1
|
Singh S, Goel I, Tripathi S, Ahirwar A, Kumar M, Rana A, Dhar R, Karmakar S. Effect of environmental air pollutants on placental function and pregnancy outcomes: a molecular insight. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:59819-59851. [PMID: 39388084 DOI: 10.1007/s11356-024-35016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Air pollution has become a major health concern, particularly for vulnerable populations such as the elderly, children, and pregnant women. Studies have reported a strong association between prenatal exposure to air pollutants and adverse pregnancy outcomes, including lower birth weight, reduced fetal growth, and an increased frequency of preterm births. This review summarizes the harmful effects of air pollutants, such as particulate matter, on pregnancy and outlines the mechanistic details associated with these adverse outcomes. Particulate pollutant matter may be able to cross the placenta barrier, and alterations in placental functions are central to the detrimental effects of these pollutants. In addition to associations with preeclampsia and gestational hypertension, air pollutants also induce oxidative stress, inflammation, and epigenetic alteration in the placenta. These pollutants can also affect placental homeostasis and endocrine function, contributing to pregnancy complications and possible transgenerational effects. Prenatal air pollution exposure has been linked to reduced cognitive and motor function in infants and newborns, increasing the predisposition to autism spectrum disorders and other neuropsychiatric disorders. This review also summarizes the use of various animal models to study the harmful effects of air pollution on pregnancy and postnatal outcomes. These findings provide valuable insight into the molecular events associated with the process and can aid in risk mitigation and adopting safety measures. Implementing effective environmental protocols and taking appropriate steps may reduce the global disease burden, particularly for developing nations with poor regulatory compliance and large populations of pregnant women.
Collapse
Affiliation(s)
- Sunil Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Isha Goel
- Department of Psychiatry, All India Institute of Medical Sciences, New Delhi, India
| | - Smita Tripathi
- Department of Biochemistry, Lady Harding Medical College, New Delhi, India
| | - Ashok Ahirwar
- Department of Lab Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Megha Kumar
- CSIR-Centre for Cellular and Molecular Biology (CSIR-CCMB), Habsiguda, Hyderabad, India
| | - Anubhuti Rana
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, India
| | - Ruby Dhar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India
| | - Subhradip Karmakar
- Department of Biochemistry, All India Institute of Medical Sciences, Room 3020, New Delhi, 110029, India.
| |
Collapse
|
2
|
Craig E, Lin Y, Ge Y, Wang X, Murphy SK, Harrington DK, Miller RK, Thurston SW, Hopke PK, Barrett ES, O’Connor TG, Rich DQ, Zhang J. Associations of Gestational Exposure to Air Pollution and Polycyclic Aromatic Hydrocarbons with Placental Inflammation. ENVIRONMENT & HEALTH (WASHINGTON, D.C.) 2024; 2:672-680. [PMID: 39323894 PMCID: PMC11420950 DOI: 10.1021/envhealth.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 09/27/2024]
Abstract
Restricted fetal growth (RFG) is a leading contributor to perinatal mortality and has been associated with gestational exposure to air pollution, such as fine particulate matter (PM2.5), nitrogen dioxide (NO2), and polycyclic aromatic hydrocarbons (PAHs). This study examines the association between trimester-specific and weekly means of air pollution throughout gestation and placental inflammatory markers at delivery. In a prospective cohort study of 263 pregnant women in Rochester, NY, we measured interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in placental tissue and estimated gestational exposure to PM2.5 and NO2 using a high-resolution spatial-temporal model. Exposure to PAHs was estimated using urinary 1-hydroxypyrene (1-OHP) concentrations collected once per trimester. Using distributed lag models with a penalized spline function, each interquartile range (2.6 μg/m3) increase in PM2.5 concentration during gestational weeks 6-11 was associated with decreased placental IL-6 levels (-22.2%, 95% CI: -39.0%, -0.64%). Using multiple linear regression models, each interquartile range increase of 1-OHP was associated with an increase in TNF-α in the first trimester (58.5%, 95% CI: 20.7%, 74.2%), third trimester (22.9%, 95% CI: 0.04%, 49.5%), and entire pregnancy (29.6%, 95%CI: 3.9%,60.6%). Our results suggest gestational exposure to air pollution may alter the inflammatory environment of the placenta at delivery.
Collapse
Affiliation(s)
- Emily
A. Craig
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yan Lin
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Yihui Ge
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Xiangtian Wang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Susan K. Murphy
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| | - Donald K. Harrington
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Richard K. Miller
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
- Department
of Pediatrics, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Sally W. Thurston
- Department
of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Philip K. Hopke
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Emily S. Barrett
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department of Biostatistics
and Epidemiology, Rutgers School of Public
Health, Piscataway, New Jersey 08854, United States
| | - Thomas G. O’Connor
- Department
of Obstetrics and Gynecology, University
of Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychiatry, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Neuroscience, University of Rochester
School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Psychology, University of Rochester, Rochester, New York 14642, United States
| | - David Q. Rich
- Department
of Public Health Sciences, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Medicine, University of Rochester School
of Medicine and Dentistry, Rochester, New York 14642, United States
- Department
of Environmental Medicine, University of
Rochester School of Medicine and Dentistry, Rochester, New York 14642, United States
| | - Junfeng Zhang
- Nicholas
School of the Environment & Duke Global Health Institute, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
3
|
Vicente ED, Figueiredo D, Alves C. Toxicity of particulate emissions from residential biomass combustion: An overview of in vitro studies using cell models. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171999. [PMID: 38554951 DOI: 10.1016/j.scitotenv.2024.171999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/07/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
This article aims to critically review the current state of knowledge on in vitro toxicological assessments of particulate emissions from residential biomass heating systems. The review covers various aspects of particulate matter (PM) toxicity, including oxidative stress, inflammation, genotoxicity, and cytotoxicity, all of which have important implications for understanding the development of diseases. Studies in this field have highlighted the different mechanisms that biomass combustion particles activate, which vary depending on the combustion appliances and fuels. In general, particles from conventional combustion appliances are more potent in inducing cytotoxicity, DNA damage, inflammatory responses, and oxidative stress than those from modern appliances. The sensitivity of different cell lines to the toxic effects of biomass combustion particles is also influenced by cell type and culture conditions. One of the main challenges in this field is the considerable variation in sampling strategies, sample processing, experimental conditions, assays, and extraction techniques used in biomass burning PM studies. Advanced culture systems, such as co-cultures and air-liquid interface exposures, can provide more accurate insights into the effects of biomass combustion particles compared to simpler submerged monocultures. This review provides critical insights into the complex field of toxicity from residential biomass combustion emissions, underscoring the importance of continued research and standardisation of methodologies to better understand the associated health hazards and to inform targeted interventions.
