1
|
S V, T J, E AP, A MHA. Antibiotic resistance of heterotrophic bacteria from the sediments of adjoining high Arctic fjords, Svalbard. Braz J Microbiol 2024; 55:2371-2383. [PMID: 38767750 PMCID: PMC11405572 DOI: 10.1007/s42770-024-01368-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 04/08/2024] [Indexed: 05/22/2024] Open
Abstract
Antibiotic resistance bacteria (ARB) and antibiotic resistance genes (ARGs) are now considered major global threats. The Kongsfjorden and Krossfjorden are the interlinked fjords in the Arctic that are currently experiencing the effects of climate change and receiving input of pollutants from distant and regional sources. The present study focused on understanding the prevalence of antibiotic resistance of retrievable heterotrophic bacteria from the sediments of adjacent Arctic fjords Kongsfjorden and Krossfjorden. A total of 237 bacterial isolates were tested against 16 different antibiotics. The higher resistance observed towards Extended Spectrum β-lactam antibiotic (ESBL) includes ceftazidime (45.56%) followed by trimethoprim (27%) and sulphamethizole (24.05%). The extent of resistance was meagre against tetracycline (2.53%) and gentamycin (2.95%). The 16S rRNA sequencing analysis identified that Proteobacteria (56%) were the dominant antibiotic resistant phyla, followed by Firmicutes (35%), Actinobacteria (8%) and Bacteroidetes. The dominant resistant bacterial isolates are Bacillus cereus (10%), followed by Alcaligenes faecalis (6.47%), Cytobacillus firmus (5.75%) Salinibacterium sp. (5%) and Marinobacter antarcticus (5%). Our study reveals the prevalence of antibiotic resistance showed significant differences in both the inner and outer fjords of Kongsfjorden and Krossfjorden (p < 0.05). This may be the input of antibiotic resistance bacteria released into the fjords from the preserved permafrost due to the melting of glaciers, horizontal gene transfer, and human influence in the Arctic region act as a selection pressure for the development and dissemination of more antibiotic resistant bacteria in Arctic fjords.
Collapse
Affiliation(s)
- Vishnupriya S
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India.
| | - Jabir T
- National Centre for Polar and Ocean Research, Ministry of Earth Sciences, Headland Sada, 403 804, Vasco- da-Gama, Goa, India
| | - Akhil Prakash E
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
| | - Mohamed Hatha A A
- Department of Marine Biology, Microbiology, Biochemistry, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
- CUSAT NCPOR Centre for Polar Sciences, School of Marine Sciences, Cochin University of Science and Technology (CUSAT), Kochi, India
| |
Collapse
|
2
|
Rosso B, Scoto F, Hallanger IG, Larose C, Gallet JC, Spolaor A, Bravo B, Barbante C, Gambaro A, Corami F. Characteristics and quantification of small microplastics (<100 µm) in seasonal svalbard snow on glaciers and lands. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133723. [PMID: 38359761 DOI: 10.1016/j.jhazmat.2024.133723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Small microplastics (SMPs < 100 µm) can easily be transported over long distances far from their sources through the atmospheric pathways and reach even remote regions, including the Arctic. However, these sizes of MPs are mostly overlooked due to different analytical challenges; besides, their pathways through atmospheric depositions, such as snow depositions, are mostly unknown. The spatial variability in bulk snow samples was investigated for the first time in distinct sites (e.g., glaciers) near Ny Ålesund, the world-known northernmost permanent research settlement in the Svalbard Islands, to better comprehend the presence of SMP pollution in snow. Seasonal snow deposited over the tundra and the summits of different glaciers were also sampled. A sampling procedure was designed to obtain representative samples while minimizing plastic contamination, thanks to rigorous quality assurance and quality control protocol. SMPs' weight (µg SMP L-1) and deposition load (mg SMPs m-2) result from being lower in the remote glaciers, where they may be subject to long-range transport. The SMPs' minimum length was 20 µm, with the majority less than 100 µm. Regarding their size distribution, there was an increase in the size length deriving from the local input of the human presence near the scientific settlement. The presence of some polymers might be site-specific in relation to the pathways that affect their distribution at the sites studied. Also, from the snow surface layer collected at the same sites to evaluate the variability of SMPs during specific atmospheric deposition events, the results confirmed their higher weight and load in surface snow near the scientific settlement compared to the glaciers. The results will enhance the limited knowledge of the SMPs in polar atmospheric compartments and deposition processes.
