1
|
Liao J, Yan W, Zhang Y, Berhane K, Chen W, Yang Z, Qiu C, Ge Y, Bai Z, Han B, Xu J, Jiang YH, Gilliland FD, Zhang JJ, Huang G, Chen Z. Associations of preconception air pollution exposure with growth trajectory in young children: A prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 267:120665. [PMID: 39706320 DOI: 10.1016/j.envres.2024.120665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Gestational air pollution exposure was associated with childhood obesity. However, little is known about the effect of air pollution exposure during the preconception period, a critical window when environmental exposures may affect body growth trajectory and increase obesity risk. We conducted a population-based prospective cohort study of preconception women and their newborn children followed until 2 years old from metropolitan Shanghai, China to investigate the impact of preconception air pollution on childhood weight and body mass index (BMI) growth trajectories. Exposures to PM2.5, PM10, and NO2 during 3 months before conception and each trimester of pregnancy were estimated using high-resolution spatiotemporal models matched at residential addresses. Children's weight and BMI were assessed postnatally every three months. Multivariate and longitudinal models with piecewise linear mixed effects were used to examine the relationship between preconception air pollution and child growth trajectories of weight, BMI, and standardized BMI (BMIZ). The study population comprised 26,714 women in the baseline enrolled in preconception clinics and 5,834 children reached 2 years included in the analysis with 34,398 longitudinal weight and height measurements. One interquartile range (IQR) increase in preconception PM2.5 (16.2 μg/m3) was associated with a 0.078 (95% confidence interval (CI): 0.002-0.154, p = 0.04) increase in attained BMIZ and 1 IQR increase of PM10 (21.1 μg/m3) were associated with an 0.093 (95% CI: 0.002-0.184, p = 0.04) kg/m2 increase in attained BMI, respectively, at the age of two years, after controlling for individual covariates and gestational air pollution exposure. Higher weight, BMI, and BMIZ growth rates during 6-24 months of life were also associated with higher preconception NO2 and PM exposure. Males and children born to mothers less than 35 years old or with overweight/obesity status were more affected by preconception air pollution exposure on weight growth. The 3-month preconception period was a critical time window for air pollution exposure.
Collapse
Affiliation(s)
- Jiawen Liao
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Weili Yan
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Yi Zhang
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Wu Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Zhenchun Yang
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Chenyu Qiu
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Yihui Ge
- Division of Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yong-Hui Jiang
- Department of Genetics, Neuroscience, and Pediatrics, Yale University School of Medicine, New Haven, CT, USA
| | - Frank D Gilliland
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - Junfeng Jim Zhang
- Division of Environmental Science and Policy, Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Guoying Huang
- Children's Hospital of Fudan University, Shanghai Key Laboratory of Birth Defect, Shanghai, China.
| | - Zhanghua Chen
- Department of Population and Public Health Sciences, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
2
|
Pistillo A, Warkentin S, Abellan A, de Bont J, Ranger T, Pérez-Crespo L, Cirach M, Perramon-Malavez A, Khalid S, Nieuwenhuijsen M, Vrijheid M, Duarte-Salles T. Residential relocation and changes in patterns of environmental exposures by health determinants among children and adolescents in Catalonia, Spain. ENVIRONMENTAL RESEARCH 2024; 263:120152. [PMID: 39419256 DOI: 10.1016/j.envres.2024.120152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/19/2024]
Abstract
Residential relocation leads to environmental changes, besides being likely to be influenced by sociodemographic characteristics. The relationship between them is, however, still not well described. We aimed to investigate changes in patterns of urban, natural and physical environmental exposures due to relocation and related sociodemographic determinants in a population-based cohort study of children and adolescents. We included individuals between 0 and 17 years of age, registered in primary healthcare records in Catalonia, Spain from 2006 to 2018 and categorized them as non-movers and movers (first residential change). Hierarchical clustering identified groups of individuals based on their exposure to air pollution, green spaces and built environment. Low, medium and high environmental hazard exposure clusters were identified, which were used to identify changes in environmental exposure patterns due to relocation, namely same, worse, and better environment. Multinomial logistic regression determined whether sex, age, nationality and area-level deprivation influenced these changes. From 1,316,138 individuals, 221,058 were movers. Compared to non-movers, movers were more frequently with foreign nationality (12.1% vs. 21.3%, respectively) and more likely to live in the most deprived areas at baseline (19.2% vs. 24.4%). Younger children had higher risk of moving to better or worse environments. Individuals living in areas with the highest levels of deprivation were least likely to move within the same environments (i.e., either moving to better (Odds Ratio [95% Confidence Interval] 1.39[1.34-1.44]) or worse environment (1.56[1.49-1.63])). Compared to people from Spain, those from Africa moved to similar environments (OR of moving to a better environment 0.90 (0.87-0.94) with respect to move to the same environment, and OR of moving to a worse environment 0.82 (0.78-0.85)), those from America tended to move to other environments (1.17 (1.12-1.23) better and 1.09 (1.03-1.15) worse), while those from Asia and Europe moved to better environments (1.22 (1.12-1.33) and 1.20 (1.14-1.27) respectively). No associations were found for sex. Changes in patterns of environmental exposures due to residential mobility are complex and may be determined by age, deprivation and nationality.
Collapse
Affiliation(s)
- A Pistillo
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain.
| | - S Warkentin
- Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - A Abellan
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - J de Bont
- Institute of Environmental Medicine, Karolinska Institutet, Sweden
| | - T Ranger
- Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - L Pérez-Crespo
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - M Cirach
- Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | | | - S Khalid
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, Oxfordshire, UK; Centre for Statistics in Medicine, University of Oxford, Oxford, Oxfordshire, UK
| | - M Nieuwenhuijsen
- Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - M Vrijheid
- Universitat Pompeu Fabra, Barcelona, Spain; ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - T Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Department of Medical Informatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
3
|
Barbour Z, Mojica C, Alvarez HO, Foster BA. Socio-Ecologic Influences on Weight Trajectories Among Children with Obesity Living in Rural and Urban Settings. Child Obes 2024; 20:624-633. [PMID: 38973696 DOI: 10.1089/chi.2023.0193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Background: Childhood obesity is a risk factor for poor cardiovascular, metabolic, and respiratory health. The studies examining influences of socio-ecologic factors on weight trajectories using longitudinal data are limited, often examine single measures (e.g., proximity to parks), and have not examined the specific trajectories of children with obesity. Methods: We examined influences on weight among 1518 children, 6-12 years of age, who had obesity using body mass index (BMI) criteria. BMI slope trajectories were categorized as decreasing, flat, or increasing, with a median of 2.1 years of follow-up. We examined socio-ecologic exposures, stratified by rural and urban settings, using census tracts to map indices, including food access, proximity to parks, normalized difference vegetation index, and area deprivation index (ADI). We used ordinal logistic regression to examine the associations between the socio-ecologic factors and BMI trajectories. Results: Among the 1518 children, 360 (24%) had a decreasing BMI trajectory with the remainder having flat (23%) or increasing (53%) trajectories. Children in rural areas were more likely to live in high disadvantage areas, 85%, compared with urban children, 46%. In the multivariable ordinal model, living in a lower ADI census tract had a 0.78 (95% CI 0.61-0.99) lower odds of being in an increasing BMI slope group, and no other socio-ecologic factor was associated. Conclusions: The area deprivation index captures a range of resources and social context compared with the built environment indicators, which had no association with BMI trajectory. Further work examining how to develop effective interventions in high deprivation areas is warranted.
Collapse
Affiliation(s)
- Zoe Barbour
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Cynthia Mojica
- College of Public Health Sciences, Oregon State University, Portland, OR, USA
| | | | - Byron Alexander Foster
- Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- School of Public Health, Oregon Health & Science University and Portland State University, Portland, OR, USA
| |
Collapse
|
4
|
Lu M, Murphy M, Kim A, Lingwall M, Barr EA. The relationship between natural environments and obesity: a systematic review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024:1-21. [PMID: 39445442 DOI: 10.1080/09603123.2024.2406306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
More than 100 million children and 13% of the adult population suffer from obesity globally. People with obesity experience higher risks of chronic illness, poor mental health outcomes, and premature death. Exposure to natural environments, including green spaces, encourages regular physical activity and cardiovascular exercise to combat obesity. This systematic review, based on the health lifestyle theory, explores previous research on the relationship between natural environments and obesity. We reviewed studies (N = 11) published between 2018 and 2023 examining the relationship between participants (N = 1,225,680) across seven countries. Two overarching areas of impact emerged: environmental health factors (air pollution) and social factors (socioeconomic status and food availability). Although many studies suggested that exposure to green spaces correlated with a lower incidence of obesity, few studies identified possible external factors to explain the relationship between green space and obesity. Implications for future policy legislation, clinical interventions, and research are presented.