Collapse
Affiliation(s)
- E D Vicente
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - D Figueiredo
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Biology, Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
4
|
Saddiki H, Zhang X, Colicino E, Wilson A, Kloog I, Wright RO, Wright RJ, Lesseur C. DNA methylation profiles reveal sex-specific associations between gestational exposure to ambient air pollution and placenta cell-type composition in the PRISM cohort study. Clin Epigenetics 2023; 15:188. [PMID: 38041176 PMCID: PMC10693032 DOI: 10.1186/s13148-023-01601-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Gestational exposure to ambient air pollution has been associated with adverse health outcomes for mothers and newborns. The placenta is a central regulator of the in utero environment that orchestrates development and postnatal life via fetal programming. Ambient air pollution contaminants can reach the placenta and have been shown to alter bulk placental tissue DNA methylation patterns. Yet the effect of air pollution on placental cell-type composition has not been examined. We aimed to investigate whether the exposure to ambient air pollution during gestation is associated with placental cell types inferred from DNA methylation profiles. METHODS We leveraged data from 226 mother-infant pairs in the Programming of Intergenerational Stress Mechanisms (PRISM) longitudinal cohort in the Northeastern US. Daily concentrations of fine particulate matter (PM2.5) at 1 km spatial resolution were estimated from a spatiotemporal model developed with satellite data and linked to womens' addresses during pregnancy and infants' date of birth. The proportions of six cell types [syncytiotrophoblasts, trophoblasts, stromal, endothelial, Hofbauer and nucleated red blood cells (nRBCs)] were derived from placental tissue 450K DNA methylation array. We applied compositional regression to examine overall changes in placenta cell-type composition related to PM2.5 average by pregnancy trimester. We also investigated the association between PM2.5 and individual cell types using beta regression. All analyses were performed in the overall sample and stratified by infant sex adjusted for covariates. RESULTS In male infants, first trimester (T1) PM2.5 was associated with changes in placental cell composition (p = 0.03), driven by a decrease [per one PM2.5 interquartile range (IQR)] of 0.037 in the syncytiotrophoblasts proportion (95% confidence interval (CI) [- 0.066, - 0.012]), accompanied by an increase in trophoblasts of 0.033 (95% CI: [0.009, 0.064]). In females, second and third trimester PM2.5 were associated with overall changes in placental cell-type composition (T2: p = 0.040; T3: p = 0.049), with a decrease in the nRBC proportion. Individual cell-type analysis with beta regression showed similar results with an additional association found for third trimester PM2.5 and stromal cells in females (decrease of 0.054, p = 0.024). CONCLUSION Gestational exposure to air pollution was associated with placenta cell composition. Further research is needed to corroborate these findings and evaluate their role in PM2.5-related impact in the placenta and consequent fetal programming.
Collapse
Affiliation(s)
- Hachem Saddiki
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
| | - Xueying Zhang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, The Kravis Children's Hospital, New York, NY, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Colicino
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ander Wilson
- Department of Statistics, Colorado State University, Fort Collins, CO, USA
| | - Itai Kloog
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Geography and Environmental Development, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rosalind J Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA
- Department of Pediatrics, Icahn School of Medicine at Mount Sinai, The Kravis Children's Hospital, New York, NY, USA
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1057, New York, NY, 10029, USA.
- Institute of Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Basilio E, Zlatnik MG. Extreme weather-Wildfires & pregnancy. Semin Perinatol 2023; 47:151839. [PMID: 37863677 DOI: 10.1016/j.semperi.2023.151839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
As described in the previous chapter, Chapter 4: Air pollution and pregnancy, there is robust literature on the adverse health impacts of ambient air pollution on perinatal outcomes. With climate change contributing to more extreme weather patterns, wildfire events are becoming more intense and frequent. Wildfire smoke is a major contributor to poor air quality and data are beginning to emerge with respect to the negative impact on perinatal outcomes. The aim of this chapter is to provide an overview of the current literature on wildfire smoke exposure in pregnancy and associated adverse outcomes.
Collapse
Affiliation(s)
- Emilia Basilio
- Department of Obstetrics, Gynecology, & Reproductive Sciences, University of California San Francisco
| | - Marya G Zlatnik
- Department of Obstetrics, Gynecology, & Reproductive Sciences, Western States Pediatric Environmental Health Specialty Unit, UCSF, University of California San Francisco.
| |
Collapse
|
6
|
Flanagan E, Malmqvist E, Rittner R, Gustafsson P, Källén K, Oudin A. Exposure to local, source-specific ambient air pollution during pregnancy and autism in children: a cohort study from southern Sweden. Sci Rep 2023; 13:3848. [PMID: 36890287 PMCID: PMC9995328 DOI: 10.1038/s41598-023-30877-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/02/2023] [Indexed: 03/10/2023] Open
Abstract
Evidence of air pollution exposure, namely, ambient particulate matter (PM), during pregnancy and an increased risk of autism in children is growing; however, the unique PM sources that contribute to this association are currently unknown. The aim of the present study was to investigate local, source-specific ambient PM exposure during pregnancy and its associations with childhood autism, specifically, and autism spectrum disorders (ASD) as a group. A cohort of 40,245 singleton births from 2000 to 2009 in Scania, Sweden, was combined with data on locally emitted PM with an aerodynamic diameter < 2.5 µm (PM2.5). A flat, two-dimensional dispersion model was used to assess local PM2.5 concentrations (all-source PM2.5, small-scale residential heating- mainly wood burning, tailpipe exhaust, and vehicle wear-and-tear) at the mother's residential address during pregnancy. Associations were analyzed using binary logistic regression. Exposure to local PM2.5 during pregnancy from each of the investigated sources was associated with childhood autism in the fully adjusted models. For ASD, similar, but less pronounced, associations were found. The results add to existing evidence that exposure to air pollution during pregnancy may be associated with an increased risk of childhood autism. Further, these findings suggest that locally produced emissions from both residential wood burning and road traffic-related sources (tailpipe exhaust and vehicle wear-and-tear) contribute to this association.
