1
|
Hussan MU, Hussain S, Adeel M, Ayub A, Kareem HA, Jabeen S, Saqib M, Wang Q, Yan M, Siddique KHM, Tahir M. Calcium oxide nanoparticles ameliorate cadmium toxicity in alfalfa seedlings by depriving its bioaccumulation, enhancing photosystem II functionality and antioxidant gene expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176797. [PMID: 39395484 DOI: 10.1016/j.scitotenv.2024.176797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/02/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
Cadmium (Cd) is a highly toxic and carcinogenic pollutant that poses significant risks to living organisms and the environment, as it is absorbed by the plant roots and accumulates in different parts of crop during its production. A promising sustainable strategy to counteract these threats to use calcium oxide nanoparticles (CaO-NPs) as soil supplements in fodder crops. This approach has shown notable morpho-physiological and biochemical improvements under metal toxicity conditions. However, the specific mechanisms driving Cd tolerance, particularly at physio-biochemical level and antioxidant related genes expression in fodder crops including alfalfa remain unexplored. CaO-NPs supplementation can trigger various signaling pathways that lead to enhance the photosynthetic pigments formation, stomatal conductance, CO2 assimilation rate and quantum yield of photosystem II. In this study, we evaluated various doses of CaO-NPs (0, 25, 50, and 100 mg kg-1) for their efficacy in reducing Cd bioavailability and toxicity in alfalfa plants. Our results demonstrated that Ca2+ and Cd2+, which share the same ionic radius, compete for ion transport through channels. The small size and high availability of CaO-NPs facilitate their rapid translocation within plant tissues, reducing metal uptake by 61 % in shoots and 30 % in roots. Notably, application of CaO-NPs at 100 mg kg-1 significantly increased shoot length (44 %) and root length (35 %) as compared to Cd-treated control plants. The highest dose of CaO-NPs also improved photosynthetic efficiency and gas exchange attributes including gs, Tr, Pn and Ci by 66 %, 27 %, 33 % and Ci 21 %, respectively, compared with the Cd treated control. Moreover, CaO-NPs (at 100 mg kg-1) alleviated metal-induced oxidative stress by boosting antioxidant enzyme activities like superoxide dismutase (25 %) peroxidase (42 %), catalase (72 %) and ascorbate peroxidase (87 %) and diminishing reactive oxygen species (ROS) production when compared with sole Cd treatment. Scanning and transmission electron microscopy revealed that CaO-NPs positively impacted stomatal conductance and mitigated Cd toxicity in leaf ultrastructure. Additionally, the highest dose of CaO-NPs markedly upregulated the expression of antioxidant-related genes, MsCu/Zn SOD, MtPOD, MtCAT, and MtAPX in roots and shoots by 0.67 and 1.03 fold-change (FC), 0.61 and 0.53 FC, 0.54 and 0.88 FC, and 0.46 and 0.66 FC, respectively. In conclusion, CaO-NPs demonstrate significant potential for environmentally friendly mitigation of Cd stress in alfalfa by reducing its uptake, thereby supporting sustainable agriculture.
Collapse
Affiliation(s)
- Maqsood Ul Hussan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Sadam Hussain
- College of Horticulture, Northwest A&F University, Yangling 712100, China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Atif Ayub
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Hafiz Abdul Kareem
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Shaista Jabeen
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Muhammad Saqib
- Barani Agricultural Research Station, Fateh Jhang, Attock, Punjab, Pakistan
| | - Quanzhen Wang
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China.
| | - Kadambot H M Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Perth, WA 6001, Australia
| | - Muhammad Tahir
- Department of Soil, Water, & Climate, University of Minnesota,1991 Upper Buford Cir, Falcon Heights, MN 55108, USA
| |
Collapse
|
2
|
Zhao F, Huang Y, Wei H, Wang M. Ocean acidification alleviated nickel toxicity to a marine copepod under multigenerational scenarios but at a cost with a loss of transcriptome plasticity during recovery. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173585. [PMID: 38810735 DOI: 10.1016/j.scitotenv.2024.173585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Marine ecosystem has been experiencing multiple stressors caused by anthropogenic activities, including ocean acidification (OA) and nickel (Ni) pollution. Here, we examined the individual/combined effects of OA (pCO2 1000 μatm) and Ni (6 μg/L) exposure on a marine copepod Tigriopus japonicus for six generations (F1-F6), followed by one-generation recovery (F7) in clean seawater. Ni accumulation and several important phenotypic traits were measured in each generation. To explore within-generation response and transgenerational plasticity, we analyzed the transcriptome profile for the copepods of F6 and F7. The results showed that Ni exposure compromised the development, reproduction and survival of copepods during F1-F6, but its toxicity effects were alleviated by OA. Thus, under OA and Ni combined exposure, due to their antagonistic interaction, the disruption of Ca2+ homeostasis, and the inhibition of calcium signaling pathway and oxytocin signaling pathway were not found. However, as a cost of acclimatization/adaption potential to long-term OA and Ni combined exposure, there was a loss of transcriptome plasticity during recovery, which limited the resilience of copepods to previously begin environments. Overall, our work fosters a comprehensive understanding of within- and transgenerational effects of climatic stressor and metal pollution on marine biota.
Collapse
Affiliation(s)
- Fankang Zhao
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Yuehan Huang
- School of International Education, Beijing University of Chemical Technology, Beijing 102200, China
| | - Hui Wei
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China
| | - Minghua Wang
- Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, College of the Environment & Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
3
|
Deng H, Lin X, Xiang R, Bao M, Qiao L, Liu H, He H, Wen X, Han J. Low selenium and T-2 toxin may be involved in the pathogenesis of Kashin-Beck disease by affecting AMPK/mTOR/ULK1 pathway mediated autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116503. [PMID: 38810288 DOI: 10.1016/j.ecoenv.2024.116503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Kashin-Beck disease (KBD) is an endemic, environmentally associated cartilage disease. Previous studies have shown that the environmental suspected pathogenic factors of KBD, T-2 toxin and low selenium, are involved in the regulation of inflammation, oxidative stress and autophagy in some tissues and organs. In cartilage diseases, the level of cellular autophagy determines the fate of the chondrocytes. However, whether autophagy is involved in KBD cartilage lesions, and the role of low selenium and T-2 toxins in KBD cartilage injury and autophagy are still unclear. This work took the classical AMPK/mTOR/ULK1 autophagy regulatory pathway as the entry point to clarify the relationship between the environmental suspected pathogenic factors and chondrocyte autophagy. Transmission electron microscopy was used to observe the autophagy of chondrocytes in KBD patients. qRT-PCR and western blot were used to analyze the expression of AMPK/mTOR/ULK1 pathway and autophagy markers. The rat model of KBD was established by low selenium and T-2 toxin, the autophagy in rat cartilage was detected after 4- and 12-week interventions. Chondrocyte autophagy was found in KBD, and the AMPK/mTOR/ULK1 pathway was down-regulated. In the rat model, the pathway showed an up-regulated trend when low selenium and T-2 toxin, were treated for a short time or low concentration, and autophagy level increased. However, when low selenium and T-2 toxin were treated for a long time or at high concentrations, the pathway showed a down-regulated trend, and the autophagy level was reduced and even defective. In conclusion, in the process of KBD cartilage lesion, chondrocyte autophagy level may increase in the early stage, and decrease in the late stage with the progression of lesion. Low selenium and T-2 toxins may affect autophagy by AMPK/mTOR/ULK1 pathway.
Collapse
Affiliation(s)
- Huan Deng
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Xue Lin
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Rongqi Xiang
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Miaoye Bao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Lichun Qiao
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Haobiao Liu
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Huifang He
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Xinyue Wen
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| | - Jing Han
- Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory of Environment and Genes Related to Diseases, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
4
|
Shao Y, Zheng L, Jiang Y. Cadmium toxicity and autophagy: a review. Biometals 2024; 37:609-629. [PMID: 38277035 DOI: 10.1007/s10534-023-00581-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/31/2023] [Indexed: 01/27/2024]
Abstract
Cadmium (Cd) is an important environmental pollutant that poses a threat to human health and represents a critical component of air pollutants, food sources, and cigarette smoke. Cd is a known carcinogen and has toxic effects on the environment and various organs in humans. Heavy metals within an organism are difficult to biodegrade, and those that enter the respiratory tract are difficult to remove. Autophagy is a key mechanism for counteracting extracellular (microorganisms and foreign bodies) or intracellular (damaged organelles and proteins that cannot be degraded by the proteasome) stress and represents a self-protective mechanism for eukaryotes against heavy metal toxicity. Autophagy maintains cellular homeostasis by isolating and gathering information about foreign chemicals associated with other molecular events. However, autophagy may trigger cell death under certain pathological conditions, including cancer. Autophagy dysfunction is one of the main mechanisms underlying Cd-induced cytotoxicity. In this review, the toxic effects of Cd-induced autophagy on different human organ systems were evaluated, with a focus on hepatotoxicity, nephrotoxicity, respiratory toxicity, and neurotoxicity. This review also highlighted the classical molecular pathways of Cd-induced autophagy, including the ROS-dependent signaling pathways, endoplasmic reticulum (ER) stress pathway, Mammalian target of rapamycin (mTOR) pathway, Beclin-1 and Bcl-2 family, and recently identified molecules associated with Cd. Moreover, research directions for Cd toxicity regarding autophagic function were proposed. This review presents the latest theories to comprehensively reveal autophagy behavior in response to Cd toxicity and proposes novel potential autophagy-targeted prevention and treatment strategies for Cd toxicity and Cd-associated diseases in humans.
Collapse
Affiliation(s)
- Yueting Shao
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Liting Zheng
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yiguo Jiang
- Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, 511436, China.
- School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China.
| |
Collapse
|
5
|
Jin W, Cheng L, Liu C, Liu H, Jiao Q, Wang H, Deng Z, Seth CS, Guo H, Shi Y. Cadmium negatively affects the growth and physiological status and the alleviation effects by exogenous selenium in silage maize (Zea mays L.). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:21646-21658. [PMID: 38396179 DOI: 10.1007/s11356-024-32557-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Increasing soil cadmium (Cd) contamination is a serious threat to human food health and safety. In order to reduce Cd uptake and Cd toxicity in silage maize, hydroponic tests were conducted to investigate the effect of exogenous Cd on the toxicity of silage maize in this study. In the study, a combination of Cd (5, 20, 50, 80, and 10 μM) treatments was applied in a hydroponic system. With increasing Cd concentration, Cd significantly inhibited the total root length (RL), root surface area (SA), root volume (RV), root tip number (RT), and branching number (RF) of maize seedlings, which were reduced by 28.1 to 71.3%, 20.2 to 64.9%, 11.2 to 56.5%, 43.7 to 63.4%, and 38.2 to 72.6%, respectively. The excessive Cd accumulation inhibited biomass accumulation and reduced silage maize growth, photosynthesis, and chlorophyll content and activated the antioxidant systems, including increasing lipid peroxidation and stimulating catalase (CAT) and peroxidase (POD), but reduced the activity of superoxide dismutase (SOD) and ascorbate peroxidase (APX) in the root. Besides, selenium (Se) significantly decreased the Cd concentration of the shoot and root by 27.1% and 35.1% under Cd50, respectively. Our results reveal that exogenously applied Cd reduced silage maize growth and impaired photosynthesis. Whereas silage maize can tolerate Cd by increasing the concentration of ascorbate and glutathione and activating the antioxidant defense system, the application of exogenous selenium significantly reduced the content of Cd in silage maize.