Collapse
Affiliation(s)
- Beatrice Rosso
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Federico Scoto
- Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy; Institute of Atmospheric Sciences and Climate, National Research Council, CNR-ISAC, Lecce, Italy
| | | | - Catherine Larose
- Environmental Microbial Genomics, Laboratoire Ampère, École Centrale de Lyon, Université de Lyon, Écully, France
| | | | - Andrea Spolaor
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Barbara Bravo
- Thermo Fisher Scientific, Str. Rivoltana, Km 4, 20090 Rodano, MI, Italy
| | - Carlo Barbante
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Andrea Gambaro
- Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy
| | - Fabiana Corami
- Institute of Polar Sciencies, CNR-ISP, Campus Scientifico Ca' Foscari University, Via Torino 155, 30172 Venezia Mestre, Italy; Department of Environmental Sciences, informatics, and Statistics, Campus Scientifico - Ca' Foscari University of Venice, Via Torino 155, 30172, Venezia-Mestre, Italy.
| |
Collapse
|
3
|
Song Y, Yang Z. Vertical distributions and potential contamination assessment of seldom monitored trace elements in three different land use types of Yellow River Delta. MARINE POLLUTION BULLETIN 2024; 199:116033. [PMID: 38219293 DOI: 10.1016/j.marpolbul.2024.116033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
The Yellow River Delta (YRD) is the second largest petrochemical base in China and the impact of human activities has been continuously increasing in recent decades, however, the contamination status of seldom monitored trace elements (SMTEs) in YRD has rarely been reported. This study evaluated the levels, vertical distributions, contamination status and sources of SMTEs in soil samples of three different land use types in YRD. The results indicated that the vertical distributions of SMTEs contents showed a gradually upward increasing trend for the soil profiles of black locust forest, while the SMTEs contents displayed a gradually upward decreasing trend for the soil profiles of cotton field. However, the SMTEs contents in the oil field area showed no significant difference among different depths. The vertical distributions of SMTEs were very likely related to the anthropogenic disturbance in the later stage. The environmental pollution status assessment of SMTEs showed obvious enrichment of Cs, Sn, and U in the soils of YRD. Moreover, the potential source analysis based on multivariate statistical methods indicated that Ga, Rb, Cs, Sc, Sn, Tl, Be, Bi, Ca and Mo were clustered together and positively correlated with Al, Fe, Mg and K, and may be mainly associated with geochemical weathering process, while the Ce, La, Th, U, Nb, Ta, and Hf may be impacted by both natural process and human activities. Though the SMTEs pollution status was not very serious, our results highlighted the non-negligible influence of anthropogenic activities on vertical distributions of SMTEs in three different land use types from YRD. Our results provide valuable information for understanding the vertical distribution and pollution status of SMTEs in YRD.
