1
|
Feng W, Tao Y, Wang T, Yang F, Zhao M, Li Y, Miao Q, Li T, Liao H. Forms and Migration Mechanisms of Phosphorus in the Ice, Water, and Sediments of Cold and Arid Lakes. TOXICS 2024; 12:523. [PMID: 39058175 PMCID: PMC11280900 DOI: 10.3390/toxics12070523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Phosphorus (P) is a crucial nutrient in lake ecosystems and organic phosphorus (Po) is a significant component. However, the distribution characteristics and migration behaviour of Po in ice-water-sediment systems under freezing and thawing conditions in cold and arid regions remain unclear. This study aims to investigate the forms of Po and its contribution to endogenous P pollution. We selected three lakes (Dai, Hu, and Wu Lake) and employed phosphorus nuclear magnetic resonance (31P-NMR) techniques to analyse the following: (1) The total phosphorus (TP) content, which was the highest in the water from Dai Lake (0.16 mg/L), with substantial seasonal variation observed in Wu Lake, where P content was four times higher in summer than in winter because of farmland drainage. (2) Eutrophication analysis, which indicated that Dai Lake had significantly higher eutrophication levels than Wu Lake, with P being the controlling factor in Dai Lake and both N and P in Wu Lake. The proportion of Po in the TP content was 90%, 70%, and 55% for Wu, Dai, and Hu Lake, respectively, indicating that Po was the main component of eutrophic lakes. (3) 31P-NMR, which revealed that orthophosphate (Ortho-P) and monoester phosphate (Mon-P) were the main P components in the winter, with a higher P content in Dai Lake. Ortho-P has a higher content in ice, indicating that inorganic phosphorus (Pi) migration is the main factor in ice-water media. Mon-P showed multiple peaks in Dai Lake, indicating a complex composition of adenosine monophosphate and glucose-1-phosphate. (4) The ice-water phase change simulation experiments, which showed that phosphate was the least repelled in ice, while pyrophosphate (Pyro-P) and macromolecular P were more repelled. Adding sediment enhanced the migration of P but did not change the repulsion of macromolecular P, suggesting the molecular structure as the main influencing factor. These results provide important scientific evidence for the quantitative analysis of Po pollution in lake water environments, aiding in P load reduction and risk prevention and control.
Collapse
Affiliation(s)
- Weiying Feng
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.T.); (T.W.)
| | - Yingru Tao
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.T.); (T.W.)
| | - Tengke Wang
- School of Materials Science and Engineering, Beihang University, Beijing 100191, China; (W.F.); (Y.T.); (T.W.)
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (H.L.)
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuxin Li
- College of Basic Medical Science, Inner Mongolia Medical University, Inner Mongolia Key Lab of Molecular Biology, Hohhot 010059, China;
| | - Qingfeng Miao
- College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China;
| | - Tingting Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (H.L.)
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Haiqing Liao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (T.L.); (H.L.)
| |
Collapse
|
2
|
Wang K, Yang H, Chang Y, Huang W, Jiang X. Phosphorus release and distribution in sediment resuspension systems under disturbing conditions. CHEMOSPHERE 2024; 359:142386. [PMID: 38777196 DOI: 10.1016/j.chemosphere.2024.142386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The resuspension of phosphorus (P) in sediments has the most significant contribution to the overlying water. The PP release characterization during resuspension was investigated. The results indicated that the P in suspensions had more release risk compared to the sediments. The particulate P (PP) concentration (0.54 mg L-1) under high-intensity rotational speed (250 rad min-1) was about five times higher than others (0.11 mg L-1). The sorption parameters of zero equilibrium P concentration (EPC0F) and soluble reactive P (SRP) were significantly correlated with each other (p < 0.01, r = 0.73). Suspended solids expressed stronger P source than sediments. The values of EPC0F was highly significantly correlated with the sorption coefficient (KF) and native adsorbed P (NAP) (p < 0.01). The mean values of NAP were 0.0612 mg g-1 and 0.0604 mg g-1 in the Prophase and Metaphase, respectively, and 0.0586 mg g-1 at Anaphase. The values of P sorption index (PSI) ranged from 0.4359 to 0.6862 L g-1, with mean values of 0.5350 L g-1 (Prophase), 0.6061 L g-1 (Metaphase), and 0.4967 L g-1 (Anaphase). The degree of P saturation (DPS) decreased in the order of Anaphase (2.73%) > Prophase (2.53%) > Metaphase (2.12%). The release risk index of P (ERI) decreased in the order of Anaphase (5.47%) > Prophase (4.72%) > Metaphase (3.59%), with a range of 2.12%-8.56%. To fast and slow scale, the results of NaOH-P (V1<0, V2>0) contribution indicated that the persistent disturbance promoted the release of adsorbed dissolved PP from NaOH-P in suspended sediment to the overlying water. The contribution of HCl-P (V2 > 0) was positive in the Anaphase of the slow scale, and HCl-P was a PP source in the frequently disturbing conditions.
