review on polycyclic aromatic hydrocarbons distribution in freshwater ecosystems and their toxicity to benthic fauna. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 820:153282. [PMID: 35066033 DOI: 10.1016/j.scitotenv.2022.153282] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/04/2021] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of organic compounds, found ubiquitously in all environmental compartments. PAHs are considered hazardous pollutants, being of concern to both the environmental and human health. In the aquatic environment, PAHs tend to accumulate in the sediment due to their high hydrophobicity, and thus sediments can be considered their ultimate sink. Concurrently, sediments comprise important habitats for benthic species. This raises concern over the toxic effects of PAHs to benthic communities. Despite PAHs have been the subject of several reviews, their toxicity to freshwater benthic species has not been comprehensively discussed. This review aimed to provide an overview on PAHs distribution in freshwater environments and on their toxicity to benthic fauna species. The distribution of PAHs between sediments and the overlying water column, given by the sediment-water partition coefficient, revealed that PAHs concentrations were 2 to 4 orders of magnitude higher in sediments than in water. The sediment-water partition coefficient was positively correlated to PAHs hydrophobicity. Toxicity of PAHs to benthic fauna was addressed through Species Sensitivity Distributions. The derived hazardous concentration for 5% of the species (HC5) decreased as follows: NAP (376 μg L-1) > PHE > PYR > FLT > ANT (0.854 μg L-1), varying by 3 orders of magnitude. The hazardous concentrations (HC5) to benthic species were inversely correlated to the hydrophobicity of the individual PAHs. These findings are pertinent for environmental risk assessment of these compounds. This review also identified future challenges regarding the environmental toxicity of PAHs to freshwater benthic communities, namely the need for updating the PAHs priority list and the importance of comprehensively and more realistically assess the toxicity of PAHs in combination with other stressors, both chemical and climate-related.
Collapse
Affiliation(s)
- Fátima Jesus
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Joana L Pereira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Campos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Martha Santos
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana Ré
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Jacob Keizer
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - António Nogueira
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Fernando J M Gonçalves
- CESAM - Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nelson Abrantes
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Dalila Serpa
- CESAM - Centre for Environmental and Marine Studies, Department of Environment and Planning, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Picone M, Distefano GG, Marchetto D, Russo M, Volpi Ghirardini A. Spiking organic chemicals onto sediments for ecotoxicological analyses: an overview of methods and procedures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:31002-31024. [PMID: 35113376 DOI: 10.1007/s11356-022-18987-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 01/27/2022] [Indexed: 06/14/2023]
Abstract
Laboratory testing with spiked sediments with organic contaminants is a valuable tool for ecotoxicologists to study specific processes such as effects of known concentrations of toxicants, interactions of the toxicants with sediment and biota, and uptake kinetics. Since spiking of the sediment may be performed by using different strategies, a plethora of procedures was proposed in the literature for spiking organic chemicals onto sediments to perform ecotoxicological analyses. In this paper, we reviewed the scientific literature intending to characterise the kind of substrates that were used for spiking (i.e. artificial or field-collected sediment), how the substrates were handled before spiking and amended with the organic chemical, how the spiked sediment was mixed to allow the homogenisation of the chemical on the substrate and finally how long the spiked sediment was allowed to equilibrate before testing. What emerged from this review is that the choice of the test species, the testing procedures and the physicochemical properties of the organic contaminant are the primary driving factors affecting the selection of substrate type, sediment handling procedures, solvent carrier and mixing method. Finally, we provide recommendations concerning storage and characterization of the substrate, equilibrium times and verification of both equilibration and homogeneity.
Collapse
Affiliation(s)
- Marco Picone
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Gabriele Giuseppe Distefano
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Davide Marchetto
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| | - Martina Russo
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy.