Collapse
Affiliation(s)
- Melissa Lu
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Mischion Murphy
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Andrew Kim
- Department of Research, Rice University, Houston, TX, USA
| | - Mary Lingwall
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| | - Emily Anne Barr
- Cizik School of Nursing, University of Texas Health Science Center, Houston, TX, USA
| |
Collapse
|
5
|
Tan Y, Zhang D, Xiao P, Chen X, Zhang Y, Peng C, Peng A. Prenatal exposure to PM 2.5 and childhood body mass index growth trajectories from birth to 6 years old. Sci Rep 2024; 14:16936. [PMID: 39043939 PMCID: PMC11266715 DOI: 10.1038/s41598-024-68096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/19/2024] [Indexed: 07/25/2024] Open
Abstract
This study aimed to determine the relationships between prenatal PM2.5 exposure and childhood growth trajectories during the first 6 years of life. A total of 47,625 pairs of mothers and children were recruited from a prospective birth cohort conducted between 2011 and 2013 in Wuhan, China, and followed for 6 years. We used the group-based trajectory models to classify the population into three trajectory groups: slow growth (n = 13,671, 28.7%), normal growth (n = 29,736, 62.4%), and rapid growth (n = 4218, 8.9%). Multinomial logistic regression models were used to determine the associations of prenatal PM2.5 exposure and childhood growth trajectories. Compared to normal growth trajectory, increased PM2.5 exposure in trimester 1, trimester 2 and the entire pregnancy showed significant associations with an increased risk of the slow growth trajectory but reduced the risk for the rapid growth trajectory, significant association of prenatal PM2.5 exposure with rapid growth trajectory was only observed in the trimester 3. Stratified analyses displayed relatively stronger associations among those mothers with maternal age over 35 years, pre-pregnancy BMI ≥ 25 kg/m2, and previous delivery experience. Prenatal exposure to PM2.5, particularly during the midpoint period of pregnancy, was more likely to have a slow growth trajectory and a lower risk of rapid growth trajectory. Maternal age, pre-pregnancy BMI, and previous delivery experience might modify these associations.
Collapse
Affiliation(s)
- Yafei Tan
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Dan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Pei Xiao
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Xiaohui Chen
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Yan Zhang
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China
| | - Chang Peng
- School of Public Health, Chongqing Medical University, Yuzhong District, No. 1 Yixueyuan Road, Chongqing, 400016, China
| | - Anna Peng
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, No. 100 Xianggang Road, Jiangan District, Wuhan, 430016, Hubei, China.
| |
Collapse
|
6
|
Martenies SE, Oloo A, Magzamen S, Ji N, Khalili R, Kaur S, Xu Y, Yang T, Bastain TM, Breton CV, Farzan SF, Habre R, Dabelea D. Independent and joint effects of neighborhood-level environmental and socioeconomic exposures on body mass index in early childhood: The environmental influences on child health outcomes (ECHO) cohort. ENVIRONMENTAL RESEARCH 2024; 253:119109. [PMID: 38751004 DOI: 10.1016/j.envres.2024.119109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/19/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024]
Abstract
Past studies support the hypothesis that the prenatal period influences childhood growth. However, few studies explore the joint effects of exposures that occur simultaneously during pregnancy. To explore the feasibility of using mixtures methods with neighborhood-level environmental exposures, we assessed the effects of multiple prenatal exposures on body mass index (BMI) from birth to age 24 months. We used data from two cohorts: Healthy Start (n = 977) and Maternal and Developmental Risks from Environmental and Social Stressors (MADRES; n = 303). BMI was measured at delivery and 6, 12, and 24 months and standardized as z-scores. We included variables for air pollutants, built and natural environments, food access, and neighborhood socioeconomic status (SES). We used two complementary statistical approaches: single-exposure linear regression and quantile-based g-computation. Models were fit separately for each cohort and time point and were adjusted for relevant covariates. Single-exposure models identified negative associations between NO2 and distance to parks and positive associations between low neighborhood SES and BMI z-scores for Healthy Start participants; for MADRES participants, we observed negative associations between O3 and distance to parks and BMI z-scores. G-computations models produced comparable results for each cohort: higher exposures were generally associated with lower BMI, although results were not significant. Results from the g-computation models, which do not require a priori knowledge of the direction of associations, indicated that the direction of associations between mixture components and BMI varied by cohort and time point. Our study highlights challenges in assessing mixtures effects at the neighborhood level and in harmonizing exposure data across cohorts. For example, geospatial data of neighborhood-level exposures may not fully capture the qualities that might influence health behavior. Studies aiming to harmonize geospatial data from different geographical regions should consider contextual factors when operationalizing exposure variables.
Collapse
Affiliation(s)
- Sheena E Martenies
- Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA; Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, USA; Family Resiliency Center, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| | - Alice Oloo
- Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sheryl Magzamen
- Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, USA; Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | - Nan Ji
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Roxana Khalili
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Simrandeep Kaur
- Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Yan Xu
- Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Tingyu Yang
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Theresa M Bastain
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carrie V Breton
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Shohreh F Farzan
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Rima Habre
- Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Spatial Sciences Institute, University of Southern California, Los Angeles, CA, USA
| | - Dana Dabelea
- Epidemiology, Colorado School of Public Health, Aurora, CO, USA; Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
7
|
Marín D, Basagaña X, Amaya F, Aristizábal LM, Muñoz DA, Domínguez A, Molina F, Ramos CD, Morales-Betancourt R, Hincapié R, Rodríguez-Villamizar L, Rojas Y, Morales O, Cuellar M, Corredor A, Villamil-Osorio M, Bejarano MA, Vidal D, Narváez DM, Groot H, Builes JJ, López L, Henao EA, Lopera V, Hernández LJ, Bangdiwala SI, Marín-Ochoa B, Oviedo AI, Sánchez-García OE, Toro MV, Riaño W, Rueda ZV. Early-life external exposome in children 2-5 years old in Colombia. ENVIRONMENTAL RESEARCH 2024; 252:118913. [PMID: 38643821 DOI: 10.1016/j.envres.2024.118913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/23/2024]
Abstract
Exposome studies are advancing in high-income countries to understand how multiple environmental exposures impact health. However, there is a significant research gap in low- and middle-income and tropical countries. We aimed to describe the spatiotemporal variation of the external exposome, its correlation structure between and within exposure groups, and its dimensionality. A one-year follow-up cohort study of 506 children under 5 in two cities in Colombia was conducted to evaluate asthma, acute respiratory infections, and DNA damage. We examined 48 environmental exposures during pregnancy and 168 during childhood in eight exposure groups, including atmospheric pollutants, natural spaces, meteorology, built environment, traffic, indoor exposure, and socioeconomic capital. The exposome was estimated using geographic information systems, remote sensing, spatiotemporal modeling, and questionnaires. The median age of children at study entry was 3.7 years (interquartile range: 2.9-4.3). Air pollution and natural spaces exposure decreased from pregnancy to childhood, while socioeconomic capital increased. The highest median correlations within exposure groups were observed in meteorology (r = 0.85), traffic (r = 0.83), and atmospheric pollutants (r = 0.64). Important correlations between variables from different exposure groups were found, such as atmospheric pollutants and meteorology (r = 0.76), natural spaces (r = -0.34), and the built environment (r = 0.53). Twenty principal components explained 70%, and 57 explained 95% of the total variance in the childhood exposome. Our findings show that there is an important spatiotemporal variation in the exposome of children under 5. This is the first characterization of the external exposome in urban areas of Latin America and highlights its complexity, but also the need to better characterize and understand the exposome in order to optimize its analysis and applications in local interventions aimed at improving the health conditions and well-being of the child population and contributing to environmental health decision-making.
Collapse
Affiliation(s)
- Diana Marín
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia.