Collapse
Affiliation(s)
- Kun Wang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Haoran Yang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Yongsheng Chang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Huang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China.
| | - Xia Jiang
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China; Engineering Research Center of Ministry of Education on Groundwater Pollution Control and Remediation, College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Wang J, Chai J, Xu R, Pang Y. The effects of wind-wave disturbances on sediment resuspension and phosphate release in Lake Chao. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169254. [PMID: 38097069 DOI: 10.1016/j.scitotenv.2023.169254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
As a typical shallow lake with a wind-generated flow, the resuspension state of sediment and phosphorus release under wind field disturbance plays an important role in controlling lake eutrophication in Lake Chao. In this study, we proposed a combination of experimental analysis of dynamic disturbances, wind-wave disturbance shear stress calculation, and model simulation (experimental-calculative-modeling) to quantitatively investigate the effects of wind-wave disturbances on the resuspension state of Lake Chao bottom sediment and phosphorus release and distribution. The results showed that the release rate of phosphorus from the Lake Chao bottom sediment was affected by the wind field and bottom sediment content, which varied significantly spatially and showed some difference between different seasons. Under the condition of sufficient water body disturbance, the substrate in the Western Lake area of Lake Chao mainly adsorbed phosphate from the water body, while the substrate in the Central Lake area and the Eastern Lake area adsorbed phosphate along with the release. The magnitude of the phosphorus release rate due to sediment resuspension was mainly affected by wind speed, and the distribution of phosphorus content was influenced by the circulation generated by different dominant wind directions. The wind-wave disturbances have a significant effect on the spatial and temporal distribution of phosphorus in Lake Chao, and the proposed experimental-calculative-modeling ensemble can provide relevant technical support for the study of water pollution control strategies and comprehensive remediation and management of Lake Chao.
Collapse
Affiliation(s)
- Jingxian Wang
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Jisen Chai
- College of Environment, Hohai University, Nanjing, 210098, China
| | - Ruichen Xu
- Department of Civil and Environmental Engineering, University of Missouri, Columbia, MO, 65211, United States
| | - Yong Pang
- College of Environment, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
4
|
Zhang J, Zhou M, Shi F, Lei Z, Wang Y, Hu M, Zhao J. The abundance of comammox bacteria was higher than that of ammonia-oxidizing archaea and bacteria in rhizosphere of emergent macrophytes in a typical shallow lake riparian. Int Microbiol 2024; 27:67-79. [PMID: 38062210 DOI: 10.1007/s10123-023-00465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 06/20/2023] [Accepted: 11/30/2023] [Indexed: 02/01/2024]
Abstract
Complete ammonia oxidation (comammox) bacteria can complete the whole nitrification process independently, which not only challenges the classical two-step nitrification theory but also updates long-held perspective of microbial ecological relationship in nitrification process. Although comammox bacteria have been found in many ecosystems in recent years, there is still a lack of research on the comammox process in rhizosphere of emergent macrophytes in lakeshore zone. Sediment samples were collected in this study from rhizosphere, far-rhizosphere, and non-rhizosphere of emergent macrophytes along the shore of Lake Liangzi, a shallow lake. The diversity of comammox bacteria and amoA gene abundance of comammox bacteria, ammonia-oxidizing archaea (AOA), and ammonia-oxidizing bacteria (AOB) in these samples were measured. The results showed that comammox bacteria widely existed in the rhizosphere of emergent macrophytes and fell into clade A.1, clade A.2, and clade B, and clade A was the predominant community in all sampling sites. The abundance of comammox amoA gene (6.52 × 106-2.45 × 108 copies g-1 dry sediment) was higher than that of AOB amoA gene (6.58 × 104-3.58 × 106 copies g-1 dry sediment), and four orders of magnitude higher than that of AOA amoA gene (7.24 × 102-6.89 × 103 copies g-1 dry sediment), suggesting that the rhizosphere of emergent macrophytes is more favorable for the growth of comammox bacteria than that of AOB and AOA. Our study indicated that the comammox bacteria may play important roles in ammonia-oxidizing processes in all different rhizosphere regions.
Collapse
Affiliation(s)
- Jiahui Zhang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Mingzhi Zhou
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Fengning Shi
- Yunnan Hydrology and Water Resources Bureau, Kunming, 650100, China
| | - Ziyan Lei
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China
| | - Yuchun Wang
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China
| | - Mingming Hu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, Beijing, 100038, China.
- Department of Water Ecology and Environment, China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Jianwei Zhao
- Laboratory of Eco-Environmental Engineering Research, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Huazhong Agricultural University, No.1, Shizishan Street, Hongshan District, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
5
|
Pan S, Zhang W, Li Y, Gao Y, Yu F, Tang Z, Zhu Y. Unveiling novel perspectives on niche differentiation and plasticity in rhizosphere phosphorus forms of submerged macrophytes with different stoichiometric homeostasis. WATER RESEARCH 2023; 246:120679. [PMID: 37806123 DOI: 10.1016/j.watres.2023.120679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/08/2023] [Accepted: 09/28/2023] [Indexed: 10/10/2023]
Abstract
Stoichiometric homeostasis is the ability of organisms to maintain their element composition through various physiological mechanisms, regardless of changes in nutrient availability. Phosphorus (P) is a critical limiting element for eutrophication. Submerged macrophytes with different stoichiometric homeostasis regulated sediment P pollution by nutrient resorption, but whether and how P homeostasis and resorption in submerged macrophytes changed under variable plant community structure was unclear. Increasing evidence suggests that rhizosphere microbes drive niche overlap and differentiation for different P forms to constitute submerged macrophyte community structure. However, a greater understanding of how this occurs is required. This study examined the process underlying the metabolism of different rhizosphere P forms of submerged macrophytes under different cultivation patterns by analyzing physicochemical data, basic plant traits, microbial communities, and transcriptomics. The results indicate that alkaline phosphatase serves as a key factor in revealing the existence of a link between plant traits (path coefficient = 0.335, p < 0.05) and interactions with rhizosphere microbial communities (average path coefficient = 0.362, p < 0.05). Moreover, this study demonstrates that microbial communities further influence the niche plasticity of P by mediating plant root P metabolism genes (path coefficient = 0.354, p < 0.05) and rhizosphere microbial phosphorus storage (average path coefficient = 0.605, p < 0.01). This research not only contributes to a deeper comprehension of stoichiometric homeostasis and nutrient dynamics but also provides valuable insights into potential strategies for managing and restoring submerged macrophyte-dominated ecosystems in the face of changing nutrient conditions.
