1
|
Kandaiah R, Ravindran A, Panneerselvan L, Manivannan AC, Kulanthaisamy M, Sobhani Z, Bhagwat-Russell G, Palanisami T. A comprehensive analysis and risk evaluation of microplastics contamination in Australian commercial plant growth substrates: Unveiling the invisible threat. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136310. [PMID: 39486335 DOI: 10.1016/j.jhazmat.2024.136310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/04/2024]
Abstract
In Australia, quality standards for composts and potting mixes are defined by AS4454-2012 and AS3743-2012. These standards outline key parameters, including physicochemical properties, nutrient content, and plant toxicity. However, they do not address emerging pollutants like microplastics (< 1 mm). This study investigates the prevalence and characteristics of MPs in commercial plant growth substrates (PGS), including nineteen potting mixes and five composts, revealing a significant occurrence of MPs, with concentrations ranging from 233 to 7367 particles Kg-1 and an average of 1869 ± 109 particles Kg-1. MPs categorized by shape, size, and color, with fragments (491 ± 34 particles Kg-1), white colour (3700 ± 917 particles Kg-1), and size 500 µm being predominant. The polymer composition was diverse, with polyethylene being the most prevalent, followed by polypropylene and others. Polyterpene, Polyalkene, Pentaerythritol, and Propylene glycol were identified in PGS for the first time. The structural equation model showed that physicochemical properties like pH, EC, TOC, and heavy metals influence MPs abundance and characteristics. The Polymer Risk Index and Pollution Load Index indicated varying risk levels among the samples. These findings highlight the need to address MPs contamination in PGS to ensure ecosystem safety and human health.
Collapse
Affiliation(s)
- Raji Kandaiah
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Akila Ravindran
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Logeshwaran Panneerselvan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Arun Chandra Manivannan
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Mohanrasu Kulanthaisamy
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Zahra Sobhani
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Geetika Bhagwat-Russell
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia
| | - Thava Palanisami
- Environmental Plastic & Innovation Cluster (EPIC), Global Innovative Centre for Advanced Nanomaterials (GICAN), College of Engineering, Science and Environment, The University of Newcastle, NSW 2308, Australia.
| |
Collapse
|
2
|
Hu T, Lü F, Zhang H, Yuan Z, He P. Wet oxidation technology can significantly reduce both microplastics and nanoplastics. WATER RESEARCH 2024; 263:122177. [PMID: 39111211 DOI: 10.1016/j.watres.2024.122177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/28/2024] [Indexed: 08/26/2024]
Abstract
For the resource recovery of biomass waste, it is a challenge to simultaneously remove micro-/nano-plastics pollution but preserve organic resources. Wet oxidation is a promising technology for valorization of organic wastes through thermal hydrolysis and oxidation. This might in turn result in the degradation of microplastics in the presence of oxygen and high temperatures. Based on this hypothesis, this study quantified both microplastics and nanoplastics in an industrial-scale wet oxidation reactor from a full-size coverage perspective. Wet oxidation significantly reduced the size and mass of individual microplastics, and decreased total mass concentration of microplastics and nanoplastics by 94.8 % to 98.6 %. This technology also reduced the micro- and nanoplastic shapes and polymer types, resulting in a complete removal of fibers, clusters, polypropylene (PP) and poly(methyl methacrylate) (PMMA). The present study confirms that wet oxidation technology is effective in removing microplastics and nanoplastics while recovering organic waste.
Collapse
Affiliation(s)
- Tian Hu
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Zhiwen Yuan
- Ningbo Kaseen Ecology Technology Co., Ltd., Ningbo 315000, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
3
|
Guo S, Xiao G, Chen Y, Zhang J, Zhang B, Ru S, Zhao M. Unraveling the characteristics of microplastics in agricultural soils upon long-term organic fertilizer application: A comprehensive study using diversity indices. CHEMOSPHERE 2024; 364:143235. [PMID: 39218259 DOI: 10.1016/j.chemosphere.2024.143235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Microplastics negatively impact soil health and productivity. Organic fertilizers constitute significant contributors of microplastics in agricultural soils. Nevertheless, comprehensive data on the diversity of microplastics in long-term fertilized soils remain unavailable. In this study, we assessed the presence of microplastics in soils subjected to application of three different organic fertilizers (pig manure, chicken manure, and sludge composts) over 12 years, and evaluated the potential ecological risks posed by microplastic accumulation. The average microplastic abundance in soil was 368.88 ± 207.97 (range: 90-910) items/kg. Microplastic abundance differed among fertilization treatments, with substantial increases of 16.67%, 71.67%, and 61.43% upon low to high application of the three treatments, respectively. Overall, the microplastics predominantly comprised fibers (70.94%) and fragments (25.25%), of which a substantial proportion constituted light-colored microplastics (transparent and white). The size of microplastics was mainly concentrated in the 1-2 mm range (39.96%), with rayon, polypropylene, polyester, and polyethylene being identified as the major types. The risk assessment indices of the three treatments were 229.38, 257.64, and 175.89, respectively, and were all classified as level 4 (high risk). The microplastic diversity integrated index and principal component analysis revealed that microplastics were uniformly distributed throughout the 0-20 cm soil depth consequent to tillage activity. Together, these findings provide a comprehensive assessment of microplastic pollution in long-term fertilized soils and serve as a scientific basis for reducing microplastic contamination in agricultural soils.
Collapse
Affiliation(s)
- Sen Guo
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guangmin Xiao
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Baogui Zhang
- College of Land Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shuhua Ru
- Institute of Agro-Resources and Environment, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, China.
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
4
|
Naeem A, Farooq MA, Shafiq M, Arshad M, Din AA, Alazba AA. Quantification and polymeric characterization of microplastics in composts and their accumulation in lettuce. CHEMOSPHERE 2024; 361:142520. [PMID: 38834092 DOI: 10.1016/j.chemosphere.2024.142520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/06/2024]
Abstract
Organic fertilizers have become a vector for the transport of microplastics (MPs), which pose human health concerns through the food chain. This study aimed to quantify and characterize MPs in eight different compost samples of various raw materials and their subsequent translocation to lettuce (Lacuta sativa) grown on contaminated composts. The results revealed that the MP abundance ranged from 3810 to 16530 MP/kg. Municipal solid waste compost (MSWC) had highest abundance (16082 ± 632 MP/kg), followed by leaf compost (LC) and organic compost (OC) (6299 ± 1011 and 3680 ± 419 MP/kg, respectively). MPs of <100 μm in size were most dominant in MSWC and LC. Fragments and fibers were the prevalent shape types, with white/transparent colored MPs being more abundant. Polyethylene (PE), polypropylene (PP) and polyethylene terephthalate (PET) were the dominant polymers. MPs accumulation in the lettuce leaves was greatest in the lettuce plants grown on MSWC, followed by those grown on LC and OC, indicating that MSWC grown lettuce is not suitable for human consumption. The decrease in the growth (leaf length, number of leaves, leaf fresh and weights) and physiological (membrane stability index, relative water contents) parameters of lettuce was in line with the trend of MP accumulations. Hence, it is highly important to regulate the plastic contents in compost because it is a threat to ecosystems and human health.
Collapse
Affiliation(s)
- Aamna Naeem
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan; Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | - Muhammad Shafiq
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Aamir Alaud Din
- Institute of Environmental Sciences and Engineering (IESE), School of Civil and Environmental Engineering (SCEE), National University of Sciences and Technology (NUST), Islamabad, 44000, Pakistan
| | - Abdulrahman Ali Alazba
- Department of Agricultural Engineering, College of Food and Agriculture Sciences, King Saud University, PO Box 2460, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
5
|
Imasha HUE, Babel S. Unveiling the abundance and potential impacts of microplastic contamination in commercial organic fertilizers/compost produced from different solid waste. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:50767-50781. [PMID: 39102146 DOI: 10.1007/s11356-024-34554-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
This study comprehensively investigated the abundance, morphologies, and polymer types of plastics, larger (1-5 mm) and smaller (< 1 mm) microplastics (MPs), in organic fertilizers using spectroscopic and microscopic methods. MPs abundance varied depending on the type of waste employed. MPs were detected in 80% of the investigated compost samples, while macro/meso plastics were found in only four samples. Compost from mixed municipal solid waste exhibited the highest MPs contamination (23100 ± 3615 items/kg dry weight), whereas compost produced from canteen waste had the lowest contamination (100 ± 65 items/kg dry weight). Smaller MPs were dominant in all samples. The estimated loads of MPs introduced into agricultural soil exceeded the previous studies. Common morphologies observed were sheet, film, fragment, and fiber, while dominant polymer types were polyethylene (PE), polypropylene (PP), polyvinyl chloride (PVC), polyethylene terephthalate (PET), and polystyrene (PS). Heavy metals, including Cr, Cu, Ni, and Pb, were identified in association with MPs. Results indicate that the utilization of appropriate waste for composting and upgrading fertilizer regulations is crucial to protect the environment and human health from smaller MPs.
Collapse
Affiliation(s)
- Hewawasam Udumullage Erangi Imasha
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand
| | - Sandhya Babel
- School of Biochemical Engineering and Technology, Sirindhorn International Institute of Technology, Thammasat University, P.O. Box 22, Pathum Thani, 12121, Thailand.
| |
Collapse
|
6
|
Aloisi M, Grifoni D, Zarivi O, Colafarina S, Morciano P, Poma AMG. Plastic Fly: What Drosophila melanogaster Can Tell Us about the Biological Effects and the Carcinogenic Potential of Nanopolystyrene. Int J Mol Sci 2024; 25:7965. [PMID: 39063206 PMCID: PMC11277132 DOI: 10.3390/ijms25147965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Today, plastic pollution is one of the biggest threats to the environment and public health. In the tissues of exposed species, micro- and nano-fragments accumulate, leading to genotoxicity, altered metabolism, and decreased lifespan. A model to investigate the genotoxic and tumor-promoting potential of nanoplastics (NPs) is Drosophila melanogaster. Here we tested polystyrene, which is commonly used in food packaging, is not well recycled, and makes up at least 30% of landfills. In order to investigate the biological effects and carcinogenic potential of 100 µm polystyrene nanoparticles (PSNPs), we raised Oregon [R] wild-type flies on contaminated food. After prolonged exposure, fluorescent PSNPs accumulated in the gut and fat bodies. Furthermore, PSNP-fed flies showed considerable alterations in weight, developmental time, and lifespan, as well as a compromised ability to recover from starvation. Additionally, we noticed a decrease in motor activity in DNAlig4 mutants fed with PSNPs, which are known to be susceptible to dietary stressors. A qPCR molecular investigation of the larval intestines revealed a markedly elevated expression of the genes drice and p53, suggesting a response to cell damage. Lastly, we used warts-defective mutants to assess the carcinogenic potential of PSNPs and discovered that exposed flies had more aberrant masses than untreated ones. In summary, our findings support the notion that ingested nanopolystyrene triggers metabolic and genetic modifications in the exposed organisms, eventually delaying development and accelerating death and disease.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Osvaldo Zarivi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Sabrina Colafarina
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
- INFN Laboratori Nazionali del Gran Sasso, Assergi, 67100 L’Aquila, Italy
| | - Anna Maria Giuseppina Poma
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (M.A.); (D.G.); (O.Z.); (S.C.); (P.M.)
| |
Collapse
|
7
|
Premarathna KSD, Gayara Degamboda N, Fernando BHR, Sandanayake S, Pathirana C, Jayarathna L, Ranasinghe CS, Vithanage M. Plastics and plastic-bound toxic metals in municipal solid waste compost from Sri Lanka. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:306. [PMID: 39002030 DOI: 10.1007/s10653-024-02081-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 06/16/2024] [Indexed: 07/15/2024]
Abstract
This study examined plastics and toxic metals in municipal solid waste compost from various regions in Sri Lanka. Plastics were extracted using density separation, digested using wet peroxidation, and identified using Fourier Transform Infra-Red Spectroscopy in Attenuated Total Reflection mode. Compost and plastics were acid-digested to quantify total Cd, Cu, Co, Cr, Pb, and Zn concentrations and analyzed for the bioavailable fraction using 0.01 M CaCl2. Notably, plastics were highly abundant in most compost samples. The main plastic types detected were polyethylene, polypropylene, and cellophane. However, the average Cd, Cu, Co, Cr, Pb, and Zn levels were 0.727, 60.78, 3.670, 25.44, 18.95, and 130.7 mg/kg, respectively, which are well below the recommended levels. Zn was the most bioavailable (2.476 mg/kg), and Cd was the least bioavailable (0.053 mg/kg) metal associated with compost. The Contamination factor data show that there is considerable enhancement of Cd and Cu, however, Cr, Cu, Co, and Pb are at low contamination levels. Mean geo accumulation index values were 1.39, 1.07, - 1.06, - 0.84, - 0.32, and 0.08 for Cd, Cu, Co, Cr, Pb, and Zn. Therefore, the contamination level of compost samples with Cd and Cu ranges from uncontaminated to contaminated levels, whereas Co, Cr, Pb, and Zn are at uncontaminated levels. Despite no direct metal-plastic correlation, plastics in compost could harm plants, animals, and humans due to ingestion. Hence, reducing plastic and metal contamination in compost is crucial.