| | - Annamaria Volpi Ghirardini
- Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari, Campus Scientifico Via Torino 155, 30170, Mestre, Venice, Italy
| |
Collapse
|
7
|
Hiki K, Iwasaki Y, Watanabe H, Yamamoto H. Comparison of Species Sensitivity Distributions for Sediment-Associated Nonionic Organic Chemicals Through Equilibrium Partitioning Theory and Spiked-Sediment Toxicity Tests with Invertebrates. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:462-473. [PMID: 34913527 PMCID: PMC9303217 DOI: 10.1002/etc.5270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/29/2021] [Accepted: 12/09/2021] [Indexed: 06/12/2023]
Abstract
Equilibrium partitioning (EqP) theory and spiked-sediment toxicity tests are useful methods to develop sediment quality benchmarks. However, neither approach has been directly compared based on species sensitivity distributions (SSDs) to date. In the present study, we compared SSDs for 10 nonionic hydrophobic chemicals (e.g., pyrethroid insecticides, other insecticides, and polycyclic aromatic hydrocarbons) based on 10-14-day spiked-sediment toxicity test data with those based on EqP theory using acute water-only tests. Because the exposure periods were different between the two tests, effective concentrations (i.e., median effective/lethal concentration) were corrected to compare SSDs. Accordingly, we found that hazardous concentrations for 50% and 5% of species (HC50 and HC5, respectively) differed by up to a factor of 100 and 129 between the two approaches, respectively. However, when five or more species were used for SSD estimation, their differences were reduced to a factor of 1.7 and 5.1 for HC50 and HC5, respectively, and the 95% confidence intervals of HC50 values overlapped considerably between the two approaches. These results suggest that when the number of test species is adequate, SSDs based on EqP theory and spiked-sediment tests are comparable in sediment risk assessments. Environ Toxicol Chem 2022;41:462-473. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Kyoshiro Hiki
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Yuichi Iwasaki
- Research Institute of Science for Safety and SustainabilityNational Institute of Advanced Industrial Science and TechnologyTsukubaIbarakiJapan
| | - Haruna Watanabe
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| | - Hiroshi Yamamoto
- Health and Environmental Risk Research DivisionNational Institute for Environmental StudiesTsukubaIbarakiJapan
| |
Collapse
|
8
|
Lotufo GR, Gidley PT, McQueen AD, Moore DW, Edwards DA, Hardenstine J, Uhler AD. Passive-Sampler-Based Bioavailability Assessment of PCB Congeners Associated with Aroclor-Containing Paint Chips in the Presence of Sediment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:105-118. [PMID: 34919163 PMCID: PMC8732844 DOI: 10.1007/s00244-021-00907-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
This is the first investigation of the bioavailability of PCBs associated with paint chips (PC) dispersed in sediment. Bioavailability of PCB-containing PC in sediment was measured using ex situ polyethylene passive samplers (PS) and compared to that of PCBs from field-collected sediments. PC were mixed in freshwater sediment from a relatively uncontaminated site with no known PCB contamination sources and from a contaminated site with non-paint PCB sources. PC < 0.045 mm generated concentrations in the PS over one order of magnitude higher than coarser chips. The bioavailable fraction was represented by the polymer-sediment accumulation factor (PSAF), defined as the ratio of the PCB concentrations in the PS and organic carbon normalized sediment. The PSAF was similar for both field sediments. The PSAFs for the field sediments were ~ 50-60 and ~ 5 times higher than for the relatively uncontaminated sediment amended with PC for the size fractions 0.25-0.3 mm and < 0.045 mm, respectively. These results indicate much lower bioavailability for PCBs associated with PC compared to PCBs associated with field-collected sediment. Such information is essential for risk assessment and remediation decision-making for sites where contamination from non-paint PCBs sources is co-located with PCB PC.
