1
|
Liu R, Qiu J, Wang S, Fu R, Qi X, Jian C, Hu Q, Zeng J, Liu N. Hydrochemical and microbial community characteristics and the sources of inorganic nitrogen in groundwater from different aquifers in Zhanjiang, Guangdong Province, China. ENVIRONMENTAL RESEARCH 2024; 252:119022. [PMID: 38685304 DOI: 10.1016/j.envres.2024.119022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Groundwater from different aquifers in the Zhanjiang area suffers from different degrees of nitrogen pollution, which poses a serious threat to the health of urban and rural residents as well as the surrounding aquatic ecological environment. However, neither the water chemistry and microbial community characteristics in different aquifer media nor the sources of inorganic nitrogen pollution have been extensively studied. This study integrated water quality parameters, dual isotopes (δ15N-NO3- and δ18O-NO3-), and 16S rRNA data to clarify the hydrochemical and microbial characteristics of loose rock pore water (LRPW), layered bedrock fissure water (LBFW), and volcanic rock pore fissure water (VRPFW) in the Zhanjiang area and to determine inorganic nitrogen pollution and sources. The results show that the hydrochemistry of groundwater in different aquifers is complex and diverse, which is mainly affected by rock weathering and atmospheric precipitation, and the cation exchange is strong. High NO3- concentration reduces the richness of the microbial community (VRPFW). There are a large number of bacteria related to nitrogen (N) cycle in groundwater and nitrification dominated the N transformation. A quarter of the samples exceeded the relevant inorganic nitrogen index limits specified in the drinking water standard for China. The NO3- content is highest in VRPFW and the NH4+ content is highest in shallow loose rock pore water (SLRPW). In general, NO3-/Cl-, dual isotope (δ15N-NO3- and δ18O-NO3-) data and MixSIAR quantitative results indicate manure and sewage (M&S) and soil organic nitrogen (SON) are the main sources of NO3-. In LRPW, as the depth increases, the contribution rate of M&S gradually decreases, and the contribution rate of SON gradually increases. The results of uncertainty analysis show that the UI90 values of SON and M&S are higher. This study provides a scientific basis for local relevant departments to address inorganic nitrogen pollution in groundwater.
Collapse
Affiliation(s)
- Rentao Liu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Jinrong Qiu
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Shuang Wang
- Guangdong Geological Bureau Fourth Geological Brigade, Zhanjiang, 524049, Guangdong, China
| | - Renchuan Fu
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Xiaochen Qi
- College of Environment and Climate, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Chuanqi Jian
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qizhi Hu
- Guangdong Hydrogeology Battalion, Guangzhou, 510510, Guangdong, China
| | - Jingwen Zeng
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, 510655, Guangdong, China
| | - Na Liu
- College of Life Science and Technology, Jinan University, Guangzhou, 510632, Guangdong, China.
| |
Collapse
|
2
|
Mu J, Ding S, Liu SM, Song G, Ning X, Zhang X, Xu W, Zhang H. Multiple isotopes decipher the nitrogen cycle in the cascade reservoirs and downstream in the middle and lower Yellow River: Insight for reservoir drainage period. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170625. [PMID: 38320705 DOI: 10.1016/j.scitotenv.2024.170625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/13/2024]
Abstract
Intensive anthropogenic activities, such as excessive nitrogen input and dam construction, have altered the nitrogen cycle in the global river system. However, the focus on the source, transformation and fate of nitrogen in the Yellow River is still scarce. In this study, the multiple isotopes (δ15N-NO3-, δ18O-NO3-, δ15N-NH4+ and δ15N-PN) were deciphered to explore the nitrogen cycling processes and the driving factors in the thermally stratified cascade reservoirs (Sanmenxia Reservoir: SMXR and Xiaolangdi Reservoir: XLDR) and Lower Yellow River (LYR) during the drainage period of the XLDR. In the SMXR, algal bloom triggered the assimilation process in the upper layer before the SMX Dam, followed by remineralization and subsequent nitrification processes in the lower water layers. The nitrification reaction in the XLDR progressively increased along both longitudinal and vertical directions to the lower layer of the XLD Dam, which was linked to the variation in the water residence time of riverine, transition and lentic zones. The robust nitrification rates in the lower layer of the lentic zone coincided with the substantial depletion of nitrate isotopic composition and enrichment of both δ15N-PN and δ15N-NH4+, indicating the longer water residence time not only promoted the growth of the nitrifying population but also facilitated the remineralization to enhance NH4+ availability. In the LYR, the slight nitrate assimilation, as indicated by nitrate isotopic composition and fractionation models, was the predominant nitrogen transformation process. The Bayesian isotope mixing model results showed that manure and sewage was the dominant nitrate source (50 %) in the middle and lower Yellow River. Notably, the in-reservoir nitrification was a significant nitrate source (27 %) in the XLDR and LYR. Our study deepens the understanding of anthropogenic activities impacting the nitrogen cycle in the river-reservoir system, providing valuable insight into water quality management and nitrogen cycle mechanisms in the Yellow River.