Collapse
Affiliation(s)
- Shenyang Pan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Yu Gao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Feng Yu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zikang Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yajie Zhu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
6
|
Guo M, Li X, Wang Y, Zhang Y, Fu Q, Huguet A, Liu G. New insights into the mechanism of phosphate release during particulate organic matter photodegradation based on optical and molecular signatures. WATER RESEARCH 2023; 236:119954. [PMID: 37098318 DOI: 10.1016/j.watres.2023.119954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
Phosphate release from particulate organic matter (POM) dominates phosphorus (P) cycling in aquatic ecosystems. However, the mechanisms underlying P release from POM remain poorly understood because of complex fractionation and analytical challenges. In this study, the release of dissolved inorganic phosphate (DIP) during POM photodegradation was assessed using excitation-emission matrix (EEM) fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). POM in suspension was significantly photodegraded under light irradiation, concomitantly with the production and release of DIP in the aqueous solution. Chemical sequential extraction revealed that organic phosphorus (OP) in POM participated in photochemical reactions. Moreover, FT-ICR MS analysis revealed that the average molecular weight of P-containing formulas decreased from 374.2 to 340.1 Da. Formulas containing P with a lower oxidation degree and unsaturation were preferentially photodegraded, generating oxygen-enriched and saturated formula compounds, such as protein- and carbohydrate-like P-containing formulas, benefiting further utilization of P by organisms. Reactive oxygen species played an important role in the photodegradation of POM, and excited triplet state chromophoric dissolved organic matter (3CDOM*) was mainly responsible for POM photodegradation. These results provide new insights into the P biogeochemical cycle and POM photodegradation in aquatic ecosystems.
Collapse
Affiliation(s)
- Minli Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaolu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlin Zhang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Qinglong Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Arnaud Huguet
- CNRS, EPHE, PSL, UMR METIS, Sorbonne Université, Paris F-75005, France
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture and Rural Affairs College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
7
|
Jin Z, Liao P, Jaisi DP, Wang D, Wang J, Wang H, Jiang S, Yang J, Qiu S, Chen J. Suspended phosphorus sustains algal blooms in a dissolved phosphorus-depleted lake. WATER RESEARCH 2023; 241:120134. [PMID: 37262944 DOI: 10.1016/j.watres.2023.120134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/03/2023]
Abstract
The expansion of algal bloom in surface waters is a global problem in the freshwater ecosystem. Differential reactivity of organic phosphorus (Po) compounds from organic debris, suspended particulate matter (SPM), and sediment towards hydrolysis can dictate the extent of supply often limited inorganic P (Pi) for algal growth, thereby controlling the extent of bloom. Here, we combined solution P-31 nuclear magnetic resonance (31P NMR), sequential extraction, enzymatic hydrolysis, and 16S rRNA measurements to characterize speciation and biogeochemical cycling of P in Lake Erhai, China. Lower ratios of diester-P/monoester-P in SPM in January (mean 0.09) and July (0.14) than that in April (0.29) reflected the higher degree of diester-P remineralization in cold and warm months. Both H2O-Pi and Po were significantly higher in SPM (mean 1580 mg ·kg-1 and 1618 mg ·kg-1) than those in sediment (mean 8 mg ·kg-1 and 387 mg ·kg-1). In addition, results from enzymatic hydrolysis experiments demonstrated that 61% Po in SPM and 58% in sediment in the H2O, NaHCO3, and NaOH extracts could be hydrolyzed. These results suggested that H2O-Pi and Po from SPM were the primarily bioavailable P sources for algae. Changes of Pi contents (particularly H2O-Pi) in algae and alkaline phosphatase activity (APA) during the observation periods were likely to be controlled by the strategies of P uptake and utilization of algae. P remobilization/remineralization from SPM likely resulted from algae and bacteria (e.g., Pseudomonas). Collectively, these results provide important insights that SPM P could sustain the algal blooms even if the dissolved P was depleted in the water column.
Collapse
Affiliation(s)
- Zuxue Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Peng Liao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Deb P Jaisi
- Department of Plant and Soil Science, University of Delaware, Newark, DE 19716, USA
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, USA
| | - Jingfu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Heng Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shihao Jiang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Jiaojiao Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shuoru Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Jingan Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Neale PJ, Williamson CE, Banaszak AT, Häder DP, Hylander S, Ossola R, Rose KC, Wängberg SÅ, Zepp R. The response of aquatic ecosystems to the interactive effects of stratospheric ozone depletion, UV radiation, and climate change. Photochem Photobiol Sci 2023; 22:1093-1127. [PMID: 37129840 PMCID: PMC10153058 DOI: 10.1007/s43630-023-00370-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 05/03/2023]
Abstract
Variations in stratospheric ozone and changes in the aquatic environment by climate change and human activity are modifying the exposure of aquatic ecosystems to UV radiation. These shifts in exposure have consequences for the distributions of species, biogeochemical cycles, and services provided by aquatic ecosystems. This Quadrennial Assessment presents the latest knowledge on the multi-faceted interactions between the effects of UV irradiation and climate change, and other anthropogenic activities, and how these conditions are changing aquatic ecosystems. Climate change results in variations in the depth of mixing, the thickness of ice cover, the duration of ice-free conditions and inputs of dissolved organic matter, all of which can either increase or decrease exposure to UV radiation. Anthropogenic activities release oil, UV filters in sunscreens, and microplastics into the aquatic environment that are then modified by UV radiation, frequently amplifying adverse effects on aquatic organisms and their environments. The impacts of these changes in combination with factors such as warming and ocean acidification are considered for aquatic micro-organisms, macroalgae, plants, and animals (floating, swimming, and attached). Minimising the disruptive consequences of these effects on critical services provided by the world's rivers, lakes and oceans (freshwater supply, recreation, transport, and food security) will not only require continued adherence to the Montreal Protocol but also a wider inclusion of solar UV radiation and its effects in studies and/or models of aquatic ecosystems under conditions of the future global climate.