Collapse
Affiliation(s)
- Erin Flanagan
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Ebba Malmqvist
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Ralf Rittner
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Peik Gustafsson
- Child and Adolescent Psychiatry, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Karin Källén
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Anna Oudin
- Division of Occupational and Environmental Medicine, Department of Laboratory Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Dusza HM, van Boxel J, van Duursen MBM, Forsberg MM, Legler J, Vähäkangas KH. Experimental human placental models for studying uptake, transport and toxicity of micro- and nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160403. [PMID: 36417947 DOI: 10.1016/j.scitotenv.2022.160403] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Micro- and nanoplastics (MNPs) are ubiquitous in the environment and have recently been found in human lungs, blood and placenta. However, data on the possible effects of MNPs on human health is extremely scarce. The potential toxicity of MNPs during pregnancy, a period of increased susceptibility to environmental insults, is of particular concern. The placenta provides a unique interface between maternal and fetal circulation which is essential for in utero survival and healthy pregnancy. Placental toxicokinetics and toxicity of MNPs are still largely unexplored and the limited studies performed up to now focus mainly on polystyrene particles. Practical and ethical considerations limit research options in humans, and extrapolation from animal studies is challenging due to marked differences between species. Nevertheless, diverse in vitro and ex vivo human placental models exist e.g., plasma membrane vesicles, mono-culture and co-culture of placental cells, placenta-on-a-chip, villous tissue explants, and placental perfusion that can be used to advance this research area. The objective of this concise review is to recapitulate different human placental models, summarize the current understanding of placental uptake, transport and toxicity of MNPs and define knowledge gaps. Moreover, we provide perspectives for future research urgently needed to assess the potential hazards and risks of MNP exposure to maternal and fetal health.
Collapse
Affiliation(s)
- Hanna M Dusza
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands.
| | - Jeske van Boxel
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment, Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Markus M Forsberg
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Juliette Legler
- Division of Toxicology, Institute for Risk Assessment Sciences, Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Kirsi H Vähäkangas
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
8
|
Xiao H, Yao C, Qi Z, Liu J, Liu X, Zhou Y, Tang E, Hu Y, Jiang Y, Li D, Du N, Li N, Li Y, Ji A, Cai T. Association between maternal short-term exposure to ambient air pollution and the risk of fetal distress: A matched case-control study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160438. [PMID: 36435241 DOI: 10.1016/j.scitotenv.2022.160438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/15/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Ambient air pollution has been linked to gestational complications. However, the evidence on the relationship between air pollution and fetal distress is limited. OBJECTIVES To investigate the relationship between maternal short-term air pollution exposure and fetal distress, and to identify a potential susceptible population. METHODS This matched case-control study, involving 313 pregnancy women with fetal distress was conducted in Xi'an, the largest city in Northwest China from 2013 to 2016. Each woman with fetal distress was randomly matched with four women without fetal distress of the same age, same gestational week, and registration in the same period (n = 1252). Inverse distance-weighted (IDW) interpolation was applied to estimate maternal air pollution exposure based on the residential addresses. We employed conditional logistic regression model to evaluate the relationship between air pollutants and fetal distress. Distributed lag nonlinear model (DLNM) was performed to examine the exposure-response relationship between air pollutants and fetal distress. RESULTS Maternal short-term exposure to PM10, PM2.5-10 (PMc), SO2, NO2, and CO was associated with increased risk of fetal distress. Each 10 μg/m3 increment in PM10, PMc, SO2 at lag 014, and NO2 at lag 010, the odds ratio (ORs) of fetal distress were 1.027 (95 % confidence interval (CI): 1.004, 1.050), 1.058 (95 % CI: 1.014, 1.105), 1.140 (95 % CI: 1.029, 1.264), and 1.158 (95 % CI: 1.046, 1.283), respectively. Similarly, with a 0.1 mg/m3 increment in CO at lag 014, the OR of fetal distress was 1.029 (95 % CI: 1.002, 1.058). Stratified analyses showed that the estimate associations of PM10, PM2.5 and CO appeared to be stronger, although not statistically significantly, among women with gestational complications. CONCLUSION Maternal short-term exposure to ambient air pollution may increase the risk of fetal distress. Understanding the detrimental role of air pollution in fetal distress can help us better develop preventative methods in reducing its' impact on maternal and fetal health.
Collapse
Affiliation(s)
- Hua Xiao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Chunyan Yao
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Zongli Qi
- Department of Pathology, Shaanxi Provincial People's Hospital, Xi'an 710068, China; Clinical Laboratory, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Jianghong Liu
- Department of Family and Community Health, University of Pennsylvania School of Nursing, Philadelphia, PA 19104, USA
| | - Xiaoling Liu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yumeng Zhou
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Enjie Tang
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuegu Hu
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Yuexu Jiang
- The First People's Hospital of Guiyang, Guiyang 550000, China
| | - Dawei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ning Du
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Na Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China; Department of Nutrition and Food Hygiene, School of Public Health Guizhou Medical University, Guiyang 550025, China
| | - Yafei Li
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Ailing Ji
- Department of Preventive Medicine, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China.
| | - Tongjian Cai
- Department of Epidemiology, College of Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing 400038, China.