Collapse
Affiliation(s)
- Weihuan Jin
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lan Cheng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chunyan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haoyang Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhaolong Deng
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | | | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Shi
- College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
6
|
Zhang S, Song W, Hua Z, Du J, Lucena RB, Wang X, Zhang C, Yang X. Overview of T-2 Toxin Enterotoxicity: From Toxic Mechanisms and Detoxification to Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3314-3324. [PMID: 38331717 DOI: 10.1021/acs.jafc.3c09416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Fusarium species produce a secondary metabolite known as T-2 toxin, which is the primary and most harmful toxin found in type A trichothecenes. T-2 toxin is widely found in food and grain-based animal feed and endangers the health of both humans and animals. T-2 toxin exposure in humans and animals occurs primarily through food administration; therefore, the first organ that T-2 toxin targets is the gut. In this overview, the research progress, toxicity mechanism, and detoxification of the toxin T-2 were reviewed, and future research directions were proposed. T-2 toxin damages the intestinal mucosa and destroys intestinal structure and intestinal barrier function; furthermore, T-2 toxin disrupts the intestinal microbiota, causes intestinal flora disorders, affects normal intestinal metabolic function, and kills intestinal epidermal cells by inducing oxidative stress, inflammatory responses, and apoptosis. The primary harmful mechanism of T-2 toxin in the intestine is oxidative stress. Currently, selenium and plant extracts are mainly used to exert antioxidant effects to alleviate the enterotoxicity of T-2 toxin. In future studies, the use of genomic techniques to find upstream signaling molecules associated with T-2 enterotoxin toxicity will provide new ideas for the prevention of this toxicity. The purpose of this paper is to review the progress of research on the intestinal toxicity of T-2 toxin and propose new research directions for the prevention and treatment of T-2 toxin toxicity.
Collapse
Affiliation(s)
- Shanshan Zhang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| | - Wenxi Song
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Zeao Hua
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Juanjuan Du
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Ricardo Barbosa Lucena
- Laboratory of Veterinary Pathology, Department of Veterinary Sciences, Federal University of Paraiba, Areia 58397-000, Paraiba Brazil
| | - Xuebing Wang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
| | - Cong Zhang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| | - Xu Yang
- College of Veterinary Medicine Henan Agricultural University No.15 Longzihu University Park, Zhengdong New District, Zhengzhou 450046, Henan, P. R. China
- Key Laboratory of Quality and Safety Control of Poultry Products, Ministry of Agriculture and Rural Affairs, Zhengzhou 450000, Henan, P. R. China
| |
Collapse
|
7
|
Zhang H, Zha X, Zhang B, Zheng Y, Elsabagh M, Wang H, Wang M. Gut microbiota contributes to bisphenol A-induced maternal intestinal and placental apoptosis, oxidative stress, and fetal growth restriction in pregnant ewe model by regulating gut-placental axis. MICROBIOME 2024; 12:28. [PMID: 38365714 PMCID: PMC10874076 DOI: 10.1186/s40168-024-01749-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/02/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND Bisphenol A (BPA) is an environmental contaminant with endocrine-disrupting properties that induce fetal growth restriction (FGR). Previous studies on pregnant ewes revealed that BPA exposure causes placental apoptosis and oxidative stress (OS) and decreases placental efficiency, consequently leading to FGR. Nonetheless, the response of gut microbiota to BPA exposure and its role in aggravating BPA-mediated apoptosis, autophagy, mitochondrial dysfunction, endoplasmic reticulum stress (ERS), and OS of the maternal placenta and intestine are unclear in an ovine model of gestation. RESULTS Two pregnant ewe groups (n = 8/group) were given either a subcutaneous (sc) injection of corn oil (CON group) or BPA (5 mg/kg/day) dissolved in corn oil (BPA group) once daily, from day 40 to day 110 of gestation. The maternal colonic digesta and the ileum and placental tissue samples were collected to measure the biomarkers of autophagy, apoptosis, mitochondrial dysfunction, ERS, and OS. To investigate the link between gut microbiota and the BPA-induced FGR in pregnant ewes, gut microbiota transplantation (GMT) was conducted in two pregnant mice groups (n = 10/group) from day 0 to day 18 of gestation after removing their intestinal microbiota by antibiotics. The results indicated that BPA aggravates apoptosis, ERS and autophagy, mitochondrial function injury of the placenta and ileum, and gut microbiota dysbiosis in pregnant ewes. GMT indicated that BPA-induced ERS, autophagy, and apoptosis in the ileum and placenta are attributed to gut microbiota dysbiosis resulting from BPA exposure. CONCLUSIONS Our findings indicate the underlying role of gut microbiota dysbiosis and gut-placental axis behind the BPA-mediated maternal intestinal and placental apoptosis, OS, and FGR. The findings further provide novel insights into modulating the balance of gut microbiota through medication or probiotics, functioning via the gut-placental axis, to alleviate gut-derived placental impairment or FGR. Video Abstract.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Bei Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Niğde Ömer Halisdemir University, Nigde, 51240, Turkey
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, KafrelSheikh, Egypt
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, 225009, P. R. China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, P. R. China.
- State Key Laboratory of Sheep Genetic Improvement and Healthy Production, Xinjiang Academy of Agricultural Reclamation Science, Shihezi, 832000, P. R. China.
| |
Collapse
|
8
|
Cheng C, Zhao X, Yang H, Coldea TE, Zhao H. Mechanism of selenite tolerance during barley germination: A combination of tissue selenium metabolism alterations and ascorbate-glutathione cycle modulation. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108189. [PMID: 37979575 DOI: 10.1016/j.plaphy.2023.108189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Selenite is widely used to increase Selenium (Se) content in cereals, however excessive selenite may be toxic to plant growth. In this study, barley was malted to elucidate the action mechanism of selenite in the generation and detoxification of oxidative toxicity. The results showed that high doses (600 μM) of selenite radically increased oxidative stress by the elevated accumulation of superoxide and malondialdehyde, leading to phenotypic symptoms of selenite-induced toxicity like stunted growth. Barley tolerates selenite through a combination of mechanisms, including altering Se distribution in barley, accelerating Se efflux, and increasing the activity of some essential antioxidant enzymes. Low doses (150 μM) of selenite improved barley biomass, respiratory rate, root vigor, and maintained the steady-state equilibrium between reactive oxygen species (ROS) and antioxidant enzyme. Selenite-induced proline may act as a biosignal to mediate the response of barley to Se stress. Furthermore, low doses of selenite increased the glutathione (GSH) and ascorbate (AsA) concentrations by mediating the ascorbate-glutathione cycle (AsA-GSH cycle). GSH intervention and dimethyl selenide volatilization appear to be the primary mechanisms of selenite tolerance in barley. Thus, results from this study will provide a better understanding of the mechanisms of selenite tolerance in crops.
Collapse
Affiliation(s)
- Chao Cheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiujie Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huirong Yang
- College of Food Science and Technology, Southwest Minzu University, Chengdu 610041, China
| | - Teodora Emilia Coldea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca 400372, Romania; Centre for Technology Transfer-BioTech, 64 Calea Florești, 400509 Cluj-Napoca, Romania
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China.
| |
Collapse
|
9
|
Ma F, Ma X, Yang F, Liao J, Qiao N, Yu W, Han Q, Li Y, Pan J, Hu L, Guo J, Tang Z. Exposure to copper induces endoplasmic reticulum (ER) stress-mediated apoptosis in chicken (Gallus gallus) myocardium. Vet Res Commun 2023; 47:2027-2040. [PMID: 37405676 DOI: 10.1007/s11259-023-10166-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/30/2023] [Indexed: 07/06/2023]
Abstract
Copper (Cu), an omnipresent environmental pollutant, can cause potential harm to the public and ecosystems. In order to study the cardiotoxicity caused by Cu, molecular biology techniques were used to analyze the effect of Cu on ER stress-mediated cardiac apoptosis. In vivo investigation, 240 1-day-old chickens were fed with Cu (11, 110, 220, and 330 mg/kg) diet for 7 weeks. The consequence showed that high-Cu can induce ER stress and apoptosis in heart tissue. The vitro experiments, the Cu treatment for 24 h could provoke ultrastructural damage and upregulate the apoptosis rate. Meanwhile, GRP78, GRP94, eIF2α, ATF6, XBP1, CHOP, Bax, Bak1, Bcl2, Caspase-12 and Caspase-3 genes levels, and GRP78, GRP94 and Caspase-3 proteins levels were increased, which indicated that ER stress and apoptosis in cardiomyocytes. But the mRNA level of Bcl2 were decreased after Cu exposure. Conversely, Cu-induced ER stress-mediated apoptosis can be alleviated by treatment with 4-PBA. These findings generally showed that Cu exposure can contribute to ER stress-mediated apoptosis in chicken myocardium, which clarifies the important mechanism link between ER stress and apoptosis, and provides a new perspective for Cu toxicology.
Collapse
Affiliation(s)
- Feiyang Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Xinyan Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, Jiangxi, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Na Qiao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Wenlan Yu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Qingyue Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, Guangdong, China.
| |
Collapse
|
10
|
Li Y, Xu R, Ma C, Yu J, Lei S, Han Q, Wang H. Potential functions of engineered nanomaterials in cadmium remediation in soil-plant system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122340. [PMID: 37562530 DOI: 10.1016/j.envpol.2023.122340] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/21/2023] [Accepted: 08/07/2023] [Indexed: 08/12/2023]
Abstract
Soil cadmium (Cd) contamination is a global environmental issue facing agriculture. Under certain conditions, the stable Cd that bound to soil particles tend to be remobilized and absorbed into plants, which is seriously toxic to plant growth and threat food safety. Engineering nanomaterials (ENMs) has attracted increasing attentions in the remediation of Cd pollution in soil-plant system due to their excellent properties with nano-scale size. Herein, this article firstly systematically summarized Cd transformation in soil, transport in soil-plant system, and the toxic effects in plants, following which the functions of ENMs in these processes to remediate Cd pollution are comprehensively reviewed, including immobilization of Cd in soil, inhibition in Cd uptake, transport, and accumulation, as well as physiological detoxication to Cd stress. Finally, some issues to be further studied were raised to promote nano-remediation technology in the environment. This review provides a significant reference for the practical application of ENMs in remediation of Cd pollution in soil, and contributes to sustainable development of agriculture.