Collapse
Affiliation(s)
| | - Philip T Gidley
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Andrew D McQueen
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - David W Moore
- US Army Engineer Research and Development Center, Vicksburg, MS, USA
| | - Deborah A Edwards
- ExxonMobil Environmental and Property Solutions Company, Spring, TX, 77389, USA
| | | | - Allen D Uhler
- NewFields-Environmental Forensics Practice, Rockland, MA, USA
| |
Collapse
|
9
|
Conder J, Jalalizadeh M, Luo H, Bess A, Sande S, Healey M, Unger MA. Evaluation of a rapid biosensor tool for measuring PAH availability in petroleum-impacted sediment. ENVIRONMENTAL ADVANCES 2021; 3:100032. [PMID: 34337585 PMCID: PMC8323639 DOI: 10.1016/j.envadv.2021.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Decades of research have shown that the concentration of freely dissolved PAH (Cfree) in sediment correlates with PAH bioavailability and toxicity to aquatic organisms. Passive sampling techniques and models have been used for measuring and predicting Cfree, respectively, but these techniques require weeks for analytical chemical measurements and data evaluation. This study evaluated the performance of a portable, field-deployable antibody-based PAH biosensor method that can provide measurements of PAH Cfree within a matter of minutes using a small volume of mechanically-extracted sediment porewater. Four sediments with a wide range of PAHs (ΣPAH 2.4 to 307 mg/kg) derived from petroleum, creosote, and mixed urban sources, were analyzed via three methods: 1) bulk chemistry analysis; 2) ex situ sediment passive sampling; and 3) biosensor analysis of mechanically-extracted sediment porewater. Mean ΣPAH Cfree determined by the biosensor for the four sediments (3.1 to 55 μg/L) were within a factor of 1.1 (on average) compared to values determined by the passive samplers (2.0 to 52 μg/L). All mean values differed by a factor of 3 or less. The biosensor was also useful in identifying sediments that are likely to be non-toxic to benthic invertebrates. In two of the four sediments, biosensor results of 20 and 55 μg/L exceeded a potential risk-based screening level of 10 μg/L, indicating toxicity could not be ruled out. PAH Toxic Units (ΣTU) measured in these two sediments using the passive sampler Cfree results were also greater than the ΣTU threshold of 1 (6.7 and 5.8, respectively), confirming the conclusions reached with the biosensor. In contrast, the other two sediments were identified as non-toxic by both the biosensor (3.1 and 4.3 μg/L) and the passive sampler (ΣTUs of 0.34 and 0.039). These results indicate that the biosensor is a promising tool for rapid screening of sediments potentially-impacted with PAHs.
Collapse
Affiliation(s)
- Jason Conder
- Geosyntec Consultants, Huntington Beach, CA, United States
- Corresponding author. (J. Conder)
| | | | - Hong Luo
- Chevron Energy Technology Company, Houston, TX, United States
| | - Amanda Bess
- Chevron Energy Technology Company, Houston, TX, United States
| | | | | | - Michael A. Unger
- Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, United States
| |
Collapse
|
10
|
Reininghaus M, Parkerton TF, Witt G. Comparison of In Situ and Ex Situ Equilibrium Passive Sampling for Measuring Freely Dissolved Concentrations of Parent and Alkylated Polycyclic Aromatic Hydrocarbons in Sediments. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:2169-2179. [PMID: 32804440 DOI: 10.1002/etc.4849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/06/2020] [Accepted: 08/06/2020] [Indexed: 05/21/2023]
Abstract
Equilibrium passive sampling methods (EPSMs) allow quantification of freely dissolved contaminant concentrations (Cfree ) in sediment porewater. Polydimethylsiloxane (PDMS) is a convenient sampling polymer that can be equilibrated in field (in situ) or laboratory (ex situ) sediments to determine Cfree , providing reliable compound-specific PDMS-water partition coefficients (KPDMS-water ) are available. Polycyclic aromatic hydrocarbons (PAHs) are an important class of sediment contaminants comprised of parent and alkylated homologs. However, application of EPSM to alkylated PAHs is challenged by lack of KPDMS-water measurements. Our first objective was to obtain KPDMS-water for 9 alkylated PAHs and biphenyls using 3 different PDMS-coated fibers. Quantitative relationships were then established to define KPDMS-water for 18 parent and 16 alkyl PAHs included in the US Environmental Protection Agency's sediment quality benchmark method for benthic life protection based on additive toxic units. The second objective was to compare Cfree in porewater obtained using both in situ and ex situ EPSMs at 6 Baltic Sea locations. The results indicated that in situ and ex situ Cfree for alkyl PAHs generally agreed within a factor of 3. Further, all sites exhibited additive toxic units <1, indicating that PAHs pose a low risk to benthos. The results extend practical application of EPSMs for improved risk assessment and derivation of porewater-based remediation goals for PAH-contaminated sediments. Environ Toxicol Chem 2020;39:2169-2179. © 2020 SETAC.
