1
|
Li J, Chang R, Li L, Zhang H, Li J. Spatiotemporal variation of polycyclic aromatic hydrocarbons in Tibetan lake sediment cores reveals the influence of forest fires. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176737. [PMID: 39383964 DOI: 10.1016/j.scitotenv.2024.176737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
Despite declining anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) due to global control strategies, forest fire emissions have been increasing, significantly affecting PAH dynamics in global sinks. This study investigated the spatiotemporal variations of sedimentary PAHs in three Tibetan lakes-Yiong Tso, Yamdrok Yumtso, and Urru Tso-to determine the influence of forest fires on PAH levels and historical trends. Yiong Tso Lake, located in a fire-affected watershed, exhibited the highest PAH concentrations (average of 43.4 ± 25.7 ng/g) with significant fluctuations since the 1920s, peaking in the 1960s (46.3 ng/g) and 1980s (91.3 ng/g), corresponding to periods of intense forest fires. This pattern aligned with source contribution estimates using the modified Cohen's d (mcd), indicating the dominance of forest fires as a PAH source until the 1990s. PAH concentrations decreased with increasing distance from the southeastern Tibetan Forest, as observed in Yamdrok Yumtso (average of 36.1 ± 19.9 ng/g) and Urru Tso (average of 16.4 ± 6.9 ng/g). Temporal variations in PAH concentrations and mcd values from these lakes also reflected a response to forest fires during the 1960s, suggesting a widespread influence of forest-fire-derived PAHs across the plateau. The impact of forest fires on sedimentary PAHs was expected to persist for decades, with an estimated half-life of approximately 11-12 years. These findings highlight significant emissions of PAHs from forest fires in the Tibetan Plateau, potentially transforming regional PAH dynamics and influencing global cycling.
Collapse
Affiliation(s)
- Jiping Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Ruwen Chang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Lewei Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - He Zhang
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Jun Li
- School of the Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China.
| |
Collapse
|
2
|
Waddingham CM, Hinton P, Villeneuve PJ, Brook JR, Lavigne E, Larsen K, King WD, Wen D, Meng J, Zhang J, Galarneau E, Harris SA. Exposure to ambient polycyclic aromatic hydrocarbons and early-onset female breast cancer in a case-control study in Ontario, Canada. Environ Epidemiol 2024; 8:e333. [PMID: 39386012 PMCID: PMC11463212 DOI: 10.1097/ee9.0000000000000333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 10/12/2024] Open
Abstract
Background Ambient polycyclic aromatic hydrocarbons (PAHs) are a class of toxicologically important and understudied air pollutants. Epidemiologic evidence suggests that chronic exposure to PAHs increases breast cancer risk; however, there are few studies in nonoccupational settings that focus on early-onset diagnoses. Methods The relationship between residentially-based ambient PAH concentrations and female breast cancer, among those 18-45 years of age, was characterized in the Ontario Environment and Health Study (OEHS). The OEHS was a population-based case-control study undertaken in Ontario, Canada between 2013 and 2015. Primary incident breast cancers were identified within 3 months of diagnosis, and a population-based series of controls were recruited. Concentrations of ambient PAHs, using fluoranthene as a surrogate, were derived using a chemical transport model at a 2.5 km spatial resolution. These estimates were assigned to participants' residences at the time of the interview and 5 years prior. Logistic regression was used to estimate odds ratios (ORs) and their 95% confidence intervals (CIs) based on a quartile categorization of fluoranthene exposure while adjusting for a series of individual- and area-level risk factors. The shape of the exposure-response trend was evaluated using cubic splines. Results Median fluoranthene exposure for cases and controls was 0.0017 µg/m3 and 0.0014 µg/m3, respectively. In models adjusted for a parsimonious set of risk factors, the highest quartile of exposure was associated with an increased risk of breast cancer (OR = 2.16; 95% CI = 1.22, 3.84). Restricted spline analyses revealed nonlinear dose-response patterns. Conclusions These findings support the hypothesis that ambient PAH exposures increases the risk of early-onset breast cancer.
Collapse
Affiliation(s)
| | - Patrick Hinton
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Paul J. Villeneuve
- Department of Neuroscience, Carleton University, Ottawa, Ontario, Canada
| | - Jeffrey R. Brook
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Eric Lavigne
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, Ontario, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, Ontario Canada
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Will D. King
- Department of Public Health Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
- Department of Civil and Environmental Engineering, Washington State University, Pullman, Washington
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, Ontario, Canada
| | - Shelley A. Harris
- Division of Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
3
|
Teixeira J, Delerue-Matos C, Morais S, Oliveira M. Environmental contamination with polycyclic aromatic hydrocarbons and contribution from biomonitoring studies to the surveillance of global health. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:54339-54362. [PMID: 39207613 DOI: 10.1007/s11356-024-34727-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
This work presents an integrated overview of polycyclic aromatic hydrocarbons' (PAHs) ubiquity comprising environmental contamination in the air, aquatic ecosystems, and soils; characterizes the contamination in biota; and identifies main biomonitors and human exposure to PAHs and associated health risks. Urban centers and industrial areas present increased concentrations in the air (1344.4-12,300 versus 0.03-0.60 ng/m3 in industrial/urban and rural zones) and soils (0.14-1.77 × 106 versus 2.00-9.04 × 103 versus 1.59-5.87 × 103 ng/g in urban, forest, and rural soils), respectively. Increased concentrations were found in coastal zones and superficial waters as well as in sediments (7.00 × 104-1.00 × 109 ng/g). Benzo(a)pyrene, a carcinogenic PAH, was found in all environmental media. Mosses, lichens, tree leaves, bivalves, cephalopods, terrestrials' snails, and honeybees are good biomonitors of biota contamination. More studies are needed to improve characterization of PAHs' levels, distribution, and bioaccumulation in the environmental media and assess the associated risks for biota and human health. Actions and strategies to mitigate and prevent the bioaccumulation of PAHs in the environment and trophic chains toward the WHO's One-Health Perspective to promote the health of all ecosystems and human life are urgently needed.