Collapse
Affiliation(s)
- Jinglong Mu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shuai Ding
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Su Mei Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Guodong Song
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaoyan Ning
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| | - Xiaotong Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenqi Xu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Hongmei Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
3
|
Qiu Y, Felix JD, Murgulet D, Wetz M, Abdulla H. Isotopic compositions of organic and inorganic nitrogen reveal processing and source dynamics at septic influenced and undeveloped estuary sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171749. [PMID: 38494009 DOI: 10.1016/j.scitotenv.2024.171749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Historically, dissolved organic nitrogen (DON) has not been characterized in the nitrogen profiles of most estuaries despite its significant contribution to total nitrogen and projected increase in loading. The characterization of dissolved inorganic nitrogen (DIN) and DON processing from groundwater to surface water also remains unconstrained. This study attempts to fill in these knowledge gaps by quantifying the DON pool and potential sources in a semiarid, low inflow estuary (Baffin Bay, Texas) using stable isotope techniques. High NO3- and DON concentrations, and high δ15N-NH4+ (+55.0 ± 56.7 ‰), δ15N-NO3- (+23.9 ± 8.6 ‰) and δ15N-DON (+22.3 ± 6.5 ‰) were observed in groundwaters of a septic-influenced estuarine area, indicating coupled septic contamination and nitrification/denitrification. In contrast, groundwater of an undeveloped area provided evidence of inundation by bay water through high NH4+ concentrations and δ15N-NH4+ (+8.4 ± 3.0 ‰) resembling estuary porewater. NH4+ was the dominant nitrogen species in porewater of both areas and δ15N-NH4+ indicated production via organic nitrogen mineralization and dissimilatory nitrate reduction to ammonium. Surface water had similar nitrogen profiles (DON constituted ∼98 % of dissolved nitrogen pool) and potential source contributions, despite distinct nitrogen processing and profiles found in each water table. This was attributed to low nitrogen removal rates and prolonged mixing associated with long residence time. This study emphasizes the importance of DON in a low-inflow estuary and the isotopic approach to comprehensively examine both inorganic and organic N processing and sources serving as a guide to investigate N cycling in high DON estuaries globally.
Collapse
Affiliation(s)
- Yixi Qiu
- Center for Water Supply Studies, Department of Physical and Environmental Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA; Department of Integrative Biology, Michigan State University, East Lansing, MI 48824, USA.
| | - J David Felix
- Center for Water Supply Studies, Department of Physical and Environmental Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Dorina Murgulet
- Center for Water Supply Studies, Department of Physical and Environmental Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Michael Wetz
- Harte Research Institute for Gulf of Mexico Studies, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| | - Hussain Abdulla
- Center for Water Supply Studies, Department of Physical and Environmental Science, Texas A&M University-Corpus Christi, Corpus Christi, TX 78412, USA
| |
Collapse
|
4
|
Wang L, Lei X, Yuehua G, Zhou Y, Han JC, Huang Y, Li B, Mao XZ, Tang Z. A novel method of identifying estuary high-nutrient zones for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169578. [PMID: 38154631 DOI: 10.1016/j.scitotenv.2023.169578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 12/30/2023]
Abstract
Coastal shallow waters are highly vulnerable to pollution, often leading to the development of intricate eutrophication zones. However, accurately determining these areas poses a significant challenge due to the complex interplay of estuarine hydrodynamics and nutrient transformation. To address such issue, a novel method was proposed to identify high-nutrient zones through calculating the continuous zonation of released tracers when their instantaneous concentrations declined to 1/e of their initial values. The method was well tested using idealized estuary models with varying shape parameters, water depths and river discharges. The results consistently revealed that the boundaries of high-nutrient zones fell within the mixed zone, characterized by salinity levels of 10- 20 psu. In Shenzhen Bay, a typical shallow bay, distinct differences were observed in the concentrations of dissolved inorganic nitrogen (DIN) and PO43-. Both the 20 psu isohaline and the proposed method effectively identified the partition boundary of high DIN and PO43- in 2001-2010, but only the newly proposed method demonstrated accuracy in delineating the actual high-nutrient zone during the continuous nutrient reduction period from 2010 to 2020. This study provides a practical and feasible approach that can serve as an auxiliary decision-making tool for managing estuarine water environments, and it has potential to facilitate the implementation of timely and effective measures for pollution control.