Collapse
Affiliation(s)
- Yingqiang Song
- School of Civil Engineering and Geomatics, Shandong University of Technology, Zibo 255000, China
| | - Zhongkang Yang
- College of Resources and Environment, Key Laboratory of Agricultural Environment in Universities of Shandong, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
4
|
Souza-Kasprzyk J, Kozak L, Niedzielski P. Impacts of anthropogenic activities and glacial processes on the distribution of chemical elements in Billefjord, Svalbard, Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168534. [PMID: 37977378 DOI: 10.1016/j.scitotenv.2023.168534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 11/19/2023]
Abstract
The Arctic region is undergoing rapid and extensive transformations due to global climate change. This study investigated the spatial distribution of 31 chemical elements in eight locations in Billefjord, Svalbard, Arctic, with varying degrees of anthropogenic and glacial influences. The west coast of Billefjord has experienced a greater historical anthropogenic impact, while the east coast has larger glaciers and shows less visible evidence of direct human impact. Over 450 topsoil samples collected in the west (abandoned mining town Pyramiden, and glacial valleys of Elsa, Ferdinand, Sven) and east coast of the fjord (glacial valleys of Ebba, Pollock, Ragnar and nearby the Nordenskiöld glacier). These samples were extracted and analyzed by ICP-OES. The results revealed complex distributions of elements among the locations. Nordenskiöld glacier area, along with other locations in the eastern part of the Billefjord, had significantly higher levels of most elements (20 out of 31; As, B, Ca, Cd, Co, Cr, Cu, K, Li, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). In contrast, Ferdinand Valley and other locations on the western side of the fjord had the lowest mean concentrations of most elements (18 out of 31; B, Ca, Cu, Cd, K, Li, P, Mg, Mo, Sb, Se, Sn, Sr, Ti, Tl, U, V, Zr). These findings highlight the significant influence of glacial processes on the elemental composition of soils within the region. The meltwater flow originating from glaciers in the sampled valleys contributes to the local element load, while the loss of glacier mass is associated with decreased element concentrations within these valleys. These results underscore the complexity of element distribution in the study area and emphasize the necessity for continuous monitoring efforts in this unique and environmentally sensitive region.
Collapse
Affiliation(s)
- Juliana Souza-Kasprzyk
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Lídia Kozak
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland
| | - Przemyslaw Niedzielski
- Department of Analytical Chemistry, Faculty of Chemistry, Adam Mickiewicz University, 8 Uniwersytetu Poznańskiego Street, 61-614 Poznań, Poland.
| |
Collapse
|
5
|
Choudhary S, Nayak GN, Khare N. Sedimentary processes, metal enrichment and potential ecological risk of metals in lacustrine sediments of Svalbard, Arctic. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:106967-106981. [PMID: 36255580 DOI: 10.1007/s11356-022-23600-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
The Svalbard archipelago is a glacial environment bestowed with various lakes that act as a natural archive for understanding environmental conditions. The accumulation of sediments in lake basins and their distribution are affected by different mechanisms. Therefore, to understand the distribution of sediments, factors controlling the transport and metal enrichment in the lake environment, core sediments were studied from four lakes (L-A, L-1, L-2 and L-3). Also, the potential ecological risk index (PERI) was computed to determine the impact of metal enrichment on the sediment-associated biota. The results obtained showed that the distribution of trace elements was mainly controlled by the major elements like Al, Ti, Fe, and Mn attributed to their lithogenic origin. Index of geoaccumulation (Igeo) of all four lakes showed a moderate level of enrichment of metals like Cr and Cd indicating an enhanced supply of these metals probably from the catchment rocks and anthropogenic activities. A comparison of metals with Arctic Sediment Quality Guidelines (ASQGs) showed that Cd, Cr and Cu were enriched in the sediments of all the cores indicating the occurrence of adverse biological effects. Furthermore, a potential ecological risk index (PERI) revealed high Cd indicating considerable potential ecological risk to the sediment-associated biota. Thus, trace element influx to the lakes needs to be monitored with due emphasis on Cd contamination.
Collapse
Affiliation(s)
- Shabnam Choudhary
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, 403206, India.