| |
Collapse
|
9
|
Basilio E, Ozarslan N, Buarpung S, Benmarhnia T, Padula AM, Robinson JF, Gaw SL. Gestational age-dependent decrease in fetal Hofbauer cells in placentas from pregnancies exposed to wildfire smoke in California. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.11.23284125. [PMID: 36712106 PMCID: PMC9882560 DOI: 10.1101/2023.01.11.23284125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Wildfires are more common over the last decade and the frequency of wildfire events has been accelerated by climate change. The existing body of literature suggests that exposure to wildfire smoke during pregnancy contributes to adverse perinatal outcomes such as preterm birth and fetal growth restriction. We hypothesize that exposures to wildfire smoke and its constituents triggers a fetal inflammatory response which contributes to pathological changes that underlie these adverse pregnancy outcomes. In this study, we quantified the presence of fetal macrophages (i.e., Hofbauer cells) in human placentas obtained between 2018 and 2020 to assess the relationship between fetal immune status and wildfire exposure. STUDY DESIGN We collected placentas from pregnancies from two hospitals in San Francisco over a two-year period that included two severe major wildfires. The average particulate matter < 2.5 μm (PM2.5) or wildfire specific PM2.5 levels were estimated over the gestational duration of each sample. Immunostaining against CK7 and CD68 was performed to identify intravillous fetal Hofbauer cells. We assessed the gestational-age dependent relationship between placental CD68+ cell density and mean daily PM2.5 or wildfire-specific PM2.5 via linear regression and Welch's t-test. Additionally, we compared placental CD68+ cell density with estimated peak wildfire exposures during the gestation to determine if timing of exposure during pregnancy may influence the occurrence of Hofbauer cells in the placenta. RESULTS The gestational ages ranged from 7-41 weeks (n = 67). The majority of samples were collected during one of two major wildfire events in Northern California (70%; n = 47). In general, we observed a significant inverse relationship between placental CD68 density and PM2.5 or wildfire specific PM2.5, however, these associations were only observed in first or second trimester samples, and not in term samples. For example, among first trimester samples (n=22), we observed lower mean CD68 density among samples likely to be exposed to wildfire events (mean = 1.42, SD = 0.8) as compared to those not exposed (mean = 3.73, SD = 1.983) (p = 0.0015). Based on our linear regression model results, we predicted that a one μg/m3 increase in daily mean wildfire PM2.5 was associated with a 0.457 decrease in CD68 density (ß =-0.457; 95% CI: -0.722, -0.193). This association was also significant for daily mean overall PM2.5, though smaller in magnitude (ß = -0.139; 95% CI: -0.218, -0.059). CONCLUSIONS Our results suggest that wildfire smoke exposures are associated with decreased presence of fetal Hofbauer cells in first and second trimester placentas, suggesting exposure may lead to impaired placental function via altered presence of fetal Hofbauer cells and changes in immune status.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Nida Ozarslan
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Sirirak Buarpung
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego
| | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco
| |
Collapse
|
10
|
Singh D, Tassew DD, Nelson J, Chalbot MCG, Kavouras IG, Tesfaigzi Y, Demokritou P. Physicochemical and toxicological properties of wood smoke particulate matter as a function of wood species and combustion condition. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129874. [PMID: 36084462 PMCID: PMC9532370 DOI: 10.1016/j.jhazmat.2022.129874] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/10/2022] [Accepted: 08/27/2022] [Indexed: 05/26/2023]
Abstract
Wood burning is a major source of ambient particulate matter (PM) and has been epidemiologically linked to adverse pulmonary health effects, however the impact of fuel and burning conditions on PM properties has not been investigated systematically. Here, we employed our recently developed integrated methodology to characterize the physicochemical and biological properties of emitted PM as a function of three common hardwoods (oak, cherry, mesquite) and three representative combustion conditions (flaming, smoldering, incomplete). Differences in PM and off-gas emissions (aerosol number/mass concentrations; carbon monoxide; volatile organic compounds) as well as inorganic elemental composition and organic carbon functional content of PM0.1 were noted between wood types and combustion conditions, although the combustion scenario exerted a stronger influence on the emission profile. More importantly, flaming combustion PM0.1 from all hardwoods significantly stimulated the promoter activity of Sterile Alpha Motif (SAM) pointed domain containing ETS (E-twenty-six) Transcription Factor (SPDEF) in human embryonic kidney 293 (HEK-293 T) cells, a biomarker for mucin gene expression associated with mucus production in pulmonary diseases. However, no bioactivity was observed for smoldering and incomplete combustion, which was likely driven by differences in the organic composition of PM0.1. Detailed chemical speciation of organic components of wood smoke is warranted to identify the individual compounds that drive specific biological responses.
Collapse
Affiliation(s)
- Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA; Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA
| | - Dereje Damte Tassew
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115, USA
| | - Jordan Nelson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216, USA
| | - Marie-Cecile G Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216, USA
| | - Ilias G Kavouras
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health & Health Policy, 55 West 125th Street, New York, NY 10027, USA
| | - Yohannes Tesfaigzi
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115, USA.
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA; Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854, USA.
| |
Collapse
|
11
|
Xu F, Cai H, Li H, Wang D. Benzo(a)pyrene induced adverse pregnancy outcomes by affecting the expression of IL-18 and IL-1RN in placenta. Heliyon 2022; 8:e11767. [DOI: 10.1016/j.heliyon.2022.e11767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 08/10/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
|
12
|
Strandberg B, Omelekhina Y, Klein M, Krais AM, Wierzbicka A. Particulate-Bound Polycyclic Aromatic Hydrocarbons (PAHs) and their Nitro- and Oxy-Derivative Compounds Collected Inside and Outside Occupied Homes in Southern Sweden. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2136218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Affiliation(s)
- Bo Strandberg
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Department of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Yuliya Omelekhina
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
| | - Mathieu Klein
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
- Inserm UMRS 1144, Paris University, Paris, France
| | - Annette M. Krais
- Division of Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Aneta Wierzbicka
- Department of Design Sciences, Ergonomics and Aerosol Technology, Lund University, Lund, Sweden
- Centre for Healthy Indoor Environments, Lund University, Lund, Sweden
| |
Collapse
|
13
|
Basilio E, Chen R, Fernandez AC, Padula AM, Robinson JF, Gaw SL. Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13727. [PMID: 36360613 PMCID: PMC9657128 DOI: 10.3390/ijerph192113727] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Climate change is accelerating the intensity and frequency of wildfires globally. Understanding how wildfire smoke (WS) may lead to adverse pregnancy outcomes and alterations in placental function via biological mechanisms is critical to mitigate the harms of exposure. We aim to review the literature surrounding WS, placental biology, biological mechanisms underlying adverse pregnancy outcomes as well as interventions and strategies to avoid WS exposure in pregnancy. This review includes epidemiologic and experimental laboratory-based studies of WS, air pollution, particulate matter (PM), and other chemicals related to combustion in relation to obstetric outcomes and placental biology. We summarized the available clinical, animal, and placental studies with WS and other combustion products such as tobacco, diesel, and wood smoke. Additionally, we reviewed current recommendations for prevention of WS exposure. We found that there is limited data specific to WS; however, studies on air pollution and other combustion sources suggest a link to inflammation, oxidative stress, endocrine disruption, DNA damage, telomere shortening, epigenetic changes, as well as metabolic, vascular, and endothelial dysregulation in the maternal-fetal unit. These alterations in placental biology contribute to adverse obstetric outcomes that disproportionally affect the most vulnerable. Limiting time outdoors, wearing N95 respirator face masks and using high quality indoor air filters during wildfire events reduces exposure to related environmental exposures and may mitigate morbidities attributable to WS.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Rebecca Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | | | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
14
|
Ljung K, Schoon PL, Rudolf M, Charrieau LM, Ni S, Filipsson HL. Recent Increased Loading of Carbonaceous Pollution from Biomass Burning in the Baltic Sea. ACS OMEGA 2022; 7:35102-35108. [PMID: 36211069 PMCID: PMC9535721 DOI: 10.1021/acsomega.2c04009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Black carbon (BC), spheroidal carbonaceous particles (SCP), and polycyclic aromatic hydrocarbons (PAH) are carbonaceous pollutants affecting the climate, environment, and human health. International regulations limit their emissions, and the present emissions are followed by monitoring programs. However, the monitoring programs have limited spatio-temporal coverage and only span the last decades. We can extend the knowledge of historical emission rates by measuring pollution levels in radiometrically dated marine and lacustrine sediment sequences. Here we present measurements of BC, SCP, and PAH from a sediment sequence sampled in the Öresund strait, between Denmark and Sweden and dated back to CE 1850. Our data show a massive increase in the burial rates of all measured pollutants starting in the 1940s. The pollution deposition peaked in the 1970-1980s and declined through the 1990s. However, the declining trend was reversed in the 2000s. Source appointment of PAHs shows a relatively higher contribution of emissions from wood-burning since CE 2000. This coincides with a change towards the increased use of biomass for both municipal and regional energy production in Scandinavia. Our results demonstrate that changes in energy production have caused changes in the delivery of carbonaceous pollution to marine environments. The increase in particle emissions from wood burning is potentially posing a future environmental and health risk.