Collapse
Affiliation(s)
- Linlin Wang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Lei
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Guo Yuehua
- CCCC First Navigation Bureau Ecological Engineering Co., Ltd., Shenzhen 518107, China
| | - Yang Zhou
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jing-Cheng Han
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Yuefei Huang
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, China
| | - Bing Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Xian-Zhong Mao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhaozhao Tang
- Water Science and Environmental Engineering Research Center, College of Chemical and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
5
|
Yang S, Deng Y, Shu J, Luo X, Peng X, Pan K, Jiang H. Nitrate budget of a terrestrial-to-marine continuum in South China: Insights from isotopes and a Markov chain Monte Carlo model. MARINE POLLUTION BULLETIN 2024; 199:116000. [PMID: 38171166 DOI: 10.1016/j.marpolbul.2023.116000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/25/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024]
Abstract
Anthropogenic nitrate (NO3-) production has been increasing and is exported to the ocean via river networks, causing eutrophication and ecological damage. While studies have focused on river NO3- pollution, what has been lacking is the quantification of the sources of NO3- in coastal rivers. This study applied the dual isotopes (δ15N/δ18O-NO3-) to quantify the sources and their fluxes of NO3- in two inflow rivers of the Qinzhou Bay. By adding our results to the NO3- source apportionment in Qinzhou Bay, we, for the first time, established the NO3- budgets of the terrestrial-to-marine continuum in both high- and low-flow seasons. We quantitatively showed the direct and indirect roles (e.g., the stimulation of nitrification by sewage ammonium-NH4+) of terrestrial sources in driving the high NO3- loading in the estuary. The results highlighted the necessity to consider coastal rivers and estuary as a whole, which could shed light on the effective reduction of NO3- pollution in coastal environments.
Collapse
Affiliation(s)
- Shaomei Yang
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Yan Deng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Junlin Shu
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xin Luo
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Xiaoyan Peng
- Beibu Gulf Marine Ecological Environment Field Observation and Research Station of Guangxi, Marine Environmental Monitoring Centre of Guangxi, Beihai 536000, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, The Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China; Hubei Key Laboratory of Wetland Evolution & Ecological Restoration, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
6
|
Zhang W, Jiang H, Guo W, Li S, Zhang Q. Unexpectedly high nitrate levels in a pristine forest river on the Southeastern Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132047. [PMID: 37453353 DOI: 10.1016/j.jhazmat.2023.132047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
River nitrate (NO3-) pollution is a global environmental issue. Recently, high NO3- levels in some pristine or minimally-disturbed rivers were reported, but their drivers remain unclear. This study integrated river isotopes (δ18O/δ15N-NO3- and δD/18O-H2O), 15N pairing experiments, and qPCR to reveal the processes driving the high NO3- levels in a nearly pristine forest river on the Qinghai-Tibet Plateau. The river isotopes suggested that, at the catchment scale, NO3- removal was prevalent in summer, but weak in winter. The pristine forest soils contributed more than 90 % of the riverine NO3-, indicating the high NO3- backgrounds. The release of soil NO3- to the river was "transport-limited" in both seasons, i.e., the NO3- production/stock in the soils exceeded the capacity of hydrological NO3- leaching. In summer, this regime and the NO3--plentiful conditions in the soils associated with the strong NO3- nitrification led to the high riverine NO3- levels. While the in-soil nitrification was weak in winter, the leaching of legacy NO3- resulted in the consistently high NO3- levels. This study provides insights into the reasons for high NO3- levels in pristine or minimally-disturbed rivers worldwide and highlights the necessity to consider NO3- backgrounds when evaluating anthropogenic NO3- pollution in rivers.