| | - Xavier Basagaña
- ISGlobal, Barcelona, 08003, España, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain
| | - Ferney Amaya
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - Diego Alejandro Muñoz
- Department of Mathematics, National University of Colombia, Medellín, 050034, Colombia
| | - Alan Domínguez
- ISGlobal, Barcelona, 08003, España, Spain; Universitat Pompeu Fabra (UPF), Barcelona, 08003, Spain; CIBER Epidemiology and Public Health (CIBERESP), Spain
| | - Francisco Molina
- Environmental School, School of Engineering, Universidad de Antioquia UdeA, Medellin, 050010, Colombia
| | - Carlos Daniel Ramos
- Environmental School, School of Engineering, Universidad de Antioquia UdeA, Medellin, 050010, Colombia
| | | | - Roberto Hincapié
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Laura Rodríguez-Villamizar
- Department of Public Health, School of Medicine, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia
| | - Yurley Rojas
- School of Engineering, Universidad Industrial de Santander, Bucaramanga, 680002, Colombia
| | - Olga Morales
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia; Department of Pediatrics, Hospital San Vicente Fundación, Medellín, 050010, Colombia
| | - Martha Cuellar
- School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia; Department of Pediatrics, SOMER Clinic, Medellín, Colombia
| | - Andrea Corredor
- Department of Pediatrics, ONIROS Centro Especializado en Medicina Integral del Sueño, Bogotá, Colombia
| | - Milena Villamil-Osorio
- Department of Pediatrics, Fundación Hospital Pediátrico la Misericordia, Bogotá, Colombia
| | | | - Dolly Vidal
- Department of Pediatrics, Hospital Universitario San José, Popayán, 190003, Colombia
| | - Diana M Narváez
- Human Genetics Laboratory, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Helena Groot
- Human Genetics Laboratory, Universidad de los Andes, Bogotá, 111711, Colombia
| | - Juan José Builes
- Department of Paternity Testing. GENES Laboratory, Medellín, 050024, Colombia
| | - Lucelly López
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - Verónica Lopera
- Secretariat of Health, Medellin Mayor's Office, Medellin, 050015, Colombia
| | | | - Shrikant I Bangdiwala
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, L8S 4K1, Canada; Statistics Department, Population Health Research Institute, McMaster University, Hamilton, ON, L8L 2X2, Canada
| | - Beatriz Marín-Ochoa
- School of Social Sciences, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Ana Isabel Oviedo
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | | | - María Victoria Toro
- School of Engineering, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia
| | - Will Riaño
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia; School of Medicine, Pediaciencias Group, Universidad de Antioquia, Noel Clinic Medellin, 050010, Colombia
| | - Zulma Vanessa Rueda
- School of Medicine, Universidad Pontificia Bolivariana, Medellín, 050034, Colombia; Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
8
|
Sun P, Guo X, Ding E, Li C, Ren H, Xu Y, Qian J, Deng F, Shi W, Dong H, Lin EZ, Guo P, Fang J, Zhang Q, Zhao W, Tong S, Lu X, Pollitt KJG, Shi X, Tang S. Association between Personal Abiotic Airborne Exposures and Body Composition Changes among Healthy Adults (60-69 Years Old): A Combined Exposome-Wide and Lipidome Mediation Approach from the China BAPE Study. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:77005. [PMID: 39028628 PMCID: PMC11259245 DOI: 10.1289/ehp13865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 05/25/2024] [Accepted: 06/24/2024] [Indexed: 07/21/2024]
Abstract
BACKGROUND Evidence suggested that abiotic airborne exposures may be associated with changes in body composition. However, more evidence is needed to identify key pollutants linked to adverse health effects and their underlying biomolecular mechanisms, particularly in sensitive older adults. OBJECTIVES Our research aimed to systematically assess the relationship between abiotic airborne exposures and changes in body composition among healthy older adults, as well as the potential mediating mechanisms through the serum lipidome. METHODS From September 2018 to January 2019, we conducted a monthly survey among 76 healthy adults (60-69 years old) in the China Biomarkers of Air Pollutant Exposure (BAPE) study, measuring their personal exposures to 632 abiotic airborne pollutions using MicroPEM and the Fresh Air wristband, 18 body composition indicators from the InBody 770 device, and lipidomics from venous blood samples. We used an exposome-wide association study (ExWAS) and deletion/substitution/addition (DSA) model to unravel complex associations between exposure to contaminant mixtures and body composition, a Bayesian kernel machine regression (BKMR) model to assess the overall effect of key exposures on body composition, and mediation analysis to identify lipid intermediators. RESULTS The ExWAS and DSA model identified that 2,4,5-T methyl ester (2,4,5-TME), 9,10-Anthracenedione (ATQ), 4b,8-dimethyl-2-isopropylphenanthrene, and 4b,5,6,7,8,8a,9,10-octahydro-(DMIP) were associated with increased body fat mass (BFM), fat mass indicators (FMI), percent body fat (PBF), and visceral fat area (VFA) in healthy older adults [Bonferroni-Hochberg false discovery rate ( FD R BH ) < 0.05 ]. The BKMR model demonstrated a positive correlation between contaminants (anthracene, ATQ, copaene, di-epi-α -cedrene, and DMIP) with VFA. Mediation analysis revealed that phosphatidylcholine [PC, PC(16:1e/18:1), PC(16:2e/18:0)] and sphingolipid [SM, SM(d18:2/24:1)] mediated a significant portion, ranging from 12.27% to 26.03% (p-value < 0.05 ), of the observed increase in VFA. DISCUSSION Based on the evidence from multiple model results, ATQ and DMIP were statistically significantly associated with the increased VFA levels of healthy older adults, potentially regulated through lipid intermediators. These findings may have important implications for identifying potentially harmful environmental chemicals and developing targeted strategies for the control and prevention of chronic diseases in the future, particularly as the global population is rapidly aging. https://doi.org/10.1289/EHP13865.
Collapse
Affiliation(s)
- Peijie Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaojie Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, Southern Medical University, Guangzhou, Guangdong, China
| | - Enmin Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Huimin Ren
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yibo Xu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - Jiankun Qian
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Fuchang Deng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wanying Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, and Beijing Municipal Key Laboratory of Clinical Epidemiology, Beijing, China
| | - Haoran Dong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Elizabeth Z. Lin
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Pengfei Guo
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qian Zhang
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Wenhua Zhao
- Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, China
| | - Shilu Tong
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Australia
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Krystal J. Godri Pollitt
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, Connecticut, USA
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Song Tang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
9
|
Zhu W, Al-Kindi SG, Rajagopalan S, Rao X. Air Pollution in Cardio-Oncology and Unraveling the Environmental Nexus: JACC: CardioOncology State-of-the-Art Review. JACC CardioOncol 2024; 6:347-362. [PMID: 38983383 PMCID: PMC11229557 DOI: 10.1016/j.jaccao.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 03/26/2024] [Accepted: 04/04/2024] [Indexed: 07/11/2024] Open
Abstract
Although recent advancements in cancer therapies have extended the lifespan of patients with cancer, they have also introduced new challenges, including chronic health issues such as cardiovascular disease arising from pre-existing risk factors or cancer therapies. Consequently, cardiovascular disease has become a leading cause of non-cancer-related death among cancer patients, driving the rapid evolution of the cardio-oncology field. Environmental factors, particularly air pollution, significantly contribute to deaths associated with cardiovascular disease and specific cancers, such as lung cancer. Despite these statistics, the health impact of air pollution in the context of cardio-oncology has been largely overlooked in patient care and research. Notably, the impact of air pollution varies widely across geographic areas and among individuals, leading to diverse exposure consequences. This review aims to consolidate epidemiologic and preclinical evidence linking air pollution to cardio-oncology while also exploring associated health disparities and environmental justice issues.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Sadeer G Al-Kindi
- Division of Cardiovascular Prevention and Wellness, Houston Methodist DeBakey Heart and Vascular Center, Houston, Texas, USA
| | - Sanjay Rajagopalan
- Harrington Heart and Vascular Institute, University Hospitals, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Xiaoquan Rao
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
10
|
Zheng J, Zhang H, Shi J, Li X, Zhang J, Zhang K, Gao Y, He J, Dai J, Wang J. Association of air pollution exposure with overweight or obesity in children and adolescents: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 910:168589. [PMID: 37984657 DOI: 10.1016/j.scitotenv.2023.168589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/12/2023] [Accepted: 11/13/2023] [Indexed: 11/22/2023]
Abstract
Childhood overweight and obesity is a global problem. 38 million children under five years old were reported as being overweight/obese in 2019. However, current evidence regarding the effects of air pollution on children weight status remains scarce and inconsistent. This study aimed to determine the association between air pollutants and the weight status of children and adolescents. Four databases were searched up to August 9, 2023. Adjusted merged odds ratios (ORs), regression coefficients (β), and their 95 % confidence intervals (95 % CIs) were calculated and pooled. A total of 27 studies were included. The results showed that air pollutants had adverse effects on the body weight of children and adolescents. Exposure to PM1, PM2.5, PMcoarse, and PM10 were associated with increased risk of overweight/obesity, with pooled ORs (95 % CI) of 1.23 (1.09, 1.40), 1.18 (1.10, 1.28), 1.04 (1.03, 1.05) and 1.11 (1.06, 1.17) per 10 μg/m3 increment, respectively. Individuals with higher exposure levels to NOX, O3, SO2 and CO (per 10 μg/m3 increment) were associated with 12 %, 6 %, 28 % and 1 % increased odds of being overweight/obese, respectively. With respect to the level of body mass index, the pooled β (95 % CIs) for each 10 μg/m3 increase in PM1, PM2.5, PM10, and NOX exposure were 0.15 (0.12, 0.18), 0.11 (0.06, 0.16), 0.07 (0.03, 0.10), and 0.03 (0.01, 0.04), respectively. PM1 has relatively strong adverse effects on body weight status. The subgroup analysis revealed a significantly increase in the risk of overweight/obesity when the concentrations of PM2.5, PM10, and NO2 exceeded 35 μg/m3, 50 μg/m3, and 40 μg/m3, respectively. Exposure to PM2.5, PM10 and NOX increased the risk of overweight/obesity, especially in Asia. This study provides evidence of the association between air pollution and being overweight/obese in children and adolescents.