Collapse
Affiliation(s)
- Yadong Li
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Ronghua Xu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Congli Ma
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Jie Yu
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Shang Lei
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Qianying Han
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China
| | - Hongjie Wang
- Hebei Key Laboratory of Close-to-Nature Restoration Technology of Wetlands, School of Eco-Environment, Hebei University, Baoding, 071002, China; College of Life Science, Hebei University, Baoding, 071002, China; Institute of Xiong'an New Area, Hebei University, Baoding, 071002, China.
| |
Collapse
|
11
|
Li N, Yi BJ, Saleem MAU, Li XN, Li JL. Autophagy protects against Cd-induced cell damage in primary chicken hepatocytes via mitigation of oxidative stress and endoplasmic reticulum stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 259:115056. [PMID: 37229871 DOI: 10.1016/j.ecoenv.2023.115056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 05/27/2023]
Abstract
Cadmium (Cd) is widespread globally in the environment as a toxic metal. Although it is well known to induce hepatotoxicity in the cells, defense mechanisms against the detrimental effects of Cd are still unknown. We examined the role of autophagy (a cellular defense mechanism) on Cd-induced cytotoxicity in bird hepatocytes. Primary chicken hepatocytes were cultured with different concentrations (0, 1, 2.5, 5, and 10 μM) of cadmium chloride (CdCl2) for 12 h. We assessed the effects of CdCl2 on the cell viability, antioxidant status, reactive oxygen species (ROS) generation, autophagy response and endoplasmic reticulum (ER) stress. Further, it is also evaluated that insight into underling molecular mechanisms involved in the study. In this study, CdCl2-induce hepatotoxicity was caused by drastically increased ROS generation as well as a reduction level of antioxidant enzymes. It was also demonstrated that marked activation of ER stress markers (GRP78, IRE1, PERK, ATF4, ATF6 and XBP-1 s) was observed. Simultaneously, increased activation of autophagy in low-dose CdCl2 (1 μM) exposed group was observed, but high-dose CdCl2 (10 μM) inhibited autophagy and significantly promoted apoptosis, as indicated by the expression of the autophagy related genes for P62, Beclin-1, ATG3, ATG5, ATG9, and the detection of autophagic vacuoles. Pretreatment with autophagy agonist Rapamycin (RAP) has successfully reduced ROS production, attenuated ER stress and enhanced hepatocytes viability, while the autophagy inhibitor 3-Methyladenine (3-MA) had the opposite effect. Hence, these findings stipulate that Cd could inhibit viability of hepatocytes in a dose-dependent manner. Autophagy relieves hepatotoxicity of Cd via reducing ROS generation and regulating ER stress. We identified autophagy as a novel protective mechanism involved in Cd-mediated chicken hepatotoxicity.
Collapse
Affiliation(s)
- Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; National Research Institute for Family Planning, Beijing 100081, PR China
| | - Bao-Jin Yi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | | | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Provincial Key Laboratory of Pathogenic Mechanism for Animal Disease and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
12
|
Liang K, Bai S, Zhu H. Effects of cadmium, lead, mercury, chromium, and selenium co-treatment on egg quality and fatty acids. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27493-1. [PMID: 37199839 DOI: 10.1007/s11356-023-27493-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/03/2023] [Indexed: 05/19/2023]
Abstract
This study aimed to reveal the effect of selenium (Se) and heavy metals (chromium (Cr), cadmium (Cd), lead (Pb), and mercury (Hg)) on the quality, fatty acids, and 13 kinds of ions in the egg yolk and albumen. Four experimental groups were established, including a control group (control; basal diet), Se group (basal diet + Se), heavy metals group (basal diet + CdCl2 + Pb(NO3)2 + HgCl2 + CrCl3), and Se + heavy metal (HM) group (basal diet + Se + CdCl2 + Pb(NO3)2 + HgCl2 + CrCl3). Se supplementation significantly increased the experimental egg yolk percentage since Se accumulation mainly occurred in the yolks of the eggs. The Cr content in the yolks of the Se + heavy metal groups decreased at 28 days, while a significant reduction was evident in the Cd and Hg levels of the Se + heavy metal yolks compared to the heavy metal group at 84 days. The complex interactions between the elements were analyzed to determine the positive and negative correlations. Se displayed a high positive correlation with Cd and Pb in the yolk and albumen, while the heavy metals minimally affected the fatty acids in the egg yolk.
Collapse
Affiliation(s)
- Kehong Liang
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| | - Shiping Bai
- Institute of Animal Nutrition, Feed Engineering Research Centre of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Hong Zhu
- Institute of Food and Nutrition Development, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| |
Collapse
|
13
|
Tong X, Fu X, Yu G, Qu H, Zou H, Song R, Ma Y, Yuan Y, Bian J, Gu J, Liu Z. Polystyrene exacerbates cadmium-induced mitochondrial damage to lung by blocking autophagy in mice. ENVIRONMENTAL TOXICOLOGY 2023. [PMID: 37022104 DOI: 10.1002/tox.23804] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/09/2023] [Accepted: 03/27/2023] [Indexed: 06/19/2023]
Abstract
Cadmium (Cd) is an environmental heavy metal, and its accumulation is harmful to animal and human health. The cytotoxicity of Cd includes oxidative stress, apoptosis, and mitochondrial histopathological changes. Furthermore, polystyrene (PS) is a kind of microplastic piece derived from biotic and abiotic weathering courses, and has toxicity in various aspects. However, the potential mechanism of action of Cd co-treated with PS is still poorly unclear. The objective of this study was to investigate the effects of PS on Cd-induced histopathological injury of mitochondria in the lung of mice. In this study, the results have showed that Cd could induce the activity of oxidative enzymes of the lung cells in mice, increasing the content of partial microelement and the phosphorylation of inflammatory factor NF-κB p65. Cd further destroys the integrity of mitochondria by increasing the expression of apoptotic protein and blocking the autophagy. In addition, PS solely group aggravated the lung damage in mice, especially mitochondrial toxicity, and played a synergistic effect with Cd in lung injury. However, how PS can augment mitochondrial damage and synergism with Cd in lung of mice requiring further exploration. Therefore, PS was able to exacerbate Cd-induced mitochondrial damage to the lung in mice by blocking autophagy, and was associated with the apoptosis.
Collapse
Affiliation(s)
- Xishuai Tong
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Xiaohui Fu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Gengsheng Yu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Huayi Qu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Hui Zou
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Ruilong Song
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yonggang Ma
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Yan Yuan
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianchun Bian
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Jianhong Gu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| | - Zongping Liu
- Institutes of Agricultural Science and Technology Development (Joint International Research laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China)/College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225009, China
| |
Collapse
|
14
|
Gao PC, Wang AQ, Chen XW, Cui H, Li Y, Fan RF. Selenium alleviates endoplasmic reticulum calcium depletion-induced endoplasmic reticulum stress and apoptosis in chicken myocardium after mercuric chloride exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:51531-51541. [PMID: 36810819 DOI: 10.1007/s11356-023-25970-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.
Collapse
Affiliation(s)
- Pei-Chao Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - An-Qi Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Xue-Wei Chen
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Han Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Yue Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China
| | - Rui-Feng Fan
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
- Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, 61 Daizong Street, Tai'an City, 271018, Shandong Province, China.
| |
Collapse
|
15
|
Zhang H, Zheng Y, Liu X, Zha X, Elsabagh M, Ma Y, Jiang H, Wang H, Wang M. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. ENVIRONMENT INTERNATIONAL 2023; 173:107806. [PMID: 36841186 DOI: 10.1016/j.envint.2023.107806] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/03/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
Bisphenol A (BPA)-induced oxidative stress (OS) and its potentially associated autophagy and apoptosis have not been studied previously in pregnant ewes. Accordingly, this study investigated the underlying mechanisms of BPA-induced autophagy and apoptosis in the placenta and primary trophoblasts of pregnant ewes exposed to BPA both in vivo and in vitro. In vivo experiment, pregnant Hu ewes (n = 8) were exposed to 5 mg/kg/d of BPA compared to control ewes (n = 8) receiving only corn oil from day 40 through day 110 of gestation. Exposure to BPA during gestation resulted in placental insufficiency, fetal growth restriction (FGR), autophagy, endoplasmic reticulum stress (ERS), mitochondrial dysfunction, OS, and apoptosis in type A placentomes. Regarding in vitro model, primary ovine trophoblasts were exposed to BPA, BPA plus chloroquine (CQ; an autophagy inhibitor) or BPA plus rapamycin (RAP; an autophagy activator) for 12 h. Data illustrated that exposure to BPA enhanced autophagy (ULK1, Beclin-1, LC3, Parkin, and PINK1), ERS (GRP78, CHOP10, ATF4, and ATF6) and apoptosis (Caspase 3, Bcl-2, Bax, P53) but decreased the antioxidant (CAT, Nrf2, HO-1, and NQO1)-related mRNA and protein expressions as well as impaired the mitochondrial function. Moreover, treatment with CQ exacerbated the BPA-mediated OS, mitochondrial dysfunction, apoptosis, and ERS. On the contrary, RAP treatment counteracted the BPA-induced trophoblast dysfunctions mentioned above. Overall, the findings illustrated that BPA exposure could contribute to autophagy in the ovine placenta and trophoblasts and that autophagy, in turn, could alleviate BPA-induced apoptosis, mitochondrial dysfunction, ERS, and OS. These results offer new mechanistic insights into the role of autophagy in mitigating BPA-induced placental dysfunctions and FGR.
Collapse
Affiliation(s)
- Hao Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Yi Zheng
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyun Liu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Xia Zha
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Mabrouk Elsabagh
- Department of Animal Production and Technology, Faculty of Agricultural Sciences and Technologies, Nĭgde Ömer Halisdemir University, Nigde 51240, Turkey; Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Yi Ma
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China
| | - Honghua Jiang
- Department of Pediatrics, Northern Jiangsu People's Hospital, Clinical Medical College, Yangzhou University, Yangzhou 225001, PR China.
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
16
|
Chen D, Lu H, Ma Y, Huang Y, Zhang T, Fan S, Lin W, Huang Y, Jin H, Ruan Y, Xu JF, Pi J. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for therapeutic development. Front Nutr 2023; 10:1116051. [PMID: 36819694 PMCID: PMC9931911 DOI: 10.3389/fnut.2023.1116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.
Collapse
Affiliation(s)
- Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Yongdui Ruan,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jun-Fa Xu,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jiang Pi,
| |
Collapse
|
17
|
Bi SS, Talukder M, Sun XT, Lv MW, Ge J, Zhang C, Li JL. Cerebellar injury induced by cadmium via disrupting the heat-shock response. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:22550-22559. [PMID: 36301385 DOI: 10.1007/s11356-022-23771-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Cadmium (Cd) is a food contaminant that poses serious threats to animal health, including birds. It is also an air pollutant with well-known neurotoxic effects on humans. However, knowledge on the neurotoxic effects of chronic Cd exposure on chicken is limited. Thus, this study assessed the neurotoxic effects of chronic Cd on chicken cerebellum. Chicks were exposed to 0 (control), 35 (low), and 70 (high) mg/kg of Cd for 90 days, and the expression of genes related to the heat-shock response was investigated. The chickens showed clinical symptoms of ataxia, and histopathology revealed that Cd exposure decreased the number of Purkinje cells and induced degeneration of Purkinje cells with pyknosis, and some dendrites were missing. Moreover, Cd exposure increased the expression of heat-shock factors, HSF1, HSF2, and HSF3, and heat-shock proteins, HSP60, HSP70, HSP90, and HSP110. These changes indicate that HSPs improve the tolerance of the cerebellum to Cd. Conversely, the expressions of HSP10, HSP25, and HSP40 were decreased significantly, which indicated that Cd inhibits the expression of small heat-shock proteins. However, HSP27 and HSP47 were upregulated following low-dose Cd exposure, but downregulated under high-dose Cd exposure. This work sheds light on the toxic effects of Cd on the cerebellum, and it may provide evidence for health risks posed by Cd. Additionally, this work also identified a novel target of Cd exposure in that Cd induces cerebellar injury by disrupting the heat-shock response. Cd can be absorbed into chicken's cerebellum through the food chain, which eventually caused cerebellar injury. This study provided a new insight that chronic Cd-induced neurotoxicity in the cerebellum is associated with alterations in heat-shock response-related genes, which indicated that Cd through disturbing heat-shock response induced cerebellar injury.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu'an, 237012, People's Republic of China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Xue-Tong Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Key Laboratory of the Provincial Education, Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
| |
Collapse
|
18
|
Sun XH, Lv MW, Zhao YX, Zhang H, Ullah Saleem MA, Zhao Y, Li JL. Nano-Selenium Antagonized Cadmium-Induced Liver Fibrosis in Chicken. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:846-856. [PMID: 36541832 DOI: 10.1021/acs.jafc.2c06562] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Cadmium is a global ecological toxic pollutant; in animals, hepatotoxic fibrosis is caused by bioaccumulation of Cd through food chains. We determined the path of nano-Se antagonism in Cd-induced hepatocyte pyroptosis by targeting the APJ-AMPK-PGC1α pathway, using an in vivo model of hepatotoxicity. All 1-day-old chicks were treated with Cd (140 mg/kg BW/day) and/or nano-Se (0.3 or 0.6 mg/kg BW/day) for 90 days. The result showed that Cd (1.55 ± 0.148) activated NLRP3 inflammasome 49.903% as compared to the Con group (1.034 ± 0.008) to release the inflammasome as a result of hepatocyte pyroptosis (2.824 ± 0.057). Compared with the Con group (1.010 ± 0.021), Kupffer cells were 219.109% more to activate astrocytes through the APJ-AMPK-PGC1α pathway, resulting in 185.149% more hepatic fibrosis. However, the fibrosis degree of the H-Se + Cd group (1.252 ± 0.056) was 56.5278% (p < 0.001) lower than that of the Cd group (2.880 ± 0.124). Therefore, this study established that pyroptotic hepatocytes and Kupffer cells could be targeted for nano-Se antagonizing Cd toxicity, which reveals a potential new approach targeting astrocytes for the treatment of liver fibrosis triggered by Cd pollution.