Collapse
Affiliation(s)
- Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China.
| | - Wenjing Guo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, China
| |
Collapse
|
7
|
Ye H, Tang C, Cao Y, Hou E. Sources and fates of particulate organic matter in inland waters with complex land use patterns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162568. [PMID: 36889391 DOI: 10.1016/j.scitotenv.2023.162568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 02/26/2023] [Accepted: 02/26/2023] [Indexed: 05/06/2023]
Abstract
Elucidating the sources of particulate organic matter (POM) is the foundation for understanding their fates and the seasonal variation of their movement from the land-to-ocean aquatic continuum (LOAC). The POM from different sources has different reactivity, which determines their fates. However, the key link between the sources and fates of POM, especially in the complex land use watersheds in bays is still unclear. Stable isotopes and contents of organic carbon and nitrogen were applied to reveal them in a complex land use watershed with different gross domestic production (GDP) in a typical Bay, China. Our results showed that the POMs preserved in suspended particulate organic matter (SPM) were weakly controlled by assimilation and decomposition in the main channels. Source apportionments of SPM in the rural area were controlled by soil (46 % ~ 80 %), especially inert soils eroded from land to water due to precipitation. The contribution of phytoplankton resulted from slower water velocity and longer residence time in the rural area. The soil (47 % ~ 78 %) and manure and sewage (10 % ~ 34 %) were the two major contributors to SOMs in the developed and developing urban areas. The manure and sewage were important sources of active POM in the urbanization of different LUI, which showed discrepancies in the three urban areas (10 % ~ 34 %). Due to soil erosion and the most intensive industry supported by GDP, the soil (45 % ~ 47 %) and industrial wastewater (24 % ~ 43 %) were the two major contributors to SOMs in the industrial urban area. This study demonstrated the close relationship between the sources and fates of POM with complex land use patterns, which could reduce uncertainties in future estimates of the LOAC fluxes and secure ecological and environmental barriers in a bay area.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China.
| | - Enqing Hou
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510006, China
| |
Collapse
|
8
|
Li S, Jiang H, Guo W, Zhang W, Zhang Q. From Soil to River: Revealing the Mechanisms Underlying the High Riverine Nitrate Levels in a Forest Dominated Catchment. WATER RESEARCH 2023; 241:120155. [PMID: 37270954 DOI: 10.1016/j.watres.2023.120155] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/04/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Elevated riverine nitrate (NO3-) levels have led to increased eutrophication and other ecological implications. While high riverine NO3- levels were generally ascribed to anthropogenic activities, high NO3- levels in some pristine or minimally disturbed rivers were reported. The drivers of these unexpectedly high NO3- levels remain unclear. This study combined natural abundance isotopes, 15N-labeling techniques, and molecular techniques to reveal the processes driving the high NO3- levels in a sparsely populated forest river. The natural abundance isotopes revealed that the NO3- was mainly from soil sources and that NO3- removal processes were insignificant. The 15N-labeling experiments also quantitatively showed that the biological NO3- removal processes, i.e., denitrification, dissimilatory NO3- reduction to ammonium (DNRA), and anaerobic ammonia oxidation (anammox), in the soils and sediments were weak relative to nitrification in summer. While nitrification was minor in winter, the NO3- removal was insignificant relative to the large NO3- stock in the catchment. Stepwise multiple regression analyses and structural equation models revealed that in summer, nitrification in the soils was regulated by the amoA-AOB gene abundances and NH4+-N contents. Low temperature constrained nitrification in winter. Denitrification was largely controlled by moisture content in both seasons, and anammox and DNRA could be explained by the competition with nitrification and denitrification on their substrate (nitrite-NO2-). We also revealed the strong hydrological control on the transport of soil NO3- to the river. This study effectively revealed the mechanisms underlying the high NO3- levels in a nearly pristine river, which has implications for the understanding of riverine NO3- levels worldwide.