Collapse
Affiliation(s)
- K S D Premarathna
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - N Gayara Degamboda
- Department of Forestry and Environmental Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - B H R Fernando
- Coconut Research Institute of Sri Lanka, Bandirippuwa Estate, Lunuwila, Sri Lanka
| | - Sandun Sandanayake
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Chaamila Pathirana
- Department of Forestry and Environmental Science, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Lakmal Jayarathna
- National Institute of Fundamental Studies, Hantana Road, Kandy, Sri Lanka
| | - C S Ranasinghe
- Coconut Research Institute of Sri Lanka, Bandirippuwa Estate, Lunuwila, Sri Lanka
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Nugegoda, Sri Lanka.
| |
Collapse
|
8
|
Yu H, Pu Z, Wang S, Chen Y, Wang C, Wan Y, Dong Y, Wang J, Wan S, Wang D, Xie Z. Mitigating microplastic stress on peanuts: The role of biochar-based synthetic community in the preservation of soil physicochemical properties and microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172927. [PMID: 38719057 DOI: 10.1016/j.scitotenv.2024.172927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024]
Abstract
Tire-derived rubber crumbs (RC), as a new type of microplastics (MPs), harms both the environment and human health. Excessive use of plastic, the decomposition of which generates microplastic particles, in current agricultural practices poses a significant threat to the sustainability of agricultural ecosystems, worldwide food security and human health. In this study, the application of biochar, a carbon-rich material, to soil was explored, especially in the evaluation of synthetic biochar-based community (SynCom) to alleviate RC-MP-induced stress on plant growth and soil physicochemical properties and soil microbial communities in peanuts. The results revealed that RC-MPs significantly reduced peanut shoot dry weight, root vigor, nodule quantity, plant enzyme activity, soil urease and dehydrogenase activity, as well as soil available potassium, and bacterial abundance. Moreover, the study led to the identification highly effective plant growth-promoting rhizobacteria (PGPR) from the peanut rhizosphere, which were then integrated into a SynCom and immobilized within biochar. Application of biochar-based SynCom in RC-MPs contaminated soil significantly increased peanut biomass, root vigor, nodule number, and antioxidant enzyme activity, alongside enhancing soil enzyme activity and rhizosphere bacterial abundance. Interestingly, under high-dose RC-MPs treatment, the relative abundance of rhizosphere bacteria decreased significantly, but their diversity increased significantly and exhibited distinct clustering phenomenon. In summary, the investigated biochar-based SynCom proved to be a potential soil amendment to mitigate the deleterious effects of RC-MPs on peanuts and preserve soil microbial functionality. This presents a promising solution to the challenges posed by contaminated soil, offering new avenues for remediation.
Collapse
Affiliation(s)
- Hong Yu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Zitian Pu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Shuaibing Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yinglong Chen
- The UWA Institute of Agriculture, School of Agriculture and Environment, The University of Western Australia, Perth, WA 6009, Australia
| | - Chao Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Yongshan Wan
- College of Agronomy, Shandong Agricultural University, Taian 271018, China
| | - Yuanjie Dong
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China
| | - Jianguo Wang
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Institute of Crop Germplasm Resources, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Dandan Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian 271018, China.
| |
Collapse
|
9
|
Guo H, Chang Z, Lu Z, Dai Q, Xiang M, Zheng T, Li Z, Zhong Z, Yu Y. Enhanced humification of full-scale apple wood and cow manure by promoting lignocellulose degradation via biomass pretreatments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172646. [PMID: 38653417 DOI: 10.1016/j.scitotenv.2024.172646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Agroforestry waste and cow manure pollute the environment, of which, agroforestry waste is difficult to degrade. Compost is an effective way to dispose agroforestry waste; however, the low degradation efficiency of lignocellulose in agroforestry waste affects the process of composting humification. This study investigated lignocellulose degradation and composting humification in full-size apple wood and cow manure composting processes by applying different pretreatments (acidic, alkaline, and high-temperature) to apple wood. Simultaneously, physicochemical characterization and metagenome sequencing were combined to analyze the function of carbohydrate-active enzymes database (CAZy). Therefore, microbial communities and functions were linked during the composting process and the lignocellulose degradation mechanism was elaborated. The results showed that the addition of apple wood increased the compost humus (HS) yield, and pretreatment of apple wood enhanced the lignocellulose degradation during composting processes. In addition, pretreatment improved the physicochemical properties, such as temperature, pH, electric conductivity (EC), ammonium nitrogen (NH4+), and nitrate nitrogen (NO3-) in the compost, of which, acid treated apple wood compost (AcAWC) achieved the highest temperature of 58.4 °C, effectively promoting nitrification with NO3- ultimately reaching 0.127 g/kg. In all composts, microbial networks constructed a high proportion of positively correlated connections, and microorganisms promoted the composting process through cooperation. The proportions of glycosyltransferase (GT) and glycoside hydrolase (GH) promoted the separation and degradation of lignocellulose during composting to form HS. Notably, the adverse effects of the alkali-treated apple wood compost on bacteria were greater. AcAWC showed significant correlations between bacterial and fungal communities and both lignin and hemicellulose, and had more biomarkers associated with lignocellulose degradation and humification. The lignin degradation rate was 24.57 % and the HS yield increased by 27.49 %. Therefore, AcAWC has been confirmed to enhance lignocellulose degradation and promote compost humification by altering the properties of the apple wood and establishing a richer microbial community.
Collapse
Affiliation(s)
- Haobo Guo
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhaofeng Chang
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China; Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Zhiyong Lu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Qipeng Dai
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Mingdeng Xiang
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Tong Zheng
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zhenchi Li
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Zijuan Zhong
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China
| | - Yunjiang Yu
- Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environment Sciences, Ministry of Ecology and Environment, Guangdong 510655, China.
| |
Collapse
|
10
|
Brťková H, Růžičková J, Slamová K, Raclavská H, Kucbel M, Šafář M, Gikas P, Juchelková D, Švédová B, Flodrová Š. Plastic particles in urban compost and their grain size distribution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 351:124025. [PMID: 38670428 DOI: 10.1016/j.envpol.2024.124025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/28/2024]
Abstract
Gathering information on plastic particles in composts and the processes they undergo is important in terms of potentially limiting their further entry into the environment, for example, in improving the fertilising properties of soils. Microplastics (MPs) were determined in composts produced from urban greenery. They are present in decreasing order: polyethylene terephthalate, polystyrene, polyethylene, and polypropylene. The determination of polymers and additives used to improve their properties was performed by pyrolysis and gas chromatography with mass spectrometric detection (Py-GC/MS). Additives and microplastics are most concentrated in composts in the 0.315-0.63 and 0.63-1.25 mm grain size class, together with the carbon contained in the compost dry matter. Additives form 0.11-0.13% of MPs in dry matter of compost. The average concentration of microplastics in the particle size class from 0.63 to 1.25 mm is 2434 ± 224 mg/kg; in the total sample of composts, it is 1368 ± 286 mg/kg of P-MPs. For composts with particle size <2.5 mm, a relationship between the C/N ratio and the plastic particle concentration was statistically significant. It documents a similar behaviour of lignocellulose and plastic particles during the degradation processes. A relationship between the concentration of polymer markers and additives in the compost dry matter and their concentrations in the leachate has been demonstrated. The leachability from compost is higher for additives than for chemical compounds originating from the decomposition of the main components of MPs. The suitability of the use of the compost for agricultural purposes was monitored by the germination index (GI) for watercress. The lowest value of the GI was determined in the particle size class from 0.63 to 1.25 mm. The leachability of polymer markers and additives alone cannot explain the low GI value in this grain size class. The GI value is also influenced by the leachability of chemical compounds characterised by the value of dissolved organic carbon (DOC) and water-leachable nitrogen (Nw). A statistically significant dependence between DOC/Nw and the germination index value was found.
Collapse
Affiliation(s)
- Hana Brťková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Jana Růžičková
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Karolina Slamová
- Institute of Foreign Languages, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Helena Raclavská
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Marek Kucbel
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic.
| | - Michal Šafář
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Petros Gikas
- School of Chemical and Environmental Engineering, Technical University of Crete, Kounoupidiana, Akrotiri, 731 00 Chania, Greece
| | - Dagmar Juchelková
- Department of Electronics, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Barbora Švédová
- Centre CEET/ENET, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| | - Šárka Flodrová
- Department of Power Engineering, VŠB - Technical University of Ostrava, Ostrava-Poruba, Moravian-Silesian Region, 708 00, Czech Republic
| |
Collapse
|
11
|
Wang Y, Xiao N, Dong Z, Shao T, Wang R, Ge Y, Xing B. Occurrence characteristics and potential risk of microplastics under different land conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124282. [PMID: 38821341 DOI: 10.1016/j.envpol.2024.124282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 06/02/2024]
Abstract
Microplastics (MPs) pollution has caused widespread concern, more researchers have focused on MPs in farmland soil. However, the distribution of MPs in different land use types, land restoration years and crop types remained largely unexplored. Therefore, the study investigated the distribution characteristics and evaluated ecological risk of MPs in soil of northern Shaanxi Province, China. The abundance, particle size, morphology and polymer types of MPs in soil were analyzed by sample collection, Raman spectroscopy and laser direct infrared spectroscopy (LDIR). The ecological risk index (H) and pollution load index (PLI) were employed to assess the risks posed by MPs in the soil. It was shown that the concentration of MPs in farmland soil was the highest (4483 items·kg-1) among the different land use types. The average abundance of microplastics in farmland soil was 1.98 times than that in industrial park soil. An increase in restoration years corresponded with a decrease in MPs abundance and an increase in smaller-sized MPs. In addition, the content of MPs in the soil of perennial crops was more stable, with fluctuations less than 25%, and the size of MPs was smaller than that of the annual crops. The main types of MPs in the soil of the study area were PP (28.5%) and PET (24.1%), MPs with size between 20 and 40 μm were dominated. Based on the pollution load index (PLI), 51.9% of the sampling sites were categorized as moderately polluted, and the MPs pollution risk of farmland soil was the highest. Mild and moderate pollution caused fewer adverse impact, while extremely strong pollution was detrimental to ecosystems and human health. In general, the study would provide a foundational understanding of MPs pollution levels and environment risk associated with different land use types, land restoration years and crop types.
Collapse
Affiliation(s)
- Yanhua Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China.
| | - Na Xiao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Zhibao Dong
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Tianjie Shao
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Ruiyuan Wang
- School of Geography and Tourism, Shaanxi Normal University, Xi'an, 710119, China
| | - Yi Ge
- Shaanxi Province Environmental Monitoring Center, Xi'an, 710054, China
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|
12
|
Zhang L, Zhao W, Yan R, Yu X, Barceló D, Sui Q. Microplastics in different municipal solid waste treatment and disposal systems: Do they pose environmental risks? WATER RESEARCH 2024; 255:121443. [PMID: 38492313 DOI: 10.1016/j.watres.2024.121443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/18/2024]
Abstract
Microplastic (MP) pollution is a significant worldwide environmental and health challenge. Municipal solid waste (MSW) can be an important source of MPs in the environment if treated and disposed of inappropriately, causing potential ecological risks. MSW treatment and disposal methods have been gradually shifting from landfilling/dumping to more sustainable approaches, such as incineration or composting. However, previous studies on MP characteristics in different MSW treatment and disposal systems have mainly focused either on landfills/dumpsites or composts. The lack of knowledge of multiple MSW treatment and disposal systems makes it difficult to ensure effective MP pollution control during MSW treatment and disposal. Therefore, this study systematically summarizes the occurrence of MPs in different MSW treatment and disposal systems (landfill/dumpsite, compost, and incineration) on the Eurasian scale, and discusses the factors that influence MPs in individual MSW treatment and disposal systems. In addition, the paper assesses the occurrence of MPs in the surrounding environment of MSW treatment and disposal systems and their ecological risks using the species sensitivity distribution approach. The study also highlights recommendations for future research, to more comprehensively describe the occurrence and fate of MPs during MSW treatment and disposal processes, and to develop appropriate pollution control measures to minimize MP pollution.