Collapse
Affiliation(s)
- P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA.
| | | | - A T Banaszak
- Universidad Nacional Autónoma de México, Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Mexico
| | - D-P Häder
- Friedrich-Alexander University, Möhrendorf, Germany
| | | | - R Ossola
- Colorado State University, Fort Collins, USA
| | - K C Rose
- Rensselaer Polytechnic Institute, Troy, USA
| | | | - R Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, USA
| |
Collapse
|
9
|
Bao Y, Huang T, Ning C, Sun T, Tao P, Wang J, Sun Q. Changes of DOM and its correlation with internal nutrient release during cyanobacterial growth and decline in Lake Chaohu, China. J Environ Sci (China) 2023; 124:769-781. [PMID: 36182182 DOI: 10.1016/j.jes.2022.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 06/16/2023]
Abstract
The seasonal changes in dissolved organic matter (DOM), and its correlation with the release of internal nutrients during the annual cycle of cyanobacteria in the eutrophic Lake Chaohu, China, were investigated from four sampling periods between November 2020 and July 2021. The DOM fluorescence components were identified as protein-like C1, microbial humic-like C2, and terrestrial humic-like C3. The highest total fluorescence intensity (FT) of DOM in sediments during the incubation stage is due to the decomposition and degradation of cyanobacteria remains. The lowest humification of DOM and the highest proportion of C1 in waters during the initial cyanobacterial growth indicate that fresh algae are the main source. The highest molecular weight of DOM and FT of the C2 in sediments during cyanobacterial outbreaks indicate the concurrent deposition of undegraded cyanobacterial remains and microbial degradation. The components of DOM are affected mainly by the dissolved total phosphorus in waters, while the temperature drives the annual cycle of cyanobacteria. The decreasing C1 in sediments and increasing nutrients in waters from the cyanobacterial incubation to outbreak indicate that mineralization of algal organic matter contributes importantly to the release of internal nutrients, with the strongest release of phosphorus observed during the early growth of cyanobacteria. The humic-like C2 and C3 components could also affect the dynamics of internal phosphorus through the formation of organic colloids and organic-inorganic ligands. The results show that the degradation of DOM leads to nutrients release and thus supports the continuous growth of cyanobacteria in eutrophic Lake Chaohu.
Collapse
Affiliation(s)
- Yan Bao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China.
| | - Chengwu Ning
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Tingting Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Pengliang Tao
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Jie Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China; Anhui Province Key Laboratory of Wetland Ecosystem Protection and Restoration, Anhui University, Hefei 230601, China
| |
Collapse
|
10
|
Li X, Guo M, Wang Y, Liu G, Fu Q. Molecular insight into the release of phosphate from dissolved organic phosphorus photo-mineralization in shallow lakes based on FT-ICR MS analysis. WATER RESEARCH 2022; 222:118859. [PMID: 35863279 DOI: 10.1016/j.watres.2022.118859] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Dissolved organic phosphorus (DOP) is a key factor in the water eutrophication process because of its high potential bioavailability and inorganic phosphate (Pi) compensation ability through bio- and photo-mineralization. However, the research on the characterization and transformation of DOP is insufficient owing to their complex composition. This study investigates the release of dissolved Pi from DOP photo-mineralization in Lake Dong based on Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analysis. The results showed that the photo-release of dissolved Pi is spatially heterogeneous in Lake Dong and is consistent with the distribution of DOP concentration. The FT-ICR MS results showed that the simulated irradiation decreased the relative abundance (RA) of the DOP molecular formulae with higher molecular weight (MW) and higher double bond equivalence values (DBE), while the RA of DOP molecular formulae with lower MW and lower DBE value increased or remained. Besides, the total RA of lipid-like formulae increased from 49.09% to 55.90%, while the oxy-aromatic-like formulae decreased from 50.91% to 44.10%, suggesting that simulated irradiation would influence the potential bioavailability of DOP. As the main photolysis medium during DOP photo-mineralization, the hydroxyl radicals (∙OH) are mainly derived from dissolved organic matter (DOM) compared to the nitrate (NO3-) and iron ion (Fe3+) in Lake Dong. These results are important in understanding the ability and mechanism of DOP photo-mineralization and provide suggestions for cycling phosphorus in eutrophic shallow lakes.
Collapse
Affiliation(s)
- Xiaolu Li
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Minli Guo
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yi Wang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinglong Fu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
11
|
Barnes PW, Robson TM, Neale PJ, Williamson CE, Zepp RG, Madronich S, Wilson SR, Andrady AL, Heikkilä AM, Bernhard GH, Bais AF, Neale RE, Bornman JF, Jansen MAK, Klekociuk AR, Martinez-Abaigar J, Robinson SA, Wang QW, Banaszak AT, Häder DP, Hylander S, Rose KC, Wängberg SÅ, Foereid B, Hou WC, Ossola R, Paul ND, Ukpebor JE, Andersen MPS, Longstreth J, Schikowski T, Solomon KR, Sulzberger B, Bruckman LS, Pandey KK, White CC, Zhu L, Zhu M, Aucamp PJ, Liley JB, McKenzie RL, Berwick M, Byrne SN, Hollestein LM, Lucas RM, Olsen CM, Rhodes LE, Yazar S, Young AR. Environmental effects of stratospheric ozone depletion, UV radiation, and interactions with climate change: UNEP Environmental Effects Assessment Panel, Update 2021. Photochem Photobiol Sci 2022; 21:275-301. [PMID: 35191005 PMCID: PMC8860140 DOI: 10.1007/s43630-022-00176-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/07/2022]
Abstract
The Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth's surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1-67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.