Collapse
Affiliation(s)
- Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China.
| | - Wenjing Guo
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan 430074, PR China
| |
Collapse
|
9
|
Guo W, Zhang D, Zhang W, Li S, Pan K, Jiang H, Zhang Q. Anthropogenic impacts on the nitrate pollution in an urban river: Insights from a combination of natural-abundance and paired isotopes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 333:117458. [PMID: 36758410 DOI: 10.1016/j.jenvman.2023.117458] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
Urban rivers are often characterized by high nitrate (NO3-) loadings. High NO3- loadings cause water quality and ecological damages, which undermines the sustainable development of cities. To date, the drivers of these high NO3- loadings remain unclear. This study, for the first time, integrated natural-abundance isotopes (δ15 N/δ18O-NO3- and δD/δ18O-H2O) and 15N-pairing techniques to comprehensively reveal the anthropogenic impacts on the NO3- pollution in an urban river. Natural-abundance isotopes suggested that in both the wet and dry seasons, the NO3- was predominantly from the conservative mixing of different sources, and biological NO3- removal was minor. The 15N-pairing experiments supported the natural-abundance isotope data, quantitatively showing that in-soil nitrification was prevailing, while NO3- removal processes (denitrification, anammox, and dissimilatory NO3- reduction to ammonium) were weak. A Bayesian isotope-mixing model showed that soil sources (soil organic nitrogen and chemical fertilizer) dominated the NO3- in the upper reaches, while in the lower reaches, the impermeable riparian zone short-circuited the access of soils to the river. Here, the wastewater treatment plants became a significant source of NO3-. This study quantitatively revealed the drivers of high NO3- loadings in an urban river, and generated important clues for effective NO3- pollution control and remediation in urban rivers.
Collapse
Affiliation(s)
- Wenjing Guo
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China; Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Dong Zhang
- School of Resource and Environment, Henan Polytechnic University, Jiaozuo, 454000, China
| | - Wenshi Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shen Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China.
| | - Quanfa Zhang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Danjiangkou Wetland Ecosystem Field Scientific Observation and Research Station, Chinese Academy of Sciences & Hubei Province, Wuhan, 430074, China
| |
Collapse
|
10
|
Zhang A, Lei K, Lang Q, Li Y. Identification of nitrogen sources and cycling along freshwater river to estuarine water continuum using multiple stable isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158136. [PMID: 35987221 DOI: 10.1016/j.scitotenv.2022.158136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/04/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) transport from terrene to river water is a major source of N in estuarine water, contributing to eutrophication, harmful algal blooms and hypoxia. However, there is a lack of holistic and systematic research on N sources and transformation in the freshwater river-estuarine water continuum. In this study, multiple stable isotope signatures of nitrate (δ15N-NO3-, δ18O-NO3-), ammonium (δ15N-NH4+), and suspended particulate nitrogen (δ15N-PN) were employed to differentiate the sources and transformations of N and calculate the proportional contribution of NO3- sources by Bayesian model in Qiantang River (QTR)-Hangzhou Bay (HZB) during the dry season. The results showed that: (1) Evidences from isotopic signatures suggested the occurrence of N transformation instead of conservation mixing. (2) Negative correlations between the δ15N-NO3- and δ15N-NH4+, the relationships between δ15N-NO3- and NO3--N concentrations, and smaller δ18O-NO3- values were found in almost all surface water, indicating that nitrification was the dominant N transformation. (3) In addition to the nitrification evidence, significant correlations between δ15N-PN and δ15N-NH4+ revealed that assimilation and nitrification jointly affected the N transformation in the QTR's upstream, midstream and lower tributaries, which are unaffected or less affected by tides. (4) The lack of a relationship between δ15N-NO3- and δ18O-NO3- or ln(NO3-) indicated that denitrification was weakened in all surface waters. (5) Qualitative identification of N pollution sources and quantitative calculation of NO3--N potential sources revealed that sewage was the dominant source of N in the QTR and the HZB, while the internal nitrification was also important factor in determining N levels. This study provided evidence to further understand the sources, transport, and transformation of N in the river-estuary continuum, which deepens the understanding of the land-ocean integrated management of N contaminant.
