1
|
Rigatou D, Gerakaris V, Digka N, Adamopoulou A, Patsiou D, Hatzonikolakis Y, Tsiaras K, Tsangaris C, Zeri C, Kaberi H, Raitsos DE. The role of seagrass meadows (Posidonia oceanica) as microplastics sink and vector to benthic food webs. MARINE POLLUTION BULLETIN 2024; 211:117420. [PMID: 39689653 DOI: 10.1016/j.marpolbul.2024.117420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Plastic pollution in marine environments is of global concern, yet its distribution within seagrasses remains poorly understood. We explore the efficiency of Posidonia oceanica in trapping microplastics (MPs) across various components (leaves, rhizomes, sediment), examine their potential transfer through the food web and assess their dispersal using advanced modelling techniques. Field surveys confirm that P. oceanica traps MPs across all components, with the often-overlooked rhizomes accumulating over twice as many MPs (0.2 ± 0.41 items/rhizome) as leaves (0.08 ± 0.28 items/leaf). MP abundance is lower in vegetated sediments than in the adjacent unvegetated seabed (15 ± 1.9 vs. 49 items kg-1 dry weight, respectively). While individual meadow's substrates exhibit low MP levels, the overall concentration increases substantially when accounting for its multi-dimensional structure. Species-specific traits, such as leaf height, and local hydrodynamic processes are likely influencing MPs spatiotemporal distribution. The elevated risk of MPs ingestion by seagrass-associated grazers cannot be confirmed, but further investigation is necessary. This study highlights the effectiveness of a holistic approach in assessing MP pollution within seagrass ecosystems, emphasizing its importance as the way forward.
Collapse
Affiliation(s)
- Dionysia Rigatou
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece.
| | - Vasilis Gerakaris
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Nikoletta Digka
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Argyro Adamopoulou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Danae Patsiou
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Yannis Hatzonikolakis
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece; Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Kostas Tsiaras
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Catherine Tsangaris
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Christina Zeri
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Helen Kaberi
- Hellenic Centre for Marine Research (HCMR), Institute of Oceanography, 46.7 km, Athinon-Souniou Ave., P.O. Box 712, 19013 Anavyssos, Greece
| | - Dionysios E Raitsos
- Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| |
Collapse
|
2
|
Hernán G, Rodríguez E, Tomas F. Identifying patterns of microplastic accumulation in coastal vegetated habitats: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:175985. [PMID: 39233073 DOI: 10.1016/j.scitotenv.2024.175985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/12/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Microplastic (plastics <5 mm; MP) contamination in the marine environment has gained global attention due to its continuous accumulation and serious threats to ecosystems. This review evaluates patterns of MP accumulation in seagrasses, mangroves, and saltmarshes to provide an integrated view of MP pollution. Since 2011, studies have examined the sources, distribution, characterization, and fate of MPs in these habitats. We found an unequal geographic distribution with most studies conducted in the Northern Hemisphere and in mangroves, which have the highest MP concentrations compared to saltmarshes and seagrass beds, particularly near urban centers and fishing zones. Almost 40 % of the outcomes of our meta-analysis show a higher MP accumulation in vegetated than unvegetated sites. Also, degraded and highly-degraded sites exhibited higher amounts of MPs than less-degraded areas. In addition, secondary MPs are the dominant form, with less dense polymers (polyethylene, polystyrene, and polypropylene) being more abundant and blue, black, and transparent the most common colors. Methodological differences in reporting units, sampling depths, and extraction methods reduce study comparability and increase variability. This review provides a comprehensive understanding of MP research in coastal ecosystems, revealing critical knowledge gaps affecting MP distribution, such as vegetation density, diversity, and hydrodynamics, and emphasizes the need for standardized methodologies for accurate comparisons.
Collapse
Affiliation(s)
- Gema Hernán
- Department of Marine Ecology, Mediterranean Institute for Advanced Studies (CSIC-UIB), Mallorca, Balearic Islands, Spain.
| | - Esther Rodríguez
- Department of Marine Ecology, Mediterranean Institute for Advanced Studies (CSIC-UIB), Mallorca, Balearic Islands, Spain
| | - Fiona Tomas
- Department of Marine Ecology, Mediterranean Institute for Advanced Studies (CSIC-UIB), Mallorca, Balearic Islands, Spain
| |
Collapse
|
3
|
Ruiz-Fernández AC, Pérez-Bernal LH, Sanchez-Cabeza JA, Valencia-Castañeda G, Ontiveros-Cuadras JF, Alonso-Hernández CM. Accelerating microplastic contamination in 210Pb dated sediment cores from an urbanized coastal lagoon (NW Mexico) since the 1990s. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175613. [PMID: 39168330 DOI: 10.1016/j.scitotenv.2024.175613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The ubiquity of microplastics (MP) across all ecosystems raises concerns about their potential harm to the environment and living organisms. Sediments are a MP sink, reflecting long-term accumulation and historical anthropogenic impacts. Three 210Pb-dated sediment cores were used to understand the temporal variations of MP abundances (particles kg-1) and fluxes (particles m-2 year-1) within the past century in Estero de Urías Lagoon, an urbanized coastal lagoon in the Mexican Pacific. MP particles, extracted from sediments by density separation (saturated NaCl solution) were counted using a stereomicroscope, under visible and ultraviolet light on Nile red (NR) stained filters. The polymer composition was determined in ∼10 % of the suspected MP particles using Fourier Transform Infrared spectrometry. Fibers (66 to 89 % of the total particles) predominated over fragments (11 to 34 %). Before 1950, no MP particles were detected. Polyethylene terephthalate (PET) was the prevalent synthetic polymer (up to 50 % of the particles), while semisynthetic cellulosic fibers were predominant, underscoring the broader scope of anthropogenic contamination. Suspected MP abundances (NR stained filters) were highest in the core collected at the innermost area, which was attributed to the lagoon's hydrodynamics, since current velocities decrease from the proximal to the distal area to the sea. From the regression between MP fluxes and time elapsed since sediments deposited, the cores showed consistent accelerated increases of MP burial since mid-20th century, most likely because of the increasing availability of plastic products and population growth, with the consequent increment in plastic waste and wastewater releases. Our findings emphasize the growing MP pollution challenges at EUL, which may directly impact subsistence fishing and shrimp aquaculture activities, threatening local livelihoods and food sources; and also highlight the need for improved waste management and pollution control strategies in rapidly industrializing regions, to protect both aquatic ecosystems and human populations dependent on fishing products.
Collapse
Affiliation(s)
- Ana Carolina Ruiz-Fernández
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Libia Hascibe Pérez-Bernal
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Joan-Albert Sanchez-Cabeza
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico.
| | - Gladys Valencia-Castañeda
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, Unidad Académica Mazatlán, Sinaloa, Mexico
| | - Jorge Feliciano Ontiveros-Cuadras
- Universidad Nacional Autónoma de México, Instituto de Ciencias del Mar y Limnología, UAPOC-Ciudad Universitaria, Mexico City, Mexico.
| | | |
Collapse
|
4
|
Terzi Y, Gündoğdu S, Tekman MB, Gedik K, Ustaoğlu D, Ismail NP, Altinpinar İ, Öztürk RÇ, Aydın İ. How much do we know about the microplastic distribution in the Mediterranean Sea: A comprehensive review. MARINE POLLUTION BULLETIN 2024; 208:117049. [PMID: 39357369 DOI: 10.1016/j.marpolbul.2024.117049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
The Mediterranean Sea is one of the most heavily polluted regions. Here we comprehensively review the current state of microplastic pollution in the Mediterranean Sea and the Black Sea. A total of 284 studies published between 2012 and 2023 were analyzed, revealing a continuous increase in research efforts. Our review encompassed microplastic monitoring studies across five environmental matrices: the sea surface, water column, intertidal sediment, bottom sediment, and biota, with a predominant focus observed in biota-related studies with fish, molluscs, crustaceans, and echinoderms being the primary focus. The study found that species such as Mullus barbatus, Mytilus galloprovincialis, Nephrops norvegicus, and Holothuria tubulosa are frequently studied species. The review also emphasizes the lack of standardized methodologies across studies, which hampers the comparability of results and the synthesis of data. The findings of this study provide a critical evaluation of the current research landscape and identify significant knowledge gaps, particularly in the underrepresented southern Mediterranean and Black Sea regions, calling for more balanced research efforts and methodological consistency in future studies.
Collapse
Affiliation(s)
- Yahya Terzi
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Türkiye; Institute of Marine Sciences and Technology, Karadeniz Technical University, Trabzon, Türkiye
| | - Sedat Gündoğdu
- Department of Basic Sciences, Cukurova University, Faculty of Fisheries, 01330 Adana, Türkiye.
| | - Mine B Tekman
- Department of Natural and Mathematical Sciences, Ozyegin University, Istanbul, Türkiye
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100 Rize, Türkiye
| | - Dilek Ustaoğlu
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Türkiye; Aquatic Animal Health and Molecular Genetic (AQUANETIC) Laboratory, Department of Chemistry Block C, Karadeniz Technical University, 61530 Trabzon, Türkiye
| | - Neira Purwanty Ismail
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Türkiye
| | - İshak Altinpinar
- Department of Maritime Transportation and Management Engineering, Karadeniz Technical University, Türkiye
| | - Rafet Çağrı Öztürk
- Department of Fisheries Technology Engineering, Faculty of Marine Sciences, Karadeniz Technical University, Trabzon, Türkiye; Aquatic Animal Health and Molecular Genetic (AQUANETIC) Laboratory, Department of Chemistry Block C, Karadeniz Technical University, 61530 Trabzon, Türkiye
| | - İlhan Aydın
- General Directorate of Fisheries and Aquaculture, Ankara, Türkiye
| |
Collapse
|
5
|
Hassen B, Sghaier DB, Matmati E, Mraouna R, El Bour M. Detection and quantification of microplastics in Posidonia oceanica banquettes in the Gulf of Gabes, Tunisia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57196-57203. [PMID: 37953419 DOI: 10.1007/s11356-023-30798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 10/27/2023] [Indexed: 11/14/2023]
Abstract
Plastic pollution and microplastic (MP) debris are some of the most significant solid waste pollutants, threatening the marine environment and causing sediment accumulation. Coastal seagrass areas are usually important habitats that support multiple living species and provide several ecosystem services. This study aimed to determine the abundance, characteristics, and composition of microplastics on the southern side of the Tunisian Mediterranean Sea by using Posidonia oceanica (P. oceanica) as a crucial trap for microplastics. Samples of Posidonia leaves were collected from the Tunisian coastal area of Gabes-City. The characterization of microplastic detritus was carried out by stereomicroscopy, and acid digestion of Posidonia tissue leaves was performed for qualitative and quantitative analysis of MPs using NMR spectroscopy. The study revealed pellets, threads, and fragments of polymers as the frequent forms found in MPs. Polyethylene, polystyrene, and bis(2-ethyl-hexyl) phthalates were the most abundant materials detected. P. oceanica leaves contributed notably to microplastic subsidence, seafloor horizontal migration, and sediment burial. Thus, marine flora appeared to be a good tool to detect and monitor plasticizers, and further studies of the P. oceanica seagrass areas will help in developing a more comprehensive knowledge of chemicals spreading over a geographical zone. The results obtained will be used for developing baseline data on plasticizer contamination on the wide-ranging marine coast.