Collapse
|
19
|
Bi SS, Talukder M, Jin HT, Lv MW, Ge J, Zhang C, Li JL. Nano-selenium alleviates cadmium-induced cerebellar injury by activating metal regulatory transcription factor 1 mediated metal response. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2022; 11:402-412. [PMID: 36382201 PMCID: PMC9636061 DOI: 10.1016/j.aninu.2022.06.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/22/2022] [Accepted: 06/22/2022] [Indexed: 05/21/2023]
Abstract
This study aims to investigate the role of metal regulatory transcription factor 1 (MTF1)-mediated metal response in cadmium (Cd)-induced cerebellar injury, and to evaluate the antagonistic effects of nano-selenium (Nano-Se) against Cd toxicity. A total of 80 chicks (1 d old, male, Hy-Line Variety White) were randomly allocated to 4 treatment groups for 3 months: the control group (fed with a basic diet, n = 20), the Nano-Se group (basic diet with 1 mg/kg nano-Se 1 mg/kg Nano-Se in basic diet, n = 20), the Nano-Se + Cd group (basic diet with 1 mg/kg Nano-Se and 140 mg/kg CdCl2, n = 20) and the Cd group (basic diet with 140 mg/kg CdCl2 , n = 20). The results of the experiment showed that the Purkinje cells were significantly decreased with their degradation and indistinct nucleoli after Cd exposure. Moreover, exposure to Cd caused a significant accumulation of Cd and cupper. However, the contents of Se, iron, and zinc were decreased, thereby disturbing the metal homeostasis in the cerebellum. The Cd exposure also resulted in high levels of malondialdehyde (MDA) and down regulation of selenoprotein transcriptome. Furthermore, the expressions of MTF1, metallothionein 1 (MT1), MT2, zinc transporter 3 (ZNT3), ZNT5, ZNT10, zrt, irt-like protein 8 (ZIP8), ZIP10, transferrin (TF), ferroportin 1 (FPN1), ATPase copper transporting beta (ATP7B), and copper uptake protein 1 (CTR1) were inhibited by Cd exposure. However, all these changes were significantly alleviated by the supplementation of Nano-Se. This study proved that Cd could disorder metal homeostasis and induce oxidative stress, whereas Nano-Se could relieve all these negative effects caused by Cd via activating the MTF1-mediated metal response in the cerebellum of chicken.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Biotechnology and Pharmaceutical Engineering of West Anhui University, Lu’an 237012, China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin 150010, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, China
- Corresponding author. College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
20
|
Wang J, Liu C, Zhao Y, Wang J, Li J, Zheng M. Selenium regulates Nrf2 signaling to prevent hepatotoxicity induced by hexavalent chromium in broilers. Poult Sci 2022; 102:102335. [PMID: 36470031 PMCID: PMC9719864 DOI: 10.1016/j.psj.2022.102335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 11/05/2022] [Accepted: 11/08/2022] [Indexed: 11/13/2022] Open
Abstract
Hexavalent chromium (Cr(Ⅵ)) is considered to be a common environmental pollutant, which widely exists in industrial effluents and wastes and then potentially noxious effects to the health of the poultry. Studies have reported that selenium (Se), which is one of the essential trace elements of the poultry and participates in the oxidative metabolism, can alleviate Cr(Ⅵ)-induced organ damage by inhibiting oxidative stress, but its specific molecular mechanism remains unclear. Herein, animal models of Cr(Ⅵ)- and Se-exposure were constructed using broilers to investigate the antagonistic mechanism of Se to Cr(Ⅵ)-induced hepatotoxicity. In this experiment, the four groups of broiler models were used as the research objects: control, Se, Se plus Cr, and Cr groups. Histopathology and ultrastructure liver changes were observed. Liver-somatic index, serum biochemistry, oxidative stress, Nrf2 pathway related factors, and autophagy-related genes were also determined. Overall, Se was found to ameliorate the disorganized structure, hepatic insufficiency, and oxidative damage caused by Cr(Ⅵ) exposure. Electron microscopy analysis further showed that the number of autophagosomes was obviously decreased after Se treatment compared to Cr group. Furthermore, gene and protein expression analyses illustrated that the levels of Nrf2, glutathione peroxidase 1 (GPx-1), NAD(P)H: quinone oxidoreductase 1 (NQO1), and mechanistic target of rapamycin (mTOR) in the Se&Cr group was upregulated, along with decreased expression of Beclin 1, ATG5 and LC3 compared to the Cr group. These suggest that Se can repair the oxidative lesion and autophagy induced by Cr(Ⅵ) exposure in broiler livers by upregulating the Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Jingqiu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Ci Liu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| | - Yanbing Zhao
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jinglu Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Jianhui Li
- College of Animal Science, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
| | - Mingxue Zheng
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Jinzhong, 030801, P. R. China
- Corresponding authors:
| |
Collapse
|
21
|
Cui T, Wang X, Hu J, Lin T, Hu Z, Guo H, Huang G, Hu G, Zhang C. Molybdenum and cadmium co-exposure induces CaMKKβ/AMPK/mTOR pathway mediated-autophagy by subcellular calcium redistribution in duck renal tubular epithelial cells. J Inorg Biochem 2022; 236:111974. [PMID: 36027844 DOI: 10.1016/j.jinorgbio.2022.111974] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/06/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022]
Abstract
Excessive molybdenum (Mo) and cadmium (Cd) are toxic environmental pollutants. Our previous research confirmed excessive Mo and Cd co-induced calcium homeostasis disorder and autophagy in duck kidneys, but how calcium ion (Ca2+) regulates autophagy is unclear. The results revealed that the Mo- and/or Cd-induced cytosolic Ca2+ concentration ([Ca2+]c) increase mainly came from intracellular calcium stores. Mo and/or Cd caused mitochondrial Ca2+ content ([Ca2+]mit) and [Ca2+]c increase with endoplasmic reticulum (ER) Ca2+ content ([Ca2+]ER) decrease and upregulated calcium homeostasis-related factor expression levels, but 2-Aminoethoxydiphenyl borate (2-APB) reversed subcellular Ca2+ redistribution. Increased Phospholipase C (PLC) and inositol 1,4,5-trisphosphate (IP3) activities and inositol 1,4,5-trisphosphate receptor (IP3R) expression level were observed in Mo- and/or Cd-treated cells, which was reversed by the PLC inhibitor U-73122. 2-APB and 1,2-Bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid acetoxymethyl ester (BAPTA-AM) addition mitigated [Ca2+]c and autophagy (variations in microtubule-associated protein light chain 3 (LC3), LC3B-II/LC3B-I, autophagy related 5 (ATG5), sequestosome-1(P62), programmed cell death-1 (Beclin-1) and Dynein expression levels, LC3 puncta, autophagosomes and acid vesicle organelles) under Mo and/or Cd treatment, respectively, while thapsigargin (TG) had the opposite impacts. Additionally, the calmodulin-dependent protein kinase kinase β (CaMKKβ) inhibitor STO-609 reversed the increased CaMKKβ, adenosine 5'-monophosphate-activated protein kinase (AMPK), Beclin-1, and LC3B-II/LC3B-I protein expression levels and reduced mammalian target of rapamycin (mTOR) and P62 protein expression levels in Mo- and/or Cd-exposed cells. Collectively, the results confirmed that [Ca2+]c overload resulted from PLC/IP3/IP3R pathway-mediated ER Ca2+ release, and then activated autophagy by the CaMKKβ/AMPK/mTOR pathway in Mo- and/or Cd-treated duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Ting Cui
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Xueru Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Junyu Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Zhisheng Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Huiling Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Gang Huang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, Jiangxi, China..
| |
Collapse
|
22
|
Xiong X, Zhang X, Zhang Y, Xie J, Bian Y, Yin Q, Tong R, Yu D, Pan L. Sarco/endoplasmic reticulum Ca 2+ ATPase (SERCA)-mediated ER stress crosstalk with autophagy is involved in tris(2-chloroethyl) phosphate stress-induced cardiac fibrosis. J Inorg Biochem 2022; 236:111972. [PMID: 36087434 DOI: 10.1016/j.jinorgbio.2022.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 12/15/2022]
Abstract
Excessive organophosphate flame retardant (OPFR) use in consumer products has been reported to increase human disease susceptibility. However, the adverse effects of tris(2-chloroethyl) phosphate (TCEP) (a chlorinated alkyl OPFR) on the heart remain unknown. In this study, we tested whether cardiac fibrosis occurred in animal models of TCEP (10 mg/kg b.w./day) administered continuously by gavage for 30 days and evaluated the specific role of sarco/endoplasmic reticulum Ca2+ ATPase (SERCA). First, we confirmed that TCEP could trigger cardiac fibrosis by histopathological observation and cardiac fibrosis markers. We further verified that cardiac fibrosis occurred in animal models of TCEP exposure accompanied by SERCA2a, SERCA2b and SERCA2c downregulation. Notably, inductively coupled plasma-mass spectrometry (ICP-MS) analysis revealed that the cardiac concentrations of Ca2+ increased by 45.3% after TCEP exposure. Using 4-Isopropoxy-N-(2-methylquinolin-8-yl)benzamide (CDN1163, a small molecule SERCA activator), we observed that Ca2+ overload and subsequent cardiac fibrosis caused by TCEP were both alleviated. Simultaneously, the protein levels of endoplasmic reticulum (ER) markers (protein kinase R-like endoplasmic reticulum kinase (PERK), inositol requiring protein 1α (IRE1α), eukaryotic initiation factor 2 α (eIF2α)) were upregulated by TCEP, which could be abrogated by CDN1163 pretreatment. Furthermore, we observed that CDN1163 supplementation prevented overactive autophagy induced by TCEP in the heart. Mechanistically, TCEP could lead to Ca2+ overload by inhibiting the expression of SERCA, thereby triggering ER stress and overactive autophagy, eventually resulting in cardiac fibrosis. Together, our results suggest that the Ca2+ overload/ER stress/autophagy axis can act as a driver of cardiotoxicity induced by TCEP.