Collapse
Affiliation(s)
- P W Barnes
- Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, USA
| | - T M Robson
- Organismal and Evolutionary Biology (OEB), Viikki Plant Science Centre (ViPS), University of Helsinki, Helsinki, Finland
| | - P J Neale
- Smithsonian Environmental Research Center, Edgewater, USA
| | | | - R G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - S Madronich
- Atmospheric Chemistry Observations and Modeling Laboratory, National Center for Atmospheric Research, Boulder, USA
| | - S R Wilson
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - A L Andrady
- Chemical and Biomolecular Engineering, North Carolina State University, Apex, USA
| | - A M Heikkilä
- Finnish Meteorological Institute, Helsinki, Finland
| | | | - A F Bais
- Laboratory of Atmospheric Physics, Department of Physics, Aristotle University, Thessaloniki, Greece
| | - R E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - J F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - A R Klekociuk
- Antarctic Climate Program, Australian Antarctic Division, Kingston, Australia
| | - J Martinez-Abaigar
- Faculty of Science and Technology, University of La Rioja, La Rioja, Logroño, Spain
| | - S A Robinson
- Securing Antarctica's Environmental Future, Global Challenges Program and School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - Q-W Wang
- Institute of Applied Ecology, Chinese Academy of Sciences (CAS), Shenyang, China
| | - A T Banaszak
- Unidad Académica De Sistemas Arrecifales, Universidad Nacional Autónoma De México, Puerto Morelos, Mexico
| | - D-P Häder
- Department of Biology, Friedrich-Alexander University, Möhrendorf, Germany
| | - S Hylander
- Centre for Ecology and Evolution in Microbial Model Systems-EEMiS, Linnaeus University, Kalmar, Sweden.
| | - K C Rose
- Biological Sciences, Rensselaer Polytechnic Institute, Troy, USA
| | - S-Å Wängberg
- Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | - B Foereid
- Environment and Natural Resources, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - W-C Hou
- Environmental Engineering, National Cheng Kung University, Tainan, Taiwan
| | - R Ossola
- Environmental System Science (D-USYS), ETH Zürich, Zürich, Switzerland
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - J E Ukpebor
- Chemistry Department, Faculty of Physical Sciences, University of Benin, Benin City, Nigeria
| | - M P S Andersen
- Department of Chemistry and Biochemistry, California State University, Northridge, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - J Longstreth
- The Institute for Global Risk Research, LLC, Bethesda, USA
| | - T Schikowski
- Research Group of Environmental Epidemiology, Leibniz Institute of Environmental Medicine, Düsseldorf, Germany
| | - K R Solomon
- Centre for Toxicology, School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - B Sulzberger
- Academic Guest, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland
| | - L S Bruckman
- Materials Science and Engineering, Case Western Reserve University, Cleveland, USA
| | - K K Pandey
- Wood Processing Division, Institute of Wood Science and Technology, Bangalore, India
| | - C C White
- Polymer Science and Materials Chemistry (PSMC), Exponent, Bethesda, USA
| | - L Zhu
- College of Materials Science and Engineering, Donghua University, Shanghai, China
| | - M Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai, China
| | - P J Aucamp
- Ptersa Environmental Consultants, Pretoria, South Africa
| | - J B Liley
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - R L McKenzie
- National Institute of Water and Atmospheric Research, Alexandra, New Zealand
| | - M Berwick
- Internal Medicine, University of New Mexico, Albuquerque, USA
| | - S N Byrne
- Applied Medical Science, University of Sydney, Sydney, Australia
| | - L M Hollestein
- Department of Dermatology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - R M Lucas
- National Centre for Epidemiology and Population Health, Australian National University, Canberra, Australia
| | - C M Olsen
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - L E Rhodes
- Photobiology Unit, Dermatology Research Centre, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - S Yazar
- Garvan Institute of Medical Research, Sydney, Australia
| | - A R Young
- St John's Institute of Dermatology, King's College London (KCL), London, UK
| |
Collapse
|
12
|
Hu B, Wang P, Wang C, Bao T. Photogeochemistry of particulate organic matter in aquatic systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150467. [PMID: 34592285 DOI: 10.1016/j.scitotenv.2021.150467] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/15/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Photochemical transformation of natural organic matter in aquatic environments strongly impacts the environmental behaviors of carbon, nutrients, and pollutants by affecting their solubility, toxicity, bioavailability, and mobility. However, the role of particulate organic matter (POM) in environmental photogeochemistry has received much less attention than that of dissolved organic matter (DOM). In this study, a systematic overview was conducted to summarize the photodissolution and photoflocculation of POM in aquatic systems. The photodissolution of various POM, such as resuspended sediments and algal detritus, could be a potential and important source of DOM in the overlying waters, and these photoreleased DOM were dominated by humic-like components. The photogeochemistry of POM is thought to proceed via direct photochemical reactions and reactive radical-dominated indirect processes. Photodissolution can modify the bioavailability of organic matter and influence the biogeochemical cycling of nutrients, heavy metals, and organic pollutants. In addition, the photo-induced flocculation of DOM to POM could also influence the transport and transformation of organic matter and its associated pollutants. The photochemistry of POM can be significantly influenced by several environmental factors, including irradiation wavelength and intensity, organic matter properties, and radical oxygen species. POM photogeochemistry is one of the most important components of the global cycling of natural organic matter. Further studies regarding photogeochemistry should be conducted to overcome the potential problems arising from the concurrent photodegradation of organic matter and to further develop more filed investigations and analytical methods.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Chao Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