Collapse
Affiliation(s)
- Anqi Zhang
- Key Lab of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education/College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, PR China; State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Kun Lei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Qi Lang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Yi Li
- Key Lab of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education/College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
11
|
Mai Y, Peng S, Lai Z, Wang X. Saltwater intrusion affecting NO 2- accumulation in demersal fishery species by bacterially mediated N-cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154371. [PMID: 35259379 DOI: 10.1016/j.scitotenv.2022.154371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/23/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
To investigate the underlying effects of saltwater intrusion (SWI) on bottom aquatic ecosystems, a set of environmental parameters and the bacterial community were determined and analyzed by sampling bottom water and surface sediments at the Modaomen waterway of the Pearl River Estuary. Biodiversity of fishery species and their relationship with the environment variables were analyzed together. NO3- and NO2- concentration down-regulation and NH4+ concentration up-regulation in water and sediment were observed along the resulting salinity gradient, indicating that SWI affected N-cycling. Further investigation via 16 s sequencing revealed that taxonomic and functional composition of the bacterial community in the sediment displayed greater discretization than in water, implying that SWI exerted a greater impact on the sedimentary bacterial community. Metagenomic sequencing showed that the sedimentary bacterial community was associated with NO3-, NO2-, and NH4+ transformation under SWI, and that this was driven by salinity and conductivity. Nitrogen metabolism and denitrification related genes were expressed at higher levels in high salinity than in low salinity, consistent with the increased enzymatic activities of NiR and NR. The NO2- concentration in the muscle of six selected fishery species was significantly decreased by 11.15-65.74% (P < 0.05) along the salinity gradient, indicating that SWI reduced NO2- accumulation. The results suggest that SWI alleviates NO2- accumulation in demersal fishery species via bacterial mediation of N-cycling.
Collapse
Affiliation(s)
- Yongzhan Mai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China
| | - Songyao Peng
- Pearl River Water Resources Research Institute, Guangzhou 510611, China
| | - Zini Lai
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510380, China.
| | - Xuesong Wang
- Guangdong Provincial Key Laboratory of Chemical Measurement and Emergency Test Technology, Guangdong Provincial Engineering Research Center for Ambient Mass Spectrometry, Institute of Analysis, Guangdong Academy of Sciences (China National Analytical Center, Guangzhou), Guangzhou 510070, China.
| |
Collapse
|
12
|
Jiang H, Liu W, Li Y, Zhang J, Xu Z. Multiple Isotopes Reveal a Hydrology Dominated Control on the Nitrogen Cycling in the Nujiang River Basin, the Last Undammed Large River Basin on the Tibetan Plateau. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4610-4619. [PMID: 35294176 DOI: 10.1021/acs.est.1c07102] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The Tibetan Plateau is sensitive to climate change, but the feedbacks of nitrogen (N) cycling to climate conditions on this plateau are not well-understood, especially under varying degrees of anthropogenic disturbances. The Nujiang River Basin, the last undammed large river basin on the Tibetan Plateau, provides an opportunity to reveal the feedbacks at a broad river basin scale. The isotopic compositions revealed that the conservative mixing of multiple sources controlled the nitrate (NO3-) loadings during the low-flow season, while biological removal processes (assimilation and denitrification) occurred in the high-flow season. During the high-flow season, soil sources, sewage, and atmospheric precipitation contributed 76.3%, 15.6%, and 8.1% to the riverine NO3-. In the low-flow season, the contribution of soil sources decreased while that of sewage increased. The relationship between d-excess and δ15N-NO3- suggests that the hydrological conditions largely controlled the N cycling dynamics in the basin, causing the high spatiotemporal heterogeneity of the riverine NO3- sources and transformation mechanisms. During the high-flow season, the precipitation and evaporation patterns controlled the in-soil processes and soil leaching. In contrast, in-stream nitrification became more evident during the low-flow season, which was related to the long water residence time. This study illustrates hydrology dominated control on N cycling over a large basin scale, which has implications for understanding the N cycling dynamics in the Tibetan Plateau.
Collapse
Affiliation(s)
- Hao Jiang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Liu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchuan Li
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiangyi Zhang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifang Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
13
|
Pan K, Zheng X, Liu X, Jiang H. Nitrogen cycling in a tropical coral reef ecosystem under severe anthropogenic disturbance in summer: Insights from isotopic compositions. WATER RESEARCH 2021; 207:117824. [PMID: 34758438 DOI: 10.1016/j.watres.2021.117824] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/18/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Coral reefs, one of the most productive ecosystems, have been dramatically declining in recent decades. While studies contend a prominent correlation between coral reef degradation and increased anthropogenic nitrogen (N) loads, a quantitative description of the N sources and cycling processes in these ecologically important ecosystems is lacking. Through a comprehensive depiction of the δ15N compositions of seawaters and sediments, we systematically accessed the N cycling processes in the Weizhou coral reef ecosystem. The correlations between the nitrate (NO3-) concentrations and isotopic compositions (δ15N/δ18O-NO3-) indicated the pelagic NO3- loads were largely regulated by mixing between precipitation and sewage. Biological NO3- turnover processes appeared to be weak. In the sediments, N2 fixation contributed about one-third of the sedimentary organic N, with the rest coming from the settlement of pelagic organic N. We also uncovered significant sedimentary mineralization-nitrification-denitrification processes in which the N loss was greater than the input. While pelagic N significantly contributed to the sedimentary N, the N export from the sediments to surface seawater was potentially short-circuited by the high N retention and recycling efficiencies of the organisms in the coral reef ecosystem. Overall, this study shows that the complex N cycling processes in the ecosystem are effectively reflected in the isotopic compositions of seawater and sediment, thus adding an important dimension to understanding the N cycling in coral reef ecosystems.