Collapse
Affiliation(s)
- Xuan Xiong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Xiaoqin Zhang
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China; Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Yuan Zhang
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Jiaqi Xie
- Hunan Food and Drug Vocational College, Changsha 410078, PR China
| | - Yuan Bian
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Qinan Yin
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China
| | - Rongsheng Tong
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Dongke Yu
- Department of Pharmacy, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Personalized Drug Therapy Key Laboratory of Sichuan Province, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China; Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Lingai Pan
- Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, Sichuan, China; Department of Critical Care Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China.
| |
Collapse
|
23
|
Požgajová M, Navrátilová A, Kovár M. Curative Potential of Substances with Bioactive Properties to Alleviate Cd Toxicity: A Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12380. [PMID: 36231680 PMCID: PMC9566368 DOI: 10.3390/ijerph191912380] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Rapid urbanization and industrialization have led to alarming cadmium (Cd) pollution. Cd is a toxic heavy metal without any known physiological function in the organism, leading to severe health threat to the population. Cd has a long half-life (10-30 years) and thus it represents serious concern as it to a great extent accumulates in organs or organelles where it often causes irreversible damage. Moreover, Cd contamination might further lead to certain carcinogenic and non-carcinogenic health risks. Therefore, its negative effect on population health has to be minimalized. As Cd is able to enter the body through the air, water, soil, and food chain one possible way to defend and eliminate Cd toxicities is via dietary supplements that aim to eliminate the adverse effects of Cd to the organism. Naturally occurring bioactive compounds in food or medicinal plants with beneficial, mostly antioxidant, anti-inflammatory, anti-aging, or anti-tumorigenesis impact on the organism, have been described to mitigate the negative effect of various contaminants and pollutants, including Cd. This study summarizes the curative effect of recently studied bioactive substances and mineral elements capable to alleviate the negative impact of Cd on various model systems, supposing that not only the Cd-derived health threat can be reduced, but also prevention and control of Cd toxicity and elimination of Cd contamination can be achieved in the future.
Collapse
Affiliation(s)
- Miroslava Požgajová
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Alica Navrátilová
- Institute of Nutrition and Genomics, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| | - Marek Kovár
- Institute of Plant and Environmental Science, Faculty of Agrobiology and Food Resources, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 94976 Nitra, Slovakia
| |
Collapse
|
24
|
Zhang W, Yin K, Shi J, Shi X, Qi X, Lin H. The decrease of selenoprotein K induced by selenium deficiency in diet improves apoptosis and cell progression block in chicken liver via the PTEN/PI3K/AKT pathway. Free Radic Biol Med 2022; 189:20-31. [PMID: 35841984 DOI: 10.1016/j.freeradbiomed.2022.07.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/09/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Selenoprotein K (SELK) is imperative for normal development of chicken. It does regulate to chicken's physiological function. However, the injury of SELK-deficiency done on chicken liver and its underlying mechanism involved has not yet been covered. Therefore, we built SELK- deficiency model by feeding diet which contained low concentration of selenium (Se) to discuss SELK's regulation mechanism. Through using TUNEL, TEM, western blot and qRT-PCR we found apoptosis occurred in chicken liver in the SELK-deficiency groups. In the meanwhile, our study showed there were differentially expressed of the PTEN/PI3K/AKT pathway, calcium homeostasis, endoplasmic reticulum healthy and cell cycle progression in SELK-deficiency chicken liver tissues. In order to claim the regulation mechanism of SELK, we set SELK-knock down model in the LMH. The results in vitro were coincided with those in vivo. In the SELK-deficiency groups, the PTEN/PI3K/AKT pathway was activated and then induced ERS which eventually resulted in apoptosis in chicken liver. As the same time, the PTEN/PI3K/AKT pathway also regulated the combined effective of MDM2-p53, which leaned liver cells to G1/S blocking. Our findings support the potential of SELK in maintain the health of chicken liver, and indicate that adding proper amount of Se on the daily dietary may alleviate the deficiency of selenium.
Collapse
Affiliation(s)
- Wenyue Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Kai Yin
- College of Wildlife & Protected Area, Northeast Forestry University, Harbin, 150040, PR China
| | - Jiahui Shi
- College of Life Science, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xu Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue Qi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
25
|
Dai XY, Zhu SY, Chen J, Li MZ, Zhao Y, Talukder M, Li JL. Lycopene alleviates di(2-ethylhexyl) phthalate-induced splenic injury by activating P62-Keap1-NRF2 signaling. Food Chem Toxicol 2022; 168:113324. [PMID: 35917956 DOI: 10.1016/j.fct.2022.113324] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 01/15/2023]
Abstract
Di(2-ethylhexyl) phthalate (DEHP) is an omnipresent environmental pollutant. It has been determined that DEHP is involved in multiple health disorders. Lycopene (Lyc) is a natural carotenoid pigment, with anti-inflammatory and antioxidant properties. However, it is not clear whether Lyc can protect the spleen from DEHP-induced oxidative damage. A total of 140 mice were randomly divided into seven groups (n = 20) and continuously gavaged with corn oil, distilled water, DEHP (500 or 1000 mg/kg BW/day) and/or Lyc (5 mg/kg BW/day) for 28 days. Histopathological and ultrastructural results showed a DEHP-induced inflammatory response and mitochondrial injuries. Moreover, DEHP exposure induced redox imbalance, which resulted in the up-regulation of ROS activity and MDA content, and the down-regulation of T-AOC, T-SOD and CAT in the DEHP groups. Simultaneously, our results also demonstrated that DEHP-induced kelch-like ECH-associated protein 1 (Keap1) expression was downregulated, and the expression levels of P62, nuclear factor erythroid 2-related factor (NRF2) and their downstream target genes were up-regulated. However, the supplementary Lyc reverted these changes to normal levels. Together, Lyc prevented DEHP-induced splenic injuries by regulating the P62-Keap1-NRF2 signaling pathway. Hence, the protective effects of Lyc might be a therapeutic strategy to ameliorate DEHP-induced splenic damage.
Collapse
Affiliation(s)
- Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, 330045, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jian Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
26
|
Zhang R, Liu Q, Guo R, Zhang D, Chen Y, Li G, Huang X. Selenium Deficiency Induces Autophagy in Chicken Bursa of Fabricius Through ChTLR4/MyD88/NF-κB Pathway. Biol Trace Elem Res 2022; 200:3303-3314. [PMID: 34467441 DOI: 10.1007/s12011-021-02904-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/23/2021] [Indexed: 12/22/2022]
Abstract
To explore the role of ChTLR4/MyD88/NF-κB signaling pathway on autophagy induced by selenium (Se) deficiency in the chicken bursa of Fabricius, autophagosome formation in the bursa of Fabricius was observed by transmission electron microscopy. Quantitative real-time PCR (qRT-PCR) and Western blot were used to detect the expression of ChTLR4 and its signaling pathway molecules (MyD88, TRIF, and NF-κB), inflammatory factors (IL-1β, IL-8, and TNF-α), and autophagy-related factors (ATG5, Beclin1, and LC3-II) in the Se-deficient chicken bursa of Fabricius at different ages. The results showed that ChTLR4/MyD88/NF-κB signaling pathway was activated in the chicken bursa of Fabricius and autophagy was induced at the same time by Se deficiency. In order to verify the relationship between the autophagy and ChTLR4/MyD88/NF-κB signaling pathway, HD11 cells were used to establish the normal C group, low Se group, and low Se + TLR4 inhibitor (TAK242) group. The results demonstrated that autophagy could be hindered when the TLR4 signaling pathway was inhibited under Se deficiency. Furthermore, autophagy double-labeled adenovirus was utilized to verify the integrity of autophagy flow induced by Se deficiency in HD11 cells. The results showed that it appeared to form a complete autophagy flow under the condition of Se deficiency and could be blocked by TAK242. In summary, we found that Se deficiency was involved in the chicken bursa of Fabricius autophagy occurring by activating the ChTLR4/MyD88/NF-κB pathway.
Collapse
Affiliation(s)
- Ruili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Qing Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Rong Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Di Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Yang Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Guangxing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China
| | - Xiaodan Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, People's Republic of China.
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Harbin, 150030, People's Republic of China.
| |
Collapse
|
27
|
Cadmium-induced splenic lymphocytes anoikis is not mitigated by activating Nrf2-mediated antioxidative defense response. J Inorg Biochem 2022; 234:111882. [DOI: 10.1016/j.jinorgbio.2022.111882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/19/2022] [Accepted: 05/28/2022] [Indexed: 12/12/2022]
|
28
|
Ramírez-Acosta S, Uhlírová R, Navarro F, Gómez-Ariza JL, García-Barrera T. Antagonistic Interaction of Selenium and Cadmium in Human Hepatic Cells Through Selenoproteins. Front Chem 2022; 10:891933. [PMID: 35692693 PMCID: PMC9174642 DOI: 10.3389/fchem.2022.891933] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cadmium (Cd) is a highly toxic heavy metal for humans and animals, which is associated with acute hepatotoxicity. Selenium (Se) confers protection against Cd-induced toxicity in cells, diminishing the levels of ROS and increasing the activity of antioxidant selenoproteins such as glutathione peroxidase (GPx). The aim of this study was to evaluate the antagonistic effect of selenomethionine (SeMet) against Cd toxicity in HepG2 cells, through the modulation of selenoproteins. To this end, the cells were cultured in the presence of 100 µM SeMet and 5 μM, 15 µM, and 25 µM CdCl2 and a combination of both species for 24 h. At the end of the experiment, cell viability was determined by MTT assay. The total metal content of Cd and Se was analyzed by triple-quadrupole inductively coupled plasma–mass spectrometry (ICP-QqQ-MS). To quantify the concentration of three selenoproteins [GPx, selenoprotein P (SELENOP), and selenoalbumin (SeAlb)] and selenometabolites, an analytical methodology based on column switching and a species-unspecific isotopic dilution approach using two-dimensional size exclusion and affinity chromatography coupled to ICP-QqQ-MS was applied. The co-exposure of SeMet and Cd in HepG2 cells enhanced the cell viability and diminished the Cd accumulation in cells. Se supplementation increased the levels of selenometabolites, GPx, SELENOP, and SeAlb; however, the presence of Cd resulted in a significant diminution of selenometabolites and SELENOP. These results suggested that SeMet may affect the accumulation of Cd in cells, as well as the suppression of selenoprotein synthesis induced by Cd.