Collapse
Affiliation(s)
- Lei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wentao Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruiqi Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xia Yu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research (IDAEA-CSIC), Barcelona 08034, Spain
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
13
|
Magni S, Fossati M, Pedrazzani R, Abbà A, Domini M, Menghini M, Castiglioni S, Bertanza G, Binelli A, Della Torre C. Plastics in biogenic matrices intended for reuse in agriculture and the potential contribution to soil accumulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123986. [PMID: 38636833 DOI: 10.1016/j.envpol.2024.123986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
The spread of biogenic matrices for agricultural purposes can lead to plastic input into soils, raising a question on possible consequences for the environment. Nonetheless, the current knowledge concerning the presence of plastics in biogenic matrices is very poor. Therefore, the objective of the present study was a quali-quantitative characterization of plastics in different matrices reused in agriculture as manures, digestate, compost and sewage sludges. Plastics were quantified and characterized using a Fourier Transform Infrared Spectroscopy coupled with an optical microscope (μFT-IR) in Attenuated Total Reflectance mode. Our study showed the presence of plastics in all the investigated samples, albeit with differences in the content among the matrices. We measured a lower presence in animal matrices (0.06-0.08 plastics/g wet weight w.w.), while 3.14-5.07 plastics/g w.w. were measured in sewage sludges. Fibres were the prevalent shape and plastic debris were mostly in the micrometric size. The most abundant polymers were polyester (PEST), polypropylene (PP) and polyethylene (PE). The worst case was observed in the compost sample, where 986 plastics/g w.w. were detected. The majority of these plastics were compostable and biodegradable, with only 8% consisting of fragments of PEST and PE. Our results highlighted the need to thoroughly evaluate the contribution of reused matrices in agriculture to the plastic accumulation in the soil system.
Collapse
Affiliation(s)
- Stefano Magni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | - Marco Fossati
- Istituto di Ricerche Farmacologiche Mario Negri IRCSS, Italy
| | - Roberta Pedrazzani
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Italy
| | - Alessandro Abbà
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Marta Domini
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Michele Menghini
- Dipartimento di Ingegneria Meccanica e Industriale, Università degli Studi di Brescia, Italy
| | | | - Giorgio Bertanza
- Dipartimento di Ingegneria Civile, Architettura, Territorio, Ambiente e di Matematica, Università degli Studi di Brescia, Italy
| | - Andrea Binelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Italy
| | | |
Collapse
|
14
|
Groß M, Mail M, Wrigley O, Debastiani R, Scherer T, Amelung W, Braun M. Plastic Fruit Stickers in Industrial Composting─Surface and Structural Alterations Revealed by Electron Microscopy and Computed Tomography. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7124-7132. [PMID: 38599582 PMCID: PMC11044595 DOI: 10.1021/acs.est.3c08734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 02/15/2024] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Often large quantities of plastics are found in compost, with price look-up stickers being a major but little-explored component in the contamination path. Stickers glued to fruit or vegetable peels usually remain attached to the organic material despite sorting processes in the composting plant. Here, we investigated the effects of industrial composting on the structural alterations of these stickers. Commercial polypropylene (PP) stickers on banana peels were added to a typical organic material mixture for processing in an industrial composting plant and successfully resampled after a prerotting (11 days) and main rotting step (25 days). Afterward, both composted and original stickers were analyzed for surface and structural changes via scanning electron microscopy, Fourier-transform infrared spectroscopy, and micro- and nano-X-ray computed tomography (CT) combined with deep learning approaches. The composting resulted in substantial surface changes and degradation in the form of microbial colonization, deformation, and occurrence of cracks in all stickers. Their pore volumes increased from 16.7% in the original sticker to 26.3% at the end of the compost process. In a similar way, the carbonyl index of the stickers increased. Micro-CT images additionally revealed structural changes in the form of large adhesions that penetrated the surface of the sticker. These changes were accompanied by delamination after 25 days of composting, thus overall hinting at the degradation of the stickers and the subsequent formation of smaller microplastic pieces.
Collapse
Affiliation(s)
- Max Groß
- Institute
of Crop Science and Resource Conservation (INRES), Soil Science and
Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Matthias Mail
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Olivia Wrigley
- Institute
of Crop Science and Resource Conservation (INRES), Soil Science and
Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Rafaela Debastiani
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Torsten Scherer
- Institute
of Nanotechnology (INT), Karlsruhe Institute
of Technology (KIT), Kaiserstr. 12, 76131 Karlsruhe, Germany
- Karlsruhe
Nano Micro Facility (KNMFi), Karlsruhe Institute
of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Wulf Amelung
- Institute
of Crop Science and Resource Conservation (INRES), Soil Science and
Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| | - Melanie Braun
- Institute
of Crop Science and Resource Conservation (INRES), Soil Science and
Soil Ecology, University of Bonn, Nussallee 13, 53115 Bonn, Germany
| |
Collapse
|
15
|
Li X, Liu L, Zhang X, Yang X, Niu S, Zheng Z, Dong B, Hur J, Dai X. Aging and mitigation of microplastics during sewage sludge treatments: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171338. [PMID: 38428608 DOI: 10.1016/j.scitotenv.2024.171338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Wastewater treatment plants (WWTPs) receive large quantities of microplastics (MPs) from raw wastewater, but many MPs are trapped in the sludge. Land application of sludge is a significant source of MP pollution. Existing reviews have summarized the analysis methods of MPs in sludge and the effect of MPs on sludge treatments. However, MP aging and mitigation during sludge treatment processes are not fully reviewed. Treatment processes used to remove water, pathogenic microorganisms, and other pollutants in sewage sludge also cause surface changes and degradation in the sludge MPs, affecting the potential risk of MPs. This study integrates MP abundance and distribution in sludge and their aging and mitigation characteristics during sludge treatment processes. The abundance, composition, and distribution of sludge MPs vary significantly with WWTPs. Furthermore, MPs exhibit variable degrees of aging, including rough surfaces, enhanced adsorption potentials for pollutants, and increased leaching behavior. Various sludge treatment processes further intensify these aging characteristics. Some sludge treatments, such as hydrothermal treatment, have efficiently removed MPs from sewage sludge. It is crucial to understand the potential risk of MP aging in sludge and the degradation properties of the MP-derived products from MP degradation in-depth and develop novel MP mitigation strategies in sludge, such as combining hydrothermal treatment and biological processes.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Lulu Liu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Xiaolei Zhang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - XingFeng Yang
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Shiyu Niu
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Zhiyong Zheng
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, National Engineering Research Center for Urban Pollution Control, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| |
Collapse
|
16
|
Yang Z, Zhang H, Lü F, Yang Y, Hu T, He P. A Novel High-Throughput Detection Method for Plastic Debris in Organic-Rich Matrices Based on Image Fusion. Anal Chem 2024; 96:6045-6054. [PMID: 38569073 DOI: 10.1021/acs.analchem.4c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Plastic pollution pervades natural environments and wildlife. Consequently, high-throughput detection methods for plastic debris are urgently needed. A novel method was developed to detect plastic debris larger than 0.5 mm, which integrated an extraction method with low organic loss and plastic damage alongside a classification method for fused images. This extraction method broadened the size range of the remaining plastic debris, while the fusion solved the low spatial resolution of hyperspectral images and the absence of spectral information in red-green-blue (RGB) images. This method was validated for plastic debris in digestate, compost, and sludge, with extraction demonstrating 100% recovery rates for all samples. After fusion, the spatial resolution of hyperspectral images was improved about five times. Classification recall for the fused hyperspectral images achieved 97 ± 8%, surpassing 83 ± 29% of the raw images. Application of this method to solid digestate detected 1030 ± 212 items/kg of plastic debris, comparable with the conventional Fourier transform infrared spectroscopic result of 1100 ± 436 items/kg. This developed method can investigate plastic debris in complex matrices, simultaneously addressing a wide range of sizes and types. This capability helps acquire reliable data to predict secondary microplastic generation and conduct a risk assessment.
Collapse
Affiliation(s)
- Zhan Yang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Yicheng Yang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Tian Hu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
17
|
Zhang S, Li Y, Jiang L, Chen X, Zhao Y, Shi W, Xing Z. From organic fertilizer to the soils: What happens to the microplastics? A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 919:170217. [PMID: 38307274 DOI: 10.1016/j.scitotenv.2024.170217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/24/2023] [Accepted: 01/14/2024] [Indexed: 02/04/2024]
Abstract
In recent, soil microplastic pollution arising from organic fertilizers has been of a great increasing concern. In response to this concern, this review presents a comprehensive analysis of the occurrence and evolution of microplastics in organic fertilizers, their ingress into the soil, and the subsequent impacts. Organic fertilizers are primarily derived from solid organic waste generated by anthropocentric activities including urban (daily-life, municipal wastes and sludge), agricultural (manure, straw), and industrial (like food industrial waste etc.) processes. In order to produce organic fertilizer, the organic solid wastes are generally treated by aerobic composting or anaerobic digestion. Currently, microplastics have been widely detected in the raw materials and products of organic fertilizer. During the process of converting organic solid waste materials into fertilizer, intense oxidation, hydrolysis, and microbial actions significantly alter the physical, chemical, and surface biofilm properties of the plastics. After the organic fertilizer application, the abundances of microplastics significantly increased in the soil. Additionally, the degradation of these microplastics often promotes the adsorption of organic pollutants and affects their retention time in the soil. These microplastics, covered by biofilms, also significantly alter soil ecology due to the unique properties of the biofilm. Furthermore, the biofilms also play a role in the degradation of microplastics in the soil environment. This review offers a new perspective on the soil environmental processes involving microplastics from organic fertilizer sources and highlights the challenges associated with further research on organic fertilizers and microplastics.
Collapse
Affiliation(s)
- Shengwei Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yanxia Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Linshu Jiang
- Beijing University of Agriculture, Beijing 102206, China.
| | - Xingcai Chen
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yan Zhao
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wenzhuo Shi
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhijie Xing
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
18
|
Pan H, Yu T, Zheng Y, Ma H, Shan J, Yi X, Liu Y, Zhan J, Wang W, Zhou H. Isolation, characteristics, and poly(butylene adipate-co-terephthalate) (PBAT) degradation mechanism of a marine bacteria Roseibium aggregatum ZY-1. MARINE POLLUTION BULLETIN 2024; 201:116261. [PMID: 38537567 DOI: 10.1016/j.marpolbul.2024.116261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/11/2024] [Accepted: 03/11/2024] [Indexed: 04/07/2024]
Abstract
Marine microorganisms have been reported to degrade microplastics. However, the degradation mechanisms are still poorly understood. In this study, a bacterium Roseibium aggregatum ZY-1 was isolated from seawater, which can degrade poly(butylene adipate-co-terephthalate) (PBAT). The PBAT-PLA(polylactic acid, PLA) films, before and after degradation, were characterized by scanning electron microscope (SEM) and Fourier transform infrared spectrometer (FTIR), the weight loss rate and water contact angle were measured. The results indicate that ZY-1 colonized on PBAT-PLA film, changed the functional groups and decreased water contact angle of PBAT-PLA film. Moreover, liquid chromatography mass spectrometry (LC-MS) analysis reveales that PBAT was degraded into its oligomers (TB, BTB) and monomers (T, A) during 10 days, and adipic acid (A) could be used as a sole carbon source. The whole genome sequencing analyses illustrate the mechanisms and enzymes such as PETase, carboxylesterases, arylesterase (PpEst) and genes like pobA, pcaBCDFGHIJKT, dcaAEIJK, paaGHJ involved in PBAT degradation. Therefore, the R. aggregatum ZY-1 will be a promising candidate of PBAT degradation.