Collapse
Affiliation(s)
- Joana Teixeira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, ISEP, Polytechnique of Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015, Porto, Portugal.
| |
Collapse
|
4
|
Hinton P, Villeneuve PJ, Galarneau E, Larsen K, Wen D, Meng J, Savic-Jovcic V, Zhang J, King WD. Ambient polycyclic aromatic hydrocarbon exposure and breast cancer risk in a population-based Canadian case-control study. Cancer Causes Control 2024; 35:1165-1180. [PMID: 38630334 PMCID: PMC11266283 DOI: 10.1007/s10552-024-01866-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 02/20/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Polycyclic aromatic hydrocarbons (PAHs) represent a class of ubiquitous pollutants recognized as established human carcinogens and endocrine-disrupting chemicals. PAHs have seldom been modeled at the population-level in epidemiological studies. Fluoranthene is a prevalent PAH in urban settings and correlates with the occurrence of other PAHs. The purpose of this study was to evaluate associations between long-term residential exposure to ambient PAHs and breast cancer risk, both pre- and post-menopausal, in Canada. METHODS Using the National Enhanced Cancer Surveillance System (NECSS), a national-scale Canadian population-based case-control study, annual fluoranthene exposures were estimated using the GEM-MACH-PAH chemical transport model on the basis of geocoded residential histories throughout a 20-year exposure window. Odds ratios (ORs) and 95% confidence intervals (CIs) controlling for potential confounders were estimated using logistic regression. Separate analyses were conducted for Ontario and national samples given a finer-resolution exposure surface and additional risk factor information available for Ontario. RESULTS Positive associations were observed between fluoranthene exposure and premenopausal breast cancer, with inconsistent findings for postmenopausal breast cancer. For premenopausal breast cancer, adjusted ORs of 2.48 (95% CI: 1.29, 4.77) and 1.59 (95% CI: 1.11, 2.29) were observed when comparing the second highest category of exposure to the lowest, among the Ontario and national samples, respectively. For postmenopausal breast cancer, adjusted ORs were 1.10 (95% CI: 0.67, 1.80) and 1.33 (95% CI: 1.02, 1.73). Associations for the highest level of exposure, across both samples and menopausal strata, were non-significant. CONCLUSION This study provides support for the hypothesis that ambient PAH exposures increase the risk of premenopausal breast cancer.
Collapse
Affiliation(s)
- Patrick Hinton
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada
| | | | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Kristian Larsen
- Office of Environmental Health, Health Canada, Ottawa, ON, Canada
| | - Deyong Wen
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Jun Meng
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Verica Savic-Jovcic
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Junhua Zhang
- Air Quality Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
| | - Will D King
- Department of Public Health Sciences, Queen's University, Kingston, ON, Canada.
| |
Collapse
|
5
|
Imam A, Suman SK, Vasavdutta S, Chatterjee S, Vempatapu BP, Ray A, Kanaujia PK. Degradation of multiple PAHs and co-contaminants by microbial consortia and their toxicity assessment. Biodegradation 2024; 35:299-313. [PMID: 37792261 DOI: 10.1007/s10532-023-10055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
The anthropogenic activities toward meeting the energy requirements have resulted in an alarming rise in environmental pollution levels. Among pollutants, polycyclic aromatic hydrocarbons (PAHs) are the most predominant due to their persistent and toxic nature. Amidst the several pollutants depuration methods, bioremediation utilizing biodegradation is the most viable alternative. This study investigated the biodegradation efficacy using developed microbial consortium PBR-21 for 2-4 ringed PAHs named naphthalene (NAP), anthracene (ANT), fluorene (FLU), and pyrene (PYR). The removal efficiency was observed up to 100 ± 0.0%, 70.26 ± 4.2%, 64.23 ± 2.3%, and 61.50 ± 2.6%, respectively, for initial concentrations of 400 mg L-1 for NAP, ANT, FLU, and PYR respectively. Degradation followed first-order kinetics with rate constants of 0.39 d-1, 0.10 d-1, 0.08 d-1, and 0.07 d-1 and half-lifet 1 / 2 of 1.8 h, 7.2 h, 8.5 h, and 10 h, respectively. The microbial consortia were found to be efficient towards the co-contaminants with 1 mM concentration. Toxicity examination indicated that microbial-treated PAHs resulted in lesser toxicity in aquatic crustaceans (Artemia salina) than untreated PAHs. Also, the study suggests that indigenous microbial consortia PBR-21 has the potential to be used in the bioremediation of PAH-contaminated environment.
Collapse
Affiliation(s)
- Arfin Imam
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sonpal Vasavdutta
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Shruti Chatterjee
- CSIR-Central Salt & Marine Chemicals Research Institute, G.B. Marg, Bhavnagar, Gujarat, 364002, India
| | - Bhanu Prasad Vempatapu
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
| | - Anjan Ray
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pankaj K Kanaujia
- Analytical Sciences Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun, Uttarakhand, 248005, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
6
|
Vitharana NN, Halldorson T, Xia Z, Francisco O, Marvin C, Thomas PJ, Liebzeit E, Lucas AM, Moradi V, Tomy GT. A validated approach for analysis of heterocyclic aromatic compounds in sediment samples. J Chromatogr A 2024; 1718:464723. [PMID: 38341899 DOI: 10.1016/j.chroma.2024.464723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
The scientific literature is replete with analytical methods for the analysis of homocyclic aromatic compounds especially polycyclic aromatic hydrocarbons and their alkylated analogs. However, there is a paucity of methods for the analysis of nitrogen-, sulfur- and oxygen-containing polycyclic aromatic compounds (PACs). The lack of commercially available analytical standards, the presence of many structural derivatives and isomers and lack of certified reference materials all contribute to the inherent challenges in measuring these compounds. Gas chromatography coupled with a tandem mass spectrometer was used to develop two multiple reaction monitoring methods to detect and quantify fifty-three non-halogenated and halogenated hetero-polycyclic aromatic compounds (HPACs). Because of their greater polarity, strongly non-polar solvents typically employed to extract homocyclic PACs from sediment samples did not yield acceptable recoveries of our target analytes. By adding ethyl acetate to dichloromethane (50:50), recoveries of our target analytes using accelerated solvent extraction increased markedly. The performance characteristics of the validated method including accuracy [> than 67% for 46 (out of 53) analytes], inter- and intra-day precision [<30% for all analytes, (expressed as relative standard deviation)], limits of detection (0.1 to 2.3 ng/g) and quantitation (1.5 to 7.6 ng/g) imply that the method is fit for its intended purpose. A sediment sample from a known contaminated site in Canada was analyzed for both homo- and hetero-PACs. Measured concentrations of Σ27HPAC (7.3 μg/g, dry weight) were significantly smaller (p<0.05) than Σ16PAHs (80.9 μg/g, dry weight) and Σ30Alkylated-PAHs (14.2 μg/g, dry weight). These results suggest that the developed method is an effective and efficient approach for the targeted analysis of HPACs and their halogenated derivatives in sediment samples.