Collapse
Affiliation(s)
- Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Xinqing Zheng
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, China
| | - Xinming Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
14
|
Pan K, Lan W, Li T, Hong M, Peng X, Xu Z, Liu W, Jiang H. Control of phytoplankton by oysters and the consequent impact on nitrogen cycling in a Subtropical Bay. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:149007. [PMID: 34274670 DOI: 10.1016/j.scitotenv.2021.149007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Although there has been growing interest in using oysters to remediate estuarine eutrophication since the 1980s, the role of oysters in remediation remains controversial. In this study, we took advantage of the intensive oyster farming in a nutrient-enriched estuary to evaluate the control of phytoplankton blooms by oysters. Observing the phytoplankton density variations in March and October, we found that despite doubled nutrient levels in March, oysters kept the phytoplankton density low. This is the first estuary-scale evidence that oysters can effectively suppress phytoplankton blooms. Measuring the isotopic signals in seawater revealed the significant impact of pelagic nitrogen cycling in the estuary. In March, oysters facilitated NO3- removal in the water column by enhancing the coupled phytoplankton assimilation-oyster filtration and denitrification in the sediments. While in October, the oysters-related nitrification could outcompete the removal processes, adding a significant amount of NO3- to the water column. Our study illustrates the influence of massive oysters on pelagic nitrogen cycling in an "oyster-remediated" estuary, providing implications for restoring oyster reefs to mitigate the symptoms of estuarine eutrophication.
Collapse
Affiliation(s)
- Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Wenlu Lan
- Guangxi Key Lab of Mangrove Conservation and Utilization, Guangxi Mangrove Research Center, Guangxi Academy of Sciences, Beihai 536000, China; Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Tianshen Li
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Ming Hong
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Xiaoyan Peng
- Marine Environmental Monitoring Center of Guangxi, Beihai 536000, China
| | - Zhifang Xu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Wenjing Liu
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Hao Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Plant Ecology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
15
|
Niu C, Zhai T, Zhang Q, Wang H, Xiao L. Research Advances in the Analysis of Nitrate Pollution Sources in a Freshwater Environment Using δ 15N-NO 3- and δ 18O-NO 3. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211805. [PMID: 34831560 PMCID: PMC8623930 DOI: 10.3390/ijerph182211805] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Abstract
Nitrate is usually the main pollution factor in the river water and groundwater environment because it has the characteristics of stable properties, high solubility and easy migration. In order to ensure the safety of water supply and effectively control nitrate pollution, it is very important to accurately identify the pollution sources of nitrate in freshwater environment. At present, as the most accurate source analysis method, isotope technology is widely used to identify the pollution sources of nitrate in water environment. However, the complexity of nitrate pollution sources and nitrogen migration and transformation in the water environment, coupled with the isotopic fractionation, has changed the nitrogen and oxygen isotopic values of nitrate in the initial water body, resulting in certain limitations in the application of this technology. This review systematically summarized the typical δ15N and δ18O-NO3- ranges of NO3- sources, described the progress in the application of isotope technique to identify nitrate pollution sources in water environment, analyzed the application of isotope technique in identifying the migration and transformation of nitrogen in water environment, and introduced the method of quantitative source apportionment. Lastly, we discussed the deficiency of isotope technique in nitrate pollution source identification and described the future development direction of the pollution source apportionment of nitrate in water environment.