Collapse
Affiliation(s)
- Jingying Zheng
- School of Public Health, Jilin University, Changchun 130021, China
| | - Huiling Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianyang Shi
- School of Public Health, Jilin University, Changchun 130021, China
| | - Xin Li
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jing Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Kunlun Zhang
- School of Public Health, Jilin University, Changchun 130021, China
| | - Yameng Gao
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jingtong He
- School of Public Health, Jilin University, Changchun 130021, China
| | - Jianghong Dai
- School of Public Health, Xinjiang Medical University, Xinjiang 834000, China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
11
|
Fu J, Lin Q, Ai B, Li M, Luo W, Huang S, Yu H, Yang Y, Lin H, Wei J, Su X, Zhang Z. Associations between maternal exposure to air pollution during pregnancy and trajectories of infant growth: A birth cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 269:115792. [PMID: 38064789 DOI: 10.1016/j.ecoenv.2023.115792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/02/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
OBJECTIVE We examined the relationships between infants' growth trajectories and prenatal exposure to air pollution, which is still under-investigated. METHODS A birth cohort study was constructed using medical records of pregnant women and infants born between 2015 and 2019 in Foshan, China. Using satellite-based spatial-temporal models, prenatal exposure to air pollutants including particulate matter with an aerodynamic dimension of < 2.5 µm (PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) was assessed at each woman's residence. Latent class growth modeling was used to identify trajectories of physical (body length and weight) growth and neurodevelopment, which were repeatedly measured within 1 year after birth. Logistic regression models were used to investigate the associations between prenatal exposure to air pollution and the risks of growth disorders, adjusting for an array of potential confounders. RESULTS We identified two growth trajectories for body length [normal: 3829 (93%); retardation: 288 (7%)], three for weight [normal: 2475 (59.6%); retardation: 390 (9.4%); overgrowth: 1287 (31%)], and two for neurodevelopment [normal: 956 (66.1%); retardation: 491 (33.9%)]. For exposure over whole pregnancy, SO2 was associated with an increased risk of body length retardation (OR for per 1 µg/m3 increment: 1.09, 95%CI: 1.01-1.17); PM2.5 (OR: 1.05, 95%CI: 1.03-1.07), SO2 (OR: 1.15, 95%CI: 1.08-1.22), and NO2 (OR: 1.05, 95%CI: 1.03-1.07) were positively associated with neurodevelopmental retardation. Such associations appeared stronger for exposures over the first and second trimesters. No significant associations were detected for weight growth. CONCLUSIONS Maternal exposure to air pollution during pregnancy was associated with higher risks of impairments in both physical growth, particularly body length, and neurodevelopment.
Collapse
Affiliation(s)
- Jiaying Fu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Baozhuo Ai
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Meijun Li
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Weidong Luo
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Saijun Huang
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Hong Yu
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Jing Wei
- State Key Laboratory of Remote Sensing Science, College of Global Change and Earth System Science, Beijing Normal University, Beijing, China; Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Xi Su
- Foshan Women and Children Hospital Affiliated to Southern Medical University, Foshan, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
12
|
Ye L, Zhou J, Tian Y, Cui J, Chen C, Wang J, Wang Y, Wei Y, Ye J, Li C, Chai X, Sun C, Li F, Wang J, Guo Y, Jaakkola JJK, Lv Y, Zhang J, Shi X. Associations of residential greenness and ambient air pollution with overweight and obesity in older adults. Obesity (Silver Spring) 2023; 31:2627-2637. [PMID: 37649157 DOI: 10.1002/oby.23856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 09/01/2023]
Abstract
OBJECTIVE This study aimed to examine the impact of greenness and fine particulate matter <2.5 μm (PM2.5 ) on overweight/obesity among older adults in China. METHODS A total of 21,355 participants aged ≥65 years were included from the Chinese Longitudinal Healthy Longevity Survey between 2000 and 2018. Normalized difference vegetation index (NDVI) with a radius of 250 m and PM2.5 in a 1 × 1-km grid resolution were calculated around each participant's residence. Cox proportional hazards models were used to estimate the effects of NDVI and PM2.5 on overweight/obesity. Interaction and mediation analyses were conducted to explore combined effects. RESULTS The study observed 1895 incident cases of overweight/obesity over 109,566 person-years. For every 0.1-unit increase in NDVI the hazard ratio of overweight/obesity was 0.91 (95% CI: 0.88-0.95), and for every 10-μg/m3 increase in PM2.5 the hazard ratio was 1.11 (95% CI: 1.07-1.14). The effect of NDVI on overweight/obesity was partially mediated by PM2.5 , with a relative mediation proportion of 20.10% (95% CI: 1.63%-38.57%). CONCLUSIONS Greenness exposure appears to lower the risk of overweight/obesity in older adults in China, whereas PM2.5 , acting as a mediator, partly mediated this protective effect.
Collapse
Affiliation(s)
- Lihong Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jinhui Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanlin Tian
- Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Jia Cui
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chen Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jun Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yueqing Wang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jiaming Ye
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Chenfeng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Xin Chai
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Chris Sun
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Fangyu Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- School of Public Health, Anhui Medical University, Hefei, China
| | - Jiaonan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yanbo Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Jouni J K Jaakkola
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
- Finnish Meteorological Institute, Helsinki, Finland
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Juan Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Research Unit of Population Health, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Ji N, Johnson M, Eckel SP, Gauderman WJ, Chavez TA, Berhane K, Faham D, Lurmann F, Pavlovic NR, Grubbs BH, Lerner D, Habre R, Farzan SF, Bastain TM, Breton CV. Prenatal ambient air pollution exposure and child weight trajectories from the 3rd trimester of pregnancy to 2 years of age: a cohort study. BMC Med 2023; 21:341. [PMID: 37674158 PMCID: PMC10483706 DOI: 10.1186/s12916-023-03050-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Prenatal air pollution exposure may increase risk for childhood obesity. However, few studies have evaluated in utero growth measures and infant weight trajectories. This study will evaluate the associations of prenatal exposure to ambient air pollutants with weight trajectories from the 3rd trimester through age 2 years. METHODS We studied 490 pregnant women who were recruited from the Maternal and Development Risks from Environmental and Social Stressors (MADRES) cohort, which comprises a low-income, primarily Hispanic population in Los Angeles, California. Nitrogen dioxide (NO2), particulate matter < 10 µm (PM10), particulate matter < 2.5 µm (PM2.5), and ozone (O3) concentrations during pregnancy were estimated from regulatory air monitoring stations. Fetal weight was estimated from maternal ultrasound records. Infant/child weight measurements were extracted from medical records or measured during follow-up visits. Piecewise spline models were used to assess the effect of air pollutants on weight, overall growth, and growth during each period. RESULTS The mean (SD) prenatal exposure concentrations for NO2, PM2.5, PM10, and O3 were 16.4 (2.9) ppb, 12.0 (1.1) μg/m3, 28.5 (4.7) μg/m3, and 26.2 (2.9) ppb, respectively. Comparing an increase in prenatal average air pollutants from the 10th to the 90th percentile, the growth rate from the 3rd trimester to age 3 months was significantly increased (1.55% [95%CI 1.20%, 1.99%] for PM2.5 and 1.64% [95%CI 1.27%, 2.13%] for NO2), the growth rate from age 6 months to age 2 years was significantly decreased (0.90% [95%CI 0.82%, 1.00%] for NO2), and the attained weight at age 2 years was significantly lower (- 7.50% [95% CI - 13.57%, - 1.02%] for PM10 and - 7.00% [95% CI - 11.86%, - 1.88%] for NO2). CONCLUSIONS Prenatal ambient air pollution was associated with variable changes in growth rate and attained weight from the 3rd trimester to age 2 years. These results suggest continued public health benefits of reducing ambient air pollution levels, particularly in marginalized populations.