Collapse
Affiliation(s)
- S. Ramírez-Acosta
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
| | - R. Uhlírová
- Faculty of Chemistry, Brno University of Technology, Brno, Czech
| | - F. Navarro
- Research Center for Natural Resources, Health and the Environment (RENSMA), Integrated Sciences, Cell Biology, Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
- *Correspondence: F. Navarro, ; T. García-Barrera,
| | - J. L. Gómez-Ariza
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
| | - T. García-Barrera
- Department of Chemistry, Research Center for Natural Resources, Health and the Environment (RENSMA), Faculty of Experimental Sciences, Campus El Carmen, University of Huelva, Huelva, Spain
- *Correspondence: F. Navarro, ; T. García-Barrera,
| |
Collapse
|
29
|
Lin T, Nie G, Hu R, Luo J, Xing C, Hu G, Zhang C. Involvement of calcium homeostasis and unfolded protein response in autophagy co-induced by molybdenum and cadmium in duck (Anas platyrhyncha) brain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:38303-38314. [PMID: 35076842 DOI: 10.1007/s11356-022-18738-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are harmful to animals, but neurotoxicity caused by Mo and Cd co-exposure in ducks is yet unknown. To assess joint impacts of Mo and Cd on autophagy via calcium homeostasis and unfolded protein response (UPR) in duck brain, 40 healthy 7-day-old ducks (Anas platyrhyncha) were assigned to 4 groups at random and fed diets supplemented with different doses of Mo or/and Cd for 16 weeks, respectively. Brain tissues were excised for experiment. Results exhibited that Mo or/and Cd disturbed calcium homeostasis by decreased ATPase activities and increased calcium (Ca) content, and upregulated calcium homeostasis-related factors Ca2+/CAM-dependent kinase IIɑ (CaMKIIɑ), calcineurin (CaN), inositol-1,4,5-trisphosphate receptor (IP3R), and calreticulin (CRT) expression levels. Meanwhile, the upregulation of UPR-related factor expression levels indicated that Mo or/and Cd activated UPR. Moreover, Mo or/and Cd triggered autophagy through promoting the number of autophagosomes and LC3II immunofluorescence intensity and altering autophagy key factor expression levels. Correlation analysis showed that there were obvious connections among Ca2+ homeostasis, endoplasmic reticulum (ER) stress, and autophagy induced by Mo or/and Cd. Thence, it can be speculated that autophagy initiated by Mo or/and Cd may be associated with interfering Ca2+ homeostasis and triggering UPR.
Collapse
Affiliation(s)
- Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Gaohui Nie
- School of Information Technology, Jiangxi University of Finance and Economics, No. 665 Yuping West Street, Economic and Technological Development District, Nanchang, 330032, Jiangxi, People's Republic of China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Junrong Luo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Economic and Technological Development District, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Nanchang, 330045, Jiangxi, People's Republic of China.
| |
Collapse
|
30
|
Zhang C, Lin T, Nie G, Hu R, Pi S, Wei Z, Wang C, Li G, Hu G. In vivo assessment of molybdenum and cadmium co-induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks (Anas platyrhyncha). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113099. [PMID: 34963067 DOI: 10.1016/j.ecoenv.2021.113099] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/01/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Excess molybdenum (Mo) and cadmium (Cd) are widespread environmental and industrial metal pollutants. To evaluate the combined effects of Mo and Cd on calcium homeostasis and autophagy in duck kidneys. 160 healthy 7-day-old ducks (Anas platyrhyncha) were randomized into 4 groups and given to a basic diet, adding various doses of Mo or/and Cd for 16 weeks. On the 4th, 8th, 12th and 16th weeks, kidney tissues were collected. The study exhibited that Mo or/and Cd caused histological abnormality, reduced the activities of Ca2+ ATPase, Mg2+ ATPase, Na+-K+ ATPase and Ca2+-Mg2+ ATPase, K and Mg contents, and increased Na and Ca contents, upregulated CaMKKβ, CaMKIIɑ, CaN, IP3R, GRP78, GRP94, CRT mRNA levels and CaMKIIɑ, CaN, IP3R protein levels. Moreover, exposure to Mo or/and Cd notably promoted the amount of autophagosomes and LC3II immunofluorescence, upregulated AMPKα1, ATG5, Beclin-1, LC3A, LC3B mRNA levels and Beclin-1, LC3II/LC3I protein levels, downregulated mTOR, Dynein, P62 mRNA levels and P62 protein level. The changes of above indicators in combined group were more obvious. Overall, the results suggest that Mo and Cd co-exposure may can synergistically induce nephrotoxicity via causing calcium homeostasis disorder and autophagy in ducks.
Collapse
Affiliation(s)
- Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Tianjin Lin
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Gaohui Nie
- School of Information Technology,Jiangxi University of Finance and Economics, No. 665 Yuping West street, Economic and Technological Development District, Nanchang 330032, Jiangxi, PR China
| | - Ruiming Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Shaoxing Pi
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Zejing Wei
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Chang Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang 330045, Jiangxi, PR China.
| |
Collapse
|
31
|
Wang X, Hu R, Wang C, Wei Z, Pi S, Li Y, Li G, Yang F, Zhang C. Nrf2 axis and endoplasmic reticulum stress mediated autophagy activation is involved in molybdenum and cadmium co-induced hepatotoxicity in ducks. J Inorg Biochem 2022; 229:111730. [DOI: 10.1016/j.jinorgbio.2022.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/13/2022] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
|
32
|
Qiu K, Zheng JJ, Obianwuna UE, Wang J, Zhang HJ, Qi GH, Wu SG. Effects of Dietary Selenium Sources on Physiological Status of Laying Hens and Production of Selenium-Enriched Eggs. Front Nutr 2021; 8:726770. [PMID: 34938756 PMCID: PMC8685220 DOI: 10.3389/fnut.2021.726770] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
Developing new sources of organic selenium (Se) has potential benefits for animal production and human nutrition via animal-based foods enriched with Se. The objective of this study was to evaluate the effects of Se-enriched insect protein (SEIP) in comparison with other sources, such as sodium selenite (SS) and selenium-enriched yeast (SEY), on performance, egg quality, selenium concentration in eggs, serum biochemical indices, immune capacity, and intestinal morphology of laying hens. Four hundred and fifty 24-week-old Hy-Line Brown laying hens with 94.0 ± 1.5% laying rate were randomly allocated to five groups with six replicates of 15 hens each. The control diet was prepared without adding exogenous selenium (calculated basal Se content of 0.08 mg/kg). The normal group was fed basal diets supplemented with 0.3 mg/kg of Se provided by sodium selenite. Three treatment groups (SS, SEY, and SEIP, respectively) were fed basal diets supplemented with 2 mg/kg of Se provided by sodium selenite, Se-enriched yeast, and SEIP, respectively. The feeding trial lasted for 12 weeks. Results revealed that dietary supplementation of 2 mg/kg of Se increased egg weight, decreased feed conversion ratio, and enhanced the antioxidant capacity of eggs in laying hens relative to the control group, whereas no significant differences were observed among SS, SEY, and SEIP treatment groups for the same. The organic source of Se provided by SEY or SEIP showed higher bio efficiency, as indicated by higher selenium content in eggs of SEY and SEIP compared with SS, although higher content was observed in SEY compared with SEIP. Also, the organic Se source significantly improved antioxidant capacity and immune functions of laying hens than the inorganic Se source. Diets supplemented with SEIP and SS significantly improved jejunal morphology of the laying hens compared with SEY, whereas SEIP was more effective than SEY to improve the oviduct health of laying hens. The results of this work evidently points the additive effect and nontoxicity of SEIP. Thus, SEIP could be used as another organic source of Se in the diet of laying hens and production of selenium-enriched eggs for humans.
Collapse
Affiliation(s)
- Kai Qiu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jie Zheng
- Beijing Agricultural Products Quality and Safety Center, Beijing, China
| | - Uchechukwu Edna Obianwuna
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hai-Jun Zhang
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang-Hai Qi
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shu-Geng Wu
- Risk Assessment Laboratory of Feed Derived Factors to Animal Product Quality Safety of Ministry of Agriculture & Rural Affairs, National Engineering Research Center of Biological Feed, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
33
|
Ge J, Huang Y, Lv M, Zhang C, Talukder M, Li J, Li J. Cadmium induced Fak -mediated anoikis activation in kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway. J Inorg Biochem 2021; 227:111682. [PMID: 34902763 DOI: 10.1016/j.jinorgbio.2021.111682] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/16/2021] [Accepted: 11/28/2021] [Indexed: 12/13/2022]
Abstract
Cadmium (Cd) is a toxic heavy metal of considerable toxicity, possessing a serious environmental problem that threatening food safety and human health. However, the underlying mechanisms of Cd-induced nephrotoxicity and detoxification response remain largely unclear. Cd was administered at doses of 35, 70, and 140 mg/kg diet with feed for 90 days and produced potential damage to chickens' kidneys. The results showed that Cd exposure induced renal anatomical and histopathological injuries. Cd exposure up-regulated cytochrome P450 enzymes (CYP450s), activated nuclear xenobiotic receptors (NXRs) response, including aryl hydro-carbon receptor (AHR), constitutive androstane receptor (CAR), and pregnane X receptor (PXR) by low and moderate doses of Cd, and induced an increase in CYP isoforms expression. Cd exposure down-regulated phase II detoxification enzymes (glutathione-S-transferase (GST), glutathione peroxidase (GSH-PX) activities, and glutathione (GSH) content), and GST isoforms transcription . Furthermore, ATP-binding cassette (ABC) transporters, multidrug resistance protein (MRP1), and P-glycoprotein (P-GP) levels were elevated by low dose, but high dose inhibited the P-GP expression. Activation of detoxification enzymes lost their ability of resistance as increasing dose of Cd, afterwards brought into severe renal injury. Additionally, Cd suppressed focal adhesion kinase (Fak) and integrins protein expression as well as activated extrinsic pathway and intrinsic pathways, thereby producing anoikis. In conclusion, these results indicated that Cd induced Fak-mediated anoikis activation in the kidney via nuclear receptors (AHR/CAR/PXR)-mediated xenobiotic detoxification pathway.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - Yan Huang
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR 72701, United States
| | - MeiWei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - JinYang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - JinLong Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
34
|
Azimi F, Oraei M, Gohari G, Panahirad S, Farmarzi A. Chitosan-selenium nanoparticles (Cs-Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:257-268. [PMID: 34391200 DOI: 10.1016/j.plaphy.2021.08.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/24/2021] [Accepted: 08/08/2021] [Indexed: 05/27/2023]
Abstract
In view of damaging impacts of cadmium (Cd) toxicity on various vital processes of plants and strategies for alleviating these effects, selenium (Se) application has been recently achieved great attention. In addition, chitosan (CS) and its nano-form, besides many positive effects on plants, could be considered as an excellent adsorption matrix and a carrier for a wide range of materials like Se with various applications in agricultural sector. For that point, the combination nano-form of Se and CS (CS-Se NPs), using CS as a carrier and control releaser for Se, could enhance Se efficiency particularly at lower doses under stress conditions. Therefore, Se (10 mg L-1), CS (0.1%) and CS-Se NPs (in two concentrations; 5 and 10 mg L-1) were applied on Moldavian balm plant under 0, 2.5 and 5 mg kg-1 Cd-stress conditions. The results demonstrated that mostly Se and CS-Se NPs treatments could lessen negative effects of Cd-stress conditions through enhancing agronomic traits, photosynthetic pigments, chlorophyll fluorescence parameters and SPAD, proline, phenols, antioxidant enzymes activities and some dominant constituents of essential oils and decreasing MDA and H2O2. These encouraging impacts were more significant at lower dose of CS-Se NPs (5 mg L-1) introducing it as the best treatment to ameliorate Moldavian balm performance under Cd-stress conditions. In conclusion, CS-Se NPs could be considered as a supportive approach in plant production mainly under different heavy metal stressful conditions and probably a potential plant growth promoting and stress protecting agent with new outlooks for applying in agricultural sector.