Collapse
|
15
|
Singh D, Tassew DD, Nelson J, Chalbot MCG, Kavouras IG, Demokritou P, Tesfaigzi Y. Development of an Integrated Platform to Assess the Physicochemical and Toxicological Properties of Wood Combustion Particulate Matter. Chem Res Toxicol 2022; 35:1541-1557. [PMID: 36066868 PMCID: PMC9491341 DOI: 10.1021/acs.chemrestox.2c00183] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Wood burning contributes to indoor and ambient particulate matter (PM) pollution and has been associated with increased morbidity and mortality. Here, we present an integrated methodology that allows to generate, sample, and characterize wood smoke derived from different moisture contents and representative combustion conditions using pine wood as a model. Flaming, smoldering, and incomplete combustion were assessed for low-moisture pine, whereas both low-moisture pine and high-moisture pine were investigated under flaming conditions. Real-time monitoring of carbon monoxide, volatile organic compounds, and aerosol number concentration/size in wood smoke was performed. The PM was size-fractionated, sampled, and characterized for elemental/organic carbon, organic functional groups, and inorganic elements. Bioactivity of PM was assessed by measuring the sterile alpha motif (SAM) pointed domain containing ETS (E-twenty-six) transcription factor (SPDEF) gene promoter activity in human embryonic kidney 293 (HEK-293T) cells, a biomarker for mucin gene expression. Findings showed that moisture content and combustion condition significantly affected the organic and inorganic elemental composition of PM0.1 as well as its bioactivity. Also, for a given moisture and combustion scenario, PM chemistry and bioactivity differed considerably with PM size. Importantly, PM0.1 from flaming combustion of low-moisture pine contained the highest abundance of the oxygenated saturated aliphatic functional group [H-C-O] and was also biologically most potent in stimulating SPDEF promoter activity, suggesting the role of organic compounds such as carbohydrates and sugar alcohols (that contain [H-C-O]) in driving mucus-related respiratory outcomes. Our platform enables further well-controlled parametric studies using a combination of in vitro and in vivo approaches to link wood burning parameters with acute and chronic inhalation health effects of wood smoke.
Collapse
Affiliation(s)
- Dilpreet Singh
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854
| | - Dereje Damte Tassew
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115
| | - Jordan Nelson
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216
| | - Marie-Cecile G. Chalbot
- Department of Environmental Health Sciences, University of Alabama at Birmingham, 1600 University Blvd, Birmingham, AL 35216
| | - Ilias G. Kavouras
- Department of Environmental, Occupational, and Geospatial Health Sciences, CUNY Graduate School of Public Health & Health Policy, 55 West 125th Street, New York, NY 10027
| | - Philip Demokritou
- Center for Nanotechnology and Nanotoxicology, Harvard T.H. Chan School of Public Health, Harvard University, 665 Huntington Ave., Boston, MA 02115, USA
- Environmental and Occupational Health Sciences Institute, School of Public Health, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ 08854
| | - Yohannes Tesfaigzi
- Brigham and Women's Hospital, Pulmonary and Critical Care Medicine, 75 Francis Street, Boston, MA 02115
| |
Collapse
|
16
|
Vicente ED, Figueiredo D, Gonçalves C, Lopes I, Oliveira H, Kováts N, Pinheiro T, Alves CA. In vitro toxicity of particulate matter emissions from residential pellet combustion. J Environ Sci (China) 2022; 115:215-226. [PMID: 34969449 DOI: 10.1016/j.jes.2021.06.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 06/08/2021] [Indexed: 06/14/2023]
Abstract
Particulate matter emissions (PM10) from the combustion, in a residential stove, of two commercial brands of certified (ENplus A1) pellets, a non-certified brand and laboratory made pellets of acacia were tested for their ability to induce ecotoxic, cytotoxic, and mutagenic responses in unicellular organisms and a human cell line. Ecotoxicity was evaluated through the Vibrio fischeri bioluminescence inhibition assay. Moreover, cytotoxicity was assessed at two time points (24- and 48-hr) through two complementary techniques in order to evaluate the cellular metabolic activity and membrane integrity of human lung epithelial cells A549. The Ames test using two Salmonella typhimurium strains (TA100 and TA98) was employed to assess the mutagenic potential of the polycyclic aromatic hydrocarbon fraction extracted from the PM10 samples. Results obtained with the bioluminescent bacteria indicated that only particles from the combustion of acacia pellets were toxic. All samples induced impairment on the A549 cells metabolic activity, while no significant release of lactate dehydrogenase was recorded. PM10 emissions from acacia pellets were the most cytotoxic, while samples from both certified pellets evoked significant cytotoxicity at lower doses. Cytotoxicity time-dependency was only observed for PM10 from the combustion of acacia pellets and one of the brands of certified pellets. Mutagenic activity was not detected in both S. typhimurium strains. This study emphasises the role of the raw material for pellet manufacturing on the toxicological profile of PM emissions. Alternative raw materials should be deeply investigated before their use in pelletisation and combustion in residential appliances.