Collapse
Affiliation(s)
- Nipuni N Vitharana
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| | - Thor Halldorson
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Zhe Xia
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Olga Francisco
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Chris Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, ON L7S 1A1, Canada
| | - Philippe J Thomas
- Wildlife Landscape Science Directorate, Environment and Climate Change Canada, Ottawa, ON K1A 0H3, Canada
| | - Erin Liebzeit
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Amica-Mariae Lucas
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Vida Moradi
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Gregg T Tomy
- Centre for Oil and Gas Research and Development, Department of Chemistry, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
7
|
Ye C, Tu Y, Ling H, Chen Y, Liu Y, Zhang R, Zhang X. Occurrence, physicochemical properties and environmental behavior of polychlorinated dibenzothiophenes: A comprehensive review and future perspectives. ENVIRONMENTAL RESEARCH 2024; 245:118007. [PMID: 38154561 DOI: 10.1016/j.envres.2023.118007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/30/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
Polychlorinated dibenzothiophenes (PCDTs) are a form of emerging pollutant that has attracted great attention due to their structural resemblance to dioxins, which cast detrimental influence on the ecosystem and human health. This review shows the current status of research on PCDTs, focusing on their environmental occurrence, physicochemical properties, environmental behavior, and toxicity. Studies have suggested that the steps leading to the formation of PCDTs resemble those generating polychlorinated dibenzo-p-dioxin/dibenzofurans (PCDD/Fs), indicating their probable origin from the same sources. Furthermore, they may undergo a dechlorination process as a result of their photodegradation in the environment and metabolic reaction occurring within organisms, which could result in the conversion of these substances into additional pollutants like dibenzothiophene. PCDTs exist widely in the environmental media and have high logKOW values (>4.0), indicating their tendency to bioaccumulate. Moreover, the prediction results of EPI (Estimation Program Interface) Suite demonstrated a strong accumulation capacity for tetra-CDTs in fish compared to other chlorinated PCDTs. The biotransformation half-life of PCDTs would prolong with an increasing number of substituted Cl atoms in fish. A limited number of studies have also suggested that PCDTs can cause damage to the liver and immune system in living organisms, and the toxicity of PCDTs depends on the number and position of substituted Cl atoms. Future studies should be conducted on processes causing PCDT toxicity as well as their behavior and fate in actual environments.
Collapse
Affiliation(s)
- Chunmeng Ye
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Yong Tu
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Hong Ling
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Yong Chen
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China.
| | - Yang Liu
- Jiangsu Environmental Engineering Technology Co., Ltd. Jiangsu Environmental Protection Group Co., Ltd. Jiangsu Nanjing 210036, China; Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Industry and Information Technology, China
| | - Rui Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Xuesheng Zhang
- School of Resources and Environmental Engineering, Anhui University, Anhui Hefei 230601, China.
| |
Collapse
|
8
|
García-Garcinuño R, Vallecillos L, Marcé RM, Borrull F. Occurrence of high production volume chemicals and polycyclic aromatic hydrocarbons in urban sites close to industrial areas. Human exposure and risk assessment. CHEMOSPHERE 2024; 351:141167. [PMID: 38218240 DOI: 10.1016/j.chemosphere.2024.141167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/05/2024] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Evaluating the occurrence of high production volume chemicals (HPVCs) and polycyclic aromatic hydrocarbons (PAHs) in the air is important because they carry a carcinogenic risk and can lead to respiratory or endocrine problems. Examples of HPVCs are organophosphate esters, benzosulfonamides, benzothiazoles, phthalate esters (PAEs), phenolic antioxidants and ultraviolet stabilizers. In this paper we develop a multi-residue method for determining HPVCs and PAHs in air samples via pressurized liquid extraction followed by gas chromatography-mass spectrometry. Air samples were collected by active sampling with high volume samplers using quartz fiber filter for the particulate matter (PM10) and polyurethane foams for gas phase. The compounds found at the highest concentrations were PAEs, with a concentration of up to 24 ng m-3 of DEHP in gas phase and up to 109 ng m-3 of DEHA in PM10. Non-carcinogenic risk assessment results ranged from 9.7E-05 to 9.5E-03 for most of the compounds studied. On the other hand, the results for carcinogenic risk showed that PAHs made the highest contribution.
Collapse
Affiliation(s)
- Reyes García-Garcinuño
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Laura Vallecillos
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| | - Rosa Maria Marcé
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain.
| | - Francesc Borrull
- Universitat Rovira I Virgili, Department of Analytical Chemistry and Organic Chemistry, Campus Sescelades, Marcel·lí Domingo, 1, Tarragona, 43007, Spain
| |
Collapse
|
9
|
Liu H, Qiu F, Gao M, Che Y, Tan C, Zhang Z, Yan R, Li H, Jian M. Migration and adsorption of naphthalene in road-deposited sediments from stormwater runoff: Impact of the particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166673. [PMID: 37659539 DOI: 10.1016/j.scitotenv.2023.166673] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 08/20/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023]
Abstract
In this study, we explored the impact of RDS particle size on the migration dynamics of RDS and naphthalene through rigorous wash-off experiments. The results illuminated that smaller RDS particles showed higher mobility in stormwater runoff. On the other hand, RDS particles larger than 150 μm showed migration ratios below 2 %, suggesting that naphthalene adsorbed on larger RDS primarily migrated in dissolved form. Furthermore, we investigated the migration behaviors of RDS and naphthalene under varied conditions, including rainfall intensity, duration, and naphthalene concentrations. Larger rainfall intensity promoted the naphthalene release from RDS, while long rainfall duration (≥10 min) impeded the migration velocities (≤2.91 %/5 min for RDS, and ≤3.32 %/5 min for corresponding naphthalene) of RDS and naphthalene. Additionally, higher naphthalene concentrations in RDS diminished migration ratios of dissolved naphthalene. Significantly, the maximum uptake of naphthalene on RDS was 6.02 mg/g by the adsorption Langmuir isotherm. Importantly, the adsorption process of naphthalene in RDS is primarily governed by the physical adsorption, as demonstrated by the successive desorption experiments, which showed the desorption rate of up to 87.32 %. Moreover, advanced characterizations such as XPS, FTIR and Raman spectra further confirmed the physical nature of the adsorption process. These findings may help the understanding of the migration behavior of other pollutants in urban surface particulates.
Collapse
Affiliation(s)
- Hongze Liu
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Fuguo Qiu
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Mingchen Gao
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Yongjian Che
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Chaohong Tan
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Ziyang Zhang
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Rui Yan
- Beijing Drainage Group Co., Ltd, Beijing 100044, China
| | - Haiyan Li
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
| | - Meipeng Jian
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial and Ministry Co-construction Collaboration Innovation Center, School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China.
| |
Collapse
|
10
|
Barros B, Oliveira M, Morais S. Continent-based systematic review of the short-term health impacts of wildfire emissions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:387-415. [PMID: 37469022 DOI: 10.1080/10937404.2023.2236548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
This review systematically gathers and provides an analysis of pollutants levels emitted from wildfire (WF) and their impact on short-term health effects of affected populations. The available literature was searched according to Population, Exposure, Comparator, Outcome, and Study design (PECOS) database defined by the World Health Organization (WHO) and a meta-analysis was conducted whenever possible. Data obtained through PECOS characterized information from the USA, Europe, Australia, and some Asian countries; South American countries were seldom characterized, and no data were available for Africa and Russia. Extremely high levels of pollutants, mostly of fine fraction of particulate matter (PM) and ozone, were associated with intense WF emissions in North America, Oceania, and Asia and reported to exceed several-fold the WHO guidelines. Adverse health outcomes include emergency department visits and hospital admissions for cardiorespiratory diseases as well as mortality. Despite the heterogeneity among exposure and health assessment methods, all-cause mortality, and specific-cause mortality were significantly associated with WF emissions in most of the reports. Globally, a significant association was found for all-cause respiratory outcomes including asthma, but mixed results were noted for cardiovascular-related effects. For the latter, estimates were only significant several days after WF emissions, suggesting a more delayed impact on the heart. Different research gaps are presented, including the need for the application of standardized protocols for assessment of both exposure and adverse health risks. Mitigation actions also need to be strengthened, including dedicated efforts to communicate with the affected populations, to engage them for adoption of protective behaviors and measures.