Collapse
Affiliation(s)
- Fatemeh Azimi
- Department of Horticultural Sciences, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Mehdi Oraei
- Department of Horticultural Sciences, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh, Iran.
| | - Sima Panahirad
- Department of Horticultural Sciences, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Ali Farmarzi
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Miyaneh Branch, Islamic Azad University, Miyaneh, Iran
| |
Collapse
|
35
|
Kong A, Zhang Y, Ning B, Li K, Ren Z, Dai S, Chen D, Zhou Y, Gu J, Shi H. Cadmium induces triglyceride levels via microsomal triglyceride transfer protein (MTTP) accumulation caused by lysosomal deacidification regulated by endoplasmic reticulum (ER) Ca 2+ homeostasis. Chem Biol Interact 2021; 348:109649. [PMID: 34516972 DOI: 10.1016/j.cbi.2021.109649] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/29/2021] [Accepted: 09/09/2021] [Indexed: 01/11/2023]
Abstract
Cadmium (Cd) exposure induced lipid metabolic disorder with changes in lipid composition, as well as triglyceride (TG) levels. Liver is the main organ maintaining body TG level and previous studies suggested that Cd exposure might increase TG synthesis but reduce TG uptake in liver. However, the effects of Cd exposure on TG secretion from liver and underlying mechanism are still unclear. In the present study, the data revealed that Cd exposure increased TG levels in the HepG2 cells and the cultured medium by increasing the expression of microsomal triglyceride transfer protein (MTTP), which was abrogated by siRNA knockdown of MTTP. MTTP was synergistically accumulated after Cd exposure or treated with proteasome inhibitor MG132 and lysosome inhibitor chloroquine (CQ), which suggested the Cd increased MTTP protein stability by inhibiting both the proteasome and the lysosomal protein degradation pathways. In addition, our results demonstrated that Cd exposure inhibited the lysosomal acidic degradation pathway through disrupting endoplastic reticulum (ER) Ca2+ homeostasis. Cd-induced MTTP protein and TG levels were significantly reduced by pretreatments of BAPTA/AM chelation of intracellular Ca2+, 2-APB inhibition of ER Ca2+ release channel inositol 1,4,5-trisphosphate receptor (IP3R) and CDN1163 activation of ER Ca2+ reuptake pump sarcoplasmic reticulum Ca2+-ATPase (SERCA). These results suggest that Cd-induced ER Ca2+ release impaired the lysosomal acidity, which associated with MTTP protein accumulation and contributed to increased TG levels.
Collapse
Affiliation(s)
- Anqi Kong
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Bo Ning
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Kongdong Li
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Zhen Ren
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Shuya Dai
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jie Gu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China.
| | - Haifeng Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212013, China; School of Food and Biological Engineering, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
36
|
Zhao Y, Bao RK, Zhu SY, Talukder M, Cui JG, Zhang H, Li XN, Li JL. Lycopene prevents DEHP-induced hepatic oxidative stress damage by crosstalk between AHR-Nrf2 pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117080. [PMID: 33965855 DOI: 10.1016/j.envpol.2021.117080] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 05/20/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a widespread plasticizer that persists in the environment and can significantly contribute to serious health hazards of liver especially oxidative stress injury. Lycopene (LYC) as a carotenoid has recently gained widespread attention because of antioxidant activity. However, the potential mechanism of DEHP-induced hepatotoxicity and antagonism effect of LYC on it are still unclear. To explore the underlying mechanisms of this hypothesis, the mice were given by gavage with LYC (5 mg/kg) and DEHP (500 or 1000 mg/kg). The data suggested that DEHP caused liver enlargement, reduction of antioxidant activity markers, increase of oxidative stress indicators and disorder of cytochrome P450 enzymes system (CYP450s) homeostasis. DEHP-induced reactive oxygen species (ROS) activated the NF-E2-relatedfactor2 (Nrf2) and nuclear xenobiotic receptors (NXRs) system including Aryl hydrocarbon receptor (AHR), Pregnane X receptor (PXR) and Constitutive androstane receptor (CAR). Interestingly, these disorders and injuries were prevented after LYC treatment. Taken together, DEHP administration resulted in hepatotoxicity including oxidative stress injury and disordered CYP450 system, but these alterations might be ameliorated by LYC via crosstalk between AHR-Nrf2 pathway.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Rong-Kun Bao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jia-Gen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
37
|
Talukder M, Bi SS, Jin HT, Ge J, Zhang C, Lv MW, Li JL. Cadmium induced cerebral toxicity via modulating MTF1-MTs regulatory axis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117083. [PMID: 33965856 DOI: 10.1016/j.envpol.2021.117083] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Metal-responsive transcription factor 1 (MTF1) participates in redox homeostasis and heavy metals detoxification via regulating the expression of metal responsive genes. However, the exact role of MTF1 in Cd-induced cerebral toxicity remains unclear. Herein, we explored the mechanism of Cd-elicited cerebral toxicity through modulating MTF1/MTs pathway in chicken cerebrum exposed to different concentrations of Cd (35 mg, 70 mg, and 140 mg/kg CdCl2) via diet. Notably, cerebral tissues showed varying degrees of microstructural changes under Cd exposure. Cd exposure significantly up-regulated the expression of metal transporters (DMT1, ZIP8, and ZIP10) with concomitant elevated Cd level, as determined by ICP-MS. Cd significantly altered other cerebral biometals concentrations (particularly, Zn, Fe, Se, Cr, Mo, and Pb) and redox balance, resulting in increased cerebral oxidative stress. More importantly, Cd exposure suppressed MTF1 mRNA and nuclear protein levels and its target metal-responsive genes, notably metallothioneins (MT1 and MT2), and Fe and Cu transporter genes (FPN1, ATOX1, and XIAP). Moreover, Cd disrupted the regulation of expression of selenoproteome (particularly, GPxs and SelW), and cerebral Se level. Overall, our data revealed that molecular mechanisms associated with Cd-induced cerebral damage might include over-expression of DMT1, ZIP8 and ZIP10, and suppression of MTF1 and its main target metal-responsive genes as well as several selenoproteins.
Collapse
Affiliation(s)
- Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, China
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046, Zhengzhou, Henan, China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
38
|
Niture S, Lin M, Qi Q, Moore JT, Levine KE, Fernando RA, Kumar D. Role of Autophagy in Cadmium-Induced Hepatotoxicity and Liver Diseases. J Toxicol 2021; 2021:9564297. [PMID: 34422041 PMCID: PMC8371627 DOI: 10.1155/2021/9564297] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/12/2021] [Accepted: 08/03/2021] [Indexed: 12/12/2022] Open
Abstract
Cadmium (Cd) is a toxic pollutant that is associated with several severe human diseases. Cd can be easily absorbed in significant quantities from air contamination/industrial pollution, cigarette smoke, food, and water and primarily affects the liver, kidney, and lungs. Toxic effects of Cd include hepatotoxicity, nephrotoxicity, pulmonary toxicity, and the development of various human cancers. Cd is also involved in the development and progression of fatty liver diseases and hepatocellular carcinoma. Cd affects liver function via modulation of cell survival/proliferation, differentiation, and apoptosis. Moreover, Cd dysregulates hepatic autophagy, an endogenous catabolic process that detoxifies damaged cell organelles or dysfunctional cytosolic proteins through vacuole-mediated sequestration and lysosomal degradation. In this article, we review recent developments and findings regarding the role of Cd in the modulation of hepatotoxicity, autophagic function, and liver diseases at the molecular level.
Collapse
Affiliation(s)
- Suryakant Niture
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Minghui Lin
- The Fourth People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750021, China
| | - Qi Qi
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - John T. Moore
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| | - Keith E. Levine
- RTI International, Research Triangle Park, Durham, NC 27709, USA
| | | | - Deepak Kumar
- Julius L. Chambers Biomedical Biotechnology Research Institute, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
39
|
Yang B, Li Y, Ma Y, Zhang X, Yang L, Shen X, Zhang J, Jing L. Selenium attenuates ischemia/reperfusion injury‑induced damage to the blood‑brain barrier in hyperglycemia through PI3K/AKT/mTOR pathway‑mediated autophagy inhibition. Int J Mol Med 2021; 48:178. [PMID: 34296284 PMCID: PMC8354314 DOI: 10.3892/ijmm.2021.5011] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022] Open
Abstract
Ischemic stroke is a leading cause of mortality and disability. Diabetes mellitus, characterized by hyperglycemia, is a common concomitant disease of ischemic stroke, which is associated with autophagy dysfunction and blood‑brain barrier (BBB) damage following cerebral ischemia/reperfusion (I/R) injury. At present, there is no effective treatment strategy for the disease. The purpose of the present study was to explore the molecular mechanisms underlying the protective effects of selenium on the BBB following I/R injury in hyperglycemic rats. Middle cerebral artery occlusion was performed in diabetic Sprague‑Dawley rats. Treatment with selenium and the autophagy inhibitor 3‑methyladenine significantly reduced cerebral infarct volume, brain water content and Evans blue leakage, while increasing the expression of tight junction (TJ) proteins and decreasing that of autophagy‑related proteins (P<0.05). In addition, selenium increased the phosphorylation levels of PI3K, AKT and mTOR (P<0.05). A mouse bEnd.3 brain microvascular endothelial cell line was co‑cultured in vitro with an MA‑h mouse astrocyte‑hippocampal cell line to simulate the BBB. The cells were then subjected to hyperglycemia, followed by oxygen‑glucose deprivation for 1 h and reoxygenation for 24 h. It was revealed that selenium increased TJ protein levels, reduced BBB permeability, decreased autophagy levels and enhanced the expression of phosphorylated (p)‑AKT/AKT and p‑mTOR/mTOR proteins (P<0.05). Treatment with wortmannin (an inhibitor of PI3K) significantly prevented the beneficial effects of selenium on the BBB, whereas insulin‑like growth factor 1 (a PI3K activator) mimicked the effects of selenium. In conclusion, the present findings indicated that selenium can inhibit autophagy by regulating the PI3K/AKT/mTOR signaling pathway, significantly preventing BBB damage following cerebral I/R injury in hyperglycemic conditions.