Collapse
Affiliation(s)
- Haixia Pan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Tianyi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yuan Zheng
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Huiqing Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jiajia Shan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Xianliang Yi
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Yang Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Jingjing Zhan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China
| | - Wenyuan Wang
- State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Ocean Science and Technology, Panjin Campus, Dalian University of Technology, Panjin, China.
| |
Collapse
|
19
|
Estoppey N, Castro G, Slinde GA, Hansen CB, Løseth ME, Krahn KM, Demmer V, Svenni J, Tran TVAT, Asimakopoulos AG, Arp HPH, Cornelissen G. Exposure assessment of plastics, phthalate plasticizers and their transformation products in diverse bio-based fertilizers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170501. [PMID: 38307289 DOI: 10.1016/j.scitotenv.2024.170501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024]
Abstract
Bio-based fertilizers (BBFs) produced from organic waste have the potential to reduce societal dependence on limited and energy-intensive mineral fertilizers. BBFs, thereby, contribute to a circular economy for fertilizers. However, BBFs can contain plastic fragments and hazardous additives such as phthalate plasticizers, which could constitute a risk for agricultural soils and the environment. This study assessed the exposure associated with plastic and phthalates in BBFs from three types of organic wastes: agricultural and food industry waste (AgriFoodInduWaste), sewage sludge (SewSludge), and biowaste (i.e., garden, park, food and kitchen waste). The wastes were associated with various treatments like drying, anaerobic digestion, and vermicomposting. The number of microplastics (0.045-5 mm) increased from AgriFoodInduWaste-BBFs (15-258 particles g-1), to SewSludge-BBFs (59-1456 particles g-1) and then to Biowaste-BBFs (828-2912 particles g-1). Biowaste-BBFs mostly contained packaging plastics (e.g., polyethylene terephthalate), with the mass of plastic (>10 g kg-1) exceeding the EU threshold (3 g kg-1, plastics >2 mm). Other BBFs mostly contained small (< 1 mm) non-packaging plastics in amounts below the EU limit. The calculated numbers of microplastics entering agricultural soils via BBF application was high (107-1010 microplastics ha-1y-1), but the mass of plastic released from AgriFoodInduWaste-BBFs and SewSludge-BBFs was limited (< 1 and <7 kg ha-1y-1) compared to Biowaste-BBFs (95-156 kg ha-1y-1). The concentrations of di(2-ethylhexyl)phthalate (DEHP; < 2.5 mg kg-1) and phthalate transformation products (< 8 mg kg-1) were low (< benchmark of 50 mg kg-1 for DEHP), attributable to both the current phase-out of DEHP as well as phthalate degradation during waste treatment. The Biowaste-BBF exposed to vermicomposting indicated that worms accumulated phthalate transformation products (4 mg kg-1). These results are overall positive for the implementation of the studied AgriFoodInduWaste-BBFs and SewSludge-BBFs. However, the safe use of the studied Biowaste-BBFs requires reducing plastic use and improving sorting methods to minimize plastic contamination, in order to protect agricultural soils and reduce the environmental impact of Biowaste-BBFs.
Collapse
Affiliation(s)
- Nicolas Estoppey
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway.
| | - Gabriela Castro
- Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway; Department of Analytical Chemistry, Nutrition and Food Sciences, Institute for Research in Chemical and Biological Analysis (IAQBUS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Gøril Aasen Slinde
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Caroline Berge Hansen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Mari Engvig Løseth
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | | | - Viona Demmer
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway
| | - Jørgen Svenni
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | - Teresa-Van-Anh Thi Tran
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Department of Mechanical, Electrical and Chemical Engineering, Faculty of Technology, Art and Design, OsloMet, 0176 Oslo, Norway
| | | | - Hans Peter H Arp
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Science and Technology (NTNU), 7024 Trondheim, Norway
| | - Gerard Cornelissen
- Norwegian Geotechnical Institute (NGI), P.O. Box. 3930, Ullevål Stadion, N-0806 Oslo, Norway; Norwegian University of Life Sciences (NMBU), 1432 Ås, Norway
| |
Collapse
|
20
|
He Y, Lu J, Li C, Wang X, Jiang C, Zhu L, Bu X, Jabeen K, Vo TT, Li D. From pollution to solutions: Insights into the sources, transport and management of plastic debris in pristine and urban rivers. ENVIRONMENTAL RESEARCH 2024; 245:118024. [PMID: 38151151 DOI: 10.1016/j.envres.2023.118024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/13/2023] [Accepted: 12/22/2023] [Indexed: 12/29/2023]
Abstract
River systems are important recipients of environmental plastic pollution and have become key pathways for the transfer of mismanaged waste from the land to the ocean. Understanding the sources and fate of plastic debris, including plastic litter (>5 mm) and microplastics (MPs) (<5 mm), entering different riverine systems is essential to mitigate the ongoing environmental plastic pollution crisis. We comprehensively investigated the plastic pollution in the catchments of two rivers in the Yangtze River basin: an urban river, the Suzhou section of the Beijing-Hangzhou Grand Canal (SZ); and a pristine rural river, the Jingmen section of the Hanjiang River (JM). The abundance of plastic pollutants in SZ was significantly higher than in JM: 0.430 ± 0.450 items/m3 and 0.003 ± 0.003 items/m3 of plastic litter in the water; 23.47 ± 25.53 n/m3 and 2.78 ± 1.55 n/m3 MPs in the water; and 218.82 ± 77.40 items/kg and 5.30 ± 1.99 items/kg of MPs in the sediment, respectively. Plastic litter and MPs were closely correlated in abundance and polymer composition. Overall, the polymer type, shape and color of MPs were dominant by polypropylene (42.5%), fragment (60.4%) and transparent (40.0%), respectively. Source tracing analysis revealed that packaging, shipping, and wastewater were the primary sources of plastic pollutants. The mantel analysis indicated that socio-economic and geospatial factors play crucial roles in driving the hotspot formation of plastic pollution in river networks. The composition of the MP communities differed significantly between the sediments and the overlying water. The urban riverbed sediments had a more pronounced pollutant 'sink' effect compared with the pristine rivers. These findings suggested that the modification of natural streams during urbanization may influence the transport and fate of plastic pollutants in them. Our results offer pivotal insights into effective preventive measures.
Collapse
Affiliation(s)
- Yinan He
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Jungang Lu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Changjun Li
- Ocean School, Yantai University, Yantai 264005, China
| | - Xiaohui Wang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Chunhua Jiang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Lixin Zhu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Xinyu Bu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - Khalida Jabeen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China
| | - TuanLinh Tran Vo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China; Institute of Oceanography, Viet Nam Academy of Science and Technology (VAST), 1 Cau Da Street, Nha Trang, Khanh Hoa 650000, Viet Nam
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062, China; Plastic Marine Debris Research Center, East China Normal University, Shanghai 200241, China; Region Training and Research Center on Plastic Marine Debris and Microplastics, IOC-UNESCO, 200241, China.
| |
Collapse
|
21
|
Mutlu T, Minaz M, Baytaşoğlu H, Gedik K. Microplastic pollution in stream sediments discharging from Türkiye's eastern Black sea basin. CHEMOSPHERE 2024; 352:141496. [PMID: 38373447 DOI: 10.1016/j.chemosphere.2024.141496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/29/2023] [Accepted: 02/16/2024] [Indexed: 02/21/2024]
Abstract
Rivers are the principal route for terrestrial microplastics to reach the marine environment. The Black Sea exhibits a notable representation because it has a drainage zone almost six times the surface area and is semi-closed, meaning that microplastics tend to gather there. To mitigate MP pollution, it is necessary to identify the contamination sources and then raise public awareness. Thus, the current study focused on the MP presence in the sediment of streams running into the SE Black Sea. 594 MPs were observed in sediment samples from 16 stations along the 350 km coastline. The abundance of MP was higher, particularly in streams that pass through locations with high tourism and industrial activity levels. Detected MPs ranged between 0.1 and 5 mm, while the overall density was smaller than 1 mm. Fragments and fiber MPs were regularly detected, although the presence of films was rarely recorded. The polymer structures that were most commonly observed in the analyzed pollutants were PET and PE. The current study uncovered MP contamination in stream sediments originating from Türkiye's Eastern Black Sea basin and might be a baseline work for future inland water studies.
Collapse
Affiliation(s)
- Tanju Mutlu
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey
| | - Mert Minaz
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey.
| | - Hazel Baytaşoğlu
- Department of Aquaculture, Faculty of Fisheries, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Kenan Gedik
- Vocational School of Technical Sciences, Recep Tayyip Erdogan University, 53100, Rize, Turkey.
| |
Collapse
|
22
|
Bahrani F, Mohammadi A, Dobaradaran S, De-la-Torre GE, Arfaeinia H, Ramavandi B, Saeedi R, Tekle-Röttering A. Occurrence of microplastics in edible tissues of livestock (cow and sheep). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:22145-22157. [PMID: 38403824 DOI: 10.1007/s11356-024-32424-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Plastic contamination is widely recognized as a major environmental concern due to the entry of small plastic particles into the food chain, thereby posing potential hazards to human health. However, the current understanding of microplastic (MP; < 5 mm) particles in livestock, which serve as an important food source, is limited. This study aims to investigate the concentration and characteristics of MPs in edible tissues of cow and sheep, namely liver, meat, and tripe, obtained from butcher shops in five areas of Bushehr port, Iran. The mean concentration of MPs in different tissues of cow and sheep were 0.14 and 0.13 items/g, respectively. Among the examined tissues, cow meat exhibited the highest concentration of MPs, with a concentration of 0.19 items/g. Nylon and fiber were identified as the predominant polymer types and shapes of MPs found in cow and sheep tissues, respectively. Furthermore, no statistically significant difference was observed in MP concentration across different tissues of cow and sheep. Significantly, this study highlights the elevated hazards associated with exposure to MPs through the consumption of edible cow and sheep tissues, particularly for children who consume meat. The results underscore the potential transfer of MPs from the environment to livestock bodies through their food, contamination during meat processing, and subsequent health hazards for consumers.
Collapse
Affiliation(s)
- Farkhondeh Bahrani
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
- Centre for Water and Environmental Research, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany.
| | - Gabriel E De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Saeedi
- Workplace Health Promotion Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Health and Safety, and Environment (HSE), School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, 45877, Gelsenkirchen, Germany
| |
Collapse
|
23
|
Li T, Tao S, Ma M, Liu S, Shen M, Zhang H. Is the application of organic fertilizers becoming an undeniable source of microplastics and resistance genes in agricultural systems? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169571. [PMID: 38142997 DOI: 10.1016/j.scitotenv.2023.169571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
The application of organic fertilizers is becoming an undeniable source of microplastics and antibiotic resistance genes (ARGs) in agricultural soils. The complex microbial activity further transfers resistance genes and their host bacteria to agricultural products and throughout the entire food chain. Therefore, the current main focus is on reducing the abundance of microplastics and ARGs in organic fertilizers at the source, as well as managing microplastics and ARGs in soil. The control of microplastic abundance in organic fertilizers is currently only achieved through pre-composting selection and other methods. However, there are still many shortcomings in the research on the distribution characteristics, propagation and diffusion mechanisms, and control technologies of ARGs, and some key scientific issues still need to be urgently addressed. The high-temperature composting of organic waste can effectively reduce the abundance of ARGs in organic fertilizers to a certain extent. However, it is also important to consider the spread of ARGs in residual antibiotic-resistant bacteria (ARB). This article systematically explores the pathways and interactions of microplastics and resistance genes entering agricultural soils through the application of organic fertilizers. The removal of microplastics and ARGs from organic fertilizers was discussed in detail. Based on the limitations of existing research, further investigation in this area is expected to provide valuable insights for the development and practical implementation of technologies aimed at reducing soil microplastics and resistance genes.
Collapse
Affiliation(s)
- Tianhao Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiyu Tao
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Mengjie Ma
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Shiwei Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| | - Huijuan Zhang
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui 243002, PR China.
| |
Collapse
|
24
|
Li X, Liu X, Zhang J, Chen F, Khalid M, Ye J, Romantschuk M, Hui N. Hydrolase and plastic-degrading microbiota explain degradation of polyethylene terephthalate microplastics during high-temperature composting. BIORESOURCE TECHNOLOGY 2024; 393:130108. [PMID: 38040305 DOI: 10.1016/j.biortech.2023.130108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 11/23/2023] [Indexed: 12/03/2023]
Abstract
This research aims to explore the degradation properties of polyethylene terephthalate (PET) by PET hydrolase (WCCG) in high-temperature composting and its impact on microbial communities. PET degradation, composting parameters and microbial communities were assessed in 220 L sludge composters with PET and WCCG using high-throughput sequencing. Results showed that WCCG addition led to a deceleration of the humification process and a reduction in the relative abundance of thermophilic genera. Potential PET degrading microbiota, e.g. Acinetobacter, Bacillus, were enriched in the plastisphere in the composters where PET reduced by 26 % without WCCG addition. The external introduction of the WCCG enzyme to compost predominantly instigates a chemical reaction with PET, concurently curtailing the proliferation of plastic-degrading bacteria, leading to a 35 % degradation of PET. Both the WCCG enzyme and the microbiota associated with plastic-degradation showed the potential for reducing PET, offering a novel method for mitigating pollution caused by environmental microplastics.