Collapse
Affiliation(s)
- Bilel Hassen
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Marine Laboratory, The National Institute of Science and Technology of the Sea, University of Carthage, 2025, Tunis, Salammbô, Tunisia.
| | - Dhouha Belhaj Sghaier
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Marine Laboratory, The National Institute of Science and Technology of the Sea, University of Carthage, 2025, Tunis, Salammbô, Tunisia
| | - Emna Matmati
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Marine Laboratory, The National Institute of Science and Technology of the Sea, University of Carthage, 2025, Tunis, Salammbô, Tunisia
| | - Radhia Mraouna
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Marine Laboratory, The National Institute of Science and Technology of the Sea, University of Carthage, 2025, Tunis, Salammbô, Tunisia
| | - Monia El Bour
- Laboratory of Microbiology and Pathology of Aquatic Organisms, Marine Laboratory, The National Institute of Science and Technology of the Sea, University of Carthage, 2025, Tunis, Salammbô, Tunisia
| |
Collapse
|
6
|
Souza AMC, Ferreira GVB, de Los Santos CB, Frédou FL, Magalhães KM. Anthropogenic microparticles accumulation in small-bodied seagrass meadows: The case of tropical estuarine species in Brazil. MARINE POLLUTION BULLETIN 2024; 207:116799. [PMID: 39178521 DOI: 10.1016/j.marpolbul.2024.116799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/01/2024] [Accepted: 07/30/2024] [Indexed: 08/26/2024]
Abstract
Seagrass meadows have recently been highlighted as potential hotspots for microplastic and anthropogenic microparticles (APs). This study assessed AP accumulation in shallow sediments vegetated by small-bodied seagrass species (Halodule wrightii, Halophila decipiens, and H. baillonii) and in the adjacent unvegetated area in a tropical estuary on the East Coast of South America, Brazil, over the seasonal cycle. Anthropogenic microparticles were detected in 80 % of the samples, with a mean abundance of 142 ± 140 particles kg-1 dw (N = 80). Particles were predominantly blue (51 %), fiber (73 %), and smaller than 1 mm (80 %). We observed that seagrass sediments retained APs, although no significant variation was observed between seagrass and the unvegetated area, nor between the dry and rainy seasons. A positive correlation was found between sediment grain size and AP abundance. This study represents the first record of AP contamination in seagrasses from the Tropical Southwestern Atlantic bioregion.
Collapse
Affiliation(s)
- Ana M C Souza
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil.
| | - Guilherme V B Ferreira
- Universidade Federal do Rio de Janeiro (UFRJ), Instituto de Biodiversidade e Sustentabilidade (NUPEM), Avenida São José do Barreto, 764, Macaé, RJ 27965-045, Brazil; Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (DEPAQ/UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| | - Carmen B de Los Santos
- Centre a of Marine Sciences (CCMAR/CIMAR LA), Campus de Gambelas, Universidade do Algarve, 8005-139 Faro, Portugal.
| | - Flávia L Frédou
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil; Departamento de Pesca e Aquicultura, Universidade Federal Rural de Pernambuco (DEPAQ/UFRPE), Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| | - Karine M Magalhães
- Programa de Pós-Graduação em Biodiversidade (PPGBio), Universidade Federal Rural de Pernambuco - UFRPE, Rua Dom Manoel de Medeiros, s/n, Dois Irmãos, Recife, PE CEP 52171-900, Brazil; Departamento de Biologia, Universidade Federal Rural de Pernambuco - DB/UFRPE, Campus Sede, Rua Dom Manuel de Medeiros, s/n, 52171-900 Recife, Brazil.
| |
Collapse
|
7
|
Radford F, Horton AA, Felgate S, Lichtschlag A, Hunt J, Andrade V, Sanders R, Evans C. Factors influencing microplastic abundances in the sediments of a seagrass-dominated tropical atoll. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124483. [PMID: 38960123 DOI: 10.1016/j.envpol.2024.124483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/28/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Seagrass meadows are one of the world's most diverse ecosystems offering habitats for an extensive array of species, as well as serving as protectors of coral reefs and vital carbon sinks. Furthermore, they modify hydrodynamics by diminishing water flow velocities and enhancing sediment deposition, indicating the potential for microplastic accumulation in their sediments. The build-up of microplastics could potentially have ecological impacts threatening to ecosystems, however little is known about microplastic abundance and controlling factors in seagrass sediments. Here we investigated microplastic characteristics and abundances within sediments underlying four seagrass meadow sites on the Turneffe Atoll, Belize. Sediment cores were collected and sub-sampled to include a range of replicate surface sediments (0-4 cm) and depth cores (sediment depths 0-2, 2-5, 5-10, 10-20 and 20-30 cm). These were analysed using 25 μm resolution μFTIR, with spectral maps processed using siMPle software. Microplastics were prevalent across the sites with an abundance range (limit of detection (LOD) blank-corrected) of < LOD to 17137 microplastics kg-1 dw found on the east side of the atoll. However, their abundances varied greatly between the replicate samples. Polyethylene and polypropylene were the most commonly detected polymers overall, although the dominant polymer type varied between sites. There were no differences in the abundance of microplastics between sites, nor could abundance distributions be explained by seagrass cover. However, abundances of microplastics were highest in sediments with lower proportions of fine grained particles (clay, <4 μm) suggesting that hydrodynamics override seagrass effects. Additionally, no patterns were seen between microplastic abundance and depth of sediment. This suggests that microplastic abundance and distribution in seagrass meadows may vary significantly depending on the specific geographical locations within those meadows, and that more complex hydrodynamic factors influence spatial variability at a localised scale.
Collapse
Affiliation(s)
- Freya Radford
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK; Biospheric Microplastics Research Cluster, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Alice A Horton
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK.
| | - Stacey Felgate
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Anna Lichtschlag
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - James Hunt
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| | - Valdemar Andrade
- Turneffe Atoll Sustainability Association (TASA), 1216 Blue Marlin Boulevard, Belize City, Belize
| | - Richard Sanders
- NORCE Norwegian Research Centre, Bjerknes Centre for Climate Research, Jahnebakken 5, 5007 Bergen, Norway
| | - Claire Evans
- National Oceanography Centre, European Way, Southampton, SO14 3ZH, UK
| |
Collapse
|
8
|
Lozano-Hernández EA, Ramírez-Álvarez N, Rios Mendoza LM, Macías-Zamora JV, Mejía-Trejo A, Beas-Luna R, Hernández-Guzmán FA. Kelp forest food webs as hot spots for the accumulation of microplastic and polybrominated diphenyl ether pollutants. ENVIRONMENTAL RESEARCH 2024; 257:119299. [PMID: 38824984 DOI: 10.1016/j.envres.2024.119299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 05/08/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Kelp forests (KFs) are one of the most significant marine ecosystems in the planet. They serve as a refuge for a wide variety of marine species of ecological and economic importance. Additionally, they aid with carbon sequestration, safeguard the coastline, and maintain water quality. Microplastic (MP) and polybrominated diphenyl ethers (PBDEs) concentrations were analyzed across trophic levels in KFs around Todos Santos Bay. Spatial variation patterns were compared at three sites in 2021 and temporal change at Todos Santos Island (TSI) in 2021 and 2022. We analyzed these MPs and PBDEs in water, primary producers (Macrocystis pyrifera), grazers (Strongylocentrotus purpuratus), predators (Semicossyphus pulcher), and kelp detritus. MPs were identified in all samples (11 synthetic and 1 semisynthetic polymer) and confirmed using Fourier-transform infrared microspectroscopy-attenuated total reflectance (μ-FTIR-ATR). The most abundant type of MP is polyester fibers. Statistically significant variations in MP concentration were found only in kelps, with the greatest average concentrations in medium-depth kelps from TSI in 2022 (0.73 ± 0.58 MP g-1 ww) and in the kelp detritus from TSI in 2021 (0.96 ± 0.64 MP g-1 ww). Similarly, PBDEs were found in all samples, with the largest concentration found in sea urchins from Punta San Miguel (0.93 ± 0.24 ng g-1 ww). The similarity of the polymers can indicate a trophic transfer of MPs. This study shows the extensive presence of MP and PBDE subtropical trophic web of a KF, but correlating these compounds in environmental samples is highly complex, influenced by numerous factors that could affect their presence and behavior. However, this suggests that there is a potential risk to the systems and the services that KFs offer.
Collapse
Affiliation(s)
- Eduardo Antonio Lozano-Hernández
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Nancy Ramírez-Álvarez
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | | | - José Vinicio Macías-Zamora
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Adán Mejía-Trejo
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Rodrigo Beas-Luna
- Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| | - Félix Augusto Hernández-Guzmán
- Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, Carretera Tijuana-Ensenada 3917, Colonia Playitas, Ensenada, B.C., Mexico. C.P. 22860.
| |
Collapse
|
9
|
Tong X, Zhang X, Fensholt R, Jensen PRD, Li S, Larsen MN, Reiner F, Tian F, Brandt M. Global area boom for greenhouse cultivation revealed by satellite mapping. NATURE FOOD 2024; 5:513-523. [PMID: 38741004 DOI: 10.1038/s43016-024-00985-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 04/16/2024] [Indexed: 05/16/2024]
Abstract
Greenhouse cultivation has been expanding rapidly in recent years, yet little knowledge exists on its global extent and expansion. Using commercial and freely available satellite data combined with artificial intelligence techniques, we present a global assessment of greenhouse cultivation coverage and map 1.3 million hectares of greenhouse infrastructures in 2019, a much larger extent than previously estimated. Our analysis includes both large (61%) and small-scale (39%) greenhouse infrastructures. Examining the temporal development of the 65 largest clusters (>1,500 ha), we show a recent upsurge in greenhouse cultivation in the Global South since the 2000s, including a dramatic increase in China, accounting for 60% of the global coverage. We emphasize the potential of greenhouse infrastructures to enhance food security but raise awareness of the uncertain environmental and social implications that may arise from this expansion. We further highlight the gap in spatio-temporal datasets for supporting future research agendas on this critical topic.
Collapse
Affiliation(s)
- Xiaoye Tong
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Xiaoxin Zhang
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Fensholt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | | | - Sizhuo Li
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Université Paris-Saclay, Gif-sur-Yvette, France
| | - Marianne Nylandsted Larsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Florian Reiner
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Feng Tian
- Hubei Key Laboratory of Quantitative Remote Sensing of Land and Atmosphere, School of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China
| | - Martin Brandt
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
10
|
Martinez M, Minetti R, La Marca EC, Montalto V, Rinaldi A, Costa E, Badalamenti F, Garaventa F, Mirto S, Ape F. The power of Posidonia oceanica meadows to retain microplastics and the consequences on associated macrofaunal benthic communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123814. [PMID: 38499170 DOI: 10.1016/j.envpol.2024.123814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
In the coastal environment, a large amount of microplastics (MPs) can accumulate in the sediments of seagrass beds. However, the potential impact these pollutants have on seagrasses and associated organisms is currently unknown. In this study, we investigated the differences in MPs abundance and composition (i.e., shape, colour and polymer type) in marine sediments collected at different depths (-5 m, -15 m, -20 m) at two sites characterized by the presence of Posidonia oceanica meadows and at one unvegetated site. In the vegetated sites, sediment samples were collected respectively above and below the upper and lower limits of the meadow (-5 m and -20 m), out of the P. oceanica meadow, and in the central portion of the meadow (-15 m). By focusing on the central part of the meadow, we investigated if the structural features (i.e. shoots density and leaf surface) can affect the amount of MPs retained within the underlying sediment and if these, in turn, can affect the associated benthic communities. Results showed that the number of MPs retained by P. oceanica meadows was higher than that found at the unvegetated site, showing also a different composition. In particular, at vegetated sites, we observed that MPs particles were more abundant within the meadow (at - 15 m), compared to the other depths, on unvegetated sediment, with a dominance of transparent fragments of polypropylene (PP). We observed that MPs entrapment by P. oceanica was accentuated by the higher shoots density, while the seagrass leaf surface did not appear to have any effect. Both the abundance and richness of macrofauna associated with P. oceanica rhizomes appear to be negatively influenced by the MPs abundance in the sediment. Overall, this study increases knowledge of the potential risks of MPs accumulation in important coastal habitats such as the Posidonia oceanica meadows.