Collapse
Affiliation(s)
- Bela Barros
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Marta Oliveira
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| | - Simone Morais
- REQUIMTE/LAQV, Instituto Superior de Engenharia Do Porto, Instituto Politécnico Do Porto, Porto, Portugal
| |
Collapse
|
11
|
Zhang X, Li Z. Investigating industrial PAH air pollution in relation to population exposure in major countries: A scoring approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 338:117801. [PMID: 36996564 DOI: 10.1016/j.jenvman.2023.117801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/17/2023] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are common air pollutants worldwide, associated with industrial processes. In the general population, both modeling and field studies revealed a positive correlation between air PAH concentrations and urinary PAH metabolite levels. Many countries lack population urinary data that correspond to local PAH air concentrations. Thus, we proposed a scoring-based approximate approach to investigating that correlation in selected countries, hypothesizing that PAH air concentrations in selected regions could represent the national air quality influenced by industrial emission and further correlate to PAH internal exposure in the general population. This research compiled 85 peer-reviewed journal articles and 9 official monitoring datasets/reports covering 34 countries, 16 of which with both atmospheric PAH data and human biomonitoring data. For the air pollution score (AirS), Egypt had the highest AirS at 0.94 and Pakistan was at the bottom of the score ranking at -1.95, as well as the median in the UK (AirS: 0.50). For the population exposure score (ExpS), China gained the top ExpS at 0.44 and Spain was with the lowest ExpS of -1.52, with the median value in Italy (ExpS: 0.43). Through the correlation analysis, atmospheric PAHs and their corresponding urinary metabolites provided a positive relationship to a diverse extent, indicating that the related urinary metabolites could reflect the population's exposure to specific atmospheric PAHs. The findings also revealed that in the 16 selected countries, AirS indexes were positively correlated with ExpS indexes, implying that higher PAH levels in the air may lead to elevated metabolite urinary levels in general populations. Furthermore, lowering PAH air concentrations could reduce population internal PAH exposure, implying that strict PAH air regulation or emission would reduce health risks for general populations. Notably, this study was an ideal theoretical research based on proposed assumptions to some extent. Further research should focus on understanding exposure pathways, protecting vulnerable populations, and improving the PAH database to optimize PAH pollution control.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China
| | - Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong, 518107, China.
| |
Collapse
|
12
|
Wu X, Wang J, Yuan Z, Wang S. Polycyclic aromatic compounds (PACs) in tree barks and tree cores of a national large-scale coal-fired power base of China: Sources, atmospheric toxicities, and pollution histories. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 879:163045. [PMID: 36963675 DOI: 10.1016/j.scitotenv.2023.163045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/20/2023] [Accepted: 03/20/2023] [Indexed: 05/17/2023]
Abstract
Polycyclic aromatic compounds (PACs) are important hazardous air pollutants in China due to the country's coal-dominant energy structure. In order to reveal the pollution characteristics, sources, toxicity, and pollution historical trends of PACs in the atmosphere of the middle reach of the Huaihe River (MRHR), a large-scale coal-fired power base of China, tree barks and tree cores were collected and employed as passive air samplers and historical trend recorders, and 76 PACs were identified for the first time. ΣPACs in tree barks ranged from 170 to 3800 ng g-1 (mean = 700 ± 720 ng g-1), with the high concentrations observed mainly in the coal-mining and coal-bearing area. 16 priority PAHs (PriPAHs) were the predominant substances and accounted for 59 ± 8.3 % of ΣPACs. The combustion of coal and fuel oil was the most significant source of PACs, accounting for 43 % of ΣPACs, followed by the combustion of biomass (30 %) and non-combustion sources (27 %). Based on a bark-air partitioning model, volumetric air concentrations for ΣPACs were calculated to be 450-11,000 ng m-3 (mean = 1600 ± 2000 ng m-3). The BaP-toxic equivalent concentrations (TEQBaP) of ΣPACs (mean = 9.7 ± 15 ng m-3) were significantly higher than the Chinese guideline (1 ng m-3) and were mostly caused by coal & fuel oil combustion (55 ± 13 %). High molecular weight PACs were detected in lower percentages in tree cores than in tree barks, indicating that PACs in the particle phase were difficult to enter the tree core. Major PACs decreased in tree core samples between 2000 and 2020 as pollution control efforts improved, however, some PACs showed different trends when influenced by point sources.
Collapse
Affiliation(s)
- Xiaoguo Wu
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Jie Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Zijiao Yuan
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China
| | - Shanshan Wang
- Anhui Provincial Engineering Laboratory of Water and Soil Pollution Control and Remediation, School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui 241002, PR China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang City Belt, Wuhu, Anhui 241002, PR China.
| |
Collapse
|
13
|
Ramesh B, Saravanan A, Senthil Kumar P, Yaashikaa PR, Thamarai P, Shaji A, Rangasamy G. A review on algae biosorption for the removal of hazardous pollutants from wastewater: Limiting factors, prospects and recommendations. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121572. [PMID: 37028793 DOI: 10.1016/j.envpol.2023.121572] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/21/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Heavy metals, dyes and pharmaceutical pollutants in water environment are considered as serious threat to the human and animal health globally. Rapid development of industrialization and agricultural activities are the major source for eliminating the toxic pollutants into the aquatic environment. Several conventional treatment methods have been suggested for the removal of emerging contaminants from wastewater. Algal biosorption, among other strategies and techniques, is demonstrating to be a limited technical remedy that is more focused and inherently more efficient and helps remove dangerous contaminants from water sources. The different environmental effects of harmful contaminants, including heavy metals, dyes, and pharmaceutical chemicals, as well as their sources, were briefly compiled in the current review. This paper provides a comprehensive definition of the future possibilities in heavy compound decomposition by using algal technology, from aggregation to numerous biosorption procedures. Functionalized materials produced from algal sources were clearly proposed. This review further highlights the limiting factors of algal biosorption to eliminate the hazardous material. Finally, this study showed how the existence of algae indicates a potential, effective, affordable, and sustainable sorbent biomaterial for minimizing environmental pollution.