Collapse
Affiliation(s)
- Xiaoxiao Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Xinxin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Junren Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Fu Chen
- School of Public Administration, Hohai University, Nanjing 211100, China.
| | - Muhammad Khalid
- College of Science and Technology, Wenzhou-Kean University, Wenzhou 325060, China
| | - Jieqi Ye
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140, Finland.
| | - Nan Hui
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; Faculty of Biological and Environmental Sciences, University of Helsinki, Niemenkatu 73, Lahti 15140, Finland; Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, 800 Dongchuan Rd., 200240, Shanghai; Shanghai Urban Forest Ecosystem Research Station, National Forestry and Grassland Administration, 800 Dongchuan Rd., 200240, Shanghai, China.
| |
Collapse
|
25
|
Long Y, Zhang Y, Zhou Z, Liu R, Qiu Z, Qiu Y, Li J, Wang W, Li X, Yin L, Wen X. Are microplastics in livestock and poultry manure an emerging threat to agricultural soil safety? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11543-11558. [PMID: 38212564 DOI: 10.1007/s11356-024-31857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) have attracted much attention in recent years, due to the difficulty of degradation and threats to ecological systems and humans. Based on the analysis of 1429 articles on MPs in soil, we found that we know little about the behavior and fate of manure-born MPs from the livestock and poultry production systems to agriculture soils. This review summarizes the analytical methods for sampling, separation, and identification and the occurrence of MPs in livestock and poultry manure, mainly based on 7 surveys related to manure-born MPs. Then, the sources, fate, and environmental risks of MPs in livestock and poultry manure are discussed. MPs, heavy metals, pathogens, antibiotic resistance genes, and persistent organic pollutants are common pollutants in livestock and poultry manure. Worse, manure-born MPs will become smaller, rougher, and more numerous and could easily form more toxic compound pollution after complicated processes of manure treatment, which seriously threatens agricultural soil safety. Finally, an outlook is offered for future research. We hope this article to attract attention to the risks of MPs in livestock and poultry manure and provide a reference for future research.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruyi Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ziyi Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Yiming Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Juan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Lingshi Yin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
26
|
Steiner T, Leitner LC, Zhang Y, Möller JN, Löder MGJ, Greiner A, Laforsch C, Freitag R. Detection and specific chemical identification of submillimeter plastic fragments in complex matrices such as compost. Sci Rep 2024; 14:2282. [PMID: 38280916 PMCID: PMC10821947 DOI: 10.1038/s41598-024-51185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/01/2024] [Indexed: 01/29/2024] Open
Abstract
Research on the plastic contamination of organic fertilizer (compost) has largely concentrated on particles and fragments > 1 mm. Small, submillimeter microplastic particles may be more hazardous to the environment. However, research on their presence in composts has been impeded by the difficulty to univocally identify small plastic particles in such complex matrices. Here a method is proposed for the analysis of particles between 0.01 and 1.0 mm according to number, size, and polymer type in compost. As a first demonstration of its potential, the method is used to determine large and small microplastic in composts from eight municipal compost producing plants: three simple biowaste composters, four plants processing greenery and cuttings and one two-stage biowaste digester-composter. While polyethylene, PE, tends to dominate among fragments > 1 mm, the microplastic fraction contained more polypropylene, PP. Whereas the contamination with PE/PP microplastic was similar over the investigated composts, only composts prepared from biowaste contained microplastic with a signature of biodegradable plastic, namely poly(butylene adipate co-terephthalate), PBAT. Moreover, in these composts PBAT microplastic tended to form the largest fraction. When the bulk of residual PBAT in the composts was analyzed by chloroform extraction, an inverse correlation between the number of particles > 0.01 mm and the total extracted amount was seen, arguing for breakdown into smaller particles, but not necessarily a mass reduction. PBAT oligomers and monomers as possible substrates for subsequent biodegradation were not found. Remaining microplastic will enter the environment with the composts, where its subsequent degradability depends on the local conditions and is to date largely uninvestigated.
Collapse
Affiliation(s)
- Thomas Steiner
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany
| | | | - Yuanhu Zhang
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | - Julia N Möller
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Martin G J Löder
- Animal Ecology I & BayCEER, University of Bayreuth, Bayreuth, Germany
| | - Andreas Greiner
- Macromolecular Chemistry II, University of Bayreuth, Bayreuth, Germany
| | | | - Ruth Freitag
- Process Biotechnology, University of Bayreuth, Universitätsstrasse 30, 95440, Bayreuth, Germany.
| |
Collapse
|
27
|
Wahl A, Davranche M, Rabiller-Baudry M, Pédrot M, Khatib I, Labonne F, Canté M, Cuisinier C, Gigault J. Condition of composted microplastics after they have been buried for 30 years: Vertical distribution in the soil and degree of degradation. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132686. [PMID: 37866145 DOI: 10.1016/j.jhazmat.2023.132686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/24/2023]
Abstract
Microplastics in soils are a growing concern. Composting household wastes can introduce microplastics to agroecosystems, because when unsorted compost is used as a fertilizer, the plastic debris it contains degrades to microplastics. This paper examines the distribution and degradation of microplastics in agricultural soil samples to investigate their potential mobility. The source of microplastics was a household waste compost added to the soil more than 30 years before the study. The microplastics were sorted from a plot-composite soil and characterised by Attenuated Total Reflectance combined with Fourier transform infrared spectroscopy (ATR-FTIR). The microplastics are present in the cultivated depth but have not been transferred deeper (2.9 g kg-1 in the 0-5 cm soil depth against 0.9 g kg-1 in the 30-35 cm soil depth). Polyethylene (PE), polypropylene (PP), polystyrene (PS) and Polyvinylchloride (PVC) were identified in the forms of heterogeneous fragments, films, and fibres and accounted for 90% of the total microplastics. Advanced degradation observed was mainly assumed to be due to composting, though the plastic may have degraded further in the soil matrix. Highly degraded plastics are a greater danger for further leaching of contaminants into soil and our food supply.
Collapse
Affiliation(s)
- Aurélie Wahl
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Mélanie Davranche
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Murielle Rabiller-Baudry
- Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France
| | - Mathieu Pédrot
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Imane Khatib
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Fabian Labonne
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Marion Canté
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Candice Cuisinier
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France
| | - Julien Gigault
- Univ. Rennes, CNRS, Geosciences Rennes, UMR 6118, F-35000 Rennes, France; TAKUVIK CNRS/ULaval, UMI3376, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
28
|
Zhang J, Akyol Ç, Meers E. Nutrient recovery and recycling from fishery waste and by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119266. [PMID: 37844400 DOI: 10.1016/j.jenvman.2023.119266] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/28/2023] [Accepted: 10/02/2023] [Indexed: 10/18/2023]
Abstract
The circular bio-based economy offers great untapped potential for the food industry as possible valuable products and energy can be recovered from food waste. This can promote more sustainable and resilient food systems in Europe in follow-up of the European Commission's Farm to Fork strategy and support the global transition to more sustainable agri-food systems with the common agricultural and fisheries policies. With its high nutrient content, waste and by-products originating from fish and seafood industry (including aquaculture) are one of the most promising candidates to produce alternative fertilising products which can play a crucial role to replace synthetic mineral fertilisers. Whereas several studies highlighted the opportunities to recover valuable compounds from fishery waste, study towards their potential for the production of fertilising products is still scarce. This study presents an extensive overview of the characteristics of fishery waste and by-products (i.e., fish processing waste, fish sludge, seafood waste/by-products), the state-of-the-art nutrient recovery technologies and recovered nutrients as fertilising products from these waste streams. The European Commission has already adopted a revised Fertilising Products Regulation (EU) 2019/1009 providing opportunities for fertilising products from various bio-based origins. In frame of this opportunity, we address the quality and safety aspects of the fishery waste-derived fertilising products under these criteria and highlight possible obstacles on their way to the market in the future. Considering its high nutrient content and vast abundance, fish sludge has a great potential but should be treated/refined before being applied to soil. In addition to the parameters currently regulated, it is crucial to consider the salinity levels of such fertilising products as well as the possible presence of other micropollutants especially microplastics to warrant their safe use in agriculture. The agronomic performance of fishery waste-derived fertilisers is also compiled and reported in the last section of this review paper, which in most cases perform equally to that of conventional synthetic fertilisers.
Collapse
Affiliation(s)
- Jingsi Zhang
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Çağrı Akyol
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Erik Meers
- Department of Green Chemistry & Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
29
|
Surendran D, Varghese GK, Zafiu C. Characterization and source apportionment of microplastics in Indian composts. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:5. [PMID: 38044370 DOI: 10.1007/s10661-023-12177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 11/22/2023] [Indexed: 12/05/2023]
Abstract
Microplastics (MP), small plastic particles under 5 mm, are pollutants known to carry heavy metals in ecosystems. Composts are a significant source of soil microplastics. This study examined MSW composts from Kochi and Kozhikode in India for microplastic concentrations and heavy metals' accumulation thereon. Microplastics were isolated using zinc chloride density separation, with Fenton's reagent used for organic matter oxidation. Resin types were identified using FTIR analysis that showed the presence of PE, PP, PS, nylon, PET, and allyl alcohol copolymer. In Kozhikode's compost, the average concentration of microplastics was 840 ± 30 items/kg, while Kochi had 1600 ± 111 items/kg, mainly polyethylene films. PE was the most prevalent resin, comprising 58.3% in Kozhikode and 73.37% in Kochi. Heavy metal analysis of MP showed significant concentrations of lead, cadmium, zinc, copper, and manganese adsorbed on the surface of microplastics. The concentrations of heavy metals in the MP before Fenton oxidation ranged from 1.02 to 2.02 times the corresponding concentrations in compost for Kozhikode and 1.23 to 2.85 times for Kochi. Source apportionment studies revealed that 64% of microplastics in Kozhikode and 77% in Kochi originated from single-use plastics. Ecological risk indices, PLI and PHI, showed that composts from both locations fall under hazard level V. The study revealed that compost from unsegregated MSW can act as a significant source of microplastics and heavy metals in the soil environment, with single-use plastics contributing major share of the issue.
Collapse
Affiliation(s)
| | | | - Christian Zafiu
- Institute of Waste Management and Circularity, Department of Water, Atmosphere and Environment, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
30
|
Zhou Y, Zhao H, Lu Z, Ren X, Zhang Z, Wang Q. Synergistic effects of biochar derived from different sources on greenhouse gas emissions and microplastics mitigation during sewage sludge composting. BIORESOURCE TECHNOLOGY 2023; 387:129556. [PMID: 37517712 DOI: 10.1016/j.biortech.2023.129556] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/20/2023] [Accepted: 07/24/2023] [Indexed: 08/01/2023]
Abstract
This study aimed to investigate the effects of biochar derived from different sources (wheat straw, sawdust and pig manure) on greenhouse gas and microplastics (MPs) mitigation during sewage sludge composting. Compared to the control, all biochar significantly reduced the N2O by 28.91-41.23%, while having no apparent effect on CH4. Sawdust biochar and pig manure biochar significantly reduced the NH3 by 12.53-23.53%. Adding biochar decreased the global warming potential during composting, especially pig manure biochar (177.48 g/kg CO2-eq.). The concentration of MPs significantly increased in the control (43736.86 particles/kg) compared to the initial mixtures, while the addition of biochar promoted the oxidation and degradation of MPs (15896.06-23225.11 particles/kg), with sawdust biochar and manure biochar were more effective. Additionally, biochar significantly reduced the abundance of small-sized (10-100 μm) MPs compared to the control. Moreover, biochar might regulate specific microbes (e.g., Thermobifida, Bacillus and Ureibacillus) to mitigate greenhouse gas emissions and MPs degradation.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
31
|
Zhang Y, Tao J, Bai Y, Wang F, Xie B. Incomplete degradation of aromatic-aliphatic copolymer leads to proliferation of microplastics and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108291. [PMID: 37907056 DOI: 10.1016/j.envint.2023.108291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/11/2023] [Accepted: 10/24/2023] [Indexed: 11/02/2023]
Abstract
Biodegradable plastics (BDPs) have attracted extensive attention as an alternative to conventional plastics. BDPs could be mineralized by composting, while the quality of compost affected by the presence of BDPs and the residual microplastics (MPs) has not been well evaluated. This study aimed to explore the MPs release potential and environmental implications of commercial BDPs (aromatic-aliphatic copolymer) films in uncontrolled composting. Results showed that the molecular weight of BDPs decreased by >60% within 60 d. However, the non-extracted organic matter and wet-sieving measurements indicated that MPs continuously released and accumulated during regular composting. The average MPs release potential (0.1-5 mm) was 134.6 ± 18.1 particles/mg (BDPs), which resulted in 103-104 particles/g dw in compost. The plastisphere of MPs showed a significantly higher (0.95-16.76 times) abundance of antibiotic resistance genes (ARGs), which resulted in the rising (1.34-2.24 times) of ARGs in compost heaps, in comparison to the control groups. Overall, BDPs promote the spread of ARGs through the selective enrichment of bacteria and horizontal transfer from released MPs. These findings confirmed that BDPs could enhance the release potential of MPs and the dissemination of ARGs, which would promote the holistic understanding and environmental risk of BDPs.