Collapse
Affiliation(s)
- Biao Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yaqiong Li
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Yanmei Ma
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xiaopeng Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Lan Yang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Xilin Shen
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Jianzhong Zhang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| | - Li Jing
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750004, P.R. China
| |
Collapse
|
40
|
Xue H, Cao H, Xing C, Feng J, Zhang L, Zhang C, Hu G, Yang F. Selenium triggers Nrf2-AMPK crosstalk to alleviate cadmium-induced autophagy in rabbit cerebrum. Toxicology 2021; 459:152855. [PMID: 34252479 DOI: 10.1016/j.tox.2021.152855] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/28/2021] [Accepted: 07/07/2021] [Indexed: 02/06/2023]
Abstract
Cadmium (Cd) is a toxic heavy metal that accumulates in the brain and causes a series of histopathological changes. Selenium (Se) exerts a crucial function in protecting damage caused by toxic heavy metals, but its potential mechanism is rarely studied. The main purpose of this study is to explore the protective effects of Se on Cd-induced oxidative stress and autophagy in rabbit cerebrum. Forty rabbits were randomly divided into four groups and treated as follows: Control group, Cd (1 mg/kg⋅BW) group, Se (0.5 mg/kg⋅BW) group and Cd (1 mg/kg⋅BW)+Se (0.5 mg/kg⋅BW) group, with 30 days feeding management. Our results suggested that Se treatment significantly suppressed the Cd-induced degenerative changes including cell necrosis, vacuolization, and atrophic neurons. In addition, Se decreased the contents of MDA and H2O2 and increased the activities of CAT, SOD, GST, GSH and GSH-Px, alleviating the imbalance of the redox system induced by Cd. Furthermore, Cd caused the up-regulation of the mRNA levels of autophagy-related genes (ATG3, ATG5, ATG7, ATG12 and p62), AMPK (Prkaa1, Prkaa2, Prkab1, Prkab2, Prkag2, Prkag3) and Nrf2 (Nrf2, HO-1 and NQO1) signaling pathway, and the expression levels of LC3II/LC3I, p-AMPK/AMPK, Beclin-1, Nrf2 and HO-1 proteins, which were alleviated by Se, indicated that Se inhibited Cd-induced autophagy and Nrf2 signaling pathway activation. In conclusion, our study found that Se antagonized Cd-induced oxidative stress and autophagy in the brain by generating crosstalk between AMPK and Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Haotian Xue
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Jiapei Feng
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Linwei Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
41
|
Ge J, Guo K, Zhang C, Talukder M, Lv MW, Li JY, Li JL. Comparison of nanoparticle-selenium, selenium-enriched yeast and sodium selenite on the alleviation of cadmium-induced inflammation via NF-kB/IκB pathway in heart. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145442. [PMID: 33940727 DOI: 10.1016/j.scitotenv.2021.145442] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/09/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
Cadmium (Cd) has been confirmed as an environmental contaminant, which potential threats health impacts to humans and animals. Selenium (Se) as a beneficial element that alleviates the negative effects of Cd toxicity. Se mainly exists in two forms in food nutrients including organic Se usually as (Se-enriched yeast (SeY)) and inorganic Se (sodium selenite (SSe)). Nanoparticle of Se (Nano-Se), a new form Se, which is synthesized by the bioreduction of Se species, which attracted significant attention recently. However, compared the superiority alleviation effects of Nano-Se, SeY or SSe on Cd-induced toxicity and related mechanisms are still poorly understood. The purpose of this study was to compare the superiority antagonism effects of Nano-Se, SeY and SSe on Cd-induced inflammation response via NF-kB/IκB pathway in the heart. The present study demonstrated that exposed to Cd obviously increased the accumulation of Cd, disruption of ion homeostasis and depressed the ratios of K+/Na+ and Mg2+/Ca2+ via ion chromatography mass spectrometry (ICP-MS) detecting the heart specimens. In the results of histological and ultrastructure observation, typical inflammatory infiltrate characteristics and mitochondria and nuclear structure alterations in the hearts of Cd group were confirmed. Cd treatment enhanced the inducible nitric oxide synthase (iNOS) activities and NOS isoforms expression via NF-kB/IκB pathway to promote inflammation response. However, the combined treatment of Cd-exposed animals with Nano-Se was more effective than SeY and SSe in reversing Cd-induced histopathological changes and iNOS activities increased, reducing Cd accumulation and antagonizing Cd-triggered inflammation response via NF-kB/IκB pathway in chicken hearts. Overall, Se applications, especially Nano-Se, can be most efficiently used for relieving cardiotoxicity by exposed to Cd compared to other Se compound.
Collapse
Affiliation(s)
- Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Kai Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Chifeng Animal Health Supervision Institute, Chifeng County 024000, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; College of Animal Science and Veterinary Medicine, Henan Agricultural University, 450046 Zhengzhou, Henan, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Yang Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
42
|
Bi SS, Jin HT, Talukder M, Ge J, Zhang C, Lv MW, Yaqoob Ismail MA, Li JL. The protective effect of nnano-selenium against cadmium-induced cerebellar injury via the heat shock protein pathway in chicken. Food Chem Toxicol 2021; 154:112332. [PMID: 34118349 DOI: 10.1016/j.fct.2021.112332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/25/2021] [Accepted: 06/06/2021] [Indexed: 02/09/2023]
Abstract
Cadmium (Cd) is one of the toxic environmental heavy metals that poses health hazard to animals due to its toxicity. Nano-Selenium (Nano-Se) is a Nano-composite form of Se, which has emerged as a promising therapeutic agent for its protective roles against heavy metals-induced toxicity. Heat shock proteins (HSPs) play a critical role in cellular homeostasis. However, the potential protective effects of Nano-Se against Cd-induced cerebellar toxicity remain to be illustrated. To investigate the toxic effects of Cd on chicken's cerebellum, and the protective effects of Nano-Se against Cd-induced cerebellar toxicity, a total of 80 male chicks were divided into four groups and treated as follows: (A) 0 mg/kg Cd, (B) 1 mg/kg Nano-Se (C) 140 mg/kg Cd + 1 mg/kg Nano-Se (D) 140 mg/kg Cd for 90 days. We tested heat shock protein pathway-related factors including heat shock factors (HSFs) HSF1, HSF2, HSF3 and heat shock proteins (HSPs) HSP10, HSP25, HSP27, HSP40, HSP60, HSP70 and HSP90 expressions. Histopathological results showed that Cd treatment caused degradation of Purkinje cells. In addition, HSFs and HSPs expression decreased significantly in the Cd group. Nano-Se co-treatment with Cd enhanced the expression of HSFs and HSPs. In summary, our findings explicated a potential protective effect of Nano-Se against Cd-induced cerebellar injury in chicken, suggesting that Nano-Se is a promising therapeutic agent for the treatment of Cd toxicity.
Collapse
Affiliation(s)
- Shao-Shuai Bi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hai-Tao Jin
- Quality and Safety Institute of Agricultural Products, Heilongjiang Academy of Agricultural Sciences, Harbin, 150010, PR China
| | - Milton Talukder
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Department of Physiology and Pharmacology, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal, 8210, Bangladesh
| | - Jing Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Cong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mei-Wei Lv
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mamoon Ali Yaqoob Ismail
- College of Economics and Management, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
43
|
Dai XY, Zhao Y, Ge J, Zhu SY, Li MZ, Talukder M, Li JL. Lycopene attenuates di(2-ethylhexyl) phthalate-induced mitophagy in spleen by regulating the sirtuin3-mediated pathway. Food Funct 2021; 12:4582-4590. [PMID: 33908429 DOI: 10.1039/d0fo03277h] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lycopene (Lyc) has been discussed as a potential effector in the prevention and therapy of various diseases. Di(2-ethylhexyl) phthalate (DEHP) is regarded as a universal environmental pollutant. To clarify the potential protective effect of Lyc on DEHP-induced splenic injury, 140 male mice were randomized into seven groups: control (distilled water), vehicle control (corn oil per day), Lyc (5 mg per kg BW per day), DEHP (500 or 1000 mg per kg BW per day), and DEHP combined Lyc group, respectively. All experimental animals were treated by oral gavage for 28 days. The results that showed DEHP exposure significantly up-regulated the mRNA and protein expression of the sirtuin family (except SIRT4-5), PGC-1α, OPA1, Drp1, MFN1/2, NRF1, TFAM, Parkin and PINK in DEHP-treated alone groups and the SOD2 and LC3-II protein expression were also in accordance with the above changes. These were accompanied with an increase of the number of inflammatory cells and rate of mitochondrial damage, and autophagosome formation in the spleen. Notably, Lyc supplementation facilitated all these changes to effectively return to the normal level, indicating that Lyc exerts protective effects against DEHP-induced splenic toxicity. Altogether, the protective effects of Lyc may be a strategy to ameliorate DEHP-induced spleen damage.
Collapse
Affiliation(s)
- Xue-Yan Dai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
44
|
Wang X, Zhuang Y, Fang Y, Cao H, Zhang C, Xing C, Guo X, Li G, Liu P, Hu G, Yang F. Endoplasmic reticulum stress aggravates copper-induced apoptosis via the PERK/ATF4/CHOP signaling pathway in duck renal tubular epithelial cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 272:115981. [PMID: 33248829 DOI: 10.1016/j.envpol.2020.115981] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/31/2020] [Indexed: 06/12/2023]
Abstract
Copper (Cu) is a vital micronutrient required for numerous fundamental biological processes, but excessive Cu poses potential detrimental effects on public and ecosystem health. However, the molecular details linking endoplasmic reticulum (ER) stress and apoptosis in duck renal tubular epithelial cells have not been fully elucidated. In this study, duck renal tubular epithelial cells exposed to Cu sulfate (CuSO4) (0, 100 and 200 μM) and a PERK inhibitor (GSK2606414, GSK, 1 μM) for 12 h were used to investigate the crosstalk between ER stress and apoptosis under Cu exposure. Cell and ER morphological and functional characteristics, intracellular calcium (Ca2+) levels, apoptotic rates, ER stress and apoptosis-related mRNA and protein levels were examined. The results showed that excessive Cu could cause ER expansion and swelling, increase the expression levels of ER stress-associated genes (PERK, eIF2α, ATF4 and CHOP) and proteins (p-PERK and CHOP), induce intracellular Ca2+ overload, upregulate the expression levels of apoptosis-associated genes (Bax, Bak1, Caspase9 and Caspase3) and the cleaved-Caspase3 protein, downregulate Bcl-xl and Bcl2 mRNA levels and trigger apoptosis. PERK inhibitor treatment could ameliorate the above changed factors caused by Cu. In conclusion, these findings indicate that excessive Cu could trigger ER stress via activation of the PERK/ATF4/CHOP signaling pathway and that ER stress might aggravate Cu-induced apoptosis in duck renal tubular epithelial cells.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Yukun Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Huabin Cao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Caiying Zhang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Chenghong Xing
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China
| | - Fan Yang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, No. 1101 Zhimin Avenue, Economic and Technological Development District, Nanchang, 330045, Jiangxi, PR China.
| |
Collapse
|
45
|
Li XN, Li HX, Yang TN, Li XW, Huang YQ, Zhu SY, Li JL. Di-(2-ethylhexyl) phthalate induced developmental abnormalities of the ovary in quail (Coturnix japonica) via disruption of the hypothalamic-pituitary-ovarian axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140293. [PMID: 32610232 DOI: 10.1016/j.scitotenv.2020.140293] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
An increasing number of epidemiologic studies show that women have a special exposure profile to phthalates, and the exposures have attracted attention regarding their potential health hazards. Here, we developed a model for studying the ovarian action of di-(2-ethylhexyl) phthalate (DEHP) and its major metabolite monoethylhexyl phthalate (MEHP). In vivo, treatment with DEHP (250, 500, and 1000 mg kg^-1) induced decreased thickness of ovarian granulosa cell layer and mitochondrial damage in quail, caused oxidative stress, interfered with the transcription of hypothalamic-pituitary-ovarian axis (HPOA) steroid hormone-related factors (increased transcription of StAR, 3β-HSD, P450scc, and LH and decreased transcription of 17β-HSD, P450arom, FSH, and ERβ), and blocked the secretion of steroid hormones (decreased FSH, E2, and T levels and increased LH, P, and PRL levels). In vitro, granulosa cells were cultured with MEHP (50, 100, and 200 μM), activator of PPARγ (rosiglitazone, 50 μM), or antagonist of PPARγ (GW9662, 10 μM) for 24 h and gene and protein expression were analyzed by real time RT-PCR and western blot. Rosiglitazone, like MEHP, significantly decreased mRNA and protein levels of P450arom. Antagonist GW9662 partially blocked the suppression of P450arom by MEHP, suggesting that MEHP acts through PPARγ, but not exclusively. Our model shows that MEHP acts on granulosa cells in quail by stimulating PPARs, which leads to decreased gene and protein expression of P450arom. Therefore, the environmental endocrine disruptor DEHP and its major metabolite MEHP act through a receptor-mediated signaling pathway to inhibit the production of estradiol, interfere with the modulation of HPOA, suppress the synthesis of sex hormones, and cause sex hormone secretion disorders, resulting in severe toxicity in the female reproductive system. A framework for an adverse outcome pathway of DEHP/MEHP-induced ovarian toxicity was constructed, which can facilitate an improved understanding of the mechanism of female reproductive toxicity.
Collapse
Affiliation(s)
- Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hui-Xin Li
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150086, PR China
| | - Tian-Ning Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Xiao-Wei Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yue-Qiang Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shi-Yong Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|