13
|
Mahmoudi M, Bejaoui W, Ali MB, Hedfi A, Almalki M, Essid N, Mahmoudi E, Rizk R, Pacioglu O, Urkmez D, Dervishi A, Boufahja F. How effective is wastewater treatment? A case study under the light of taxonomic and feeding features of meiobenthic nematodes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2566-2578. [PMID: 34370198 DOI: 10.1007/s11356-021-15844-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A microcosm bioassay was designed to assess the efficacy of wastewater treatment methods used in sewage plants. The taxonomic and feeding characteristics of a meiobenthic nematode assemblage from Ghar El Melh lagoon (Tunisia) were used to achieve this goal. Nematode assemblages were exposed for 30 days to untreated wastewater (UW) obtained from the sewage treatment plant of Sidi Ahmed (Tunisia) and three mixtures with treated wastewater (TW33 = 33%, TW66 = 66%, and TW100 = 100%). Concerning the nematode abundance, the exposure to either treated wastewater (TW33-100) or untreated wastewater (UW) had no significant effect. In contrast, Shannon-Wiener index and Pielou's Evenness were clearly reduced by contamination with both types of wastewater, with a more pronounced negative impact prior to treatment in the sewage plant. The multivariate analyzes revealed a change in the taxonomic composition of the nematofauna in response to the contamination by untreated or treated wastewater. The relative abundances of species in wastewater replicates compared to controls reflected this taxonomic restructuring. Finally, Ascolaimus elongatus, Terschellingia communis, and Kraspedonema octogoniata were less represented in all experimentally treated units and could be considered as 'sensitive taxa to wastewater'. While, Paracomesoma dubium, appears to be a 'tolerant and/or opportunistic' species, showing increased relative abundances under all wastewater treatments.
Collapse
Affiliation(s)
- Mohamed Mahmoudi
- Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Wiem Bejaoui
- LR Biotechnology and Bio-Geo Resources Valorization (LR11ES31c) Higher Institute for Biotechnology, University of Manouba Biotechnopole of Sidi Thabet, 2020, Sidi Thabet, Ariana, Tunisia
| | - Manel Ben Ali
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Amor Hedfi
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed Almalki
- Department of Biology, College of Sciences, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Naceur Essid
- Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Ezzeddine Mahmoudi
- Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia
| | - Roquia Rizk
- Research Center for Biochemical, Environmental and Chemical Engineering, Sustainability Solutions Research Lab, University of Pannonia, Egyetem str. 10, Veszprém, H-8200, Hungary
- Biochemisrty Department, Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Octavian Pacioglu
- National Institute of Research and Development for Biological Sciences, Bucharest, Romania
| | - Derya Urkmez
- Sinop University, Scientific and Technological Research and Application Center, TR57000, Sinop, Turkey
| | - Aida Dervishi
- Department of Biotechnology, Faculty of Natural Sciences, University of Tirana, Zog I, 25/1, 1001, Tirana, Albania
| | - Fehmi Boufahja
- Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, University of Carthage, 7021, Zarzouna, Tunisia.
| |
Collapse
|
14
|
Esfahani AR, Sadiq Z, Oyewunmi OD, Safiabadi Tali SH, Usen N, Boffito DC, Jahanshahi-Anbuhi S. Portable, stable, and sensitive assay to detect phosphate in water with gold nanoparticles (AuNPs) and dextran tablet. Analyst 2021; 146:3697-3708. [PMID: 33960331 DOI: 10.1039/d0an02063j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and highly sensitive tablet-based colorimetric sensor is developed for the detection of phosphate (Pi) in drinking and surface water using mercaptoacetic acid-capped gold nanoparticles (MA-AuNPs). Characterization of AuNPs and MA-AuNPs was achieved by ultraviolet-visible (UV-Vis) spectroscopy, Fourier transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM) and Dynamic light scattering (DLS). The principle of this sensor is based on the aggregation and disaggregation mechanisms of AuNPs that result in a color change from blue to red due to the surface plasmon resonance effect, where europium ions (Eu3+) act as the aggregating agent. Herein, dextran is used to encapsulate the Eu3+ ions into a tablet format to make the detection system user friendly. Hence, the sensor only requires dissolving a Eu3+-dextran tablet into the water sample and subsequently adding MA-AuNPs for the colorimetric quantification of phosphate. This assay is very sensitive with a calculated detection limit of 0.3 μg L-1 and an upper detection limit of 26 μg L-1, while 10 μg L-1 is the allowable limit of Pi in drinking water. A comparative study with a conventional Hach kit confirmed the accuracy of our sensor. Also, real water samples from river, lake, and tap sources were tested to examine the sensor's applicability towards commercialization. The assay did not interfere with common ions in water, thus being Pi-specific, and the performance of the assay was stable for up to at least three weeks. Overall, our new approach provides a simple, stable, rapid, low-cost and promising device for Pi detection in water.