Collapse
Affiliation(s)
- Yuchen Zhang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jianping Tao
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yudan Bai
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Feng Wang
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation on Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
32
|
Peñalver R, Pérez-Álvarez MD, Arroyo-Manzanares N, Campillo N, Viñas P. Determination of extractable pollutants from microplastics to vegetables: Accumulation and incorporation into the food chain. CHEMOSPHERE 2023; 341:140141. [PMID: 37696477 DOI: 10.1016/j.chemosphere.2023.140141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 02/13/2023] [Accepted: 09/09/2023] [Indexed: 09/13/2023]
Abstract
The presence and impacts of microplastics (MPs) are being extensively researched and reviewed, especially in the marine environment. However, mobility, transportation routes, and accumulation of leaching compounds such as additives in plastic waste including MPs are scarcely studied. Information regarding ecotoxicity and leachability of compounds related to MPs contamination in the environment is limited. Current work presents the levels of leachates from plastic materials in edible-root and non-edible root vegetables. Samples were analyzed by static headspace and gas chromatography-mass spectrometry (SHS-GC-MS) and the presence of 93 putative compounds was accurately monitored in the samples by the usage of Mass Spectrometry-Data Independent Analysis software. The application of chemometrics to the SHS-GC-MS dataset allowed differentiation between the levels of plastic related compounds in edible root and non-edible root vegetables, the former showing a higher content of plastic leachates. For SHS sampling, 3 g of the sample were incubated at 130 °C for 35 min in the HS vial and toluene and naphthalene were added as internal standards for quantification purposes. The developed SHS-GC-MS methodology is straightforward, reliable, and robust and allowed the quantification of sixteen plastic associated compounds in the samples studied in a range from 0.14 to 28800 ng g-1 corresponding to 2,4-di-tert-butylphenol and p,α-dimethylstyrene, respectively. Several of the quantified compounds pointed out to potential contamination of polystyrene and/or polyvinyl chloride MPs.
Collapse
Affiliation(s)
- Rosa Peñalver
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - María Dolores Pérez-Álvarez
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Arroyo-Manzanares
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Natalia Campillo
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain
| | - Pilar Viñas
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100, Murcia, Spain.
| |
Collapse
|
33
|
Zhao H, Zhou Y, Lu Z, Ren X, Barcelo D, Zhang Z, Wang Q. Microplastic pollution in organic farming development cannot be ignored in China: Perspective of commercial organic fertilizer. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132478. [PMID: 37688868 DOI: 10.1016/j.jhazmat.2023.132478] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/28/2023] [Accepted: 09/02/2023] [Indexed: 09/11/2023]
Abstract
Commercial organic fertilizer, an essential fertilizer for developing organic farming in China, has been identified as a potentially important source of microplastics (MPs) on farmland. However, little is known about the occurrence of MPs in commercial organic fertilizers and their potential ecological risks nationwide. Here, stereoscopy and laser-infrared imaging spectrometry were used to comprehensively investigate the abundance, size, type and morphology of MPs in commercial organic fertilizers collected from mainland China, assess the ecological risks, and predict MP contamination. Commercial organic fertilizers contained many MPs (8.88 ×103 to 2.88 ×105 items/kg), especially rich in small-size MPs (<100 µm), accounting for 76.53%. The highest MP pollution load value was observed in fertilizers collected from East China. Chlorinated polyethylene, polyurethane, polyethylene and polypropylene were the dominant MPs with the shape of film and fragment, concentrated in small sizes (<100 µm). The risk index (H-index) of the MPs was used to quantify the ecological risk of the MPs in the different samples, and most of the fertilizers were at level Ⅲ with high risk. Predictably, 2.32 × 1013 - 2.81 × 1016 MPs will accumulate in orchard soils after five years of fertilization, especially in South, Southwest and East China. This study provides primary scientific data on MP pollution in commercial fertilizer and the health development of organic farming.
Collapse
Affiliation(s)
- Haoran Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zonghui Lu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), 08034 Barcelona, Spain
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
34
|
Wang L, Liu J, Li H. Simultaneous degradation of microplastics and sludge during wet air oxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122348. [PMID: 37562524 DOI: 10.1016/j.envpol.2023.122348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 08/08/2023] [Indexed: 08/12/2023]
Abstract
Microplastics (MPs) generated from daily life are commonly collected by urban sewage pipe networks and then transfer to sludge in wastewater treatment plants. Conventional biochemical treatment processes cannot degrade MPs effectively, causing an ecological risk via sludge land use. Wet air oxidation (WAO) is a promising sludge treatment technology with a strong ability to decompose complex organic matter, but its potential for the removal of MPs in sludge was unclear. In this study, three common MPs (polyethylene, polystyrene, and polyethylene terephthalate, which are called PEMPs, PSMPs, and PETMPs) were added into the sludge samples (1 g MP in 180 mL sludge), to test the effects of WAO on sludge and MPs. The results showed that WAO simultaneously degraded sludge and the PEMPs, and the two degradation processes were relatively independent when oxygen was supplied adequately. The dissolution of PSMPs and organic matter in sludge was not affected by each other, but the degradation rate was slowed down due to the interaction of ketones and benzene compounds. The hydrolysis of sludge and PETMPs was accelerated, while the hydrolyzed products such as terephthalic acid were oxidized without interfering with each other. No obvious MPs remained in the effluent, and volatile fatty acids (VFAs) were the main components, among which acetic acid accounted for 90%. When the sludge was treated with PEMPs, PSMPs, or PETMPs, the concentration of acetic acid finally accounted for 45%, 21%, and 18% of DOC. Overall, MPs can be degraded or even mineralized during sludge WAO, and humic acid derivatives, acetate, and other small molecules of alcohols, ketones, or aldehydes were the typical intermediates.
Collapse
Affiliation(s)
- Lin Wang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jiayi Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Huan Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
35
|
Salam M, Zheng H, Liu Y, Zaib A, Rehman SAU, Riaz N, Eliw M, Hayat F, Li H, Wang F. Effects of micro(nano)plastics on soil nutrient cycling: State of the knowledge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118437. [PMID: 37343476 DOI: 10.1016/j.jenvman.2023.118437] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
The ecological impacts of micro(nano)plastics (MNPs) have attracted attention worldwide because of their global occurrence, persistence, and environmental risks. Increasing evidence shows that MNPs can affect soil nutrient cycling, but the latest advances on this topic have not systematically reviewed. Here, we aim to present the state of knowledge about the effects of MNPs on soil nutrient cycling, particularly of C, N, and P. Using the latest data, the present review mainly focuses on three aspects, including (1) the effects and underlying mechanisms of MNPs on soil nutrient cycling, particularly of C, N and P, (2) the factors influencing the effects of MNPs on soil nutrient cycling, and (3) the knowledge gaps and future directions. We conclude that MNPs can alter soil nutrient cycling via mediating soil nutrient availability, soil enzyme activities, functional microbial communities, and their potential ecological functions. Furthermore, the effects of MNPs vary with MNPs characteristics (i.e., polymeric type, size, dosage, and shape), chemical additives, soil physicochemical conditions, and soil biota. Considering the complexity of MNP-soil interactions, multi-scale experiments using environmental relevant MNPs are required to shed light on the effects of MNPs on soil nutrients. By learning how MNPs influence soil nutrients cycles, this review can guide policy and management decisions to safeguard soil health and ensure sustainable agriculture and land use practices.
Collapse
Affiliation(s)
- Muhammad Salam
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Huaili Zheng
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China
| | - Yingying Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China
| | - Aneeqa Zaib
- Department of Environmental Science, Quaid-i-Azam University, Islamabad, Pakistan
| | - Syed Aziz Ur Rehman
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Nimra Riaz
- Department of Environmental Sciences, University of Veterinary and Animal Sciences, 54000, Lahore, Punjab, Pakistan
| | - Moataz Eliw
- Department of Agricultural Economics, Faculty of Agriculture, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal Hayat
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Hong Li
- Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing, 400044, China.
| | - Fayuan Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao, Shandong Province, 266042, China.
| |
Collapse
|
36
|
Goli VSNS, Singh DN. Effect of ultrasonication conditions on polyethylene microplastics sourced from landfills: A precursor study to establish guidelines for their extraction from environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132230. [PMID: 37562353 DOI: 10.1016/j.jhazmat.2023.132230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/09/2023] [Accepted: 08/04/2023] [Indexed: 08/12/2023]
Abstract
Establishing concentration of microplastics (MPs), designated as CMP, in aqueous, semi-solid and solid samples originating from unscientifically created landfills/dumpsites (UCLDs) and engineered landfills (ELFs) is of utmost importance to assess their impact on the geoenvironment. However, the accuracy of CMP will be guided by the extraction efficiency of MPs from these samples. The extraction of MPs from semi-solid and solid samples of UCLDs/ELFs would be cumbersome, mainly due to their trapping in solid aggregates (including organic matter). Such aggregates need to be dispersed to release the MPs, which can be achieved through the assistance of ultrasonication (US) in the presence of an appropriate dispersing agent. However, mere dispersion of solid aggregates during the US might not result in the complete release of MPs adhered (AMPs) to MPs native (NMPs) to these samples. This is because MPs would adhere to the surface of the adjacent ones due to various physical-mechanical-thermal-chemical processes that prevail in landfills. Hence, guidelines for US-assisted extraction of MPs should be developed by considering an approach that would ensure (i) cleaning of NMPs' surface and (ii) release of AMPs without damaging the former. This necessitates understanding the influence of US parameters such as energy applied (Eus), time (tus) and direct/indirect exposure of NMPs from landfills that would control CMP. In this context, the influence of above mentioned US parameters on the (i) surface cleaning of polyethylene NMPs and (ii) release of AMPs and their concentrations (CAMP) was investigated. It was observed that Eus equal to 500 kJ/L during the indirect method of US would result in surface cleaning of NMPs and complete release of AMPs without damaging the farmer's structure. The present work acts as a precursor study to establish the guidelines for the US-assisted extraction of MPs in environmental samples. Also, a generalized relationship between Eus and CAMP, which can be employed to study the impact of landfill type on the release of MPs during the US was developed.
Collapse
Affiliation(s)
| | - Devendra Narain Singh
- Department of Civil Engineering, Indian Institute of Technology Bombay, Mumbai 400 076, India.
| |
Collapse
|
37
|
Le VR, Nguyen MK, Nguyen HL, Lin C, Rakib MRJ, Thai VA, Le VG, Malafaia G, Idris AM. Organic composts as A vehicle for the entry of microplastics into the environment: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 892:164758. [PMID: 37308024 DOI: 10.1016/j.scitotenv.2023.164758] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/14/2023]
Abstract
Plastic pollution is a widespread issue that poses a threat to agroecosystems. Recent data on microplastic (MP) pollution from compost and its application to soil have highlighted the potential impact of micropollutants that may be transferred from compost. Thus, we aim with this review to elucidate the distribution-occurrence, characterization, fate/transport, and potential risk of MPs from organic compost to gain comprehensive knowledge and mitigate the adverse impacts of compost application. The concentration of MPs in compost was up to thousands of items/kg. Among micropollutants, fibers, fragments, and films are the most common, with small MPs having a higher potential to absorb other pollutants and cause harm to organisms. Various synthetic polymers, including polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS), polyvinyl chloride (PVC), polyester (PES), and acrylic polymers (AP), have been widely used of plastic items. MPs are emerging pollutants that can have diverse effects on soil ecosystems, as they can transfer potential pollutants from MPs to compost and then to the soil. Following the microbial degradation scheme, the transfer chain from plastics to compost to soil can be broken down into main stages, i.e., colonization - (bio)fragmentation - assimilation - and mineralization. Microorganisms and adding biochar play an essential role during composting, which can be an effective solution to enhance MP degradation. Findings have shown that stimulating free radical generation could promote the biodegradation efficacy of MPs and possibly remove their occurrence in compost, thereby reducing their contribution to ecosystem pollution. Furthermore, future recommendations were discussed to reduce ecosystem risks and health challenges.