Collapse
Affiliation(s)
- Nan Ji
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | | | - Sandrah P Eckel
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - William J Gauderman
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Thomas A Chavez
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, 10032, USA
| | - Dema Faham
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Fred Lurmann
- Sonoma Technology Inc., Petaluma, CA, 94954, USA
| | | | - Brendan H Grubbs
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90089, USA
| | | | - Rima Habre
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Shohreh F Farzan
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Theresa M Bastain
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA
| | - Carrie V Breton
- Division of Environmental Health, Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto St, MC 9239, Los Angeles, CA, 90039, USA.
| |
Collapse
|
14
|
Figaroa MNS, Gielen M, Casas L, Loos RJF, Derom C, Weyers S, Nawrot TS, Zeegers MP, Bijnens EM. Early-life residential green spaces and traffic exposure in association with young adult body composition: a longitudinal birth cohort study of twins. Environ Health 2023; 22:18. [PMID: 36800959 PMCID: PMC9936720 DOI: 10.1186/s12940-023-00964-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Globally, the rapid increase of obesity is reaching alarming proportions. A new approach to reduce obesity and its comorbidities involves tackling the built environment. Environmental influences seem to play an important role, but the environmental influences in early life on adult body composition have not been thoroughly investigated. This study seeks to fill the research gap by examining early-life exposure to residential green spaces and traffic exposure in association with body composition among a population of young adult twins. METHODS As part of the East Flanders Prospective Twin Survey (EFPTS) cohort, this study included 332 twins. Residential addresses of the mothers at time of birth of the twins were geocoded to determine residential green spaces and traffic exposure. To capture body composition, body mass index, waist-to-hip ratio (WHR), waist circumference, skinfold thickness, leptin levels, and fat percentage were measured at adult age. Linear mixed modelling analyses were conducted to investigate early-life environmental exposures in association with body composition, while accounting for potential confounders. In addition, moderator effects of zygosity/chorionicity, sex and socio-economic status were tested. RESULTS Each interquartile range (IQR) increase in distance to highway was found associated with an increase of 1.2% in WHR (95%CI 0.2-2.2%). For landcover of green spaces, each IQR increase was associated with 0.8% increase in WHR (95%CI 0.4-1.3%), 1.4% increase in waist circumference (95%CI 0.5-2.2%), and 2.3% increase in body fat (95%CI 0.2-4.4%). Stratified analyses by zygosity/chorionicity type indicated that in monozygotic monochorionic twins, each IQR increase in land cover of green spaces was associated with 1.3% increase in WHR (95%CI 0.5-2.1%). In monozygotic dichorionic twins, each IQR increase in land cover of green spaces was associated with 1.4% increase in waist-circumference (95%CI 0.6-2.2%). CONCLUSIONS The built environment in which mothers reside during pregnancy might play a role on body composition among young adult twins. Our study revealed that based on zygosity/chorionicity type differential effects of prenatal exposure to green spaces on body composition at adult age might exist.
Collapse
Affiliation(s)
- M N S Figaroa
- Department of Epidemiology and Social Medicine, University of Antwerp, Antwerp, Belgium
| | - M Gielen
- Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands.
| | - L Casas
- Social Epidemiology and Health Policy, Department of Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
- Institute for Environment and Sustainable Development (IMDO), University of Antwerp, Antwerp, Belgium
| | - R J F Loos
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - C Derom
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
| | - S Weyers
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
| | - T S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - M P Zeegers
- Department of Epidemiology, NUTRIM School for Translational Research in Metabolism, Maastricht University, P.O. Box 616, 6200, MD, Maastricht, The Netherlands
- Department of Epidemiology, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands
| | - E M Bijnens
- Department of Human Structure and Repair, University Ghent, Ghent, Belgium
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
- Department of Environmental Sciences, Faculty of Science, Open University, Heerlen, The Netherlands
| |
Collapse
|
15
|
Liang X, Liu F, Liang F, Ren Y, Tang X, Luo S, Huang D, Feng W. Association of decreases in PM2.5 levels due to the implementation of environmental protection policies with the incidence of obesity in adolescents: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114211. [PMID: 36306623 DOI: 10.1016/j.ecoenv.2022.114211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
AIMS To explore the association between decreased levels of particulate matter (≤2.5 µm; PM2.5) due to the implementation of environmental protection policies and the incidence of obesity in adolescents in Chongqing, China through a prospective cohort study. METHODS A total of 2105 children (52.02% male; aged 7.33 ± 0.60 years at baseline) were enrolled from the Chongqing Children's Health Cohort. A mixed linear regression model was used to analyse the relationships of PM2.5 levels with obesity indicators after adjusting for covariates. Additionally, a Poisson regression model was used to determine the relationship between PM2.5 exposure and the incidence of overweight/obesity. RESULTS The average PM2.5 exposure levels from participant conception to 2014, from 2015 to 2017, and from 2018 to 2019 were 66.64 ± 5.33 μg/m3, 55.49 ± 3.78 μg/m3, and 42.50 ± 1.87 μg/m3, respectively; these levels significantly decreased over time (P < 0.001). Throughout the entire follow-up period, the incidence of overweight/obesity after a ≥ 25 μg/m3 decrease in the PM2.5 level was 4.57% among females; this incidence was the lowest among females who experienced remarkable decreases in PM2.5 exposure. A 1-µg/m3 decrease in the PM2.5 level significantly decreased the body mass index (BMI), BMI z score (BMIz), and weight of adolescents (all P < 0.001). Compared with a < 20-μg/m3 decrease in the PM2.5 level, a ≥ 25-μg/m3 decrease protected against increased BMI (net difference= -0.93; 95% confidence interval [CI]: (-1.23,-0.63) kg/m2), BMIz (-0.28 (-0.39, -0.17)), weight (-1.59 (-2.44, -0.74) kg), and incidence of overweight/obesity (0.48 (0.37, 0.62), P < 0.001). Moreover, compared with a < 20-μg/m3 decrease in the PM2.5 level, a ≥ 25-μg/m3 decrease resulted in significant absolute differences in BMI (-1.26 (-1.56, -0.96) kg/m2), BMIz (-0.53 (-0.65, -0.40)) and weight (-3.01 (-3.8, -2.19) kg) (all P < 0.001). CONCLUSIONS This study showed the etiological relevance of declining PM2.5 concentrations for the incidence of obesity in children and adolescents, suggesting that controlling ambient air pollutants may prevent the development of obesity in this age group. Continuous implementation of environmental protection policies in China has led to substantial health benefits.
Collapse
Affiliation(s)
- Xiaohua Liang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China.
| | - Fangchao Liu
- Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China
| | - Fengchao Liang
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yanling Ren
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Xian Tang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Shunqing Luo
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China; Department of Epidemiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100037, China; School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China
| | - Daochao Huang
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| | - Wei Feng
- Department of Clinical Epidemiology and Biostatistics, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400016, China
| |
Collapse
|
16
|
Terre-Torras I, Recalde M, Díaz Y, de Bont J, Bennett M, Aragón M, Cirach M, O'Callaghan-Gordo C, Nieuwenhuijsen MJ, Duarte-Salles T. Air pollution and green spaces in relation to breast cancer risk among pre and postmenopausal women: A mega cohort from Catalonia. ENVIRONMENTAL RESEARCH 2022; 214:113838. [PMID: 35810806 DOI: 10.1016/j.envres.2022.113838] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/23/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The association between air pollution and green spaces with breast cancer risk stratified by menopausal status has not been frequently investigated despite its importance given the different impact of risk factors on breast cancer risk depending on menopausal status. OBJECTIVES To study the association between air pollution, green spaces and pre and postmenopausal breast cancer risk. METHODS We conducted a population-based cohort study using electronic primary care records in Catalonia. We included women aged 17-85 years free of cancer at study entry between 2009 and 2017. Our exposures were particulate matter <2.5 μm (PM2.5) & <10 μm (PM10), nitrogen dioxide (NO2), normalized difference vegetation index (NDVI), and percentage of green spaces estimated at the census tract level. Breast cancer was identified with ICD-10 code C50. We estimated cause-specific hazard ratios (HR) for the relationship between each individual exposure and pre and postmenopausal breast cancer risk, using linear and non-linear models. RESULTS Of the 1,054,180 pre and 744,658 postmenopausal women followed for a median of 10 years, 6,126 and 17,858 developed breast cancer, respectively. Among premenopausal women, only very high levels of PM10 (≥46 μg/m3) were associated with increased cancer risk (compared to lower levels) in non-linear models. Among postmenopausal women, an interquartile range increase in PM2.5 (HR:1.03; 95%CI:1.01-1.04), PM10 (1.03; 1.01-1.05), and NO2 (1.05; 1.02-1.08) were associated with higher cancer risk. NDVI was negatively associated with decreased cancer risk only among postmenopausal women who did not change residence during follow-up (0.84; 0.71-0.99) or who were followed for at least three years (0.82; 0.69-0.98). DISCUSSION Living in areas with high concentrations of PM2.5, PM10, and NO2 increases breast cancer risk in postmenopausal women while long-term exposure to green spaces may decrease this risk. Only very high concentrations of PM10 increase breast cancer risk in premenopausal women.
