1
|
Baysal A, Saygin H, Soyocak A, Onat B. Year-long and seasonal differences of PM 2.5 chemical characteristics and their role in the viability of human lung epithelial cells (A549). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2024; 59:261-272. [PMID: 38952018 DOI: 10.1080/10934529.2024.2370680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024]
Abstract
Fine particulate matters-PM2.5 in the air can have considerable negative effects on human health and the environment. Various human cell-based studies examined the effect of PM2.5 on human health in different cities of the world using various chemical parameters. Unfortunately, limited information is available regarding the relationship between toxicity and chemical characteristics of PM2.5 collected in Istanbul, Türkiye, located in one of the most populated cities in the world. To investigate the chemical characteristics and cytotoxicity of PM2.5 in Istanbul, samples were collected for 12 months, then potentially toxic metals, oxidative potential, and particle indicators (e.g., functional groups and elements) were determined, and the cytotoxicity of PM2.5 on human A549 lung alveolar epithelial cells was examined. The mean PM2.5 mass concentration was 24.0 ± 17.4 µg m-3 and higher in cold months compared to other seasons. Moreover, the results of the metals, elemental, and functional groups indicated that seasonal and monthly characteristics were influenced by the regional anthropogenic sources and photochemistry input. The cytotoxicity results also showed that the viability of A549 cells was reduced with the exposure of PM2.5 (30-53%) and higher cytotoxicity was obtained in summer compared to the other seasons due to the impact of the metals, elements, and oxidative characteristics of PM2.5.
Collapse
Affiliation(s)
- Asli Baysal
- Chemistry Department, Science and Letters Faculty, Istanbul Technical University, Istanbul, Turkey
| | - Hasan Saygin
- Application and Research Center for Advanced Studies, Istanbul Aydin University, Istanbul, Turkey
| | - Ahu Soyocak
- Medical Biology Department, Medical Faculty, Istanbul Aydin University, Istanbul, Turkey
| | - Burcu Onat
- Environmental Engineering Department, Engineering Faculty, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
2
|
Manar MK, Singh SK, Bajpai PK, Verma V, Shukla SP, Singh NK, Markandeya. Statistical estimation of noise induced hearing loss among the drivers in one of the most polluted cities of India. Sci Rep 2024; 14:7058. [PMID: 38528033 DOI: 10.1038/s41598-024-55906-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
In the present study, an attempt has been made to assess the impact of vehicular noise upon the 3-wheeler tempo drivers and to know whether there is any relationship between hearing loss and cumulative noise exposure. For this purpose, 3-wheeler tempo drivers (Exposed group) and non-commercial light motor vehicle car drivers (Unexposed group) were chosen as study subjects. Three traffic routes were selected to assess the noise level during waiting and running time in the exposed and unexposed groups. Among all three routes, the highest mean noise level (Leq) was observed on the Chowk to Dubagga route for waiting and en-route noise measurement. It was measured as 84.13 dB(A) and 86.36 dB(A) for waiting and en-route periods of 7.68 ± 3.46 and 31.05 ± 6.6 min, respectively. Cumulative noise exposure was found to be significantly different (p < 0.001) in all age groups of exposed and unexposed drivers. Audiometric tests have been performed over both exposed and unexposed groups. The regression analysis has been done keeping hearing loss among tempo drivers as the dependent variable and age (years) and Energy (Pa2 Hrs) as the independent variable using three different criteria of hearing loss definitions, i.e., World Health Organization, National Institute for Occupational Safety and Health (NIOSH), Occupational Safety and Health Administration criteria. Among these three criteria, the NIOSH criterion of hearing loss best explained the independent variables. It could explain the total variation in dependent variable by independent variable quite well, i.e., 68.1%. The finding showed a linear relationship between cumulative noise exposures (Pa2 Hrs) and the exposed group's hearing loss (dB), i.e., hearing loss increases with increasing noise dose. Based on the findings, two model equations were developed to identify the safe and unsafe noise levels with exposure time.