- National Centre for Polar and Ocean Research (NCPOR), Ministry of Earth Sciences, Goa, 403802, India.
| | - Ganapati N Nayak
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, 403206, India
| | - Neloy Khare
- Ministry of Earth Sciences, Government of India, New Delhi, 110003, India
| |
Collapse
|
6
|
Radziemska M, Gusiatin MZ, Cydzik-Kwiatkowska A, Blazejczyk A, Holatko J, Brtnicky M. Does biochar in combination with compost effectively promote phytostabilization of heavy metals in soil under different temperature regimes? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163634. [PMID: 37088391 DOI: 10.1016/j.scitotenv.2023.163634] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/15/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The article presents the effect of a combined amendment, i.e., biochar+compost (BC), on the process of Cd, Cu, Ni, Pb and Zn immobilization in soil cultivated with L. perenne under freezing and thawing conditions (FTC). In particular, the speciation analysis of the examined elements in phytostabilized soils based on their response using the sequential extraction, and the variability of the soil microbiome using 16S rRNA gene amplicon sequencing were systematically assessed. Metal stability in soils was evaluated by the reduced distribution index (Ir). Plants were grown in pots for 52 days under greenhouse conditions. After termination, phytostabilization was continued in a temperature chamber for 64 days to provide FTC. As a result, it was noted that biomass yield of L. perenne was promoted by BC (39 % higher than in the control pots) and reduced by FTC (45 % lower than in the BC-enriched soil not exposed to FTC). An efficacious level of phytostabilization, i.e., higher content of heavy metals in plant roots, was found in the BC-enriched soil, regardless of the changes in soil temperature conditions. BC improved soil pH before applying FTC more than after applying FTC. BC had the greatest impact on increasing Cu stability by redistributing it from the F1 and F2 fractions to the F3 and F4 fractions. For most metals, phytostabilization under FTC resulted in an increase in the proportion of the F1 fraction and a decrease in its stability. Only for Pb and Zn, FTC had greater impact on their stability than BC addition. In all soil samples, the core genera with about 2-3 % abundances were Sphingomonas sp. and Mycobacterium sp. FTC favored the growth of Bacteroidetes and Proteobacteria in soil. Microbial taxa that coped well with FTC but only in the absence of BC were Rhodococcus, Alkanindiges sp., Flavobacterium sp., Williamsia sp. Thermomonas sp.
Collapse
Affiliation(s)
- Maja Radziemska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | - Mariusz Z Gusiatin
- Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Słoneczna St. 45G, 10-719 Olsztyn, Poland
| | - Agnieszka Cydzik-Kwiatkowska
- Institute of Environmental Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aurelia Blazejczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Jiri Holatko
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic; Agrovyzkum Rapotin, Ltd., Vyzkumniku 267, 788 13 Rapotin, Czech Republic
| | - Martin Brtnicky
- Department of Agrochemistry, Soil Science, Microbiology and Plant Nutrition, Faculty of AgriSciences, Mendel University in Brno, Zemedelska 1, 61300 Brno, Czech Republic
| |
Collapse
|
7
|
Yang Z, Sui H, Zhang T, Chen Y, Sun L, Wang J. Comprehensive assessment of seldom monitored trace elements contamination and its anthropogenic impact record in a sediment core from the North Yellow Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121179. [PMID: 36736569 DOI: 10.1016/j.envpol.2023.121179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
The environmental status of seldom monitored trace elements (SMTEs) has rarely been reported in the North Yellow Sea (NYS). This study investigated the levels, sources and ecological risks of 18 SMTEs in a 209-cm-long sediment core from NYS. The concentrations of SMTEs exhibited a gradual increasing trend in the upper 70 cm. Based on the assessment results of enrichment factor (EF), geo-accumulation index (Igeo) and contamination factor (CF), obvious enrichment of Cs, Li, and U was observed for the NYS sediments, indicating possible anthropogenic sources, which are consistent with the geochemical background normalized patterns. Moreover, the pollution load index (PLI) values ranged from 0.93 to 1.24 and showed a steadily increasing trend in the upper 70 cm part, indicating gradual deterioration of environment in NYS. Combined with the multivariate statistical analysis results and PLI variations, the first principal component (PC1) with high positive loading on Be, Cs, Ga, Hf, In, Li, Nb, Rb, Sc, Ta and Tl was very likely an "anthropogenic factor". Therefore, the historical anthropogenic impact record in the NYS was reconstructed based on the PC1 scores, which indicated significant anthropogenic influence over the past 300 years. This study provides valuable information for understanding the pollution history of SMTEs and historical record of anthropogenic impact in the NYS.