Collapse
Affiliation(s)
- Marco Martinez
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy.
| | - Roberta Minetti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Emanuela Claudia La Marca
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Valeria Montalto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Alessandro Rinaldi
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Elisa Costa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy
| | - Fabio Badalamenti
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Garaventa
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Via De Marini 16, 16149, Genova, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Simone Mirto
- Institute of Anthropic Impacts and Sustainability in Marine Environment, National Research Council (IAS-CNR), Lungomare Cristoforo Colombo n. 4521 (ex complesso Roosevelt), Località Addaura, 90149, Palermo, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| | - Francesca Ape
- Institute of Marine Sciences, National Research Council (ISMAR-CNR) Via Gobetti, 101, 40129, Bologna, Italy; National Biodiversity Future Centre (NBFC), Piazza Marina 61, 90133, Palermo, Italy
| |
Collapse
|
11
|
Chen H, Cheng Y, Wang Y, Ding Y, Wang C, Feng X, Fan Q, Yuan F, Fu G, Gao B, Liu K, Zou X. Microplastics: A potential proxy for tracing extreme flood events in estuarine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170554. [PMID: 38309341 DOI: 10.1016/j.scitotenv.2024.170554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/27/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
The transport of microplastics (MPs) is susceptible to being influenced by catchment hydrology; however, there is a notable lack of research on their retention and responses to flood events in estuarine sedimentary records. Herein, we collected two cores in the Yangtze Estuary to explore their microplastic pollution, influencing factors and linkage to flood events. MP abundance exhibited a decreasing trend from the top to the bottom in both cores. Both plastic production and sediment mean grain size showed a significant positive correlation with MP abundance. The sedimentary record displayed a marked surge in MP abundance during the extreme flood period, suggesting a direct influence of flooding on MP deposition. The resuspension of upstream MPs and erosion of land-based MPs by heavy rain might be responsible for this increase. Furthermore, our study identified significant periodicities in MP abundance, closely aligned with the hydrological patterns of the Yangtze River. This study highlights the role of floods in fluvial MP distribution and proposes MPs as a proxy of extreme floods from the 20th century in estuarine environments.
Collapse
Affiliation(s)
- Hongyu Chen
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Yu Cheng
- Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Ying Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Yongcheng Ding
- Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Chenglong Wang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Xuguang Feng
- Key Laboratory of Marine Geology and Metallogeny, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Qinya Fan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China
| | - Feng Yuan
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China
| | - Guanghe Fu
- Nanjing Center, China Geological Survey, Nanjing 210016, China
| | - Bingfei Gao
- Geological Survey of Jiangsu Province, Nanjing 210018, China
| | - Kai Liu
- Nanjing Center, China Geological Survey, Nanjing 210016, China
| | - Xinqing Zou
- School of Geography and Ocean Science, Nanjing University, Nanjing 210093, China; Ministry of Education Key Laboratory for Coast and Island Development, Nanjing University, Nanjing 210093, China; Collaborative Innovation Center of South China Sea Studies, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
12
|
Noman MA, Adyel TM, Macreadie PI, Trevathan-Tackett SM. Prioritising plastic pollution research in blue carbon ecosystems: A scientometric overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169868. [PMID: 38185172 DOI: 10.1016/j.scitotenv.2024.169868] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/05/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
The Blue Carbon Ecosystems (BCEs), comprising mangroves, saltmarshes, and seagrasses, located at the land-ocean interface provide crucial ecosystem services. These ecosystems serve as a natural barrier against the transportation of plastic waste from land to the ocean, effectively intercepting and mitigating plastic pollution in the ocean. To gain insights into the current state of research, and uncover key research gaps related to plastic pollution in BCEs, this study conveyed a comprehensive overview using bibliometric, altmetric, and literature synthesis approaches. The bibliometric analysis revealed a significant increase in publications addressing plastic pollution in BCEs, particularly since 2018. Geographically, Chinese institutions have made substantial contributions to this research field compared to countries and regions with extensive BCEs and established blue carbon science programs. Furthermore, many studies have focused on mangrove ecosystems, while limited attention was given to exploring plastic pollution in saltmarsh, seagrass, and multiple ecosystems simultaneously. Through a systematic analysis, this study identified four major research themes in BCE-plastics research: a) plastic trapping by vegetated coastal ecosystems, b) microbial plastic degradation, c) ingestion of plastic by benthic organisms, and d) effects of plastic on blue carbon biogeochemistry. Upon synthesising the current knowledge in each theme, we employed a perspective lens to outline future research frameworks, specifically emphasising habitat characteristics and blue carbon biogeochemistry. Emphasising the importance of synergistic research between plastic pollution and blue carbon science, we underscore the opportunities to progress our understanding of plastic reservoirs across BCEs and their subsequent effects on blue carbon sequestration and mineralisation. Together, the outcomes of this review have overarching implications for managing plastic pollution and optimising climate mitigation outcomes through the blue carbon strategies.
Collapse
Affiliation(s)
- Md Abu Noman
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia.
| | - Tanveer M Adyel
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia; STEM, University of South Australia, Mawson Lakes campus, Mawson Lakes, SA 5095, Australia
| | - Peter I Macreadie
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia
| | - Stacey M Trevathan-Tackett
- Deakin Marine Research and Innovation Centre, School of Life and Environmental Sciences, Deakin University, Melbourne, VIC 3125, Australia.
| |
Collapse
|
13
|
Dimante-Deimantovica I, Saarni S, Barone M, Buhhalko N, Stivrins N, Suhareva N, Tylmann W, Vianello A, Vollertsen J. Downward migrating microplastics in lake sediments are a tricky indicator for the onset of the Anthropocene. SCIENCE ADVANCES 2024; 10:eadi8136. [PMID: 38381821 PMCID: PMC10881056 DOI: 10.1126/sciadv.adi8136] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Abstract
Plastics are a recent particulate material in Earth's history. Because of plastics persistence and wide-range presence, it has a great potential of being a global age marker and correlation tool between sedimentary profiles. In this research, we query whether microplastics can be considered among the array of proxies to delimit the Anthropocene Epoch (starting from the year 1950 and above). We present a study of microplastics deposition history inferred from sediment profiles of lakes in northeastern Europe. The sediments were dated with independent proxies from the present back to the first half of the 18th century. Regardless of the sediment layer age, microplastic particles were found throughout the cores in all sites. Depending on particles' aspect ratio, less elongated particles were found deeper, while more elongated particles and fibers have reduced mobility. We conclude that interpretation of microplastics distribution in the studied sediment profiles is ambiguous and does not strictly indicate the beginning of the Anthropocene Epoch.
Collapse
Affiliation(s)
| | - Saija Saarni
- University of Turku, Department of Geography and Geology, Turku 20014, Finland
| | - Marta Barone
- Latvian Institute of Aquatic Ecology, Riga LV-1007, Latvia
- Daugavpils University, The Faculty of Natural Sciences and Mathematics, Daugavpils LV-5401, Latvia
| | - Natalja Buhhalko
- Tallinn University of Technology, Department of Marine Systems, Tallinn 12618, Estonia
| | - Normunds Stivrins
- University of Latvia, Department of Geography, Riga LV-1004, Latvia
- Tallinn University of Technology, Department of Geology, Tallinn 19086, Estonia
| | | | - Wojciech Tylmann
- University of Gdańsk, Faculty of Oceanography and Geography, Gdańsk PL-80309, Poland
| | - Alvise Vianello
- Aalborg University, Department of the Built Environment, Aalborg 9220, Denmark
| | - Jes Vollertsen
- Aalborg University, Department of the Built Environment, Aalborg 9220, Denmark
| |
Collapse
|
14
|
Ciaralli L, Rotini A, Scalici M, Battisti C, Chiesa S, Christoforou E, Libralato G, Manfra L. The under-investigated plastic threat on seagrasses worldwide: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8341-8353. [PMID: 38170360 DOI: 10.1007/s11356-023-31716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/20/2023] [Indexed: 01/05/2024]
Abstract
Marine plastic pollution is a well-recognised and debated issue affecting most marine ecosystems. Despite this, the threat of plastic pollution on seagrasses has not received significant scientific attention compared to other marine species and habitats. The present review aims to summarise the scientific data published in the last decade (January 2012-2023), concerning the evaluation of plastic pollution, of all sizes and types, including bio-based polymers, on several seagrass species worldwide. To achieve this goal, a comprehensive and critical review of 26 scientific papers has been carried out, taking into consideration the investigated areas, the seagrass species and the plant parts considered, the experimental design and the type of polymers analysed, both in field monitoring and in laboratory-controlled experiments. The outcomes of the present review clearly showed that the dynamics and effects of plastic pollution in seagrass are still under-explored. Most data emerged from Europe, with little or no data on plastic pollution in North and South America, Australia, Africa and Antarctica. Most of the studies were devoted to microplastics, with limited studies dedicated to macroplastics and only one to nanoplastics. The methodological approach (in terms of experimental design and polymer physico-chemical characterisation) should be carefully standardised, beside the use of a model species, such as Zostera marina, and further laboratory experiments. All these knowledge gaps must be urgently fulfilled, since valuable and reliable scientific knowledge is necessary to improve seagrass habitat protection measures against the current plastic pollution crisis.
Collapse
Affiliation(s)
- Laura Ciaralli
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Alice Rotini
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Rome, Roma 3", Viale Guglielmo Marconi 446, 00146, Rome, Italy
- National Biodiversity Future Center (NBFC), Università Di Palermo, Piazza Marina 61, 90133, Palermo, Italy
| | - Corrado Battisti
- Protected Areas Service, Torre Flavia' LTER (Long Term Ecological Research) Station, Città Metropolitana Di Roma Capitale, Viale G. Ribotta, 41, 00144, Rome, Italy
| | - Stefania Chiesa
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
| | - Eleni Christoforou
- Cyprus Marine and Maritime Institute, CMMI House, Vasileos Pavlou Square, 6023, Larnaca, Cyprus
- Department of Chemical Engineering, Cyprus University of Technology, 3036, Limassol, Cyprus
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy
- Department of Ecosustainable Marine Biotechnology, Villa Comunale, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| | - Loredana Manfra
- Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati, 48, 00144, Rome, Italy
- Department of Ecosustainable Marine Biotechnology, Villa Comunale, Stazione Zoologica Anton Dohrn, 80121, Naples, Italy
| |
Collapse
|
15
|
Li C, Zhu L, Li WT, Li D. Microplastics in the seagrass ecosystems: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166152. [PMID: 37567296 DOI: 10.1016/j.scitotenv.2023.166152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/20/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Marine microplastic (MP) pollution represents a global environmental issue that has ignited considerable apprehension within the international community. Seagrass beds, which serve as nearshore marine ecosystems, have emerged as focal points of plastic and MP contamination due to the pronounced density of anthropogenic activities and the hydrological mitigating effects of submerged vegetation. Nevertheless, our comprehension of MPs within seagrass ecosystems remains constrained. In this study, we employed bibliometric analyses and comprehensive data exploration to summarize the historical progression of the development, pivotal areas of interest, and research deficiencies, followed by proposing future research directions for MP pollution in seagrass beds. The 37 selected papers were sourced from the Web of Science Core Collection scientific database as of December 31st, 2022. Based on the current evaluation, MPs are ubiquitously discovered within seagrass canopies, sediments, and marine organisms, while less than 15 % of seagrass species worldwide have been investigated. Moreover, methodological inconsistencies in sampling, processing and visualization between studies hindered the fusion and comparison of data. MPs in upper sediments and seagrass blades were the most widely investigated, with an average abundance of 263.4 ± 309.2 n/kg and 0.09 ± 0.03 n/blade. In all environmental compartments, the prevalent forms of MPs comprise fibrous and fragmented particles, encompassing the dominant polymers such as polypropylene, polyethylene and polyethylene terephthalate. However, the source of MPs in seagrass beds based on MP characteristics and local hydrodynamics has not been comprehensively analyzed in previous studies. The evidence for MPs acting as pollutants and contaminant carries impacting the growth and decline of seagrass is also weak. Currently, the precise implications of MPs on submerged vegetation, organisms, and the broader seagrass ecosystem remain inconclusive. However, considering the persistent accumulation of MPs, it is imperative to explore the ecological hazards they may pose within the foreseeable future.