Collapse
Affiliation(s)
- AmirReza R Esfahani
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada. and Department of Mechanical, Industrial, and Aerospace Engineering, Concordia University, Montréal, QC, Canada
| | - Zubi Sadiq
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Oyejide Damilola Oyewunmi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Seyed Hamid Safiabadi Tali
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| | - Ndifreke Usen
- Department of Chemical Engineering, Polytechnique Montréal, QC, Canada
| | | | - Sana Jahanshahi-Anbuhi
- Department of Chemical and Materials Engineering, Gina Cody School of Engineering, Concordia University, Montréal, QC, Canada.
| |
Collapse
|
15
|
Hu B, Wang P, Bao T, Qian J, Wang X. Mechanisms of photochemical release of dissolved organic matter and iron from resuspended sediments. J Environ Sci (China) 2021; 104:288-295. [PMID: 33985732 DOI: 10.1016/j.jes.2020.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
Photochemical reactions can alter the transformation of sedimentary organic matter into dissolved organic matter (DOM) and affect its ultimate fate in water ecosystems. In the present study, the photorelease of DOM and Fe from resuspended lake sediments was investigated under different O2 and NO3- concentration conditions to study the mechanisms of DOM and Fe photorelease. The amount of photoreleased Fe, which ranged from 0.22 to 0.70 μmol/L, was significantly linearly correlated with the amount of photoreleased DOM. O2 and NO3- could promote the photochemical release of DOM and Fe, especially during the initial 4 h irradiation. In general, the order of the photorelease rates of DOM and Fe under different conditions was as follows: NO3-/aerobic > aerobic ≈ NO3-/anaerobic > anaerobic. The photorelease rates of DOM and Fe were higher for the initial 4 hr irradiation than these for the subsequent 8 hr irradiation. The photorelease of DOM and Fe is thought to proceed via direct photodissolution and indirect processes. The relative contributions of indirect processes (>60%) was much greater than that of direct photodissolution (<40%). The photoproduced H2O2 under aerobic and anaerobic conditions indicated that hydroxyl radicals (•OH) are involved in the photorelease of DOM. Using •OH scavengers, it was found that 38.7%, 53.7%, and 77.6% of photoreleased DOM was attributed to •OH under anaerobic, aerobic, and NO3-/aerobic conditions, respectively. Our findings provide insights for understanding the mechanisms and the important role of •OH in the DOM and Fe photorelease from resuspended sediments.
Collapse
Affiliation(s)
- Bin Hu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 201198, China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 201198, China.
| | - Tianli Bao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 201198, China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 201198, China
| | - Xun Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 201198, China
| |
Collapse
|
16
|
Li X, Zhang Z, Xie Q, Wu D. Effect of algae on phosphorus immobilization by lanthanum-modified zeolite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 276:116713. [PMID: 33611205 DOI: 10.1016/j.envpol.2021.116713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus-inactivating agents (PIAs) as geoengineering tools in lakes have been investigated extensively, but PIA resuspension in the photic layer occurs frequently in shallow lakes and little is known about the influence of algae on PIA performance. Our results proved that algae increased the dissolved oxygen, pH and dissolved organic carbon concentration substantially. In the absence of sediment, lanthanum modified zeolite (LMZ) as a representative PIA and algae could deplete dissolved inorganic phosphorus (DIP) from water but the former was faster than the latter. When LMZ and algae coexisted, the amount of phosphorus that was captured by LMZ was 3.1 times greater than that taken up by algae. An increase in pH or dissolved organic carbon increased the zero-equilibrium phosphorus concentration (EPC0) of the sediment but LMZ addition could lower the EPC0 and reduce the risk of phosphorus release during the algal blooming season. In the presence of sediment, LMZ reduced the DIP concentration more rapidly and yielded a lower final DIP concentration compared with algae. In conclusion, the influence of algae on the performance of LMZ by (i) taking up DIP to reduce the availability of DIP and convert DIP into a releasable phosphorus form and (ii) increasing the pH and dissolved organic carbon concentration to hinder the adsorption ability of DIP were recognized. The LMZ performed well, even in the presence of algae.
Collapse
Affiliation(s)
- Xiaodi Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Zhiyong Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Qiang Xie
- School of Agriculture and Biology, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China
| | - Deyi Wu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
17
|
Chen Z, Fang F, Shao Y, Jiang Y, Huang J, Guo J. The biotransformation of soil phosphorus in the water level fluctuation zone could increase eutrophication in reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142976. [PMID: 33139007 DOI: 10.1016/j.scitotenv.2020.142976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/27/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
The massive amounts of phosphorus (P) entering into rivers and reservoirs may induce eutrophication. However, the link between the transport and transformation of soil P and the dynamics of P availability in reservoir regions are not well demonstrated. The present study selected the Pengxi River suffering the anti-seasonal water level fluctuation of the Three Gorgers Reservoir as the study area. Soil nutrients along the longitudinal and lateral gradients of the Pengxi River were investigated to illustrate the spatial distribution patterns, analyzed by the Hedley extraction schemes. The effects of biotic and abiotic factors on soil P transformation and the dynamics of bioavailable P were evaluated via determinations of enzymatic hydrolysis phosphorus (EHP) with and without ultraviolet (UV) irradiation. The results indicated that soil nutrients varied significantly between the water level fluctuation zone (WLFZ) and upland along the river longitudinal gradients, where the trends of the extracted OP were the same in H2O, NaHCO3 and NaOH extractions. The EHP accounted for 33.67 ± 15.87% of the total extracted OP, of which Monoester P, Phytate-like P and NHOP were determined at all extracts but Diester P was mainly found at H2O and NaOH extracts. UV irradiation significantly increased P bioavailability up to 24.44%. These results could demonstrate the mechanism of soil P transformation via UV irradiation and enzymatic hydrolysis. Therefore, the bioavailable P enters the water body during the submergence period may lead to eutrophication in the Pengxi River, which could pose a risk to the reservoir ecosystem.