Collapse
Affiliation(s)
- Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China; Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Honglei Sui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Tianjiao Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yangyang Chen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Liguang Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
8
|
Wei Y, He J, Xue Y, Nie Y, Liu X, Wu L. Spatial distribution of multi-elements in moss revealing heavy metal precipitation in London Island, Svalbard, Arctic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120398. [PMID: 36228845 DOI: 10.1016/j.envpol.2022.120398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/31/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The Arctic is a sink for major pollutants in the Northern Hemisphere, and is an ideal place to investigate the migration of concerned metals on the local environment. In this study, 13 elements including Li, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, As, Cd, Hg, and Pb were determined in mosses (Dicranum angustum) from London Island in Ny-Ålesund. The results showed that the concentrations of different elements varied greatly at different altitudes, while their distributions in low (0-200 m) and high (200-300 m) altitudes based on cluster analysis were significantly different. Among them, Li, Ti, V, Cr, Mn, Fe, Co, Cu, and As showed significant positive correlations with elevation. This result may be due to the influence of key environmental factors such as elements transported by the airborne dust carried by winds, and surface runoff from snow meltwater. Multiple receptor models (PCA, PMF, and UNMIX) were employed to discuss the sources of metals in mosses from London Island. Elements that showed positive correlation with altitude were attributed to natural sources, and Zn, Cd, Hg, and Pb, which lacked apparent correlation with elevation, were interpreted as from anthropogenic sources by the models. Among them, Zn, Cd, and Hg were from long-range deposition, while Pb was from mixed industrial sources.
Collapse
Affiliation(s)
- Yutong Wei
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Jianuo He
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| | - Yulu Xue
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China.
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, China
| |
Collapse
|
9
|
Yang Z, Sui H, Zhang Y, Li Y, Sun L, Wang J. Reconstruction, assessment, and calibration of potential toxic elements (PTEs) in a 3500-year-long sedimentary record off the northern coast of Shandong Peninsula, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 312:120075. [PMID: 36055455 DOI: 10.1016/j.envpol.2022.120075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/12/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
The marine environment of coastal Shandong Peninsula has been significantly influenced by anthropogenic activities due to the rapid industrialization and economic development in the past decades. However, the sedimentary records of PTEs in the North Yellow Sea have rarely been reported. In this study, a 209-cm-long sediment core was collected off the northern coast of Shandong Peninsula, analyzed for grain size and elemental compositions, and assessed using EF, Igeo and several numerical Sediment Quality Guidelines (SQGs). The EF and Igeo results suggested that sediment profile could be slightly to moderately polluted with As and Sb, while ecological risk assessment using SQGs showed that As, Cr, Sb and Ni in the sediment profile may have a moderate incidence of toxicity. Our results highlighted the nonnegligible ecological risk of Sb in sediments of North Yellow Sea, and great importance should be attached to the fact that many PTEs may also pose a potential ecological risk to the aquatic organisms, even though their concentrations meet the standards of the Marine Sediments Quality (MSQ). Moreover, the reconstructed PTEs record showed a dramatic increase over the past 250 years, which could be related to the intense anthropogenic activities since the Industrial Revolution. The multivariate statistical analysis results indicated that Co, Cr, Cu, Pb, Ni and Zn may be mainly related to the natural origin, while As and Sb could be influenced by both natural weathering sources and anthropogenic activities. This study provides more insights into the historical record of PTEs in the North Yellow Sea, and lays foundation for future comparison of PTEs sedimentary records.