Collapse
Affiliation(s)
- Changjun Li
- Ocean School, Yantai University, Yantai, China.
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China; Department of Marine and Environmental Science, Northeastern University, Boston, MA, USA
| | - Wen-Tao Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, China
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| |
Collapse
|
16
|
Dąbrowska A, Kipa S, Vasilopoulos M, Osial M. The comparative study by Raman spectroscopy of the plastic tide in the three ports of the Mediterranean Sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:124093-124105. [PMID: 37999840 PMCID: PMC10746617 DOI: 10.1007/s11356-023-30973-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023]
Abstract
This paper summarizes the field studies on marine microplastics (MPs) carried out in the autumn season in four various localisations within three ports chosen at the Mediterranean Sea near the French Riviera and the West Coast of Italy (within the Ligurian Sea). It considers the transport problem and the fate of the MPs introduced to the sea by analysing beach debris found on the shore after the stormy weather. Monitored ports included Saint-Tropez, Portoferraio and Porto Ercole, in which two different places were monitored. The aim is to approach the plastic tide phenomena by concentrating on a selected fraction of all MPs presented on the seashore. The final identification of debris was performed using Raman spectroscopy, providing a high-resolution signal. The PE, PP and PS contents were compared as the most frequent and representative polymers. Finally, we tackle the pending issue of the compound leakage from the MPs taking the environmentally aged particles from Portoferraio for further laboratory experiments and discuss an innovative approach with a low detection limit based on the electrochemical methods.
Collapse
Affiliation(s)
- Agnieszka Dąbrowska
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland.
- University of Warsaw Biological and Chemical Research Centre, Żwirki i Wigury 101 st, 02-089, Warsaw, Poland.
| | - Seweryn Kipa
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Michalis Vasilopoulos
- University of Warsaw, Faculty of Chemistry, Laboratory of Spectroscopy of Intermolecular Interactions, Pasteura 1, 02-093, Warsaw, Poland
| | - Magdalena Osial
- Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106, Warsaw, Poland
| |
Collapse
|
17
|
Azeem I, Shakoor N, Chaudhary S, Adeel M, Zain M, Ahmad MA, Li Y, Zhu G, Shah SAA, Khan K, Khan AA, Xu M, Rui Y. Analytical challenges in detecting microplastics and nanoplastics in soil-plant systems. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 204:108132. [PMID: 37918078 DOI: 10.1016/j.plaphy.2023.108132] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/20/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Microplastics (MPx) and nanoplastics (NPx) are increasingly accumulating in terrestrial ecosystems, heightening concerns about their potential adverse effects on human health via the food chain. Techniques aimed at recovering the most challenging colloidal fractions of MPx and NPx, especially for analytical purposes, are limited. This systematic review emphasises the absence of a universal, efficient, and cost-effective analytical method as the primary hindrance to studying MPx and NPx in soil and plant samples. The study reveals that several methods, including density separation, organic matter removal, and filtration, are utilized to detect MPx or NPx in soil through vibrational spectroscopy and visual identification. Instruments such as Pyrolysis Gas Chromatography Mass Spectrometry (Py-GCMS), Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Fourier Transform Infrared (FTIR) Spectroscopy, and fluorescence microscopy are employed to identify MPx and NPx in plant tissue. In extraction procedures, organic solvents and sonication are used to isolate NPx from plant tissues, while Pyrolysis GC-MS quantifies the plastics. SEM and TEM serve to observe and characterize NPx within plant tissues. Additionally, FTIR and fluorescence microscopy are utilized to identify polymers of MPx and NPx based on their spectral characteristics and fluorescence signals. The findings from this review clarify the identification and quantification methods for MPx and NPx in soil and plant systems and provide a comprehensive methodology for assessing MPx/NPx in the environment.
Collapse
Affiliation(s)
- Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Sadaf Chaudhary
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 18 Jinfeng Road, Tangjiawan, Zhuhai, Guangdong, PR China.
| | - Muhammad Zain
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, Key Laboratory of Crop Cultivation and Physiology of Jiangsu Province, College of Agriculture, Yangzhou University, Yangzhou, 225009, PR China
| | - Muhammad Arslan Ahmad
- Shenzhen Key Laboratory of Marine Bioresource and Eco-environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, PR China
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Guikai Zhu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Syed Aizaz Ali Shah
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China
| | - Kashif Khan
- College of Harbin, Northeast Forestry University, Harbin, PR China
| | - Adnan Anwar Khan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Ming Xu
- Department of Botany, University of Agriculture Faisalabad, Pakistan
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
18
|
Briassoulis D. Agricultural plastics as a potential threat to food security, health, and environment through soil pollution by microplastics: Problem definition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164533. [PMID: 37285997 DOI: 10.1016/j.scitotenv.2023.164533] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/26/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
The dynamic expansion of the Agricultural Plastics (AP) use has allowed for improved agricultural products quality, yields, and enhanced sustainability along with multiple benefits for the Agrifood sector. The present work investigates the relationship of AP characteristics, use and End-of-Life (EoL) practices with degradation and potential generation of micro-, nanoparticles (MNP) in soil. The composition, functionalities, and degradation behaviour of the contemporary conventional and biodegradable AP categories are systematically analysed. Their market dynamics are briefly presented. The risk and the conditions for the AP potential role in soil pollution and possible MNP generation are analysed based on a qualitative risk assessment approach. AP are classified from high to low-risk products with respect to their probability for soil contamination by MNP based on worst-best scenarios. Proposed alternative sustainable solutions to eliminate the risks are briefly presented for each AP category. Characteristic quantitative estimations of soil pollution by MNP generated by AP are presented for selected case studies reported in the literature. The significance of various indirect sources of agricultural soil pollution by MNP is analysed allowing for appropriate risk mitigation strategies and policies to be designed and implemented.
Collapse
Affiliation(s)
- Demetres Briassoulis
- Department of Natural Resources & Agricultural Engineering, Agricultural University of Athens, 75, Iera Odos Str, 11855 Athens, Greece.
| |
Collapse
|
19
|
Koh J, Bairoliya S, Salta M, Cho ZT, Fong J, Neo ML, Cragg S, Cao B. Sediment-driven plastisphere community assembly on plastic debris in tropical coastal and marine environments. ENVIRONMENT INTERNATIONAL 2023; 179:108153. [PMID: 37607427 DOI: 10.1016/j.envint.2023.108153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
Coastal habitats have been suggested to serve as a sink for unaccounted plastic debris, i.e., "missing plastic" in the sea, and hence, a hotspot of plastic pollution in the marine and coastal environments. Although the accumulation of plastic debris may pose significant threats to coastal ecosystems, we know little about the fate of these plastic debris and their ecological impacts due to the lack of studies on plastic-microbe interactions in coastal habitats, especially for the tropical marine and coastal environments. In this study, we collected plastic debris from 14 sites consisting of various coastal ecosystems (seagrass meadows, mangrove forests, and beaches), and marine ecosystem (coral reef) around Singapore and characterized the prokaryotic and eukaryotic microbial communities colonized on them. Our results showed that the composition of plastisphere communities in these intertidal ecosystems was predominantly influenced by the sediment than by the plastic materials. Compared with surrounding sediment and seawater, the plastic debris enriched potential plastic degraders, such as Muricauda, Halomonas, and Brevundimonas. The plastic debris was also found to host taxa that play significant roles in biogeochemical cycles (e.g., cyanobacteria, Erythrobacter), hygienically relevant bacteria (e.g., Chryseobacterium, Brevundimonas), and potential pathogens that may negatively impact the health of coastal ecosystems (e.g., Thraustochytriaceae, Labyrinthulaceae, Flavobacterium). Taken together, our study provides valuable insights into the plastic-microbe interactions in tropical coastal and marine ecosystems, highlighting the urgent need for plastisphere studies to understand the fate and ecological impacts of plastic debris accumulated in coastal habitats.
Collapse
Affiliation(s)
- Jonas Koh
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Maria Salta
- Biofilm and MIC Research, Endures BV, the Netherlands
| | - Zin Thida Cho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Jenny Fong
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Mei Lin Neo
- Tropical Marine Science Institute, National University of Singapore, Singapore
| | - Simon Cragg
- School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom; Centre for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, United Kingdom
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
20
|
Fagiano V, Compa M, Alomar C, Morató M, Deudero S. The hyperbenthic environment: A forgotten habitat for plastic pollution. MARINE POLLUTION BULLETIN 2023; 194:115291. [PMID: 37459771 DOI: 10.1016/j.marpolbul.2023.115291] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/06/2023] [Accepted: 07/11/2023] [Indexed: 09/12/2023]
Abstract
This study investigates the abundances and composition of microplastics (MP) among the shallow layers of a coastal Mediterranean Marine Protected Area (Cabrera MPA), seafloor sediments, hyperbenthic environment, and the water column. The mid waters samples were collected mid-way between the sea surface and the seafloor and hyperbenthic samples at the water layer adjacent to the seafloor. Sampling was carried out on patchiness seafloor of Posidonia oceanica meadows. The seafloor sediments showed a mean abundance of 378,769.20 ± 508,109.11 MPs/m3, three orders of magnitude higher than the hyperbenthic (209.17 ± 117.07 MPs/m3), and the mid waters layer (106.48 ± 107.17 MPs/m3). An increasing vertical gradient in MP abundances, mainly composed of fibers was observed. Fibers were made-up mainly of polystyrene (PS, 25 %), expanded polystyrene (EPS, 18 %) and cellulose acetate (CA, 16 %). The results stress the need to increase efforts to find solutions to mitigate fiber pollution in the marine environment.
Collapse
Affiliation(s)
- V Fagiano
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain; University of Balearic Islands, Palma de Mallorca, Spain.
| | - M Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - C Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - M Morató
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| | - S Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Mallorca, Spain
| |
Collapse
|
21
|
Eo S, Hong SH, Cho Y, Song YK, Han GM, Shim WJ. Spatial distribution and historical trend of microplastic pollution in sediments from enclosed bays of South Korea. MARINE POLLUTION BULLETIN 2023; 193:115121. [PMID: 37302203 DOI: 10.1016/j.marpolbul.2023.115121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/06/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
Seafloor sediments are an important sink for microplastics (MPs), and the vertical profile of MP accumulation in a sediment core represents historical pollution trends. In this study, MP (20-5000 μm) pollution in surface sediments of urban, aquaculture, and environmental preservation sites in South Korea was evaluated, and the historical trend was investigated using age-dated core sediments from the urban and aquaculture sites. The abundance of MPs ranked in the order of urban, aquaculture, and environmental preservation sites. Polymer types were more diverse at the urban site compared to other sites, and expanded polystyrene was dominant in the aquaculture site. An increase in MP pollution and polymer types was observed from bottom to top of cores, and historical trends of MP pollution reflect local influences. Our results indicate that the characteristics of MPs are determined by human activities, and MP pollution should be addressed according to the characteristics of each site.