Collapse
Affiliation(s)
- Estela D Vicente
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Daniela Figueiredo
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Cátia Gonçalves
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Lopes
- Department of Biology and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Helena Oliveira
- Department of Biology and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Nora Kováts
- Centre of Natural Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Teresa Pinheiro
- Instituto de Bioengenharia e Biociências, Departamento de Engenharia e Ciências Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Célia A Alves
- Department of Environment and Planning and CESAM - Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Sun Y, Liu L, Li M, Chen X, Xu F. Theoretical investigation on the mechanisms and kinetics of OH/NO 3-initiated atmospheric oxidation of vanillin and vanillic acid. CHEMOSPHERE 2022; 288:132544. [PMID: 34648789 DOI: 10.1016/j.chemosphere.2021.132544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 09/30/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Vanillin and vanillic acid are two kinds of lignin pyrolysis products that are generated by biomass combustion. The gas-phase oxidation mechanisms of vanillin and vanillic acid initiated by OH/NO3 radicals were investigated by using density functional theory (DFT) at M06-2X/6-311+G(3df,2p)//M06-2X/6-311+G(d,p) level. The initial reactions of vanillin and vanillic acid with OH/NO3 radicals can be divided into two patterns: OH/NO3 addition and H-atom abstraction. For vanillin reacted with OH radical, the OH addition mainly occurs at C2-position to produce highly chemically activated intermediate (IM2). The oxidation products 3,4-dihydroxy benzaldehyde, malealdehyde, methyl hydrogen oxalate, methylenemalonaldehyde, carbonyl and carbonyl compounds are formed by the subsequent reactions of IM2. H-atom abstracting from aldehyde group occurs more easily than from the other positions. In addition, vanillin reacting with NO3 radicals principally proceeds via NO3-addition at C1 sites and H-atom abstracting from OH group (C1) to generate HNO3. The primary reaction mechanisms of vanillic acid with OH/NO3 radicals were similar to vanillin. The Rice-Ramsperger-Kassel-Marcus (RRKM) theory was performed to calculate the rate constants of the significant elementary reactions. The total rate constants for OH-initiated oxidation of vanillin and vanillic acid are 5.72 × 10-12 and 5.40 × 10-12 cm3 molecule-1 s-1 at 298 K and 1 atm. The atmospheric lifetimes were predicted to be 48.56 h and 51.44 h, respectively. As a supplement, the kinetic calculations of NO3 radicals with two reactants were also discussed. This work investigates the atmospheric oxidation processes of vanillin and vanillic acid, and hopes to provide useful information for further experimental research.
Collapse
Affiliation(s)
- Yanhui Sun
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Lin Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Ming Li
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiaoxiao Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Fei Xu
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| |
Collapse
|
18
|
Marczynski M, Lieleg O. Forgotten but not gone: Particulate matter as contaminations of mucosal systems. BIOPHYSICS REVIEWS 2021; 2:031302. [PMID: 38505633 PMCID: PMC10903497 DOI: 10.1063/5.0054075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/14/2021] [Indexed: 03/21/2024]
Abstract
A decade ago, environmental issues, such as air pollution and the contamination of the oceans with microplastic, were prominently communicated in the media. However, these days, political topics, as well as the ongoing COVID-19 pandemic, have clearly taken over. In spite of this shift in focus regarding media representation, researchers have made progress in evaluating the possible health risks associated with particulate contaminations present in water and air. In this review article, we summarize recent efforts that establish a clear link between the increasing occurrence of certain pathological conditions and the exposure of humans (or animals) to airborne or waterborne particulate matter. First, we give an overview of the physiological functions mucus has to fulfill in humans and animals, and we discuss different sources of particulate matter. We then highlight parameters that govern particle toxicity and summarize our current knowledge of how an exposure to particulate matter can be related to dysfunctions of mucosal systems. Last, we outline how biophysical tools and methods can help researchers to obtain a better understanding of how particulate matter may affect human health. As we discuss here, recent research has made it quite clear that the structure and functions of those mucosal systems are sensitive toward particulate contaminations. Yet, our mechanistic understanding of how (and which) nano- and microparticles can compromise human health via interacting with mucosal barriers is far from complete.
Collapse
|
19
|
Pintha K, Chaiwangyen W, Yodkeeree S, Suttajit M, Tantipaiboonwong P. Suppressive Effects of Rosmarinic Acid Rich Fraction from Perilla on Oxidative Stress, Inflammation and Metastasis Ability in A549 Cells Exposed to PM via C-Jun, P-65-Nf-Κb and Akt Signaling Pathways. Biomolecules 2021; 11:1090. [PMID: 34439757 PMCID: PMC8392772 DOI: 10.3390/biom11081090] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Particulate matter from forest fires (PMFF) is an environmental pollutant causing oxidative stress, inflammation, and cancer cell metastasis due to the presence of polycyclic aromatic hydrocarbons (PAHs). Perilla seed meal contains high levels of polyphenols, including rosmarinic acid (RA). The aim of this study is to determine the anti-oxidative stress, anti-inflammation, and anti-metastasis actions of rosmarinic acid rich fraction (RA-RF) from perilla seed meal and its underlying molecular mechanisms in A549 cells exposed to PMFF. PMFF samples were collected via the air sampler at the University of Phayao, Thailand, and their PAH content were analyzed using GC-MS. Fifteen PAH compounds were detected in PMFF. The PMFF significantly induced intracellular reactive oxygen species (ROS) production, the mRNA expression of pro-inflammatory cytokines, MMP-9 activity, invasion, migration, the overexpression of c-Jun and p-65-NF-κB, and Akt phosphorylation. Additionally, the RA-RF significantly reduced ROS production, IL-6, IL-8, TNF-α, and COX-2. RA-RF could also suppress MMP-9 activity, migration, invasion, and the phosphorylation activity of c-Jun, p-65-NF-κB, and Akt. Our findings revealed that RA-RF has antioxidant, anti-inflammatory, and anti-metastasis properties via c-Jun, p-65-NF-κB, and Akt signaling pathways. RA-RF may be further developed as an inhalation agent for the prevention of lung inflammation and cancer metastasis induced by PM exposure.