Collapse
Affiliation(s)
- Zhongli Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Shao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yanxue Jiang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Junjie Huang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jinsong Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
18
|
Lin SS, Shen SL, Zhou A, Lyu HM. Assessment and management of lake eutrophication: A case study in Lake Erhai, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141618. [PMID: 33167190 DOI: 10.1016/j.scitotenv.2020.141618] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 07/13/2020] [Accepted: 08/08/2020] [Indexed: 05/27/2023]
Abstract
Some wastewater sources, such as agricultural waste and runoff, and industrial sewage, can degrade water quality. This study summarises the sources and corresponding mechanisms that trigger eutrophication in lakes. Additionally, the trophic status index and water quality index (WQI) which are effective tools for evaluating the degree of eutrophication of lakes, have been discussed. This study also explores the main nutrients (nitrogen and phosphorus) driving transformations in the water body and sediment. Lake Erhai was used as a case study, and it was found to be in a mesotrophic state, with N and P co-limitation before 2006, and only P limitation since 2006. Finally, effective measures to maintain sustainable development in the watershed are proposed, along with a framework for an early warning system adopting the latest technologies (geographic information systems (GIS), remote sensing (RS)) for preventing eutrophication.
Collapse
Affiliation(s)
- Song-Shun Lin
- Department of Civil Engineering, School of Naval Architecture, Ocean, and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Shui-Long Shen
- College of Engineering, Shantou University and Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou, Guangdong 515063, China; Discipline of Civil and Infrastructure, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Victoria 3001, Australia; Shanghai Key Laboratory for Digital Maintenance of Buildings and Infrastructure, Department of Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Annan Zhou
- Discipline of Civil and Infrastructure, School of Engineering, Royal Melbourne Institute of Technology (RMIT), Victoria 3001, Australia
| | - Hai-Min Lyu
- State Key Laboratory of Internet of Things for Smart City, University of Macau, Macau
| |
Collapse
|
19
|
Gao JM, Chen ZM, Wang C, Fang F, Huang JJ, Guo JS. Bioavailability of organic phosphorus in the water level fluctuation zone soil and the effects of ultraviolet irradiation on it in the Three Gorges Reservoir, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139912. [PMID: 32531607 DOI: 10.1016/j.scitotenv.2020.139912] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 06/11/2023]
Abstract
Ultraviolet (UV) irradiation is an abiotic pathway for the transformation of complex phosphorus (P) components into inorganic P in ecosystems. To explore the effect of UV irradiation on organic P (OP) bioavailability in the water level fluctuation zone (WLFZ) soil, we collected representative soil samples from WLFZ of the Pengxi River, a tributary of the TGR, China. We determined the contents of different forms of OP in the WLFZ soil through sequential extraction. The bioavailability of different forms of OP and the effect of UV light were characterised using a combination of enzymatic hydrolysis and UV irradiation. The OP contents of the different extracts (Po) were ranked as NaOH-Po > NaHCO3-Po > H2O-Po, whereas those of enzymatically hydrolysable organic P (EHP) were ranked as NaOH-EHP > NaHCO3-EHP > H2O-EHP. UV irradiation was found to improve OP bioavailability, as demonstrated by increased levels of UV-sensitive P (UV-P) and EHP in the extracts after irradiation. The total contents of bioavailable Po in extracts were 5.6-35.3% higher after UV irradiation than before irradiation. Thus, the effect of UV irradiation on the OP bioavailability and release activity cannot be neglected in TGR WLFZ soil.
Collapse
Affiliation(s)
- Jun-Min Gao
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China
| | - Zhu-Man Chen
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China
| | - Chao Wang
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China.
| | - Jun-Jie Huang
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's EcoEnvironments of MOE, Chongqing University, Chongqing 400045, China
| |
Collapse
|
20
|
Hu B, Wang P, Bao T, Shi Y. The photochemical release of dissolved organic matter from resuspended sediments: Insights from fluorescence spectroscopy. CHEMOSPHERE 2020; 257:127161. [PMID: 32526465 DOI: 10.1016/j.chemosphere.2020.127161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 06/11/2023]
Abstract
Sediments exposed to sunlight can serve as an important source of dissolved organic carbon (DOC) and nutrients to overlying waters. However, the photochemical release processes of dissolved organic matter (DOM) from resuspended sediments and the characteristics of photoreleased DOM are not fully understood. In this study, excitation-emission matrix fluorescence combined with parallel factor analysis (EEMs-PARAFAC) was used to study the photochemical release of DOM qualitatively and quantitatively. The EEMs-PARAFAC demonstrated that the photoreleased DOM is dominated by humic-like substances, and the photorelease process could be consist of the photoproduction and photodegradation of DOM. The concurrent photodegradation may result in the underestimation of photoreleased DOM. Moreover, the significant increases in DOC content and fluorescence intensity of humic-like components along with increasing nitrate and ferric ion indicated that nitrate and ferric ion could facilitate the photoproduction of DOM through the photochemical produced hydroxyl radical. However, the decreases in DOC and fluorescence intensity were also observed at high concentration of nitrate and ferric ion, owing to the photodegradation of DOM by redundant hydroxyl radical. All of these results suggest that EEMs-PARAFAC is an effective and sensitive analytical technique for evaluating DOM photoreleased from suspended lake sediments and previous studies may underestimate photochemical release of DOM from sediments due to the overlook of the subsequently photodegradation of these released DOM. Thus, the photochemical release of DOM and its associated pollutants from suspended particles in shallow and eutrophic lakes should be more significant then should be paid more attention.
Collapse
Affiliation(s)
- Bin Hu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Tianli Bao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Yue Shi
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|