Collapse
Affiliation(s)
- B Ramesh
- Department of Civil Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Thamarai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Alan Shaji
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
14
|
Hussain NAS, Stafford JL. Abiotic and biotic constituents of oil sands process-affected waters. J Environ Sci (China) 2023; 127:169-186. [PMID: 36522051 DOI: 10.1016/j.jes.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/17/2023]
Abstract
The oil sands in Northern Alberta are the largest oil sands in the world, providing an important economic resource for the Canadian energy industry. The extraction of petroleum in the oil sands begins with the addition of hot water to the bituminous sediment, generating oil sands process-affected water (OSPW), which is acutely toxic to organisms. Trillions of litres of OSPW are stored on oil sands mining leased sites in man-made reservoirs called tailings ponds. As the volume of OSPW increases, concerns arise regarding the reclamation and eventual release of this water back into the environment. OSPW is composed of a complex and heterogeneous mix of components that vary based on factors such as company extraction techniques, age of the water, location, and bitumen ore quality. Therefore, the effective remediation of OSPW requires the consideration of abiotic and biotic constituents within it to understand short and long term effects of treatments used. This review summarizes selected chemicals and organisms in these waters and their interactions to provide a holistic perspective on the physiochemical and microbial dynamics underpinning OSPW .
Collapse
Affiliation(s)
- Nora A S Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada
| | - James L Stafford
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2N8, Canada.
| |
Collapse
|
15
|
Asif Z, Chen Z, Haghighat F, Nasiri F, Dong J. Estimation of Anthropogenic VOCs Emission Based on Volatile Chemical Products: A Canadian Perspective. ENVIRONMENTAL MANAGEMENT 2023; 71:685-703. [PMID: 36416924 PMCID: PMC9685044 DOI: 10.1007/s00267-022-01732-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Volatile organic compounds (VOCs) in urban areas are of great interest due to their significant role in forming ground-level ozone and adverse public health effects. Emission inventories usually compile the outdoor VOCs emission sources (e.g., traffic and industrial emissions). However, considering emissions from volatile chemical products (e.g., solvents, printing ink, personal care products) is challenging because of scattered data and the lack of an effective method to estimate the VOCs emission rate from these chemical products. This paper aims to systematically analyse potential sources of VOCs emission in Canada's built environment, including volatile chemical products. Also, spatial variation of VOCs level in the ambient atmosphere is examined to understand the VOC relationship with ozone and secondary organic aerosol formation. The study shows that VOCs level may vary among everyday microenvironments (e.g., residential areas, offices, and retail stores) depending on the frequency of product consumption, building age, ventilation condition, and background ambient concentration in the atmosphere. However, it is very difficult to establish VOC speciation and apportionment to different volatile chemical products that contribute most significantly to exposure and target subpopulations with elevated levels. Thus, tracer compounds can be used to identify inventory sources at the consumer end. A critical overview highlights the limitations of existing VOC estimation methods and possible approaches to control VOC emissions. The findings provide crucial information to establish an emission inventory framework for volatile chemical products at a national scale and enable policymakers to limit VOCs emission from various volatile chemical products.
Collapse
Affiliation(s)
- Zunaira Asif
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada.
| | - Fariborz Haghighat
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Fuzhan Nasiri
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| | - Jinxin Dong
- Department of Building, Civil and Environmental Engineering, Concordia University, Montreal, QC, Canada
| |
Collapse
|
16
|
Diesbourg E, MacDonald M, Reid HB, MacKinnon R, Reinhart B, Mercer A, Crémazy A. State of polycyclic aromatic hydrocarbon (PAH) contamination in the Saint John Harbour, New Brunswick, Canada. MARINE POLLUTION BULLETIN 2023; 189:114760. [PMID: 36863271 DOI: 10.1016/j.marpolbul.2023.114760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/18/2023] [Accepted: 02/18/2023] [Indexed: 06/18/2023]
Abstract
This study examined the concentrations and compositions of polycyclic aromatic hydrocarbon (PAH) contaminants in the surficial sediments of the Saint John Harbour (SJH) and assessed PAH exposure to local aquatic biota. Our findings suggest that sedimentary PAH contamination is heterogeneous and widespread in the SJH, with several sites exceeding the Canadian and NOAA recommended guidelines for the protection of aquatic life. Despite high concentrations of PAHs at some sites, there was no indication that local nekton was affected. Lack of a biological response may be due in part to a low bioavailability of sedimentary PAHs, presence of confounding factors (e.g., trace metals), and/or adaptation of local wildlife to the historic PAH contamination in this region. Overall, although no indication of effects to wildlife was observed with the data collected in the present study, continued efforts should be made to remediate highly contaminated areas and reduce the prevalence of these compounds.
Collapse
Affiliation(s)
- Emilie Diesbourg
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Morgan MacDonald
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Heather Bauer Reid
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Roxanne MacKinnon
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Bethany Reinhart
- Atlantic Coastal Action Program (ACAP Saint John), Saint John, New Brunswick E2L 3S3, Canada
| | - Angella Mercer
- Department of Biological Sciences, University of New Brunswick, Saint John, New Brunswick E2K 5E2, Canada
| | - Anne Crémazy
- Centre Eau, Terre, Environnement de l'INRS, Quebec City, Quebec G1K 9A9, Canada.
| |
Collapse
|
17
|
Microbead-Beating Extraction of Polycyclic Aromatic Compounds from Seabird Plasma and Whole Blood. SEPARATIONS 2023. [DOI: 10.3390/separations10010048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Seabirds are widely regarded as an invaluable bioindicator of environmental health. Matrices including eggs and feathers have been used as non-lethal means to assess contaminant burdens. We have developed a new approach for extraction of polycyclic aromatic compounds (PACs) from seabird plasma and serum based on automated microbead-beating homogenization and extraction. Commercially available bovine serum and plasma were purposely fortified with a suite of PACs separately at three dosing levels, placed inside a custom-made stainless-steel tube containing ceramic microbeads, and subjected to an extraction process using a Precellys tissue homogenizer. Tubes were shaken forcefully in three-dimensions, facilitating high mass-transfer of PACs from the matrix into the hexane extraction solvent. The accuracy of the method ranged from 55 to 120% and limits of detection and quantitation ranged from 0.1 to 8 and 0.2 to 27 pg/μL, respectively. The method exhibited good repeatability with both inter- and intra-day repeatability < 30%. The developed method represents an effective and efficient approach to extraction of PACs from important biological matrices.