Collapse
Affiliation(s)
- Isaura Terre-Torras
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Recalde
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Bellaterra (UAB), Barcelona, Spain
| | - Yesika Díaz
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Jeroen de Bont
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Matthew Bennett
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - María Aragón
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Marta Cirach
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain
| | - Cristina O'Callaghan-Gordo
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya, Barcelona, Spain
| | - Mark J Nieuwenhuijsen
- ISGlobal, Barcelona Institute for Global Health, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Mary MacKillop Institute for Health Research, Melbourne, Australia
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain.
| |
Collapse
|
17
|
Sánchez-Valdivia N, Pérez-del-Pulgar C, de Bont J, Anguelovski I, López-Gay A, Pistillo A, Triguero-Mas M, Duarte-Salles T. Residential Proximity to Urban Play Spaces and Childhood Overweight and Obesity in Barcelona, Spain: A Population-Based Longitudinal Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13676. [PMID: 36294256 PMCID: PMC9603004 DOI: 10.3390/ijerph192013676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Findings on the relationship between play spaces and childhood overweight and obesity are mixed and scarce. This study aimed to investigate the associations between residential proximity to play spaces and the risk of childhood overweight or obesity and potential effect modifiers. This longitudinal study included children living in the city of Barcelona identified in an electronic primary healthcare record database between 2011 and 2018 (N = 75,608). Overweight and obesity were defined according to the WHO standards and we used 300 m network buffers to assess residential proximity to play spaces. We calculated the risk of developing overweight or obesity using Cox proportional hazard models. A share of 29.4% of the study population developed overweight or obesity, but we did not find consistent associations between play space indicators and overweight or obesity. We did not find any consistent sign of effect modification by sex, and only some indications of the modifying role of area socioeconomic status and level of exposure. Although it is not possible to draw clear conclusions from our study, we call for cities to continue increasing and improving urban play spaces with an equitable, healthy, and child-friendly perspective.
Collapse
Affiliation(s)
- Nacho Sánchez-Valdivia
- Barcelona Lab for Urban Environmental Justice and Sustainability, Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Carrer Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Carmen Pérez-del-Pulgar
- Barcelona Lab for Urban Environmental Justice and Sustainability, Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Carrer Doctor Aiguader, 88, 08003 Barcelona, Spain
- Helmholtz Centre for Environmental Research—UFZ Department Environmental Politics, 04318 Leipzig, Germany
- Department for Political Science, Friedrich-Schiller-University, 07737 Jena, Germany
| | - Jeroen de Bont
- Institute of Environmental Medicine, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Isabelle Anguelovski
- Barcelona Lab for Urban Environmental Justice and Sustainability, Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Carrer Doctor Aiguader, 88, 08003 Barcelona, Spain
- ICREA (Institució Catalana de Recerca i Estudis Avançats), 08010 Barcelona, Spain
| | - Antonio López-Gay
- Department of Geography, Universitat Autònoma de Barcelona (UAB), 08193 Barcelona, Spain
- Center for Demographic Studies, 08193 Bellaterra, Spain
| | - Andrea Pistillo
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
| | - Margarita Triguero-Mas
- Barcelona Lab for Urban Environmental Justice and Sustainability, Institute of Environmental Science and Technology (ICTA), Universitat Autònoma de Barcelona (UAB), 08003 Barcelona, Spain
- Hospital del Mar Medical Research Institute (IMIM), Carrer Doctor Aiguader, 88, 08003 Barcelona, Spain
- Mariana Arcaya’s Research Lab, Department of Urban Studies and Planning, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la Recerca a l’Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), 08007 Barcelona, Spain
| |
Collapse
|
18
|
Shi X, Zheng Y, Cui H, Zhang Y, Jiang M. Exposure to outdoor and indoor air pollution and risk of overweight and obesity across different life periods: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113893. [PMID: 35917711 DOI: 10.1016/j.ecoenv.2022.113893] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Due to the highly evolved industrialization and modernization, air quality has deteriorated in most countries. As reported by the World Health Organization (WHO), air pollution is now considered as one of the major threats to global health and a principal risk factor for noncommunicable diseases. Meanwhile, the increasing worldwide prevalence of overweight and obesity is attracting more public attentions. Recently, accumulating epidemiological studies have provided evidence that overweight and obesity may be partially attributable to environmental exposure to air pollution. This review summarizes the epidemiological evidence for the correlation between exposure to various outdoor and indoor air pollutants (mainly particulate matter (PM), nitrogen oxides (NOx), ozone (O3), and polycyclic aromatic hydrocarbons (PAHs)) and overweight and obesity outcomes in recent years. Moreover, it discusses the multiple effects of air pollution during exposure periods throughout life and sex differences in populations. This review also describes the potential mechanism underlying the increased risk of obesity caused by air pollution, including inflammation, oxidative stress, metabolic imbalance, intestinal flora disorders and epigenetic modifications. Finally, this review proposes macro- and micro-measures to prevent the negative effects of air pollution exposure on the obesity prevalence.
Collapse
Affiliation(s)
- Xiaoyi Shi
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Haiwen Cui
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Yuxi Zhang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China.
| |
Collapse
|
19
|
Wu H, Dong C, Xiao W, Wei H, Shao Y, Chen T, Xia Y. Associations between PM 2.5 exposure and infant growth: A mediation analysis of oral microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153688. [PMID: 35131243 DOI: 10.1016/j.scitotenv.2022.153688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/26/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Previous studies have linked growth retardation with ambient fine particulate matter (PM2.5) exposure. However, few studies explored such association from the perspective of microbiota, such as oral microbiota. We aimed to identify the potential role of oral microbiota in the links between PM2.5 exposure and infant growth. METHODS Baseline information of 335 recruited mother-child pairs was collected by structured questionnaires. Growth indicators (weight, length) of one-year-old infants were abstracted from medical records when they had physical examination and corresponding z scores were calculated. 16S rRNA gene amplicon sequencing was performed to assess oral microbiota of infants and co-abundance groups (CAGs) were further calculated. We assessed PM2.5 levels by inverse distance weighting (IDW). Generalized linear regression and mediation analysis were performed to determine associations between PM2.5 exposure, oral microbiota and growth indicators. RESULTS Per 10 μg m-3 increment of PM2.5 in the period of 10th month-examination was associated with decreased length z score (β = -1.97, 95%CI: -3.83, -0.11). Oral microbiota correlated with weight z score and body mass index (BMI) z score was identified by Spearman correlation analysis. CAG4 was statistically associated with increased weight z score (β = 3.40, 95%CI: 0.29, 6.51) and BMI z score (β = 5.44, 95%CI: 1.00, 9.87). Several bacteria in the level of genus and CAG associated with PM2.5 exposure were additionally identified (P < 0.05). Mediation analysis revealed that PM2.5 in the period of birth-3rd month impacted the z scores of weight and BMI by altering relative abundance of Megasphaera (P < 0.05). CONCLUSION PM2.5 exposure from 10th to 12th month after birth could retard infant linear growth. PM2.5 might impact oral microbiota of one-year-old infants. Growth-related bacteria and CAGs were identified. Megasphaera might function as mediator between PM2.5 exposure during birth-3rd month and infant z scores of weight and BMI.
Collapse
Affiliation(s)
- Huaying Wu
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Chao Dong
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wenwen Xiao
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Hongcheng Wei
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yunmin Shao
- Department of Stomatology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China
| | - Ting Chen
- Department of Science and Technology, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing 210004, China.
| | - Yankai Xia
- State Key Laboratory of Reproductive Medicine, School of Public Health, Nanjing Medical University, Nanjing 211166, China; Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
20
|
The Association between Childhood Exposure to Ambient Air Pollution and Obesity: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084491. [PMID: 35457358 PMCID: PMC9030539 DOI: 10.3390/ijerph19084491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
Obesity has become a worldwide epidemic; 340 million of children and adolescents were overweight or obese in 2016, and this number continues to grow at a rapid rate. Epidemiological research has suggested that air pollution affects childhood obesity and weight status, but the current evidence remains inconsistent. Therefore, the aim of this meta-analysis was to estimate the effects of childhood exposure to air pollutants on weight. A total of four databases (PubMed, Web of Science, Embase, and Cochrane Library) were searched for publications up to December 31, 2021, and finally 15 studies met the inclusion criteria for meta-analysis. Merged odds ratios (ORs), coefficients (β), and 95% confidence intervals (95% CIs) that were related to air pollutants were estimated using a random-effects model. The meta-analysis indicated that air pollutants were correlated with childhood obesity and weight gain. For obesity, the association was considerable for PM10 (OR = 1.12, 95% CI: 1.06, 1.18), PM2.5 (OR = 1.28, 95% CI: 1.13, 1.45), PM1 (OR = 1.41, 95% CI: 1.30, 1.53), and NO2 (OR = 1.11, 95% CI: 1.06, 1.18). Similarly, BMI status increased by 0.08 (0.03-0.12), 0.11 (0.05-0.17), and 0.03 (0.01-0.04) kg/m2 with 10 μg/m3 increment in exposure to PM10, PM2.5, and NO2. In summary, air pollution can be regarded as a probable risk factor for the weight status of children and adolescents. The next step is to conduct longer-term and large-scale studies on different population subgroups, exposure concentrations, and pollutant combinations to provide detailed evidence. Meanwhile, integrated management of air pollution is essential.