Collapse
Affiliation(s)
- Komsak Pintha
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Wittaya Chaiwangyen
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Supachai Yodkeeree
- Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Maitree Suttajit
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| | - Payungsak Tantipaiboonwong
- Division of Biochemistry, School of Medical Sciences, University of Phayao, Phayao 56000, Thailand; (K.P.); (W.C.); (M.S.)
| |
Collapse
|
20
|
Bongaerts E, Aengenheister L, Dugershaw BB, Manser P, Roeffaers MBJ, Ameloot M, Nawrot TS, Bové H, Buerki-Thurnherr T. Label-free detection of uptake, accumulation, and translocation of diesel exhaust particles in ex vivo perfused human placenta. J Nanobiotechnology 2021; 19:144. [PMID: 34001140 PMCID: PMC8130319 DOI: 10.1186/s12951-021-00886-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/06/2021] [Indexed: 01/24/2023] Open
Abstract
Background Pregnant women and developing fetuses comprise a particularly vulnerable population as multiple studies have shown associations between prenatal air pollution exposure and adverse pregnancy outcomes. However, the mechanisms underlying the observed developmental toxicity are mostly unknown, in particular, if pollution particles can cross the human placenta to reach the fetal circulation. Results Here, we investigated the accumulation and translocation of diesel exhaust particles (DEPs), as a model particle for combustion-derived pollution, in human perfused placentae using label-free detection by femtosecond pulsed laser illumination. The results do not reveal a significant particle transfer across term placentae within 6 h of perfusion. However, DEPs accumulate in placental tissue, especially in the syncytiotrophoblast layer that mediates a wealth of essential functions to support and maintain a successful pregnancy. Furthermore, DEPs are found in placental macrophages and fetal endothelial cells, showing that some particles can overcome the syncytiotrophoblasts to reach the fetal capillaries. Few particles are also observed inside fetal microvessels. Conclusions Overall, we show that DEPs accumulate in key cell types of the placental tissue and can cross the human placenta, although in limited amounts. These findings are crucial for risk assessment and protection of pregnant women and highlight the urgent need for further research on the direct and indirect placenta-mediated developmental toxicity of ambient particulates. ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00886-5.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Leonie Aengenheister
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Battuja B Dugershaw
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | - Pius Manser
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland
| | | | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.,Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium. .,Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| | - Tina Buerki-Thurnherr
- Laboratory for Particles-Biology Interactions, Empa, Swiss Federal Laboratories for Materials Science and Technology, St. Gallen, Switzerland.
| |
Collapse
|
21
|
Zhang W, Zhang L, Liu Y, Li J, Xu X, Niu W, Xu J, Sun B, Guo Y. Higher chromosomal aberration frequency in products of conception from women older than 32 years old with diminished ovarian reserve undergoing IVF/ICSI. Aging (Albany NY) 2021; 13:10128-10140. [PMID: 33819190 PMCID: PMC8064218 DOI: 10.18632/aging.202772] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022]
Abstract
Infertile women with diminished ovarian reserve (DOR) confront an increased miscarriage rate in assisted reproductive technology (ART). Genetic abnormality is the most important factor. However, the effects of DOR and female age on the molecular karyotype of products of conception (POCs) remain unknown. We analyzed POCs using a single nucleotide polymorphism (SNP) microarray from women with DOR who experienced first-trimester miscarriage in IVF/ICSI cycles. The SNP microarray revealed chromosomal abnormalities in 74.6% (47/63) of POCs, including trisomy in 83.0% (39/47). Chromosomal aberrations were more frequent in women older than 32 years old with DOR than in young women aged 20-32 years old (86.7% vs. 44.4%, P = 0.001). Univariate and multivariable analyses identified advanced age as a risk factor for chromosomal aberration-related miscarriage in women with DOR, with odds ratios of 8.125 (95% CI: 2.291-28.820, P = 0.001) and 5.867 (95% CI: 1.395-24.673, P = 0.016), respectively. The results showed that older women (older than 32 years old) with DOR had a high risk of miscarrying a chromosomally aberrant embryo/fetus, regardless of basal follicle-stimulating hormone (FSH), anti-Mullerian hormone (AMH), antral follicle count (AFC) and previous reproductive history. This finding indicates a novel cut-off value of age for women with DOR related to chromosomal aberration-related miscarriage.
Collapse
Affiliation(s)
- Wanyu Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Linghan Zhang
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Yu Liu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Jing Li
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Xiaolu Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Wenbin Niu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China.,Department of Preimplantation Genetic Diagnosis, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiawei Xu
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China.,Department of Preimplantation Genetic Diagnosis, Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bo Sun
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| | - Yihong Guo
- Center for Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China.,Henan Province Key Laboratory of Reproduction and Genetics, Henan, China
| |
Collapse
|
22
|
Mechanistic Implications of Biomass-Derived Particulate Matter for Immunity and Immune Disorders. TOXICS 2021; 9:toxics9020018. [PMID: 33498426 PMCID: PMC7909393 DOI: 10.3390/toxics9020018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/04/2021] [Accepted: 01/15/2021] [Indexed: 12/29/2022]
Abstract
Particulate matter (PM) is a major and the most harmful component of urban air pollution, which may adversely affect human health. PM exposure has been associated with several human diseases, notably respiratory and cardiovascular diseases. In particular, recent evidence suggests that exposure to biomass-derived PM associates with airway inflammation and can aggravate asthma and other allergic diseases. Defective or excess responsiveness in the immune system regulates distinct pathologies, such as infections, hypersensitivity, and malignancies. Therefore, PM-induced modulation of the immune system is crucial for understanding how it causes these diseases and highlighting key molecular mechanisms that can mitigate the underlying pathologies. Emerging evidence has revealed that immune responses to biomass-derived PM exposure are closely associated with the risk of diverse hypersensitivity disorders, including asthma, allergic rhinitis, atopic dermatitis, and allergen sensitization. Moreover, immunological alteration by PM accounts for increased susceptibility to infectious diseases, such as tuberculosis and coronavirus disease-2019 (COVID-19). Evidence-based understanding of the immunological effects of PM and the molecular machinery would provide novel insights into clinical interventions or prevention against acute and chronic environmental disorders induced by biomass-derived PM.