Collapse
|
18
|
Stern GA, Macdonald CR, Carvalho PC, Wolfe T, Ferraz F. Baseline levels and characterization of hydrocarbons in surface marine sediments along the transportation corridor in Hudson Bay: A multivariate analysis of n-alkanes, PAHs and biomarkers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158718. [PMID: 36113804 DOI: 10.1016/j.scitotenv.2022.158718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/02/2022] [Accepted: 09/08/2022] [Indexed: 06/15/2023]
Abstract
Hudson Bay is a small arctic inland shelf sea which receives large amounts of freshwater from riverine discharges, with marine flow from the north and the Atlantic. A warming climate has resulted in an expanded open water season which will result in an increase in shipping of fuel oil and petroleum to communities and mines on the western shore, increasing the risk of hydrocarbon releases. To evaluate the status of hydrocarbons, surface sediments were collected at 34 locations in the transportation route and offshore and analysed for several types of hydrocarbons. Total hydrocarbons varied by over 25 times between sites, reaching a maximum of 1116 μg/g OC (organic carbon basis) in Hudson Strait due to low molecular weight n-alkanes from marine primary production. The gross mean for all sites was 344 μg/g OC (GSD = 173-682), roughly equivalent to other remote sites in the Canadian Arctic with no known local hydrocarbon source. n-alkanes accounted for >90 % of residues. Diagnostic ratios (e.g., Carbon Preference Index (CPI), Odd-Even Predominance (OEP)) indicated mixed sources of n-alkanes, likely due to the input from vascular plants and ombrotrophic peat in northern and western watersheds, and primary production within the Bay. The elevated proportion of high molecular weight n-alkanes at deep water sites is consistent with lotic particulate organic matter deposited in the nearshore environment and redeposited offshore. Ʃ36PAHs were a small fraction (1.9 %) of hydrocarbons, with a gross mean of 5.68 μg/g OC (GSD = 3.30-9.79). PCA separated deep water sediments from nearshore and community samples due to 4 alkylated naphthalenes which usually indicate a petrogenic source but probably indicates a natural source due to the lack of other petrogenic markers. Priority PAHs (i.e., Ʃ16PAH) varied from 31.5 % to 56.6 % of the Ʃ36PAH residues. The concentrations of individual PAHs were well below the Interim Sediment Quality Guidelines recommended by the Canadian Council of Ministers of the Environment.
Collapse
Affiliation(s)
- Gary A Stern
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada.
| | | | | | - Teresinha Wolfe
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada
| | - Fernanda Ferraz
- Centre for Earth Observation Science (CEOS), University of Manitoba, Winnipeg, Canada
| |
Collapse
|
19
|
King MD, Elliott JE, Idowu I, Tomy GT, Williams TD. Polycyclic aromatic compound and trace metal element residues in Mytilus mussels at marine wildlife hotspots on the Pacific coast of Canada. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120624. [PMID: 36370969 DOI: 10.1016/j.envpol.2022.120624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
The Pacific coast of Canada has a rich marine fauna and a growing human population with increasing potential for pollution releases, but there is currently little overlap between marine wildlife hotspots and ongoing biomonitoring efforts for less bioaccumulative contaminants such as polycyclic aromatic compounds (PAC) and trace metals (metals). We surveyed PACs and metals at marine bird breeding colonies in coastal British Columbia in 2018 by analyzing chemical residues in the soft tissue of bivalve Mytilus sp. mussels collected from stations (n = 3) at seven sites. The concentration of sum PACs (∑43PAC) and high molecular weight (HMW) PACs were highest at the Second Narrows colony in Vancouver Harbour, a highly urbanized and industrialized port within the Salish Sea. For conservation areas, two Salish Sea and three Pacific Ocean coast colonies, PACs were generally lower. However, ∑43PAC, ∑HMWPAC, and several HMW congeners at the remote site of Triangle Island, a Marine National Wildlife Area, were not significantly different from Second Narrows. The dominant PAC sources at all sites are likely pyrogenic rather than petrogenic, as suggested by PAC profiles, proportion of parent PACs, and source-indicator congeners. For metals, site differences were found for seven out of eight priority metals, but principal component analysis indicated that site differences, such as high mercury and cadmium at offshore sites, are likely related to environmental and biological variables including salinity, condition index, water temperature, and shell length. Our survey across a broad coastal region shows that PAC and metal biomonitoring programs with mussels should include wildlife hotspots where the exposure of protected vertebrate species to pollutants with low bioaccumulation potential would be less obvious, and shows that collection of data on key covariates (e.g. lipid content, salinity) will be critical to tracking long-term trends and detecting pollution release events.
Collapse
Affiliation(s)
- Mason D King
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada.
| | - John E Elliott
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada; Environment and Climate Change Canada, Science and Technology Division, 5421 Robertson Road, Delta, BC, V4K 3N2, Canada
| | - Ifeoluwa Idowu
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Gregg T Tomy
- University of Manitoba, Department of Chemistry, 144 Dysart Road, Winnipeg, MB, R3T 2N2, Canada
| | - Tony D Williams
- Simon Fraser University, Department of Biological Sciences, 8888 University Drive, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
20
|
Jiang Q, Zhang X, Liu T, Shi J, Gu X, Xiao J, Fang J. Assessment of the temporal variability and health risk of atmospheric particle-phase polycyclic aromatic hydrocarbons in a northeastern city in China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64536-64546. [PMID: 35471760 DOI: 10.1007/s11356-022-20378-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
In this study, we examined the sources and temporal variability of 16 polycyclic aromatic hydrocarbons (PAHs) found in fine particulate matter (PM2.5) in a typical industrial city in northern China. We also evaluated the incremental lifetime cancer risk (ILCR) from the inhalation of these PAHs. Atmospheric PM2.5 samples were collected for 7 consecutive days each month from 2014 to 2019, and the 16 PAHs were measured using multiplex gas chromatography-tandem mass spectrometry. The carcinogenic risk of PAH exposure was assessed using the inhalation unit risk (IUR) and cancer slope factor (CSF) methods. The annual average concentrations of PM2.5 for each year from 2014 to 2019 were 102.87±55.25, 86.92±60.43, 69.17±37.74, 58.20±59.15, 56.01±34.52, and 52.54±58.15 µg m-3, and the annual average ΣPAH concentrations were 56.03±81.09, 47.99±79.30, 40.41±57.31, 33.57±51.79, 43.23±74.80, and 25.20±50.91 ng m-3, respectively. Source identification, using diagnostic ratio analysis, indicated that the major PAH sources were coal/biomass combustion, fuel combustion, and traffic emissions. A health risk assessment showed that the ILCR from PAH inhalation decreased throughout the study period and varied with age. The IUR and CSF methods both showed that the adult ILCR exceeded 1.0×10-6. These findings demonstrate the importance of addressing the carcinogenic risk of PM2.5-bound PAHs, particularly in adults.