Collapse
Affiliation(s)
- Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China; Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| | - Honglei Sui
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Youai Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| | - Liguang Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an, 271000, China
| |
Collapse
|
10
|
Zhang T, Li J, Wang N, Wang H, Yu L. Metagenomic analysis reveals microbiome and resistome in the seawater and sediments of Kongsfjorden (Svalbard, High Arctic). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151937. [PMID: 34838907 DOI: 10.1016/j.scitotenv.2021.151937] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/02/2021] [Accepted: 11/20/2021] [Indexed: 06/13/2023]
Abstract
Kongsfjorden in the high Arctic, a typical Arctic fjord, experienced long-time input of nutrients and pollutants from the remote and local resources, providing a platform for characterizing the diversity and distribution of antibiotic resistance genes (ARGs). However, the microbiome and antibiotic resistome in this pristine marine system have not been well documented. The present study aimed to characterize the diversity and distribution of bacterial communities and associated ARGs in seawater (12 samples) and sediments (13 samples) of Kongsfjorden via metagenomic analysis. In terms of both bacterial community compositions and ARG profiles, the seawater was significantly distinct from sediment. Only 29 ARG subtypes were detected in the Arctic seawater and sediments. Furthermore, three geochemical factors (i.e., longitude, depth, and PO43-) greatly influenced the bacterial communities in sediment samples, while longitude, depth, and latitude were crucial geochemical factors influencing the ARG profiles in sediment samples. Procrustes analysis revealed a significant correlation between bacterial community compositions and ARG profiles in seawater and sediment samples. Further analysis revealed the metagenome-assembled genomes (MAGs) with ARG subtypes. Overall, our study provides insights into the microbiome and resistome in a pristine Arctic fjord, thereby providing vital information for environmental management.
Collapse
Affiliation(s)
- Tao Zhang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Jun Li
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Nengfei Wang
- Key Lab of Marine Bioactive Substances, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, PR China
| | - Hao Wang
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Liyan Yu
- China Pharmaceutical Culture Collection, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
11
|
Yang Z, Zhang Y, Xie Z, Wang J, Li Z, Li Y, Du J, Sun L. Potential influence of rapid climate change on elemental geochemistry distributions in lacustrine sediments-A case study at a high Arctic site in Ny-Ålesund, Svalbard. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149784. [PMID: 34428654 DOI: 10.1016/j.scitotenv.2021.149784] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Metal contamination has become an increasingly severe environmental issue due to intense anthropogenic activities in recent decades. Many studies have reported a rapidly increasing trend of heavy metal contents in sedimentary records. In this study, two lacustrine sediment cores (LDL and YL) far away from scientific research stations were collected in Ny-Ålesund and analyzed for the vertical distributions of 17 elemental concentrations (Cu, Zn, Pb, Co, Ni, Cr, Sr, Ba, Mn, P, Ti, K2O, Na2O, CaO, MgO, Fe2O3, Al2O3), CIA and TOC contents. The results indicated that only the proxies Pb, P, CaO, TOC, and CIA showed an increasing trend in the upper 7 cm section of the sediment cores, while most of the elements' concentrations decreased towards the surface. The rapid increase of TOC contents is likely related to the climate warming over the past 200 years, which promotes the prosperity of vegetation and thus leads to more input of organic matter into the lakes. Moreover, a large number of seabirds live around the sampling position and the seabird guano contains high concentrations of P, which could be regarded as an important nutrient source for vegetation. Additionally, the rapid climate warming could accelerate the chemical weathering rates, and thus lead to increased CaO contents in the sediment profiles according to its geological background. Therefore, the concentrations of other elements are very likely diluted by the high contents of organic matter and CaO in the upper part of the sediment cores. It is noteworthy that the rapidly increasing trend of Pb contents are related to the gas-oil powered generators in Ny-Ålesund and long-range atmospheric transport from Europe. This study highlighted the nonnegligible influence of climate warming on the inorganic elemental geochemistry distributions in remote lakes.
Collapse
Affiliation(s)
- Zhongkang Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China; Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Youai Zhang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Zhouqing Xie
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China.
| | - Zhaolei Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Yanqiang Li
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Tai'an 271000, China
| | - Jinlong Du
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou 730070, China
| | - Liguang Sun
- Institute of Polar Environment & Anhui Key Laboratory of Polar Environment and Global Change, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|