Collapse
Affiliation(s)
- Chao Niu
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (C.N.); (L.X.)
| | - Tianlun Zhai
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
| | - Qianqian Zhang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Correspondence: (Q.Z.); (H.W.)
| | - Huiwei Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang 050061, China;
- Correspondence: (Q.Z.); (H.W.)
| | - Lele Xiao
- College of Geology and Environment, Xi’an University of Science and Technology, Xi’an 710054, China; (C.N.); (L.X.)
| |
Collapse
|
16
|
Ye H, Tang C, Cao Y. Sources and transformation mechanisms of inorganic nitrogen: Evidence from multi-isotopes in a rural-urban river area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148615. [PMID: 34323761 DOI: 10.1016/j.scitotenv.2021.148615] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/29/2021] [Accepted: 06/18/2021] [Indexed: 06/13/2023]
Abstract
Multi-isotope tracers were applied to quantitatively reveal the sources and transformation mechanisms of inorganic nitrogen both spatially and seasonally in a complex land use area in China. Based on land use and the level of socioeconomic development, the study area was divided into four zones: the rural area, developed urban area, developing urban area and industrial urban area. The redox condition and isotope analysis results indicated that the nitrification process dominated in the Han and Rong River, which were characterized by ammonium nitrogen (NH4+-N) and oxidizing conditions, while neither nitrification nor denitrification occurred in the Lian River. The inorganic nitrogen sources of the four areas were revealed from the results of a stable isotope analysis in R (SIAR) and a two-component mixing model after determining the transformation mechanisms. In the rural area, nitrate nitrogen (NO3--N) was mainly sourced from the increased fertilization of nitrogen fertilizer (42-56%) to farmland during the wet season, and from soil nitrogen (33-62%) related to increased nitrification during the dry season. In the urban area, the contributions of soil nitrogen, manure and sewage and industrial wastewater to the total inorganic nitrogen exhibited large seasonal and spatial differences, which were distinguished by the environmental management supported by gross domestic production (GDP). In the developed and developing urban areas, soil nitrogen contributed 41% and 47% of the NO3--N, respectively, during the wet season, and 47% and 54%, respectively, during the dry season. The second highest contribution was from manure and sewage (30-41%) with no seasonal differences. In the industrial urban area, the dominant contribution to the NH4+-N was from manure and sewage (81%) during the wet season, but industrial wastewater (84%) in the dry season. Our findings elucidate the multiplex sources and transformation mechanisms of inorganic nitrogen, and promote the management of nitrogen tracing to control nitrogen pollution in complex land use areas.
Collapse
Affiliation(s)
- Huijun Ye
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Changyuan Tang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China; School of Geography and Planning, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China
| | - Yingjie Cao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510006, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), 519000, China.
| |
Collapse
|
17
|
Liu J, Yan T, Shen Z. Sources, transformations of suspended particulate organic matter and their linkage with landscape patterns in the urbanized Beiyun river Watershed of Beijing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148309. [PMID: 34126488 DOI: 10.1016/j.scitotenv.2021.148309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/13/2021] [Accepted: 06/02/2021] [Indexed: 06/12/2023]
Abstract
This study explored the sources, transformations of suspended particulate organic matter (POM), and the influence of landscape patterns on POM within the Beiyun River Watershed by applying the stable carbon and nitrogen isotope technique combined with multiple statistical analyses. The POM variables showed great spatial fluctuations under different urban development gradients. Analysis of multiple isotopes revealed that assimilation of phytoplankton might exist in the rainy season, while nitrification occurs in the dry season. SIAR modeling results indicated that the sewage debris and phytoplankton were the main sources of POM in both seasons, accounting for 52.58% and 38.39% in the rainy season, 33.17% and 31.95% in the dry season, respectively. Spatiotemporal variations of POM sources existed in the study watershed, probably due to urbanization and human disturbance. The multiple linear stepwise regression and redundant analysis results indicated that landscape metrics reflecting contagion and fragmentation at the class level correlated well with the POM variables over seasons. Interspersion and juxtaposition indices of grassland and water were negatively related to POM variables in the rainy season, whereas the landscape division index of buildup land showed negative correlations with POM parameters in the dry season. Increasing the adjacency of grassland and water to other land uses, while reducing the aggregation of buildup lands would be an efficient way for urban river water quality improvement.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P R China; Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Technology Innovation Center for Remote Sensing Identification of Environmental Change, College of Resources and Environmental Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Tiezhu Yan
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P R China; Key Laboratory of Nonpoint Source Pollution Control, Ministry of Agriculture and Rural Affairs/Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhenyao Shen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, P R China.
| |
Collapse
|