Collapse
Affiliation(s)
- Qizheng Jiang
- Hebei University of Science & Technology, No. 26 Yuxiangjie, Yuhua District, Shijiazhuang, 050018, China
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Xianhui Zhang
- Jinan Center for Disease Control and Prevention, Jinan, 250021, China
| | - Tong Liu
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Jie Shi
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Xiaolin Gu
- Harbin Center for Disease Control and Prevention, Harbin, 150056, China
| | - Jieying Xiao
- Hebei University of Science & Technology, No. 26 Yuxiangjie, Yuhua District, Shijiazhuang, 050018, China.
| | - Jianlong Fang
- China CDC Key Laboratory of Environment and Human Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| |
Collapse
|
21
|
An Advanced PMF Model Based on Degradation Process for Pollutant Apportionment in Coastal Areas. WATER 2022. [DOI: 10.3390/w14111823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
With increasing stress posed to the marine ecosystem and coastal communities, prevention and control of coastal pollution becomes urgent and important, in which the identification of pollution sources is essential. Currently, the pollutant source apportionment in coastal areas is mainly based on receptor models, such as the positive matrix factorization (PMF) model. Nevertheless, these models still lack consideration of the changes of pollutant behaviors (e.g., the degradation of pollutants) which cause the differences in pollutant compositions. Subsequently, the source apportionment via receptor models only based on the monitoring data may not be consistent with the one in pollution sources. To fill this gap, a pollutant degradation model was firstly developed in this study. Accordingly, the degradation model was inversed to estimate the pollutant concentrations at their emitting sources, based on the monitoring concentration in the coastal area. Finally, the estimated concentrations were fed to the PMF model for pollutant source apportionment, advancing the PMF model with degradation process. To demonstrate the feasibility and accuracy of the developed model, a case study of source appointment was carried out based on the polycyclic aromatic hydrocarbons (PAHs) in the sediments of the Pearl River Estuary. The results indicated the same types of emission source identified by the original and advanced PMF models, which were oil spill, biomass and coal combustion, and traffic emission. Nevertheless, the contributions of sources were significantly varied between the two models. According to the analyses based on emission inventory, the offsets of the results from the original PMF model were −55.4%, 22.7%, and 42.2% for the emission sources of oil spill, biomass and coal combustion, and traffic emission, respectively. Comparatively, the offsets for the advanced PMF model narrowed down to −27.5%, 18.4%, and −4.4%. Therefore, the advanced PMF model is able to provide satisfactory source apportionment for organic pollutants in coastal areas, and thus further provide a scientific basis for marine pollution prevention and control.
Collapse
|
22
|
MGMT in glial carcinogenesis. Roles from prevention to treatment. Eur J Cancer Prev 2022; 31:568-576. [DOI: 10.1097/cej.0000000000000746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Khan S, Naushad M, Govarthanan M, Iqbal J, Alfadul SM. Emerging contaminants of high concern for the environment: Current trends and future research. ENVIRONMENTAL RESEARCH 2022; 207:112609. [PMID: 34968428 DOI: 10.1016/j.envres.2021.112609] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/13/2021] [Accepted: 12/19/2021] [Indexed: 05/11/2023]
Abstract
Wastewater is contaminated water that must be treated before it may be transferred into other rivers and lakes in order to prevent further groundwater pollution. Over the last decade, research has been conducted on a wide variety of contaminants, but the emerging contaminants are those caused primarily by micropollutants, endocrine disruptors (EDs), pesticides, pharmaceuticals, hormones, and toxins, as well as industrially-related synthetic dyes and dye-containing hazardous pollutants. Most emerging pollutants did not have established guidelines, but even at low concentrations they could have harmful effects on humans and aquatic organisms. In order to combat the above ecological threats, huge efforts have been done with a view to boosting the effectiveness of remediation procedures or developing new techniques for the detection, quantification and efficiency of the samples. The increase of interest in biotechnology and environmental engineering gives an opportunity for the development of more innovative ways to water treatment remediation. The purpose of this article is to provide an overview of emerging sources of contaminants, detection technologies, and treatment strategies. The goal of this review is to evaluate adsorption as a method for treating emerging pollutants, as well as sophisticated and cost-effective approaches for treating emerging contaminants.
Collapse
Affiliation(s)
- Shamshad Khan
- School of Geography and Resources Science, Neijiang Normal University, Neijiang, 641100, China.
| | - Mu Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
| | - Sulaiman M Alfadul
- King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| |
Collapse
|
24
|
Moradi M, Hung H, Li J, Park R, Shin C, Alexandrou N, Iqbal MA, Takhar M, Chan A, Brook JR. Assessment of Alkylated and Unsubstituted Polycyclic Aromatic Hydrocarbons in Air in Urban and Semi-Urban Areas in Toronto, Canada. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:2959-2967. [PMID: 35148085 DOI: 10.1021/acs.est.1c04299] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
22 alkylated polycyclic aromatic hydrocarbons (alk-PAHs) were characterized in ambient air individually for the first time in urban and semi-urban locations in Toronto, Canada. Five unsubstituted PAHs were included for comparison. Results from the measurements were used to estimate benzo[a]pyrene equivalent toxicity (BaPeq) of individual compounds in order to investigate the significance of a single compound in contributing to the overall toxic equivalency (TEQ) of air mixtures. To determine which compounds merit further investigation, BaPeq values of individual compounds were compared to the measured BaP toxicity. Our results showed that both unsubstituted and alkylated PAHs were more abundant in the urban area (38 and 30%, respectively). Benzo[a]pyrene levels at the urban location exceeded Ontario's 24 h guideline (40% of the events), and on average, it was 5 times higher than that at the semi-urban area. Gas-phase two- and three-ring compounds contributed up to 39% (urban) and 76% (semi-urban) of the TEQ of all compounds analyzed. Some alk-PAHs such as 7,12-dimethylbenzo[a]anthracene had a huge impact on the toxicity of urban air, and its BaPeq was on average 8 times higher than that of BaP. We emphasize that the toxic impact of alkylated and gaseous PAHs, which is not routinely included in many air monitoring programs, is significant and should not be neglected.
Collapse
Affiliation(s)
- Maryam Moradi
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
- Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - James Li
- Civil Engineering Department, Ryerson University, Toronto, Ontario M5B 2K3, Canada
| | - Richard Park
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Cecilia Shin
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Mohammed Asif Iqbal
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Manpreet Takhar
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Arthur Chan
- Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, Ontario M5S 3E5, Canada
| | - Jeffrey R Brook
- Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, Ontario M5T 1P8, Canada
| |
Collapse
|
25
|
Marvin CH, Berthiaume A, Burniston DA, Chibwe L, Dove A, Evans M, Hewitt LM, Hodson PV, Muir DCG, Parrott J, Thomas PJ, Tomy GT. Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117442. [PMID: 34380209 DOI: 10.1016/j.envpol.2021.117442] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/03/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Collapse
Affiliation(s)
- Christopher H Marvin
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada.
| | - Alicia Berthiaume
- Science and Risk Assessment Directorate, Environment and Climate Change Canada, Gatineau, Quebec, Canada
| | - Deborah A Burniston
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Leah Chibwe
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Alice Dove
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Marlene Evans
- Water Science and Technology Directorate, Environment and Climate Change Canada, Saskatoon, Saskatchewan, Canada
| | - L Mark Hewitt
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Peter V Hodson
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Derek C G Muir
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Joanne Parrott
- Water Science and Technology Directorate, Environment and Climate Change Canada, Burlington, Ontario, Canada
| | - Philippe J Thomas
- Wildlife and Landscape Research Directorate, National Wildlife Research Centre, Environment and Climate Change Canada, Ottawa, Ontario, Canada
| | - Gregg T Tomy
- Department of Chemistry, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Galarneau E. Editorial to "Polycyclic aromatic compounds (PACs) in the Canadian environment: Overview of results and knowledge gaps from the special issue". ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117607. [PMID: 34148676 DOI: 10.1016/j.envpol.2021.117607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, ON, M3H 5T4, Canada.