Collapse
Affiliation(s)
- Soeun Eo
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Sang Hee Hong
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Youna Cho
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Young Kyoung Song
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Research Institute for Basic Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Gi Myung Han
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea
| | - Won Joon Shim
- Ecological Risk Research Department, Korea Institute of Ocean Science and Technology, Geoje 53201, Republic of Korea; Department of Ocean Science, Korea University of Science and Technology, Daejeon 34113, Republic of Korea.
| |
Collapse
|
22
|
Zhou X, Xiao C, Li X, Chen T, Yang X. Microplastics in coastal blue carbon ecosystems: A global Meta-analysis of its distribution, driving mechanisms, and potential risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163048. [PMID: 36990230 DOI: 10.1016/j.scitotenv.2023.163048] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/20/2023] [Indexed: 05/13/2023]
Abstract
Microplastics, as emerging pollutants, have become a global environmental concern. Blue carbon ecosystems (BCEs) are threatened by microplastics. Although substantial studies have explored the dynamics and threats of microplastics in BCEs, the fate and driving factors of microplastics in BCEs on a global scale remain largely unknown. Here, the occurrence, driving factors, and risks of microplastics in global BCEs were investigated by synthesizing a global meta-analysis. The results showed that the abundance of microplastics in BCEs has notable spatial differences worldwide, with the highest microplastic concentrations in Asia, especially in South and Southeast Asia. Microplastic abundance is influenced by the vegetation habitat, climate, coastal environment, and river runoff. The interaction of geographic location, ecosystem type, coastal environment, and climate enhanced the effects of microplastic distribution. In addition, we found that microplastic accumulation in organisms varied according to feeding habits and body weight. Significant accumulation was observed in large fish; however, growth dilution effects were also observed. The effect of microplastics on the organic carbon content of sediments from BCEs varies by ecosystem; microplastic concentrations do not necessarily increase organic carbon sequestration. Global BCEs are at a high risk of microplastic pollution, with high microplastic abundance and toxicity driving the high pollution risk. Finally, this review provides scientific evidence that will form the basis for future microplastic research, focusing on the transport of microplastics in BCEs; effects on the growth, development, and primary productivity of blue carbon plants; and soil biogeochemical cycles.
Collapse
Affiliation(s)
- Xu Zhou
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China
| | - Cunde Xiao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510006, China
| | - Xueying Li
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China
| | - Tao Chen
- School of Environment, South China Normal University, Guangzhou 510006, China.
| | - Xiaofan Yang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing 100088, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 510006, China.
| |
Collapse
|
23
|
Li Q, Han Z, Su G, Hou M, Liu X, Zhao X, Hua Y, Shi B, Meng J, Wang M. New insights into the distribution, potential source and risk of microplastics in Qinghai-Tibet Plateau. ENVIRONMENT INTERNATIONAL 2023; 175:107956. [PMID: 37178609 DOI: 10.1016/j.envint.2023.107956] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/02/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
Microplastics (MPs) as emerging contaminants have become a major global concern, however, the distribution and origin of MPs in Qinghai-Tibet Plateau (QTP) and their impacts on ecosystem are poorly known. Hence, we systematically evaluated the profile of MPs on the representative metropolitan locations of Lhasa and Huangshui Rivers and the scenic sites of Namco and Qinghai Lake. The average abundance of MPs in the water samples was 7020 items/m3, which was 34 and 52 times higher than those for the sediment (206.7 items/m3) and soil samples (134.7 items/m3), respectively. Huangshui River had the highest levels, followed by Qinghai Lake, Lhasa River and Namco. Human activities rather than altitude and salinity impacted the distribution of MPs in those areas. Besides the consumption of plastic products by locals and tourists, laundry wastewater and exogenous tributary inputs, the unique prayer flag culture also contributed to the MPs emission in QTP. Notably, the stability and fragment of MPs were crucial for their fate. Multiple assessment models were employed to evaluate the risk of MPs. PERI model took MP concentration, background value and toxicity into account, comprehensively describing the risk differences of each site. The large PVC proportion in Qinghai Lake posed the highest risk. Furthermore, concerns should be raised about PVC, PE and PET in Lhasa and Huangshui Rivers, and PC in Namco Lake. Risk quotient suggested that aged MPs in sediments slowly released biotoxic DEHP and should be cleaned up promptly. The findings offer baseline data of MPs in QTP and ecological risks, providing important support for the prioritization of future control measures.
Collapse
Affiliation(s)
- Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziwei Han
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Meifang Hou
- School of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xihui Liu
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Zhao
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mengjing Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
| |
Collapse
|
24
|
Huang S, Jiang R, Craig NJ, Deng H, He W, Li JY, Su L. Accumulation and re-distribution of microplastics via aquatic plants and macroalgae - A review of field studies. MARINE ENVIRONMENTAL RESEARCH 2023; 187:105951. [PMID: 36958953 DOI: 10.1016/j.marenvres.2023.105951] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
The aquatic plants and macroalgae are primary producers with major roles regarding the maintenance of ecosystems but their interaction with microplastics (MPs) has received less attention than animals. We summarize the methodologies used, the MPs abundances and their characteristics across the literature on MPs pollution in aquatic plants and macroalgae. The sampling and quantification of MPs still lacks consistency between studies, which increased the uncertainty in cross-comparisons. The abundance of MPs varied by orders of magnitude between species and were mostly fibers and polymers with large degrees of production and applications. Filamentous species contained more MPs than others. The average ratio of MPs between vegetated and unvegetated sites reached 3:1. The average ratio of MPs between the biotic and abiotic fractions reached 2193:1, suggesting a high level of retention in fields. Our findings supported that aquatic plants and macroalgae are critical in the plastic flux within the marine environments.
Collapse
Affiliation(s)
- Sirui Huang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Ruitong Jiang
- Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China
| | - Nicholas J Craig
- School of Biosciences, The University of Melbourne, Parkville, 3010, Victoria, Australia
| | - Hua Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200142, China
| | - Wenhui He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China
| | - Juan-Ying Li
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China
| | - Lei Su
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China; Shanghai Engineering Research Center of River and Lake Biochain Construction and Resource Utilization, Shanghai, 201702, China.
| |
Collapse
|
25
|
Reethu M, Biswajit R, Aravind GH, Rafaz AK, Sandeep K, Sijinkumar AV, Warrier AK. A first report on the spatial and temporal variability of microplastics in coastal soils of an urban town in south-western India: Pre- and post-COVID scenario. MARINE POLLUTION BULLETIN 2023; 190:114888. [PMID: 37031557 DOI: 10.1016/j.marpolbul.2023.114888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 06/19/2023]
Abstract
We present a first study on the temporal changes (2019-2021) in the microplastic abundance in the coastal soils of an urban town in the south-western part of India. All sampling stations exhibited higher abundances of microplastics in soils collected during 2021 (959.7 ± 277.7 particles/kg) compared to those collected in 2019 (515.1 ± 182.7 particles/kg). Morphologically, flakes, fibres, and films are the most abundant types documented in the soil environment. The microplastics of 0.3-5 mm size are relatively more abundant (60.6 %) compared to those of 0.03-0.3 mm size (39.4 %) in 2021. The three main types of polymers (polypropylene and high- and low-density polyethylene) in the soil exhibited an increase in abundance during an interval of 15 months (October 2019 to March 2021). In addition to packaging materials, the enhanced use of surgical masks during the COVID-19 period might have acted as a source of microplastic contamination in the soils.
Collapse
Affiliation(s)
- M Reethu
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - R Biswajit
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - G H Aravind
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - A K Rafaz
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - K Sandeep
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India.
| | - A V Sijinkumar
- Department of Geology, Central University of Kerala, Tejaswini Hills, Periye (P.O.), Kasaragod, India
| | - Anish Kumar Warrier
- Centre for Climate Studies, Department of Civil Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| |
Collapse
|
26
|
Rios-Fuster B, Compa M, Alomar C, Morató M, Ryfer D, Villalonga M, Deudero S. Are seafloor habitats influencing the distribution of microplastics in coastal sediments of a Marine Protected Area? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:49875-49888. [PMID: 36787062 PMCID: PMC9925937 DOI: 10.1007/s11356-023-25536-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/20/2023] [Indexed: 04/16/2023]
Abstract
The marine environment is affected by the increasing presence of microplastics (MPs; < 5 mm), and the seafloor acts as a sink for these particles. Locations with different predominant seafloor habitat and protection level applied were selected from Cabrera Marine-Terrestrial National Park (henceforth, Cabrera MPA) (western Mediterranean Sea) with the aim to assess the distribution of MPs along the sediments of this Mediterranean MPA. A total of 37 samples were collected. A high diversity of sediment between locations was detected according to the Udden-Wentworth classification and locations were clustered into two main groups according to the predominance of different particle size fractions. The identification of MPs was carried out according to the sediment particle size classification. A total of 1431 MPs and a mean value (± SD) of 314.53 ± 409.94 items kg-1 D.W. were identified, and 70% of the particles were fibers. Statistically higher abundances of MPs were found in sediments collected from sandy habitats, with a mean value of 630.80 ± 636.87 items kg-1 D.W., compared to the abundances of MPs found in locations with different predominant seafloor habitats, that ranged from 136.79 ± 156.33 items kg-1 D.W. in habitats with similar predominance of seagrass and sand to 223.02 ± 113.35 items kg-1 D.W. in habitats with similar predominance of rocks and sand. The abundance of MPs regarding each sediment particle size fraction differed between years and locations, and the abundance of MPs according to each identified shape differed between sampling years, particle size fraction, and predominant seafloor habitat. The present study highlights the ubiquitous presence of MPs in seafloor sediments from a MPA. Furthermore, the results suggest that the predominant seafloor habitat can modulate the presence of MPs in marine environments in both general abundances and shape of items.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Montserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Mercè Morató
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Diane Ryfer
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Margarita Villalonga
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
27
|
Wang S, Shi Y, Wang H, Li Z, Zhao M. Succession of Bacteria Attached to Microplastics After Transferring from a Mariculture Area to a Seagrass Meadow. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:69. [PMID: 36943489 DOI: 10.1007/s00128-023-03700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been recognized as a novel niche for bacteria. However, studies have characterized the plastisphere microbial community in situ without exploring the microbial changes after transferring to other ecosystems. Here we focus on bacterial succession on typical microplastics (polypropylene and expanded polystyrene) and natural substrates (wood) after transferring from mariculture area to seagrass meadows system. Using high-throughput sequencing of 16 S rRNA, we found that alpha diversity significantly reduced after transferring and microplastics especially PP had significant separations on PCoA plots at different succession stages. The abundance and metabolic pathways of potential pathogen-associated microorganisms are significantly decreased. The relative abundance of xenobiotics biodegradation pathways was significantly lower and of energy metabolism pathways was significantly higher by comparing before and after transferring. Main environmental factors affecting microbial communities changed from nutrient characteristics to basic physicochemical properties after transferring. The succession times of the microbial communities of the three materials were different.