Collapse
Affiliation(s)
- Van-Re Le
- Ho Chi Minh City University of Food Industry (HUFI), 140 Le Trong Tan Street, Tan Phu District, Ho Chi Minh City 700000, Viet Nam
| | - Minh-Ky Nguyen
- Faculty of Environment and Natural Resources, Nong Lam University of Ho Chi Minh City, Hamlet 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Viet Nam; Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan.
| | - Hoang-Lam Nguyen
- Department of Civil Engineering, McGill University, Montreal, Canada
| | - Chitsan Lin
- Ph.D. Program in Maritime Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung 81157, Taiwan
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali 3814, Bangladesh.
| | - Van-Anh Thai
- Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Van-Giang Le
- Central Institute for Natural Resources and Environmental Studies, Vietnam National University, Hanoi 111000, Viet Nam
| | - Guilherme Malafaia
- Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, 61431 Abha, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61421, Saudi Arabia
| |
Collapse
|
38
|
Blesa Marco ZE, Sáez JA, Pedraza Torres AM, Martínez Sabater E, Orden L, Andreu-Rodríguez FJ, Bustamante MA, Marhuenda-Egea FC, López MJ, Suárez-Estrella F, Moral R. Effect of agricultural microplastic and mesoplastic in the vermicomposting process: Response of Eisenia fetida and quality of the vermicomposts obtained. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122027. [PMID: 37364751 DOI: 10.1016/j.envpol.2023.122027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/28/2023]
Abstract
This work evaluates the effect of agricultural plastic waste (APW) in two particle sizes, microplastic and film debris, and subjected to a pre-treatment by exposure to UV-C, in the development of the vermicomposting process. Eisenia fetida health status and metabolic response and the vermicompost quality and enzymatic activity were determined. The environmental significant of this study is mainly related to how can affect plastic presence (depending on plastic type, size and/or if it is partially degraded) not only to this biological process of organic waste degradation, but also to the vermicompost characteristics, since these organic materials will be reintroduced in the environment as organic amendments and/or fertilizers in agriculture. The plastic presence induced a significant negative effect in survival and body weight of E. fetida with an average decrease of 10% and 15%, respectively, and differences on the characteristics of the vermicomposts obtained, mainly related with NPK content. Although the plastic proportion tested (1.25% f. w.) did not induce acute toxicity in worms, effects of oxidative stress were found. Thus, the exposure of E. fetida to AWP with smaller size or pre-treated with UV seemed to induce a biochemical response, but the mechanism of oxidative stress response did not seem to be dependent on the size or shape of plastic fragments or pre-treated plastic.
Collapse
Affiliation(s)
- Z E Blesa Marco
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain
| | - J A Sáez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain
| | - A M Pedraza Torres
- Laboratorio Ecotoxicologia, Instituto de Ciencias Ambientales (ICAM); Universidad de Castilla La Mancha, Avda. Carlos III, 45071, Toledo, Spain
| | - E Martínez Sabater
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain
| | - L Orden
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain; Estación Experimental Agropecuaria INTA Ascasubi (EEA INTA Ascasubi), Ruta 3 Km 794, 8142, Hilario Ascasubi, Buenos Aires, Argentina
| | - F J Andreu-Rodríguez
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain
| | - M A Bustamante
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain.
| | - F C Marhuenda-Egea
- Department of Agrochemistry and Biochemistry, Multidisciplinary for Environmental Studies Ramón Margalef, San Vicent Del Raspeig, 03690, Alicante, Spain
| | - M J López
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excel-lence CeiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - F Suárez-Estrella
- Unit of Microbiology, Department of Biology and Geology, CITE II-B, Agrifood Campus of International Excel-lence CeiA3, CIAIMBITAL, University of Almeria, 04120 Almeria, Spain
| | - R Moral
- Centro de Investigación e Innovación Agroalimentaria y Agroambiental (CIAGRO-UMH), Universidad Miguel Hernández, Ctra. de Beniel Km 3,2, Orihuela, Alicante, 03312, Spain
| |
Collapse
|
39
|
Sun X, Anoopkumar AN, Madhavan A, Binod P, Pandey A, Sindhu R, Awasthi MK. Degradation mechanism of microplastics and potential risks during sewage sludge co-composting: A comprehensive review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122113. [PMID: 37379875 DOI: 10.1016/j.envpol.2023.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/07/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Microplastics (MPs) as a kind of emerging contaminants, widely exists in various kinds of medium, sewage sludge (SS) is no exception. In the sewage treatment process, a large number of microplastics will be deposited in SS. More seriously, microplastics in sewage sludge can migrate to other environmental media and threaten human health. Therefore, it is necessary to remove MPs from SS. Among the various restorations, aerobic composting is emerging as a green microplastic removal method. There are more and more reports of using aerobic compost to degrade microplastics. However, there are few reports on the degradation mechanism of MPs in aerobic composting, hindering the innovation of aerobic composting methods. Therefore, in this paper, the degradation mechanism of MPs in SS is discussed based on the environmental factors such as physical, chemical and biological factors in the composting process. In addition, this paper expounds the MPs in potential hazards, and combined with the problems in the present study were studied the outlook.
Collapse
Affiliation(s)
- Xinwei Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China
| | - A N Anoopkumar
- Centre for Research in Emerging Tropical Diseases (CRET-D), Department of Zoology, University of Calicut, Malappuram, Kerala, India
| | - Aravind Madhavan
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, 690525, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum, 695019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226029, Uttar Pradesh, India; Sustainability Cluster, School of Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam, 691505, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712 100, China.
| |
Collapse
|
40
|
Dube E, Okuthe GE. Plastics and Micro/Nano-Plastics (MNPs) in the Environment: Occurrence, Impact, and Toxicity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6667. [PMID: 37681807 PMCID: PMC10488176 DOI: 10.3390/ijerph20176667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/18/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023]
Abstract
Plastics, due to their varied properties, find use in different sectors such as agriculture, packaging, pharmaceuticals, textiles, and construction, to mention a few. Excessive use of plastics results in a lot of plastic waste buildup. Poorly managed plastic waste (as shown by heaps of plastic waste on dumpsites, in free spaces, along roads, and in marine systems) and the plastic in landfills, are just a fraction of the plastic waste in the environment. A complete picture should include the micro and nano-plastics (MNPs) in the hydrosphere, biosphere, lithosphere, and atmosphere, as the current extreme weather conditions (which are effects of climate change), wear and tear, and other factors promote MNP formation. MNPs pose a threat to the environment more than their pristine counterparts. This review highlights the entry and occurrence of primary and secondary MNPs in the soil, water and air, together with their aging. Furthermore, the uptake and internalization, by plants, animals, and humans are discussed, together with their toxicity effects. Finally, the future perspective and conclusion are given. The material utilized in this work was acquired from published articles and the internet using keywords such as plastic waste, degradation, microplastic, aging, internalization, and toxicity.
Collapse
Affiliation(s)
- Edith Dube
- Department of Biological & Environmental Sciences, Walter Sisulu University, Mthatha 5117, South Africa;
| | | |
Collapse
|
41
|
Rafiq A, Xu JL. Microplastics in waste management systems: A review of analytical methods, challenges and prospects. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 171:54-70. [PMID: 37647726 DOI: 10.1016/j.wasman.2023.08.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/10/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023]
Abstract
Numerous studies have reported the presence of microplastics (MPs) in waste collection and disposal systems. However, current scientific studies on measuring MP occurrence in a waste management context are not comparable due to a lack of standardized methodologies. Consequently, the impact of MPs on ecosystems and human health remains largely unclear. To address the inconsistencies, present in published studies, this review thoroughly examines sample preparation techniques for transfer stations, landfill leachate, recycling, compost, and incineration ash samples. Furthermore, various analytical approaches such as flotation, filtration, and organic matter digestion, as well as morphological categorization, identification, and quantification, are subsequently rigorously assessed. The benefits and limitations of each methodology are evaluated to facilitate the development of accurate and effective methods for detecting and characterizing nanoplastics. Recent research suggests that plastic recycling and composting facilities are the primary environmental sources of microplastic pollution among different waste treatment methods. The most prevalent microplastic types discovered in waste management were polyethylene (PE) and polypropylene (PP), with fragment and fiber being the most frequently reported morphologies. The review highlights a number of tactics that could be integrated into the methodology development for detecting microplastics in waste management systems (WMS), ultimately leading to better consistency and reliability of data across different studies. In essence, this will advance our comprehension of potential risks associated with microplastics.
Collapse
Affiliation(s)
- Adeel Rafiq
- The Joint Graduate School of Energy and Environment, King Mongkut's University of Technology Thonburi, Thailand
| | - Jun-Li Xu
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
42
|
Astner AF, Gillmore AB, Yu Y, Flury M, DeBruyn JM, Schaeffer SM, Hayes DG. Formation, behavior, properties and impact of micro- and nanoplastics on agricultural soil ecosystems (A Review). NANOIMPACT 2023; 31:100474. [PMID: 37419450 DOI: 10.1016/j.impact.2023.100474] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Micro and nanoplastics (MPs and NPs, respectively) in agricultural soil ecosystems represent a pervasive global environmental concern, posing risks to soil biota, hence soil health and food security. This review provides a comprehensive and current summary of the literature on sources and properties of MNPs in agricultural ecosystems, methodology for the isolation and characterization of MNPs recovered from soil, MNP surrogate materials that mimic the size and properties of soil-borne MNPs, and transport of MNPs through the soil matrix. Furthermore, this review elucidates the impacts and risks of agricultural MNPs on crops and soil microorganisms and fauna. A significant source of MPs in soil is plasticulture, involving the use of mulch films and other plastic-based implements to provide several agronomic benefits for specialty crop production, while other sources of MPs include irrigation water and fertilizer. Long-term studies are needed to address current knowledge gaps of formation, soil surface and subsurface transport, and environmental impacts of MNPs, including for MNPs derived from biodegradable mulch films, which, although ultimately undergoing complete mineralization, will reside in soil for several months. Because of the complexity and variability of agricultural soil ecosystems and the difficulty in recovering MNPs from soil, a deeper understanding is needed for the fundamental relationships between MPs, NPs, soil biota and microbiota, including ecotoxicological effects of MNPs on earthworms, soil-dwelling invertebrates, and beneficial soil microorganisms, and soil geochemical attributes. In addition, the geometry, size distribution, fundamental and chemical properties, and concentration of MNPs contained in soils are required to develop surrogate MNP reference materials that can be used across laboratories for conducting fundamental laboratory studies.
Collapse
Affiliation(s)
- Anton F Astner
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Alexis B Gillmore
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Yingxue Yu
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Markus Flury
- Department of Crops and Soil Sciences, Washington State University, Pullman, WA 99164, and Puyallup, WA 98371, United States of America
| | - Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Sean M Schaeffer
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America
| | - Douglas G Hayes
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN 37996-4531, United States of America.
| |
Collapse
|
43
|
Lu J, Qiu Y, Muhmood A, Zhang L, Wang P, Ren L. Appraising co-composting efficiency of biodegradable plastic bags and food wastes: Assessment microplastics morphology, greenhouse gas emissions, and changes in microbial community. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162356. [PMID: 36822427 DOI: 10.1016/j.scitotenv.2023.162356] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Biodegradable plastic bags (BPBs) to collect food waste and microplastics (MPs) produced from their biodegradation have received considerable scientific attention recently. Therefore, the current study was carried out to assess the co-composting efficiency of biodegradable plastic bags (polylactic acid (PLA) + polybutylene terephthalate (PBAT) + ST20 and PLA + PBAT+MD25) and food waste. The variations in greenhouse gas (GHG) emissions, microbial community and compost fertility were likewise assessed. Compared with the control, PLA + PBAT+ST20 and PLA + PBAT+MD25 both accelerated organic matter degradation and increased temperature. Moreover, PLA + PBAT+ST20 aggravated CH4 and CO2 emissions by 12.10 % and 11.01 %, respectively. PLA + PBAT+MD25 decreased CH4 and CO2 emissions by 5.50 % and 9.12 %, respectively. Meanwhile, compared with PLA + PBAT+ST20, the combined effect of plasticizer and inorganic additive in PLA + PBAT+MD25, reduced the NO3--N contents, seed germination index (GI) and compost maturity. Furthermore, adding BPBs changed the richness and diversity of the bacterial community (Firmicutes, Proteobacteria and Bacteroidetes). Likewise, redundancy analysis (RDA) showed that the co-compost system of BPBs and food waste accelerated significantly bacterial community succession from Firmicutes and Bacteroidetes at the initial stage to Proteobacteria and Actinobacteria at the mature stage, increased co-compost temperature to over 64 °C and extended thermophilic composting phase, and promoted the degradation of MPs. Additionally, according to structural equation model quantification results, the inorganic additive of PLA + PBAT+MD25 had more serious toxicity to microorganisms and had significantly adverse effects on GI through CO2-C (λ = -0.415, p < 0.05) and NO3--N (λ = -0.558, p < 0.001), thus reduced compost fertility and quality. The results also indicated that the BPBs with ST20 as an additive could be more suitable for industrial composting than the BPBs with MD25 as an additive. This study provided a vital basis for understanding the potential environmental and human health risks of the MPs' generated by the degradation of BPBs in compost.