Collapse
|
21
|
Zhou S, Guo Y, Bao Z, Lin L, Liu H, Chen G, Li Q, Bao H, Ji Y, Luo S, Liu Z, Wang H, Han N, Wang HJ. Individual and joint effects of prenatal green spaces, PM 2.5 and PM 1 exposure on BMI Z-score of children aged two years: A birth cohort study. ENVIRONMENTAL RESEARCH 2022; 205:112548. [PMID: 34919955 DOI: 10.1016/j.envres.2021.112548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 11/24/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few studies examined the association of prenatal exposure to green spaces with children's body mass index (BMI) Z-score, and no study evaluated the joint effect of prenatal green spaces and PM2.5 or PM1 exposure on children's BMI Z-score. We aimed to assess the individual and joint effects of prenatal green spaces, PM2.5, and PM1 exposure on BMI Z-score of children aged two years. METHODS The study was based on a birth cohort in Beijing, China, in which 13,253 mothers (LMP from 2014 to 2017) and their children were included. We estimated prenatal green spaces exposure by calculating average normalized difference vegetation index with 500 m buffers (NDVI-500), prenatal PM2.5 and PM1 exposure based on maternal residential addresses. Weight and height of children were measured at 2 years old. We calculated children's BMI Z-score based on the WHO Standards. Generalized linear regression was used to examine the individual and joint effects of prenatal NDVI-500, PM2.5 and PM1 exposure on children's BMI Z-score. RESULTS A 0.1 increase in prenatal NDVI-500 exposure, a 10 μg/m3 decrease in PM2.5, a 10 μg/m3 decrease in PM1 were associated with 0.185 [95% confidence interval (95%CI): 0.155, 0.216], 0.034 (95%CI: 0.015, 0.052) and 0.041 (95%CI: 0.020, 0.061) increase of children's BMI Z-score, respectively. Compared with those exposed to low-level NDVI-500 (not greater than median) and high-level PM2.5 (greater than median), the BMI Z-score was higher in children whose mother exposed to high-level of NDVI-500 and low-level PM2.5 [β:0.172 (95%CI: 0.131, 0.214), Pinteraction = 0.003]. Compared with those exposed to low-level NDVI-500 and high-level PM1, the BMI Z-score was higher in children whose mother exposed to high-level of NDVI-500 and low-level PM1 [β:0.169 (95%CI: 0.127, 0.210), Pinteraction<0.001]. In the trimester-specific analysis, NDVI-500 and PM exposure during the second trimester have a consistent individual effect, together with a joint effect, on child growth. CONCLUSION The study suggested the beneficial effect of prenatal exposure to green spaces on child growth and its interaction with PM2.5 and PM1, especially in the second trimester. The findings call for developing public health policy to improve green infrastructure and control PM2.5 and PM1 concentrations, in order to promote child growth.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Zheng Bao
- Tongzhou Maternal and Child Health Hospital, Beijing, 101101, China
| | - Lizi Lin
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China; Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hui Liu
- Medical Informatics Center, Peking University, Beijing, China
| | - Gongbo Chen
- Guangdong Provincial Engineering Technology Research Center of Environmental Pollution and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qin Li
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China; Reproductive Medical Centre, Department of Obstetrics and Gynaecology, Peking University Third Hospital, Beijing, 100191, China
| | - Heling Bao
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Yuelong Ji
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Shusheng Luo
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Zheng Liu
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Hui Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China
| | - Na Han
- Tongzhou Maternal and Child Health Hospital, Beijing, 101101, China
| | - Hai-Jun Wang
- Department of Maternal and Child Health, School of Public Health, Peking University, National Health Commission Key Laboratory of Reproductive Health, Beijing, China.
| |
Collapse
|
22
|
Hu HB, Hou ZH, Huang CH, LaMonte MJ, Wang M, Lu B. Associations of exposure to residential green space and neighborhood walkability with coronary atherosclerosis in Chinese adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118347. [PMID: 34637822 PMCID: PMC8616833 DOI: 10.1016/j.envpol.2021.118347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 05/31/2023]
Abstract
Residential green space and neighborhood walkability are important foundations of a healthy and sustainable city. Yet, their associations with atherosclerosis, the disease underlying clinical coronary heart disease (CHD), is unknown, especially in susceptible populations. We aim to explore the associations of exposure to residential green space and neighborhood walkability with coronary atherosclerosis. In this study of 2021 adults with suspected CHD, we evaluated the associations of exposure to green space (using Normalized Difference Vegetation Index [NDVI] and enhanced vegetation index [EVI] surrounding each participant's home) and neighborhood walkability (using walkability index and number of parks near home) with atherosclerosis (using coronary artery calcium score, CAC) using linear regression model adjusted for individual-level characteristics. Mediation analysis was further applied to explore potential mechanisms through the pathways of physical activity, air pollution, and psychological stress. In the primary model, an interquartile increase in annual mean NDVI and EVI within the 1-km area was associated with -15.8% (95%CI: 28.7%, -0.7%), and -18.6% (95%Cl: 31.3%, -3.6%) lower CAC score, respectively. However, an interquartile increase in the walkability index near home was associated with a 7.4% (95% CI: 0.1%, 15.2%) higher CAC score. The combined exposure to a green space area in a 1-km area and the walkability index were inversely associated with atherosclerosis, albeit with a smaller magnitude than a single-exposure model. The findings from a mediation analysis suggested that increased physical exercise and ameliorated particulate matter <2.5 μm (PM2.5) may partially contribute to the relationship between green space and atherosclerosis, and for walkability index, partially explained by increased PM2.5 exposure. Our study suggested a beneficial association between green space and atherosclerosis, but an adverse association between neighborhood walkability and atherosclerosis. Therefore, urban development that aims to improve neighborhood walkability should jointly account for enhancing green space properties from a public health perspective.
Collapse
Affiliation(s)
- Hai-Bo Hu
- School of Physical Education, Yantai University, Shandong, China
| | - Zhi-Hui Hou
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Cong-Hong Huang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Michael J LaMonte
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA
| | - Meng Wang
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University at Buffalo, Buffalo, NY, USA; RENEW Institute, University at Buffalo, Buffalo, NY, USA; Department of Environmental and Occupational Health Sciences, School of Public Health, University of Washington, Seattle, WA, USA.
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
23
|
de Bont J, Márquez S, Fernández-Barrés S, Warembourg C, Koch S, Persavento C, Fochs S, Pey N, de Castro M, Fossati S, Nieuwenhuijsen M, Basagaña X, Casas M, Duarte-Salles T, Vrijheid M. Urban environment and obesity and weight-related behaviours in primary school children. ENVIRONMENT INTERNATIONAL 2021; 155:106700. [PMID: 34144474 DOI: 10.1016/j.envint.2021.106700] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Urban environments are characterised by many factors that may influence children's lifestyle and increase the risk of childhood obesity, but multiple urban exposures have scarcely been studied. OBJECTIVE We evaluated the association between multiple urban exposures and childhood obesity outcomes and weight-related behaviours. METHODS We conducted a cross-sectional study including 2213 children aged 9-12 years in Sabadell, Spain. We estimated ambient air pollution, green spaces, built and food environment, road traffic and road traffic noise at residential addresses through a total of 28 exposure variables in various buffers. Childhood obesity outcomes included body mass index (BMI), waist circumference and body fat. Weight-related behaviours included diet (fast food and sugar-sweetened beverage consumption), physical activity, sedentary behaviour, sleep duration and well-being. Associations between exposures (urban environment) and outcomes (obesity and behaviours) were estimated in single and multiple-exposure regression models and in a hierarchical clustering on principal components (HCPC) analysis. RESULTS Forty percent of children were overweight or obese. In single exposure models, very few associations were observed between the urban exposures and obesity outcomes or weight-related behaviours after correction for multiple testing. In multiple exposure models, PMcoarse, denser unhealthy food environment and land use mix were statistically significant associated with childhood obesity outcomes (e.g 17.7 facilities/km2 increase of unhealthy food environment (OR overweight/obesity status) = 1.20 [95% CI: 1.01; 1.44]). Cluster analysis identified 5 clusters of urban exposures. Compared to the most neutral cluster, the cluster with high air pollution, road traffic, and road noise levels was associated with a higher BMI and higher odds of overweight and obesity (β (zBMI) = 0.17, [95% CI: 0.01, 0.17]; OR (overweight/obesity) = 1.36, [95% CI: 0.99, 1.85]); the clusters were not associated with the weight-related behaviours. CONCLUSIONS This systematic study of many exposures in the urban environment suggests that an exposure pattern characterised by higher levels of ambient air pollution, road traffic and road traffic noise is associated with increased childhood obesity risk and that PMcoarse, land use mix and food environment are separately associated with obesity risk. These findings require follow-up in longitudinal studies and different settings.