Collapse
Affiliation(s)
- Shuai Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yunfeng Shi
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hui Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhaoyang Li
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Muqiu Zhao
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
28
|
Nunes BZ, Moreira LB, Xu EG, Castro ÍB. A global snapshot of microplastic contamination in sediments and biota of marine protected areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161293. [PMID: 36592906 DOI: 10.1016/j.scitotenv.2022.161293] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Microplastics (MPs) become ubiquitous contaminants in Marine Protected Areas (MPA) that have been planned as a conservation strategy. The present study provides a comprehensive overview of the occurrence, abundance, and distribution of MPs potentially affecting MPA worldwide. Data on MP occurrence and levels in sediment and biota samples were collected from recent peer-reviewed literature and screened using a GIS-based approach overlapping MP records with MPA boundaries. MPs were found in 186 MPAs, with levels ranging from 0 to 9187.5 items/kg in sediment and up to 17,461.9 items/kg in organisms. Peaked MPs concentrations occurred within multiple-use areas, and no-take MPAs were also affected. About half of MP levels found within MPA fell into the higher concentration quartiles, suggesting potential impacts on these areas. In general, benthic species were likely more affected than pelagic ones due to the higher concentrations of MP reported in the tissues of benthic species. Alarmingly, MPs were found in tissues of two threatened species on the IUCN Red List. The findings denote urgent concerns about the effectiveness of the global system of protected areas and their proposed conservation goals.
Collapse
Affiliation(s)
- Beatriz Zachello Nunes
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil
| | - Lucas Buruaem Moreira
- Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil
| | - Elvis Genbo Xu
- Department of Biology, University of Southern Denmark, Odense 5230, Denmark
| | - Ítalo Braga Castro
- Programa de pós-graduação em Oceanologia (PPGO), Universidade Federal do Rio Grande (IO-FURG), Rio Grande, RS, Brazil; Instituto do Mar, Universidade Federal de São Paulo (IMAR -UNIFESP), Rua Maria Máximo, 168, 11030-100 Santos, SP, Brazil.
| |
Collapse
|
29
|
Österlund H, Blecken G, Lange K, Marsalek J, Gopinath K, Viklander M. Microplastics in urban catchments: Review of sources, pathways, and entry into stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159781. [PMID: 36309285 DOI: 10.1016/j.scitotenv.2022.159781] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/24/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Urban areas play a key role in the production of microplastics (MPs) and their entry into water bodies. This article reviews the literature on the sources, transport, and control of MPs in urban environments with the aim of clarifying the mechanisms underlying these processes. Major MP sources include atmospheric deposition, micro-litter, and tire and road wear particles (TRWPs). MPs deposited from the atmosphere are mostly fibers and may be particularly important in catchments without traffic. Littering and attrition of textiles and plastic products is another important MP source. However, the quantities of MPs originating from this source may be hard to estimate. TRWPs are a significant source of MPs in urban areas and are arguably the best quantified source. The mobilization of MPs in urban catchments is poorly understood but it appears that dry unconsolidated sediments and MP deposits are most readily mobilized. Sequestration of MPs occurs in green areas and is poorly understood. Consequently, some authors consider green/pervious parts of urban catchments to be MP sinks. Field studies have shown that appreciable MP removal occurs in stormwater quality control facilities. Street cleaning and snow removal also remove MPs (particularly TRWPs), but the efficacy of these measures is unknown. Among stormwater management facilities, biofiltration/retention units seem to remove MPs more effectively than facilities relying on stormwater settling. However, knowledge of MP removal in stormwater facilities remains incomplete. Finally, although 13 research papers reported MP concentrations in stormwater, the total number of field samples examined in these studies was only 189. Moreover, the results of these studies are not necessarily comparable because they are based on relatively small numbers of samples and differ widely in terms of their objectives, sites, analytical methods, size fractions, examined polymers, and even terminology. This area of research can thus be considered "data-poor" and offers great opportunities for further research in many areas.
Collapse
Affiliation(s)
- Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden.
| | - Katharina Lange
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Kalpana Gopinath
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
30
|
Alves FL, Pinheiro LM, Bueno C, Agostini VO, Perez L, Fernandes EHL, Weschenfelder J, Leonhardt A, Domingues M, Pinho GLL, García-Rodríguez F. The use of microplastics as a reliable chronological marker of the Anthropocene onset in Southeastern South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159633. [PMID: 36280064 DOI: 10.1016/j.scitotenv.2022.159633] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Microplastics (MPs) represent an emergent contamination marker. For this reason, we analyzed the vertical distribution of MPs in six sediment cores retrieved from the Patos-Mirim System, the world's largest coastal lagoonal system. The sediment cores span from mid Holocene to present times according to both radiocarbon and lead dating and are located close to both urban/industrial and agricultural regions. We identified a basal pre-disturbance MP-free zone in all cores and an uppermost contaminated 70-cm-zone, where a general increasing trend in MPs content resembling the human anthropization process was recorded. The predominant format of MPs was fiber, followed by fragments. The most commonly identified polymers were rayon, PVC, acrylate, polycarbonate and cellophane. Urban/industrial and agricultural activities were shown as clear sources of MPs, leading to comparable MPs concentration values in the sediment cores. Thus, MPs are collectively a reliable indicator of the Anthropocene onset, and in the Patos-Mirim System the most appropriate chronology can be assigned to the beginning of 1970s, matching the intensification of anthropogenic activities in the area.
Collapse
Affiliation(s)
- F L Alves
- Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - L M Pinheiro
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, United Kingdom
| | - C Bueno
- Centro Universitario Regional del Este (CURE), Universidad de la República, Rocha, Uruguay
| | - V O Agostini
- Regenera Moléculas do Mar, Prédio 43421, Av. Bento Gonçalves, 9500 - 117 - Agronomia, Porto Alegre, RS 91501-970, Brazil
| | - L Perez
- College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, United Kingdom
| | - E H L Fernandes
- Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - J Weschenfelder
- Centro de Estudos de Geologia Costeira e Oceânica, Instituto de Geociências, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - A Leonhardt
- Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - M Domingues
- Instituto de Ciências Humanas e da Informação (ICHI), Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - G L L Pinho
- Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil
| | - F García-Rodríguez
- Instituto de Oceanografia - Universidade Federal do Rio Grande (FURG), Rio Grande, Brazil; College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, EX4 4QD, United Kingdom.
| |
Collapse
|
31
|
Yu L, Li R, Chai M, Li B. Vertical distribution, accumulation, and characteristics of microplastics in mangrove sediment in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159256. [PMID: 36208769 DOI: 10.1016/j.scitotenv.2022.159256] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/11/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Mangroves in tropical and subtropical regions worldwide are recognized as important sinks for microplastics (MPs). However, recent studies have focused on surface sediments, and in China, the vertical distribution and characteristics of MPs in mangrove sediments remain poorly understood. In this study, sediment cores of 100 cm depth were collected from six representative mangroves in China to investigate MPs via chronological analysis. Futian had the highest abundance of MPs (0-3123 n/kg), followed by Dongfang, Yunxiao, Zhanjiang, Dongzhaigang and Fangchenggang. The earliest MPs occurring in mangroves were dated back to 1955, and their abundance increased exponentially from bottom to surface sediments. MPs were mainly white in color, fiber-shaped, 1000-5000 μm in size, and of polypropylene/polyethylene polymer types. Furthermore, the MPs in the urban mangrove also showed a higher diversity in color. The results showed that the MP stocks in the urbanized Futian mangrove reached 1828 mg/m3, an order of magnitude higher than in other areas (251 ± 180 mg/m3), contributing to 0.0057 % of the carbon storage of the sediment. The abundance of MPs in mangrove sediments is expected to increase by 2.38-9.54 times by 2030, and therefore deserve further attention.
Collapse
Affiliation(s)
- Lingyun Yu
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruili Li
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Minwei Chai
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bing Li
- Water Research Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
32
|
Zhi Xiang JK, Bairoliya S, Cho ZT, Cao B. Plastic-microbe interaction in the marine environment: Research methods and opportunities. ENVIRONMENT INTERNATIONAL 2023; 171:107716. [PMID: 36587499 DOI: 10.1016/j.envint.2022.107716] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/07/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Approximately 9 million metric tons of plastics enters the ocean annually, and once in the marine environment, plastic surfaces can be quickly colonised by marine microorganisms, forming a biofilm. Studies on plastic debris-biofilm associations, known as plastisphere, have increased exponentially within the last few years. In this review, we first briefly summarise methods and techniques used in exploring plastic-microbe interactions. Then we highlight research gaps and provide future research opportunities for marine plastisphere studies, especially, on plastic characterisation and standardised biodegradation tests, the fate of "environmentally friendly" plastics, and plastisphere of coastal habitats. Located in the tropics, Southeast Asian (SEA) countries are significant contributors to marine plastic debris. However, plastisphere studies in this region are lacking and therefore, we discuss how the unique environmental conditions in the SEA seas may affect plastic-microbe interaction and why there is an imperative need to conduct plastisphere studies in SEA marine environments. Finally, we also highlight the lack of understanding of the pathogenicity and ecotoxicological effects of plastisphere on marine ecosystems.
Collapse
Affiliation(s)
- Jonas Koh Zhi Xiang
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Sakcham Bairoliya
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Zin Thida Cho
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate Program, Nanyang Technological University, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore.
| |
Collapse
|
33
|
Simon-Sánchez L, Grelaud M, Lorenz C, Garcia-Orellana J, Vianello A, Liu F, Vollertsen J, Ziveri P. Can a Sediment Core Reveal the Plastic Age? Microplastic Preservation in a Coastal Sedimentary Record. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16780-16788. [PMID: 36375087 PMCID: PMC9730841 DOI: 10.1021/acs.est.2c04264] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/24/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
The seafloor is the major sink for microplastic (MP) pollutants. However, there is a lack of robust data on the historical evolution of MP pollution in the sediment compartment, particularly the sequestration and burial rate of small MPs. By combining a palaeoceanographic approach and state-of-the-art analytical methods for MP identification down to 11 μm in size, we present the first high-resolution reconstruction of MP pollution from an undisturbed sediment core collected in the NW Mediterranean Sea. Furthermore, we investigate the fate of MPs once buried in the sediments by evaluating the changes in the size distribution of the MPs and the weathering status of the polyolefins, polyethylene, and polypropylene. Our results indicate that the MP mass sequestered in the sediment compartment mimics the global plastic production from 1965 to 2016. We observed an increase in the weathering status of the polyolefins as the size decreased. However, the variability in the size and weathering status of the MPs throughout the sedimentary record indicated that these pollutants, once incorporated into sediments, remain preserved with no further degradation under conditions lacking remobilization.