| |
Collapse
|
27
|
Kandasamy S, Narayanan M, He Z, Liu G, Ramakrishnan M, Thangavel P, Pugazhendhi A, Raja R, Carvalho IS. Current strategies and prospects in algae for remediation and biofuels: An overview. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2021. [DOI: 10.1016/j.bcab.2021.102045] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
28
|
Hamilton TJ, Krook J, Szaszkiewicz J, Burggren W. Shoaling, boldness, anxiety-like behavior and locomotion in zebrafish (Danio rerio) are altered by acute benzo[a]pyrene exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145702. [PMID: 33609832 DOI: 10.1016/j.scitotenv.2021.145702] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/18/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
Environmental exposure to crude oil and/or its derivatives in fishes can negatively impact survival, morphology and physiology, but relatively little focus has been on behavior. Exposures can influence prey-predator interactions, courtship and other vital behaviors, leading to individual or population disruption at toxicant levels well below those producing morphological or physiological changes. The few behavioral studies of polycyclic aromatic hydrocarbons (PAHs) on fish behavior have yielded highly inconsistent results, likely relating to chronic vs. acute treatment. A few studies report lethargy and decreased exploratory behavior, while others indicate increased anxiety and greater exploratory behavior with PAH exposure. In our study on zebrafish (Danio rerio), we hypothesized that even relatively brief (30 min) exposure to the PAH benzo[a]pyrene (B[a]P) would impact group shoaling and individual behaviors in open field and novel object exploration tests. Exposures comprised measured concentrations of 1.0 μM, 10 μM, or 100 μM, B[a]P. Compared to controls, inter-individual distance (IID) was significantly increased by 100 μM B[a]P, but not by 1.0 μM or 10 μM B[a]P. Total distance moved by shoals was decreased significantly at B[a]P concentrations of 1.0 μM, 10 μM and 100 μM. In the open field test of individual locomotion and anxiety-like behavior, time spent in the thigmotaxis zone along the walls of the circular test arena (a proxy for anxiety-like behavior), was decreased at 100 μM. In the novel object approach test to investigate boldness, time spent near the object was significantly increased by both 10 μM and 100 μM B[a]P. Collectively, these data indicate a complex suite of changes in zebrafish including altered shoal dynamics, decreased anxiety, increased boldness, and decreased locomotion associated with exposure to B[a]P.
Collapse
Affiliation(s)
- Trevor J Hamilton
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2H7, Canada.
| | - Jeffrey Krook
- Department of Psychology, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | | | - Warren Burggren
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76205, USA
| |
Collapse
|
29
|
Li W, Park R, Alexandrou N, Dryfhout-Clark H, Brice K, Hung H. Multi-year Analyses Reveal Different Trends, Sources, and Implications for Source-Related Human Health Risks of Atmospheric Polycyclic Aromatic Hydrocarbons in the Canadian Great Lakes Basin. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2254-2264. [PMID: 33512990 DOI: 10.1021/acs.est.0c07079] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are of high concern to public health due to their carcinogenic and mutagenic properties. Here, we present the first comprehensive and quantitative analysis of sources, potential source regions according to source sectors and source-related human health risks of multi-year atmospheric measurements of PAHs in the Canadian Great Lakes Basin (GLB). The highest PAH concentrations were observed at a rural residential site (Egbert), followed by two regionally representative remote sites [Point Petre (PPT) and Burnt Island]. The levels of most PAHs in the GLB atmosphere significantly decreased between 1997 and 2017, broadly consistent with the decreasing trends of anthropogenic emissions. Coal, liquid fossil fuel, and biomass burning were the most common potential sources. The potential source regions for most source sectors were identified south or southwest of the sampling sites. Risk assessment suggests potential health risks associated with the inhalation of atmospheric PAHs. On a positive note, health risks from coal combustion, liquid fossil fuel combustion, and petrogenic sources at PPT significantly decreased, directly demonstrating the success of emission control in reducing health impacts. In contrast, the health risk from forest fire-related PAH emissions may play an increasing role in the future due to climate change.
Collapse
Affiliation(s)
- Wenlong Li
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Richard Park
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Nick Alexandrou
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Helena Dryfhout-Clark
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Ken Brice
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Processes Research Section, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| |
Collapse
|
30
|
Tevlin A, Galarneau E, Zhang T, Hung H. Polycyclic aromatic compounds (PACs) in the Canadian environment: Ambient air and deposition. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116232. [PMID: 33412446 DOI: 10.1016/j.envpol.2020.116232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic compounds (PACs) in Canadian air and deposition were examined at the national scale for the first time in over twenty-five years. Air concentrations spanned four orders of magnitude, and were highest near industrial emitters and lowest in the Arctic. Declines in unsubstituted PAHs were observed at locations close to industrial facilities that had reduced emissions, but trends elsewhere were modest or negligible. Retene concentrations are increasing at several locations. Ambient concentrations of benzo[a]pyrene exceeded Ontario's health-based guideline in many urban/industrial areas. The estimated toxicity of the ambient PAC mixture increased by up to a factor of six when including compounds beyond the US EPA PAHs. Knowledge of PAC deposition is limited to the Laurentian Great Lakes and Athabasca Oil Sands regions. The atmosphere remained a net source of PAHs to the Great Lakes, though atmospheric inputs were decreasing with halving times of 26-30 years. Chemical transport modelling substantially overestimated wet deposition, but model performance is unknown for dry deposition. Sources from Asia, Europe and North America contributed to Arctic and Sub-Arctic concentrations, whereas transboundary or long-range transport have not been assessed outside Canada's north. Climate-related impacts from re-emission and forest fires were implicated in maintaining air concentrations in the high Arctic that were not consistent with global emissions reductions. Industrial emission decreases were substantial at the national scale, but their influence on the environment was limited to areas near relevant facilities. When examined through the lens of ambient levels at the local scale, evidence suggested that contributions from residential wood combustion and motor vehicles were smaller and larger, respectively, than those reported in national inventories. Future work aimed at characterizing PACs beyond the EPA PAHs, improving measurement coverage, elucidating deposition phenomena, and refining estimates of source contributions would assist in reducing remaining knowledge gaps about PACs in Canada.
Collapse
Affiliation(s)
- Alexandra Tevlin
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| | - Elisabeth Galarneau
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada.
| | - Tianchu Zhang
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| | - Hayley Hung
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario, M3H 5T4, Canada
| |
Collapse
|