Collapse
Affiliation(s)
- Jeroen de Bont
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain; Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain; Universitat Autònoma de Barcelona, Bellaterra (Cerdanyola del Vallès), Spain
| | - Sandra Márquez
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sílvia Fernández-Barrés
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Charline Warembourg
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Sarah Koch
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Cecilia Persavento
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Silvia Fochs
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Núria Pey
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Montserrat de Castro
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Serena Fossati
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Xavier Basagaña
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | - Talita Duarte-Salles
- Fundació Institut Universitari per a la recerca a l'Atenció Primària de Salut Jordi Gol i Gurina (IDIAPJGol), Barcelona, Spain
| | - Martine Vrijheid
- ISGlobal, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Spain; Universitat Pompeu Fabra, Barcelona, Spain.
| |
Collapse
|
24
|
Cho HJ, Lee SH, Lee SY, Kim HC, Kim HB, Park MJ, Yoon J, Jung S, Yang SI, Lee E, Ahn K, Kim KW, Suh DI, Sheen YH, Won HS, Lee MY, Kim SH, Lee KJ, Choi SJ, Kwon JY, Jun JK, Choi KY, Hong SJ. Mid-pregnancy PM 2.5 exposure affects sex-specific growth trajectories via ARRDC3 methylation. ENVIRONMENTAL RESEARCH 2021; 200:111640. [PMID: 34302828 DOI: 10.1016/j.envres.2021.111640] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 06/15/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Prenatal particulate matter <2.5 μm (PM2.5) is associated with adverse birth growth. However, the longitudinal growth impacts have been little studied, and no mechanistic relationships have been described. We investigated the association between prenatal PM2.5 exposure and growth trajectories, and the possible role of epigenetics. We enrolled 1313 neonates with PM2.5 data measured by ordinary kriging from the COhort for Childhood Origin of Asthma and allergic diseases, followed up at 1, 3, and 5 years to evaluate growth. Differential DNA methylation and pyrosequencing of cord blood leukocytes was evaluated according to the prenatal PM2.5 levels and birth weight (BW). PM2.5 exposure during the second trimester (T2) caused the lowest BW in both sexes, further adjusted for indoor PM2.5 levels [female, aOR 1.39 (95% CI 1.05-1.83); male, aOR 1.36 (95% CI 1.04-1.79)]. Bayesian distributed lag models with indoor PM2.5 adjustments revealed a sensitive window for BW effects at 10-26 weeks gestation, but only in females. Latent class mixture models indicated that a persistently low weight-for-height percentile trajectory was more prevalent in the highest PM2.5 exposure quartile at T2 in females, compared to a persistently high trajectory (36.5% vs. 20.3%, P = 0.022). Also, in the females only, the high PM2.5 and low BW neonates showed significantly greater ARRDC3 methylation changes. ARRDC3 methylation was also higher only in females with low weight at 5 years of age. Higher fetal PM2.5 exposure during T2 may cause a decreased growth trajectory, especially in females, mediated by ARRDC3 hyper-methylation-associated energy metabolism.
Collapse
Affiliation(s)
- Hyun-Ju Cho
- Department of Pediatrics, International St. Mary's Hospital, Catholic Kwandong University, Incheon, South Korea
| | - Seung-Hwa Lee
- Asan Institute for Life Science, University of Ulsan College of Medicine, Seoul, South Korea
| | - So-Yeon Lee
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Hwan-Cheol Kim
- Department of Occupational and Environmental Medicine, Inha University School of Medicine, Incheon, South Korea
| | - Hyo-Bin Kim
- Department of Pediatrics, Inje University Sanggye Paik Hospital, Seoul, South Korea
| | - Min Jee Park
- Department of Pediatrics, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, South Korea
| | - Jisun Yoon
- Department of Pediatrics, MediplexSejong Hospital, South Korea
| | - Sungsu Jung
- Department of Pediatrics, Pusan National University Yangsan Hospital, Yangsan, South Korea
| | - Song-I Yang
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, South Korea
| | - Eun Lee
- Department of Pediatrics, Chonnam National University Medical School, Chonnam National University Hospital, Gwangju, South Korea
| | - Kangmo Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Environmental Health Center for Atopic Disease, Samsung Medical Center, Seoul, South Korea
| | - Kyung Won Kim
- Department of Pediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Dong In Suh
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Youn Ho Sheen
- Department of Pediatrics, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
| | - Hye-Sung Won
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Young Lee
- Department of Obstetrics and Gynecology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Soo Hyun Kim
- Department of Obstetrics and Gynecology, CHA Gangnam Medical Center, CHA University School of Medicine, Seoul, South Korea
| | - Kyung-Ju Lee
- Department of Obstetrics and Gynecology, Korea University Medical Center, Seoul, South Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Ja-Young Kwon
- Department of Obstetrics and Gynecology, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Kwan Jun
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kil-Yong Choi
- Department of Environmental Energy Engineering, Anyang University, Anyang, South Korea
| | - Soo-Jong Hong
- Department of Pediatrics, Childhood Asthma Atopy Center, Humidifier Disinfectant Health Center, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea.
| |
Collapse
|
25
|
Zheng H, Xu Z, Wang Q, Ding Z, Zhou L, Xu Y, Su H, Li X, Zhang F, Cheng J. Long-term exposure to ambient air pollution and obesity in school-aged children and adolescents in Jiangsu province of China. ENVIRONMENTAL RESEARCH 2021; 195:110804. [PMID: 33513381 DOI: 10.1016/j.envres.2021.110804] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/14/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Studies have shown that ambient air pollution is associated with obesity in adults, but epidemiological evidence is scarce for children and adolescents. This study sought to examine the association between long-term exposure to ambient air pollution and obesity in a large population of children and adolescents in China. A cross-sectional analysis was performed from a school-based health lifestyles intervention project between September 1, 2019 and November 31, 2019, including 36,456 participants aged 9-17 years in Jiangsu province of China. Exposure to air pollutants (nitrogen dioxide (NO2), ozone (O3), particulate matter with aerodynamic diameters ≤10 μm (PM10), and ≤2.5 μm (PM2.5)) were measured based on the nearest air monitoring station for each selected school. Data on each participant's weight and height was also recorded. Demographic and obesity-related behavioral information was collected using a self-reported questionnaire. We used the multivariate regression model to estimate the effects of three-year (2016-2018) average concentrations and the exceedance concentration days (ECD) of air pollutants on obesity after adjusting potential confounders. The ECD was defined as daily concentration exceeding the Chinese National Ambient Air Quality Standard and World Health Organization Ambient Air Quality Guidelines. We observed that higher concentrations of PM2.5, NO2, and O3 were associated with elevated likelihood of obesity. For each 10 μg/m3 increment in concentration, odds ratio of obesity was 1.185 (95% confidence interval (CI): 1.054, 1.333) for PM2.5, 1.127 (95%CI: 1.042, 1.219) for NO2, and 1.041 (95%CI: 1.001, 1.082) for O3, respectively. A significant association between the ECD and obesity was also found for PM2.5 and O3. Effects of air pollutants on obesity were stronger in males, low economic level regions, and age subgroups of 9-11 and 15-17 years. Our findings suggest that long-term exposures to PM2.5, NO2, and O3 were associated with higher prevalence of obesity in children and adolescents. Continuous efforts to reduce air pollution level could help ease the increasing prevalence of obesity within a region.
Collapse
Affiliation(s)
- Hao Zheng
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhiwei Xu
- School of Public Health, University of Queensland, Queensland, Australia
| | - QingQing Wang
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Zhen Ding
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Lian Zhou
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yan Xu
- Department of Environmental Health, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hong Su
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China
| | - Xiaobo Li
- Department of Environmental Health, School of Public Health, Southeast University, Nanjing, China
| | - Fengyun Zhang
- Department of Child and Adolescent Health Promotion, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China.
| | - Jian Cheng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China; Anhui Province Key Laboratory of Major Autoimmune Disease, Hefei, China.
| |
Collapse
|
26
|
Community context, birth cohorts and childhood body mass index trajectories: Evidence from the China nutrition and health survey 1991-2011. Health Place 2020; 66:102455. [PMID: 33011489 DOI: 10.1016/j.healthplace.2020.102455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 09/05/2020] [Accepted: 09/14/2020] [Indexed: 02/06/2023]
Abstract
Childhood overweight and obesity have shown an increase in recent birth cohorts. China has undergone rapid socioeconomic transitions accompanied by lifestyle changes that have profoundly affected the physical growth of children. Less empirical research has considered the role of community context on the cohort effects of children's body mass index (BMI) z-score trajectories. We used the mixed effect models for repeated measurements with restricted cubic spline to predict the BMI z-score trajectories in children aged 1-17 years, influenced by different birth cohorts and community context using data from the China Health and Nutrition Survey from 1991 to 2011, and stratified by sex. Results indicated that the mean of BMI z-scores of children aged 1-17 years have increased in the 2000s cohort. Community context contributed to significant differences in BMI z-score increase with age from middle childhood, and this trend of community inequalities divergences in middle childhood in recent birth cohorts. Therefore, to promote equitable growth for all children in China, policy interventions focusing on the community context may have far-reaching effects on the health of children and adolescents.
Collapse
|