Collapse
Affiliation(s)
- Laura Simon-Sánchez
- Institute
of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra08193, Spain
| | - Michaël Grelaud
- Institute
of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra08193, Spain
| | - Claudia Lorenz
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst9220, Denmark
| | - Jordi Garcia-Orellana
- Institute
of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra08193, Spain
- Departament
de Física, Universitat Autònoma
de Barcelona, Autonomous University of Barcelona (UAB), Bellaterra08193, Spain
| | - Alvise Vianello
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst9220, Denmark
| | - Fan Liu
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst9220, Denmark
| | - Jes Vollertsen
- Department
of the Built Environment, Aalborg University, Thomas Manns Vej 23, Aalborg Øst9220, Denmark
| | - Patrizia Ziveri
- Institute
of Environmental Science and Technology (ICTA), Autonomous University of Barcelona (UAB), Bellaterra08193, Spain
- Catalan
Institution for Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, Barcelona08010, Spain
| |
Collapse
|
34
|
Compa M, Alomar C, López Cortès MF, Rios-Fuster B, Morató M, Capó X, Fagiano V, Deudero S. Multispecies Assessment of Anthropogenic Particle Ingestion in a Marine Protected Area. BIOLOGY 2022; 11:1375. [PMID: 36290281 PMCID: PMC9598462 DOI: 10.3390/biology11101375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/16/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
We have applied a multispecies ecosystem approach to analyse the ingestion of anthropogenic particles (AP) in the gastrointestinal tract of 313 individuals (17 fish species and 8 invertebrate species) from pelagic, demersal and benthic habitats in a marine protected area off the Western Mediterranean (Cabrera National Park). We have quantified and characterized the ingestion at several taxonomic levels of fish, sea urchins, sea cucumbers, bivalves, and jellyfish in relation to biotic/abiotic factors based on taxonomic groups, trophic guilds (functional groups) and habitats. AP ingestion occurrence ranged from 26 to 100% with no significant differences among taxonomic groups. The fish within the MPA showed an overall ingestion occurrence ranging from 0 to 100%, the echinoderms from 29 to 100%, the bivalves from 72 to 96% and the jellyfish 36% ingestion. The ecosystem approach applied to evaluate overall AP ingestion within the species reported that for trophic guilds, the omnivorous species ingested the highest amounts of anthropogenic items, while herbivores ingested significantly fewer items than all other trophic guilds. Moreover, no significant differences were found amongst habitats, indicating a homogeneous spatial distribution of APs at all studied habitats. The multispecies approach provided insight into the high APs exposure to species within Cabrera MPA, highlighting the potential harm linked with marine litter that threatens marine biodiversity.
Collapse
Affiliation(s)
- Montserrat Compa
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - María Francesca López Cortès
- Dirección General de Espacios Naturales y Biodiversidad, Parque Nacional Marítimo-Terrestre del Archipiélago de Cabrera, Gremi de Corredors 10, Polígon de Son Rossinyol, 07009 Palma, Spain
| | - Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Mercè Morató
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Xavier Capó
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Valentina Fagiano
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO-CSIC), Muelle de Poniente s/n, 07015 Palma, Spain
| |
Collapse
|
35
|
Comparison of pre-treatment methods and heavy density liquids to optimize microplastic extraction from natural marine sediments. Sci Rep 2022; 12:15459. [PMID: 36104387 PMCID: PMC9474529 DOI: 10.1038/s41598-022-19623-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 08/31/2022] [Indexed: 11/28/2022] Open
Abstract
The ubiquitous occurrence of anthropogenic particles, including microplastics in the marine environment, has, over the last years, gained worldwide attention. As a result, many methods have been developed to estimate the amount and type of microplastics in the marine environment. However, there are still no standardized protocols for how different marine matrices should be sampled or how to extract and identify these particles, making meaningful data comparison hard. Buoyant microplastics are influenced by winds and currents, and concentrations could hence be expected to be highly variable over time. However, since both high density and most of the initially buoyant microplastics are known to eventually sink and settle on the seafloor, marine sediments are proposed as a suitable matrix for microplastics monitoring. Several principles, apparatuses, and protocols for extracting microplastics from marine sediments have been presented, but extensive comparison of the different steps in the protocols using real environmental samples is lacking. Thus, in this study, different pre-treatment and subsequent density separation protocols for extraction of microplastics from replicate samples of marine sediment were compared. Two pre-treatment methods, one using inorganic chemicals (NaClO + KOH + Na4P2O7) and one using porcine pancreatic enzymes, as well as one with no pre-treatment of the sediment, were compared in combination with two commonly used high-density saline solutions used for density separation, sodium chloride (NaCl) and zinc chloride (ZnCl2). Both pre-treatment methods effectively removed organic matter, and both saline solutions extracted lighter plastic particles such as polyethylene (PE) and polypropylene (PP). The most efficient combination, chemical pre-treatment and density separation with ZnCl2, was found to extract > 15 times more particles (≥ 100 µm) from the sediment than other treatment combinations, which could largely be explained by the high presence and efficient extraction of PVC particles.
Collapse
|
36
|
Menicagli V, Castiglione MR, Balestri E, Giorgetti L, Bottega S, Sorce C, Spanò C, Lardicci C. Early evidence of the impacts of microplastic and nanoplastic pollution on the growth and physiology of the seagrass Cymodocea nodosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156514. [PMID: 35679937 DOI: 10.1016/j.scitotenv.2022.156514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are ubiquitous in natural habitats and the risks their presence poses to marine environments and organisms are of increasing concern. There is evidence that seagrass meadows are particularly prone to accumulate plastic debris, including polystyrene particles, but the impacts of this pollutant on seagrass performance are currently unknown. This is a relevant knowledge gap as seagrasses provide multiple ecosystem services and are declining globally due to anthropogenic impact and climate-change-related stressors. Here, we explored the potential effects of a 12 day-exposure of seagrasses to one concentration (68 μg/L) of polystyrene MPs and NPs on the growth, oxidative status, and photosynthetic efficiency of plants using the foundation species Cymodocea nodosa as a model. Among plant organs, adventitious roots were particularly affected by MPs and NPs showing complete degeneration. The number of leaves per shoot was lower in MPs- and NPs-treated plants compared to control plants, and leaf loss exceeded new leaf production in MPs-treated plants. MPs also reduced photochemical efficiency and increased pigment content compared to control plants. Shoots of NPs-treated plants showed a greater oxidative damage and phenol content than those of control plants and MPs-treated plants. Biochemical data about oxidative stress markers were consistent with histochemical results. The effects of MPs on C. nodosa could be related to their adhesion to plant surface while those of NPs to entering tissues. Our study provides the first experimental evidence of the potential harmful effects of MPs/NPs on seagrass development. It also suggests that the exposure of seagrasses to MPs/NPs in natural environments could have negative consequences on the functioning of seagrass ecosystems. This stresses the importance of implementing cleaning programs to remove all plastics already present in marine habitats as well as of undertaking specific actions to prevent the introduction of these pollutants within seagrass meadows.
Collapse
Affiliation(s)
- Virginia Menicagli
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy; Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy
| | - Monica Ruffini Castiglione
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Elena Balestri
- Department of Biology, University of Pisa, via Derna 1, 56126 Pisa, Italy.
| | - Lucia Giorgetti
- Institute of Agricultural Biology and Biotechnology (IBBA-CNR), Pisa, Italy
| | - Stefania Bottega
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy
| | - Carlo Sorce
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Carmelina Spanò
- Department of Biology, University of Pisa, via L. Ghini 13, 56126 Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy
| | - Claudio Lardicci
- Center for Instrument Sharing University of Pisa (CISUP), University of Pisa, via S. Maria 53, Pisa, Italy; Center for Climate Change Impact, University of Pisa, Via Del Borghetto 80, Pisa, Italy; Department of Earth Sciences, University of Pisa, via S. Maria 53, Pisa, Italy
| |
Collapse
|
37
|
Gerstenbacher CM, Finzi AC, Rotjan RD, Novak AB. A review of microplastic impacts on seagrasses, epiphytes, and associated sediment communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119108. [PMID: 35259472 DOI: 10.1016/j.envpol.2022.119108] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/11/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Microplastics have been discovered ubiquitously in marine environments. While their accumulation is noted in seagrass ecosystems, little attention has yet been given to microplastic impacts on seagrass plants and their associated epiphytic and sediment communities. We initiate this discussion by synthesizing the potential impacts microplastics have on relevant seagrass plant, epiphyte, and sediment processes and functions. We suggest that microplastics may harm epiphytes and seagrasses via impalement and light/gas blockage, and increase local concentrations of toxins, causing a disruption in metabolic processes. Further, microplastics may alter nutrient cycling by inhibiting dinitrogen fixation by diazotrophs, preventing microbial processes, and reducing root nutrient uptake. They may also harm seagrass sediment communities via sediment characteristic alteration and organism complications associated with ingestion. All impacts will be exacerbated by the high trapping efficiency of seagrasses. As microplastics become a permanent and increasing member of seagrass ecosystems it will be pertinent to direct future research towards understanding the extent microplastics impact seagrass ecosystems.
Collapse
Affiliation(s)
| | - Adrien C Finzi
- Department of Biology, Boston University, MA, 02215, USA
| | - Randi D Rotjan
- Department of Biology, Boston University, MA, 02215, USA
| | - Alyssa B Novak
- Department of Earth and Environment, Boston University, MA, 02215, USA.
| |
Collapse
|
38
|
Compa M, Alomar C, Morató M, Álvarez E, Deudero S. Spatial distribution of macro- and micro-litter items along rocky and sandy beaches of a Marine Protected Area in the western Mediterranean Sea. MARINE POLLUTION BULLETIN 2022; 178:113520. [PMID: 35339063 DOI: 10.1016/j.marpolbul.2022.113520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/26/2022] [Accepted: 02/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, the spatial distribution and physical characteristics of beach macro- and micro-litter within the Cabrera Archipelago Maritime-Terrestrial National Park (Cabrera MPA), in the Balearic Islands have been analysed. For macro-litter items, a mean concentration of 1.9 ± 2.4 items/m2 weighing a total of 13 kg was quantified. In terms of beach composition, cobble beaches with deposited seagrass had almost twice as much marine litter as other beaches. For beach micro-litter items, white and transparent microplastics within the size class of 1-2 mm were the most abundant on all the beaches, and the most common polymer types were polyethylene (64%) and polypropylene (17.2%). Overall, for both macro- and micro-litter items, plastic was the most dominant material (90%) identified on all beaches surveyed within Cabrera MPA, indicating areas of low anthropogenic pressures are increasingly becoming sinks for marine litter.
Collapse
Affiliation(s)
- Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain.
| | - Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Mercè Morató
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Elvira Álvarez
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, Mallorca 07015, Spain
| |
Collapse
|
39
|
Martin J, Lusher AL, Nixon FC. A review of the use of microplastics in reconstructing dated sedimentary archives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150818. [PMID: 34637878 DOI: 10.1016/j.scitotenv.2021.150818] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
Buried microplastics (plastics, <5 mm) have been documented within the sediment column of both marine and lacustrine environments. However, the number of peer-review studies published on the subject remains limited and confidence in data reliability varies considerably. Here we critically review the state of the literature on microplastic loading inventories in dated sedimentary and soil profiles. We conclude that microplastics are being sequestered across a variety of sedimentary environments globally, at a seemingly increasing rate. However, microplastics are also readily mobilised both within depositional settings and the workplace. Microplastics are commonly reported from sediments dated to before the onset of plastic production and researcher-derived microplastics frequently contaminate samples. Additionally, the diversity of microplastic types and issues of constraining source points has so far hindered interpretation of depositional settings. Therefore, further research utilizing high quality data sets, greater levels of reporting transparency, and well-established methodologies from the geosciences will be required for any validation of microplastics as a sediment dating method or in quantifying temporally resolved microplastic loading inventories in sedimentary sinks with confidence.