Collapse
|
23
|
Matoba N, Mestan KK, Collins JW. Understanding Racial Disparities of Preterm Birth Through the Placenta. Clin Ther 2021; 43:287-296. [PMID: 33483135 DOI: 10.1016/j.clinthera.2020.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 01/13/2023]
Abstract
The racial disparity associated with preterm birth is a public health concern in the United States. The placenta is the principal metabolic, respiratory, and endocrine organ of the fetus and a key route by which environmental exposures are transmitted from mother to offspring. Available at every delivery, it may serve as a marker of differences in prenatal exposures that manifest differently by race. Recently, we described differences in placental pathology between African-American and White preterm births: the prevalence of chronic inflammation was higher among African-American women's placentas compared with those of White women. Similarly, racial differences have been shown in placental malperfusion and placental weight. Social determinants such as poverty and stress from discrimination have been implicated in racial disparities in preterm birth. To date, however, the underlying biological mechanisms, whether through inflammatory, oxidative stress, or other pathways involving epigenetic programming, remain largely unknown. The placenta, complemented by maternal and umbilical cord blood biomarkers, may provide important information on the perinatal environment that explains the origins of racial disparities in preterm birth rates and subsequent health outcomes. This article reviews existing literature and current research gaps. Opportunities are discussed for future placental research that may reveal novel mechanisms leading to the development of new approaches in the prevention and management of preterm birth and its outcomes.
Collapse
Affiliation(s)
- Nana Matoba
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Neonatology, Chicago, IL, USA.
| | - Karen K Mestan
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Neonatology, Chicago, IL, USA
| | - James W Collins
- Ann & Robert H. Lurie Children's Hospital of Chicago, Northwestern University Feinberg School of Medicine, Department of Pediatrics, Division of Neonatology, Chicago, IL, USA
| |
Collapse
|
24
|
Bongaerts E, Nawrot TS, Van Pee T, Ameloot M, Bové H. Translocation of (ultra)fine particles and nanoparticles across the placenta; a systematic review on the evidence of in vitro, ex vivo, and in vivo studies. Part Fibre Toxicol 2020; 17:56. [PMID: 33138843 PMCID: PMC7607677 DOI: 10.1186/s12989-020-00386-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 10/20/2020] [Indexed: 12/19/2022] Open
Abstract
Fetal development is a crucial window of susceptibility in which exposure may lead to detrimental health outcomes at birth and later in life. The placenta serves as a gatekeeper between mother and fetus. Knowledge regarding the barrier capacity of the placenta for nanoparticles is limited, mostly due to technical obstacles and ethical issues. We systematically summarize and discuss the current evidence and define knowledge gaps concerning the maternal-fetal transport and fetoplacental accumulation of (ultra)fine particles and nanoparticles. We included 73 studies on placental translocation of particles, of which 21 in vitro/ex vivo studies, 50 animal studies, and 2 human studies on transplacental particle transfer. This systematic review shows that (i) (ultra)fine particles and engineered nanoparticles can bypass the placenta and reach fetal units as observed for all the applied models irrespective of the species origin (i.e., rodent, rabbit, or human) or the complexity (i.e., in vitro, ex vivo, or in vivo), (ii) particle size, particle material, dose, particle dissolution, gestational stage of the model, and surface composition influence maternal-fetal translocation, and (iii) no simple, standardized method for nanoparticle detection and/or quantification in biological matrices is available to date. Existing evidence, research gaps, and perspectives of maternal-fetal particle transfer are highlighted.
Collapse
Affiliation(s)
- Eva Bongaerts
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
- Department of Public Health and Primary Care, KU Leuven, Herestraat 49, Box 703, 3000, Leuven, Belgium
| | - Thessa Van Pee
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium
| | - Marcel Ameloot
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium
| | - Hannelore Bové
- Centre for Environmental Sciences, Hasselt University, Agoralaan Building D, 3590, Diepenbeek, Belgium.
- Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590, Diepenbeek, Belgium.
| |
Collapse
|
25
|
Kelemu T, Erlandsson L, Seifu D, Abebe M, Teklu S, Storry JR, Hansson SR. Association of Maternal Regulatory Single Nucleotide Polymorphic CD99 Genotype with Preeclampsia in Pregnancies Carrying Male Fetuses in Ethiopian Women. Int J Mol Sci 2020; 21:ijms21165837. [PMID: 32823905 PMCID: PMC7461595 DOI: 10.3390/ijms21165837] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 12/28/2022] Open
Abstract
Preeclampsia (PE) is a human specific syndrome with unknown etiology causing maternal and fetal morbidities and mortalities. In PE, maternal inflammatory responses are more exaggerated if the fetus is male than female. Other pregnancy complications such as spontaneous abortions are also more common if the fetus is male. Recent transcriptome findings showed an increased expression of CD99 in erythroid cells from male cord blood in PE. The single nucleotide polymorphism (SNP) rs311103, located in a GATA-binding site in a regulatory region on the X/Y chromosomes, governs a coordinated expression of the Xg blood group members CD99 and Xga in hematopoietic cells in a sex-dependent fashion. The rs311103C disrupts the GATA-binding site, resulting in decreased CD99 expression. We aimed to investigate the association between PE and the allele frequency of rs311103 in pregnancies in a fetal sex-dependent fashion. In a case-controlled study, we included 241 pregnant women, i.e., 105 PE cases and 136 normotensive controls. A SNP allelic discrimination analysis was performed on DNA from maternal venous blood and fetal cord blood by qPCR. A statistically significant association was observed between rs311103 allele frequency and PE in mothers carrying male fetuses. Therefore, the rs311103 genotype may play a role in the pathogenesis of PE in a fetal sex-specific manner.
Collapse
Affiliation(s)
- Tsehayneh Kelemu
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, P.O. Box 9086 Addis Ababa, Ethiopia; (T.K.); (D.S.)
| | - Lena Erlandsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden;
| | - Daniel Seifu
- Department of Biochemistry, College of Health Sciences, Addis Ababa University, P.O. Box 9086 Addis Ababa, Ethiopia; (T.K.); (D.S.)
- Department of Biochemistry, Division of Biomedical Sciences, University of Global Health Equity, P.O. Box 6955 Kigali, Rwanda
| | - Markos Abebe
- Armauer Hanson Research Institute, P.O. Box 1005 Addis Ababa, Ethiopia;
| | - Sisay Teklu
- Department of Obstetrics and Gynecology, College of Health Sciences, Addis Ababa University, P.O. Box 9086 Addis Ababa, Ethiopia;
| | - Jill R. Storry
- Department of Hematology and Transfusion Medicine, Division of Laboratory Medicine, Lund University, 221 85 Lund, Sweden;
| | - Stefan R. Hansson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences Lund, Lund University, 221 85 Lund, Sweden;
- Correspondence: ; Tel.: +46-46-2223011
| |
Collapse
|