Collapse
Affiliation(s)
- Jiaxin Lu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Yizhan Qiu
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Atif Muhmood
- Institute of Soil Chemistry & Environmental sciences, Ayub Agricultural Research Institute, Faisalabad, Pakistan
| | - Luxi Zhang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China
| | - Pan Wang
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Lianhai Ren
- School of Ecology and Environment, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
44
|
Ma J, Xu M, Wu J, Yang G, Zhang X, Song C, Long L, Chen C, Xu C, Wang Y. Effects of variable-sized polyethylene microplastics on soil chemical properties and functions and microbial communities in purple soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161642. [PMID: 36652965 DOI: 10.1016/j.scitotenv.2023.161642] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 06/17/2023]
Abstract
Microplastic contamination of soil has drawn increased attention due to the ecological harm it poses to the soil ecosystem. However, little is known about how microplastic particle sizes affect soil chemical properties and microbial communities, particularly in purple soil. In this study, a four-week incubation experiment was conducted to evaluate the effect of polyethylene microplastics (PE MPs) with different particle sizes (i.e., 300 and 600 μm) on soil properties, extracellular polymeric substances (EPS), enzyme activities, and microbial communities in purple soil. When compared to 600 μm-PE MPs, 300 μm-PE MPs reduced contents of dissolved organic matter (DOM), EPS, and β-1,4-N-acetylglucosaminidase (NAG) activity, but increased the cation exchange capacity (CEC). High-throughput 16S rRNA gene sequencing revealed that the 300 μm-PE MPs resulted in an increase in the phylum Nitrospirae, which is associated with microplastic degradation. The data implied that smaller PE MPs improved the growth of polyethylene-degrading bacteria by adsorbing more EPS and DOM, resulting in the degradation of microplastics. Co-occurrence network analysis revealed that smaller PE MPs had lower toxicity to microbial populations than larger PE MPs, increasing the stability of the network. CEC and β-1,4-glucosidase (BG) were found to be the two major factors affecting the microbial communities by redundancy analysis (RDA). The study highlighted how microplastic particle sizes affect soil bacterial communities and soil functions.
Collapse
Affiliation(s)
- Jing Ma
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| | - Min Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Wu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Yang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaohong Zhang
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chun Song
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Lulu Long
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Chao Chen
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Changlian Xu
- College of Environmental Science, Sichuan Agricultural University, Chengdu 611130, China
| | - Ying Wang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625014, China
| |
Collapse
|
45
|
Zhou Y, Ren X, Tsui TH, Barcelo D, Wang Q, Zhang Z, Yongzhen D. Microplastics as an underestimated emerging contaminant in solid organic waste and their biological products: Occurrence, fate and ecological risks. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130596. [PMID: 37055952 DOI: 10.1016/j.jhazmat.2022.130596] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/24/2022] [Accepted: 12/10/2022] [Indexed: 06/19/2023]
Abstract
Microplastics (MPs), as an emerging pollutant, have been widely detected in aquatic, terrestrial, and atmospheric ecosystems. Recently, more researchers indicated that solid organic waste is also a crucial repository of MPs and has become a vital pollution source in ecosystems. Although the occurrence and fate of MPs in solid organic waste and the interaction between MPs and biological treatments have been explored, there still needs to be comprehensive summaries. Hence, this study reviewed the occurrence and characteristics of MPs in solid organic waste and organic fertilizers. Meanwhile, this study summarized the influence of MPs on biological treatments (composting and anaerobic digestion) and their degradation characteristics. MPs are abundant in solid organic waste (0-220 ×103 particles/kg) and organic fertilizer (0-30 ×103 particles/kg), PP and PE are the prominent MPs, and fibers and fragments are the main shapes. MPs can affect the carbon and nitrogen conversion during biological treatments and interfere with microbial communities. The MP's characteristics changed after biological treatments, which should further consider their potential ecological risks. This review points out the existing problems of MPs in organic waste recycling and provides directions for their treatment in the future.
Collapse
Affiliation(s)
- Yanting Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - To-Hung Tsui
- NUS Environment Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Damia Barcelo
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Ding Yongzhen
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
46
|
Porterfield KK, Hobson SA, Neher DA, Niles MT, Roy ED. Microplastics in composts, digestates, and food wastes: A review. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:225-240. [PMID: 36645846 DOI: 10.1002/jeq2.20450] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Diverting food waste from landfills to composting or anaerobic digestion can reduce greenhouse gas emissions, enable the recovery of energy in usable forms, and create nutrient-rich soil amendments. However, many food waste streams are mixed with plastic packaging, raising concerns that food waste-derived composts and digestates may inadvertently introduce microplastics into agricultural soils. Research on the occurrence of microplastics in food waste-derived soil amendments is in an early phase and the relative importance of this potential pathway of microplastics to agricultural soils needs further clarification. In this paper, we review what is known and what is not known about the abundance of microplastics in composts, digestates, and food wastes and their effects on agricultural soils. Additionally, we highlight future research needs and suggest ways to harmonize microplastic abundance and ecotoxicity studies with the design of related policies. This review is novel in that it focuses on quantitative measures of microplastics in composts, digestates, and food wastes and discusses limitations of existing methods and implications for policy.
Collapse
Affiliation(s)
- Katherine K Porterfield
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
| | - Sarah A Hobson
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| | - Deborah A Neher
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Department of Plant and Soil Science, University of Vermont, Burlington, VT, USA
| | - Meredith T Niles
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Department of Nutrition and Food Sciences & Food Systems Program, University of Vermont, Burlington, VT, USA
| | - Eric D Roy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, USA
- Gund Institute for Environment, University of Vermont, Burlington, VT, USA
- Rubenstein School of Environment and Natural Resources, University of Vermont, Burlington, VT, USA
| |
Collapse
|
47
|
Gupta KK, Chandra H, Sagar K, Sharma KK, Devi D. Degradation of high density polyethylene (HDPE) through bacterial strain from Cow faeces. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2023. [DOI: 10.1016/j.bcab.2023.102646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
48
|
Khan MT, Shah IA, Hossain MF, Akther N, Zhou Y, Khan MS, Al-Shaeli M, Bacha MS, Ihsanullah I. Personal protective equipment (PPE) disposal during COVID-19: An emerging source of microplastic and microfiber pollution in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 860:160322. [PMID: 36414071 PMCID: PMC9675081 DOI: 10.1016/j.scitotenv.2022.160322] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/13/2022] [Accepted: 11/16/2022] [Indexed: 05/29/2023]
Abstract
Waste generated by healthcare facilities during the COVID-19 pandemic has become a new source of pollution, particularly with the widespread use of single-use personal protective equipment (PPE). Releasing microplastics (MPs) and microfibers (MFs) from discarded PPE becomes an emerging threat to environmental sustainability. MPs/MFs have recently been reported in a variety of aquatic and terrestrial ecosystems, including water, deep-sea sediments, air, and soil. As COVID-19 spreads, the use of plastic-made PPE in healthcare facilities has increased significantly worldwide, resulting in massive amounts of plastic waste entering the terrestrial and marine environments. High loads of MPs/MFs emitted into the environment due to excessive PPE consumption are easily consumed by aquatic organisms, disrupting the food chain, and potentially causing chronic health problems in humans. Thus, proper management of PPE waste is critical for ensuring a post-COVID sustainable environment, which has recently attracted the attention of the scientific community. The current study aims to review the global consumption and sustainable management of discarded PPE in the context of COVID-19. The severe impacts of PPE-emitted MPs/MFs on human health and other environmental segments are briefly addressed. Despite extensive research progress in the area, many questions about MP/MF contamination in the context of COVID-19 remain unanswered. Therefore, in response to the post-COVID environmental remediation concerns, future research directions and recommendations are highlighted considering the current MP/MF research progress from COVID-related PPE waste.
Collapse
Affiliation(s)
- Muhammad Tariq Khan
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong
| | - Izaz Ali Shah
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Beijing 100875, China
| | - Md Faysal Hossain
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai po New Territories, Hong Kong; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China
| | - Nasrin Akther
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China; Department of Soil Science, University of Chittagong, Chittagong 4331, Bangladesh
| | - Yanbo Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, No. 130, Meilong Road, Shanghai 200237, China
| | | | - Muayad Al-Shaeli
- Institute for Micro Process Engineering (IMVT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | | | - Ihsanullah Ihsanullah
- Center for Environment and Water, Research Institute, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
49
|
Gan Q, Cui J, Jin B. Environmental microplastics: Classification, sources, fates, and effects on plants. CHEMOSPHERE 2023; 313:137559. [PMID: 36528162 DOI: 10.1016/j.chemosphere.2022.137559] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Microplastic (MP) pollution has become a global concern due to the generation of extensive plastic waste and products (370 million metric tons in 2020) that are difficult to biodegrade. Therefore, MPs have attracted a great deal of research attention, and many new findings regarding MPs (over 9000 papers published in the last 3 years) have been reported. MPs generally exert adverse effects on plants. As MPs accumulate in agricultural ecosystems, many studies have sought to understand the sources and fates of MPs and their effects on various plants. However, there have been few reviews of the properties of MPs, their effects on plants, and their interactions with other factors (e.g., drought, heat, ultraviolet light, plant hormones, heavy metals, and other pollutants) remain poorly understood. In this review, we performed scientometrics analyses of research papers (January 1, 2019, to September 30, 2022) in this field. We focused on the recent progress in the classification of MPs and their sources, circulation, and deposition in agricultural ecosystems. We review MP uptake and transport in plants, as well as factors (size, type, and environmental factors) that affect MP uptake, the positive and negative effects of MPs on plants, and the mechanisms of MP impacts on plants. We discuss current issues and future perspectives concerning research into plant interactions with MPs, along with some promising methods to manage the MP issue.
Collapse
Affiliation(s)
- Quan Gan
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Jiawen Cui
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| | - Biao Jin
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
50
|
Shi Y, Chai J, Xu T, Ding L, Huang M, Gan F, Pi K, Gerson AR, Yang J. Microplastics contamination associated with low-value domestic source organic solid waste: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159679. [PMID: 36283521 DOI: 10.1016/j.scitotenv.2022.159679] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Waste activated sludge and food waste are two typical important domestic low-value organic solid wastes (LOSW). LOSW contains significant organic matter and water content resulting in the transboundary transfer of liquid-solid-gas and other multi-mediums, such that the complexity of microplastics (MPs) migration should be of greater concern. This article provides a review of the literature focusing on the separation and extraction methods of MPs from LOSW. The occurrence and source of MPs are discussed, and the output and impact of MPs on LOSW heat and biological treatments are summarized. The fate and co-effects of MPs and other pollutants in landfills and soils are reviewed. This review highlights the migration and transformation of MPs in domestic source LOSW, and future perspectives focused on the development of a unified extraction and analysis protocol. The objective of this review is to promote the technological development of decontamination of MPs in LOSW by sufficient understanding of the fate of MPs, their interaction with coexisting pollutants and the development of targeted preventive research strategies.
Collapse
Affiliation(s)
- Yafei Shi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China.
| | - Jiaqi Chai
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tao Xu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Lihu Ding
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Meijie Huang
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Fangmao Gan
- Yangtze Ecology and Environment Co., Ltd., Wuhan, Hubei 430062, China
| | - Kewu Pi
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Andrea R Gerson
- Blue Minerals Consultancy, Wattle Grove, Tasmania 7109, Australia
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|