Collapse
Affiliation(s)
- Mathias Reininghaus
- Hamburg University of Applied Sciences, Hamburg, Germany
- RWTH Aachen, Aachen, Germany
| | | | - Gesine Witt
- Hamburg University of Applied Sciences, Hamburg, Germany
| |
Collapse
|
11
|
Niu L, Carmona E, König M, Krauss M, Muz M, Xu C, Zou D, Escher BI. Mixture Risk Drivers in Freshwater Sediments and Their Bioavailability Determined Using Passive Equilibrium Sampling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13197-13206. [PMID: 32960593 DOI: 10.1021/acs.est.0c05124] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The identification of mixture risk drivers is a great challenge for sediment assessment, especially when taking bioavailability into consideration. The bioavailable portion, which comprises the organic contaminants in pore water and the ones bound to organic carbon, was accessed by equilibrium partitioning to polydimethylsiloxane (PDMS). The exhaustive solvent and PDMS extracts were toxicologically characterized with a battery of in vitro reporter gene assays and chemically analyzed with liquid and gas chromatography coupled to high-resolution mass spectrometry. The bioavailable fractions of mixture effects and individual chemicals were mostly lower than 0.1, indicating that more than 90% of the substances are strongly bound and would not pose an immediate risk but could potentially be remobilized in the long term. Despite 655 organic chemicals analyzed, only 0.1-28% of the observed biological effects was explained by the detected compounds in whole sediments, while 0.009-3.3% was explained by bioavailable chemicals. The mixture effects were not only dominated by legacy pollutants (e.g., polycyclic aromatic hydrocarbons (PAHs) in the bioassay for activation of the aryl-hydrocarbon receptor (AhR) and oxidative stress response (AREc32)) but also by present-use chemicals (e.g., plastic additives for binding to the peroxisome proliferator-activated receptor γ (PPARγ)), with different fingerprints between whole sediments and bioavailable extracts. Our results highlight the necessity to involve different bioassays with diverse effect profiles and broader selection of contaminants along with bioavailability for the risk assessment of chemical mixtures in sediments.
Collapse
Affiliation(s)
- Lili Niu
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Eric Carmona
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Maria König
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Martin Krauss
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Melis Muz
- Department of Effect Directed Analysis, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
| | - Chao Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Deliang Zou
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Beate I Escher
- Department of Cell Toxicology, UFZ - Helmholtz Centre for Environmental Research, Leipzig 04318, Germany
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Schnarrenbergstr. 94-96, Tübingen 72076, Germany
| |
Collapse
|
12
|
Simpson SL, Spadaro DA, Batley GE, Irvine IA, Synnot RN. Remediation criteria for gasworks-impacted sediments: Assessing the effects of legacy hydrocarbons and more recent metal contamination. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 737:139725. [PMID: 32783822 DOI: 10.1016/j.scitotenv.2020.139725] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/21/2020] [Accepted: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Historical contamination of sediments from industries that commenced before environmental regulations were commonplace is prevalent in many large cities. This contamination is frequently overlain and mixed with more recent urban contamination. The remediation of contaminated sites is often a very expensive exercise and the final remediation criteria often reflect a trade-off between protecting human and ecological health and the finances of those deemed responsible for the site clean-up. In this study, we describe an assessment of estuarine sediments impacted historically by contamination from a gasworks site. The major historical sediment contaminants included polycyclic aromatic hydrocarbons (PAHs) and other petroleum-related hydrocarbons (TRHs). Elevated concentrations of metals exist throughout the city region due to historical pollution and ongoing urban stormwater discharges. Equilibrium partitioning models were used to consider the influence on the bioavailability of PAHs of both natural sedimentary organic carbon and forms of black carbon (pyrogenic carbon - coal tars, charcoal). The strongest predictor of the observed sublethal toxicity to amphipod and copepod reproduction was a combination of total PAHs and metals (primarily Cu, Pb and Zn). Total PAHs was the strongest predicting variable for toxicity to organism survival. While high total PAH concentrations were attributed to the former gas works, high background concentrations of metals existed throughout much of this region of the estuary. Thus, without remediation at the estuary-scale, resuspension of the surrounding sediments by tidal currents and boat movements is predicted to re-contaminate remediated areas with sediments that may continue to cause chronic toxicity due to metals. The assessment indicated that remedial actions that remove or isolate sediments that caused toxicity to benthic organism survival would lead to significant improvements in ecosystem health, but toxicity to organism reproduction may remain at similar levels that exist throughout much of this region of the estuary due to high metal concentrations.
Collapse
Affiliation(s)
- Stuart L Simpson
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Lucas Heights, NSW 2234, Australia.
| | - David A Spadaro
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Lucas Heights, NSW 2234, Australia
| | - Graeme E Batley
- Centre for Environmental Contaminants Research, CSIRO Land and Water, Lucas Heights, NSW 2234, Australia
| | - Ian A Irvine
- Pollution Research Pty Ltd., 50 Darley Rd, North Dorrigo, NSW 2453, Australia
| | - Russell N Synnot
- Synnot and Wilkinson Pty Ltd., 172 Coach Rd, Strathbogie, VIC 3666, Australia
| |
Collapse
|