Collapse
Affiliation(s)
- Jake Martin
- Department of Geography, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Norway.
| | - Amy L Lusher
- Norwegian Institute for Water Research, Oslo, Norway; Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - Francis Chantel Nixon
- Department of Geography, Faculty of Social and Educational Sciences, Norwegian University of Science and Technology, Norway
| |
Collapse
|
40
|
Cesarini G, Scalici M. Riparian vegetation as a trap for plastic litter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118410. [PMID: 34715271 DOI: 10.1016/j.envpol.2021.118410] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/26/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Plastic pollution represents the most widespread threaten throughout the world and, amongst aquatic habitats, freshwaters and in particular riparian zones seems to be highly disturbed. Since the plastic storage and accumulation on the riparian vegetation have not yet been deeply investigated, here, we focussed on the riparian zone's function in trapping plastic litter. To do so, we assessed the occurrence and density of plastics in different vegetated (arboreal, shrubby, herbaceous, reed, bush) and unvegetated types in 8 central Italian rivers, running in different land use contexts. Our results showed that plastic pieces, bags, bottles and food containers were the most abundant specific categories on the vegetated types, demonstrating the riparian vegetation role in trapping plastic litter. Specifically, the highest plastic density was found on the shrubby type suggesting that a tree shape retains plastics more easily than all other vegetated and unvegetated types. Shape and size classification of plastics are not significantly different between vegetated and unvegetated types. These findings allow to collect important information on how the riparian vegetation can be exploited in management activities for removing plastic litters from both freshwater and sea, being the former considered the main plastic source for the latter. This study highlights a further ecosystem service as mechanical filter provided by the riparian zone, even if further studies ought to be performed to understand the role of vegetation as plastic trap and the possible detrimental effects of plastics on the plant health status.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy.
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, Viale G. Marconi 446, 00146, Rome, Italy
| |
Collapse
|
41
|
Monkul MM, Özhan HO. Microplastic Contamination in Soils: A Review from Geotechnical Engineering View. Polymers (Basel) 2021; 13:polym13234129. [PMID: 34883632 PMCID: PMC8659065 DOI: 10.3390/polym13234129] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022] Open
Abstract
Microplastic contamination is a growing threat to marine and freshwater ecosystems, agricultural production, groundwater, plant growth and even human and animal health. Disintegration of plastic products due to mainly biochemical or physical activities leads to the formation and existence of microplastics in significant amounts, not only in marine and freshwater environments but also in soils. There are several valuable studies on microplastics in soils, which have typically focused on environmental, chemical, agricultural and health aspects. However, there is also a need for the geotechnical engineering perspective on microplastic contamination in soils. In this review paper, first, degradation, existence and persistence of microplastics in soils are assessed by considering various studies. Then, the potential role of solid waste disposal facilities as a source for microplastics is discussed by considering their geotechnical design and addressing the risk for the migration of microplastics from landfills to soils and other environments. Even though landfills are considered as one of the main geotechnical structures that contribute to the formation of considerably high amounts of microplastics and their contamination in soils, some other geotechnical engineering applications (i.e., soil improvement with tirechips, forming engineering fills with dredged sediments, soil improvement with synthetic polymer-based fibers, polystyrene based lightweight fill applications), as potential local source for microplastics, are also mentioned. Finally, the importance of geotechnical engineering as a mitigation tool for microplastics is emphasized and several important research topics involving geotechnical engineering are suggested.
Collapse
|
42
|
The Management of Agriculture Plastic Waste in the Framework of Circular Economy. Case of the Almeria Greenhouse (Spain). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182212042. [PMID: 34831794 PMCID: PMC8625533 DOI: 10.3390/ijerph182212042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/06/2021] [Accepted: 11/13/2021] [Indexed: 01/25/2023]
Abstract
In recent decades, ecosystems have suffered diverse environmental impacts caused by anthropogenic activities, including the dumping of plastic waste. This situation has prompted the European Union to introduce a new policy based on the circular economy. In this study, the present state and future perspectives on the generation and treatment of plastic waste in the intensive agriculture of Almeria (Spain) are analyzed. This activity generates 1503.6 kg·ha−1·year−1, on average, of plastic waste with an approximate treatment cost of 0.25 €/kg. The present study shows that the volume of plastic waste from intensive agriculture in Almeria is constantly increasing (48,948.2 tons in 2020/21) and it is suggested that the current management system does not meet the needs of the sector. Although it presents great opportunities for improvement under the framework of the circular economy. Furthermore, this work reports a direct relationship between the price of the raw materials needed for the production of plastic and the volume of recycled plastics. For this reason, it would be advisable for the administration to consider the implementation of a tax rebate system for the sector and specifically when the petroleum derivatives used to manufacture plastic are less expensive, and the recycling option is not so attractive.
Collapse
|
43
|
Allen D, Allen S, Le Roux G, Simonneau A, Galop D, Phoenix VR. Temporal Archive of Atmospheric Microplastic Deposition Presented in Ombrotrophic Peat. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:954-960. [PMID: 34778488 PMCID: PMC8582260 DOI: 10.1021/acs.estlett.1c00697] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Ombrotrophic peatland-fed solely from atmospheric deposition of nutrients and precipitation-provide unique archives of atmospheric pollution and have been used to illustrate trends and changes in atmospheric trace element composition from the recent decadal to the Holocene period. With the acknowledgment of atmosphere plastic pollution, analysis of ombrotrophic peat presents an opportunity to characterize the historical atmospheric microplastic pollution prevalence. Ombrotrophic peatland is often located in comparatively pristine mountainous and boreal areas, acting as sentinels of environmental change. In this paired site study, a Sphagnum ombrotrophic peat record is used for the first time to identify the trend of atmospheric microplastic pollution. This high altitude, remote location ombrotrophic peat archive pilot study identifies microplastic presence in the atmospheric pollution record, increasing from <5(±1) particles/m2/day in the 1960s to 178(±72) particles/m2/day in 2015-2020 in a trend similar to the European plastic production and waste management. Compared to this catchment's lake sediment archive, the ombrotrophic peat core appears to be effective in collecting and representing atmospheric microplastic deposition in this remote catchment, collecting microplastic particles that are predominantly ≤20 μm. This study suggests that peat records may be a useful tool in assessing the past quantities and trends of atmospheric microplastic.
Collapse
Affiliation(s)
- D. Allen
- Department
of Civil and Environmental Engineering, University of Strathclyde, Glasgow G11XJ, Scotland
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
| | - S. Allen
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
- School
of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, England
- Department
of Earth and Environmental Sciences, Dalhousie
University, Halifax, NS B3H 4R2, Canada
| | - G. Le Roux
- Laboratoire
écologie fonctionnelle et environnement, Université de Toulouse, CNRS, Toulouse 31062, France
| | - A. Simonneau
- ISTO, Université d’Orléans, CNRS UMR 7327, BRGM, 45100 Orléans, France
| | - D. Galop
- GEODE, Université Toulouse
Jean Jaurès, UMR-CNRS 5602, Toulouse 31062, France
- LabEx
DRIIHM, OHM Pyrénées Haut
Vicdessos, ANR-11-LABX-0010,
INEE-CNRS, Paris 75000, France
| | - V. R. Phoenix
- Department
of Civil and Environmental Engineering, University of Strathclyde, Glasgow G11XJ, Scotland
| |
Collapse
|
44
|
Esiukova EE, Lobchuk OI, Volodina AA, Chubarenko IP. Marine macrophytes retain microplastics. MARINE POLLUTION BULLETIN 2021; 171:112738. [PMID: 34343752 DOI: 10.1016/j.marpolbul.2021.112738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs, 0.2-5 mm) contamination of water outside/inside thickets of macrophytes in the Baltic Sea was studied. The amount of MPs particles in water samples taken within thickets is on average 1.7 times higher than in water samples taken in the areas outside thickets. Fibres are the predominant type of MPs (92.5%). For algae growing on boulders, the abundance of MPs is 1245 ± 1020 items/m2. Per kilogram of dry algae mass the MPs abundance is 376 ± 404 items/kgDW for all shapes of MPs particles. This value is one order of magnitude higher than in sands of the swash zone in the given area. It is shown that filamentous algae retain more fibres than cartilaginous ones: 1.9-8.5 versus 1-1.1 items/l on average. Obviously, areas covered by sea grasses are much more contaminated than water and sediments in the given region.
Collapse
Affiliation(s)
- E E Esiukova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia.
| | - O I Lobchuk
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - A A Volodina
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| | - I P Chubarenko
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow 117997, Russia
| |
Collapse
|
45
|
Cesarini G, Cera A, Battisti C, Taurozzi D, Scalici M. Is the weight of plastic litter correlated with vegetal wrack? A case study from a Central Italian beach. MARINE POLLUTION BULLETIN 2021; 171:112794. [PMID: 34352532 DOI: 10.1016/j.marpolbul.2021.112794] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 07/20/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
This study analyzes the occurrence and distribution of plastic litter and the entrapment of plastic by wrack beached on a natural reserve. Large microplastics (2.5 - 5 mm) were the most abundant plastic size category detected. The main color and shape were white and fragment, respectively. The plastics entrapped by egagropiles were mainly transparent fibers. We analyzed the correlation between the weights of plastic litter and vegetal wrack in two transects, selected for their different environmental characteristics. The transect closer to a breakwater showed a significant positive correlation between the weights of plastics and wrack, while the other transect suggested a casual pattern of plastic deposition on the beach. Further research is suggested to focus on the role of breakwaters in altering marine currents and enhancing plastic beaching.
Collapse
Affiliation(s)
- Giulia Cesarini
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy
| | - Alessandra Cera
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy.
| | - Corrado Battisti
- Torre Flavia LTER (Long Term Ecological Research) Station, Protected Areas - Regional Park Service, Città Metropolitana di Roma Capitale, viale G. Ribotta, 41, 00144 Rome, Italy
| | - Davide Taurozzi
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy
| | - Massimiliano Scalici
- Department of Sciences, University of Roma Tre, viale G. Marconi 446, 00146 Rome, Italy
| |
Collapse
|
46
|
de Smit JC, Anton A, Martin C, Rossbach S, Bouma TJ, Duarte CM. Habitat-forming species trap microplastics into coastal sediment sinks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145520. [PMID: 33770872 DOI: 10.1016/j.scitotenv.2021.145520] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 05/26/2023]
Abstract
Nearshore biogenic habitats are known to trap sediments, and may therefore also accumulate biofouled, non-buoyant microplastics. Using a current-generating field flume (TiDyFLOW), we experimentally assessed the mechanisms of microplastic trapping of two size classes, 0.5 mm and 2.5 mm particle size, by three contrasting types of biogenic habitats: 1) seagrasses, 2) macroalgae, and 3) scleractinian corals. Results showed that benthic organisms with a complex architecture and rough surface - such as hard corals - trap the highest number of microplastics in their aboveground structure. Sediment was however the major microplastic sink, accumulating 1 to 2 orders of magnitude more microplastics than the benthic structure. Microplastic accumulation in the sediment could be explained by near-bed turbulent kinetic energy (TKE), indicating that this is governed by the same hydrodynamic processes leading to sediment trapping. Thus, the most valuable biogenic habitats in terms of nursery and coastal protection services also have the highest capacity of accumulating microplastics in their sediments. A significantly larger fraction of 0.5 mm particles was trapped in the sediment compared to 2.5 mm particles, because especially the smaller microplastics are entrained into the sediment. Present observations contribute to explaining why especially microplastics smaller than 1 mm are missing in surface waters.
Collapse
Affiliation(s)
- Jaco C de Smit
- NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, P.O. Box 140, 4400 AC Yerseke, the Netherlands; Faculty of Geosciences, Department of Physical Geography, Utrecht University, the Netherlands.
| | - Andrea Anton
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Cecilia Martin
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Susann Rossbach
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Tjeerd J Bouma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Estuarine and Delta Systems, P.O. Box 140, 4400 AC Yerseke, the Netherlands; Faculty of Geosciences, Department of Physical Geography, Utrecht University, the Netherlands
| | - Carlos M Duarte
- Red Sea Research Center (RSRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia; Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| |
Collapse
|