Collapse
Affiliation(s)
- Manish Kumar Manar
- Department of Community Medicine and Public Health, King George's Medical University, Lucknow, 226003, India
| | - Shivendra Kumar Singh
- Department of Community Medicine and Public Health, King George's Medical University, Lucknow, 226003, India
| | - Prashant Kumar Bajpai
- Department of Community Medicine and Public Health, King George's Medical University, Lucknow, 226003, India
| | - Veerendra Verma
- Department of Otorhinolaryngology, King George's Medical University, Lucknow, 226003, India
| | | | - Neeraj Kumar Singh
- Central Mine Planning and Design Institute Limited (CMPDIL), Regional Institute-7, Bhubaneswar, 751013, India
| | - Markandeya
- Ex-Department of Civil Engineering, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
3
|
Zhao K, Zhang Y, Shang J, Schauer JJ, Huang W, Tian J, Yang S, Fang D, Zhang D. Impact of Beijing's "Coal to Electricity" program on ambient PM 2.5 and the associated reactive oxygen species (ROS). J Environ Sci (China) 2023; 133:93-106. [PMID: 37451793 DOI: 10.1016/j.jes.2022.06.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 06/10/2022] [Accepted: 06/25/2022] [Indexed: 07/18/2023]
Abstract
The Beijing "Coal to Electricity" program provides a unique opportunity to explore air quality impacts by replacing residential coal burning with electrical appliances. In this study, the atmospheric ROS (Gas-phase ROS and Particle-phase ROS, abbreviated to G-ROS and P-ROS) were measured by an online instrument in parallel with concurrent PM2.5 sample collections analyzed for chemical composition and cellular ROS in a baseline year (Coal Use Year-CUY) and the first year following implementation of the "Coal to Electricity" program (Coal Ban Year-CBY). The results showed PM2.5 concentrations had no significant difference between the two sampling periods, but the activities of G-ROS, P-ROS, and cellular ROS in CBY were 8.72 nmol H2O2/m3, 9.82 nmol H2O2/m3, and 2045.75 µg UD /mg PM higher than in CUY. Six sources were identified by factor-analysis from the chemical components of PM2.5. Secondary sources (SECs) were the dominant source of PM2.5 in the two periods, with 15.90% higher contribution in CBY than in CUY. Industrial Emission & Coal Combustion sources (Ind. & CCs), mainly from regional transport, also increased significantly in CBY. The contributions of Aged Sea Salt & Residential Burning sources to PM2.5 decreased 5.31% from CUY to CBY. The correlation results illustrated that Ind. & CCs had significant positive correlations with atmospheric ROS, and SECs significantly associated with cellular ROS, especially nitrates (r = 0.626, p = 0.000). Therefore, the implementation of the "Coal to Electricity" program reduced PM2.5 contributions from coal and biomass combustion, but had little effect on the improvement of atmospheric and cellular ROS.
Collapse
Affiliation(s)
- Kaining Zhao
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Beijing Yanshan Earth Critical Zone National Research Station, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yuanxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; CAS Center for Excellence in Regional Atmospheric Environment, Chinese Academy of Sciences, Xiamen 361021, China; Institute of Eco-Environmental Forensics, Shandong University, Qingdao 266237, China.
| | - Jing Shang
- Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089, China
| | - James J Schauer
- Wisconsin State Laboratory of Hygiene, University of Wisconsin-Madison, Madison, WI, 53718, USA
| | - Wei Huang
- Institute of Environmental Reference Materials of Environmental Development Center of Ministry of Ecology and Environment, Beijing 100029, China
| | - Jingyu Tian
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Shujian Yang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Dongqing Fang
- Meteorological Observation Center of China Meteorological Administration, Beijing 100081, China
| | - Dong Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
4
|
Goodarzi B, Azimi Mohammadabadi M, Jafari AJ, Gholami M, Kermani M, Assarehzadegan MA, Shahsavani A. Investigating PM 2.5 toxicity in highly polluted urban and industrial areas in the Middle East: human health risk assessment and spatial distribution. Sci Rep 2023; 13:17858. [PMID: 37857811 PMCID: PMC10587072 DOI: 10.1038/s41598-023-45052-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
Exposure to particulate matter (PM) can be considered as a factor affecting human health. The aim of this study was to investigate the concentration of PM2.5 and heavy metals and their influence on survival of A549 human lung cells in exposure to PM2.5 breathing air of Ahvaz city. In order to assess the levels of PM2.5 and heavy metals, air samples were collected from 14 sampling stations positioned across Ahvaz city during both winter and summer seasons. The concentration of heavy metals was determined using ICP OES. Next, the MTT assay [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] was employed to ascertain the survival rate of A549 cells. The findings from this research demonstrated that average PM2.5 of the study period was (149.5 μg/m3). Also, the average concentration of PM2.5 in the urban area in winter and summer was (153.3- and 106.9 μg/m3) and in the industrial area this parameter was (191.6 and 158.3 μg/m3). The average concentration of metals (ng/m3) of urban areas against industrial, Al (493 vs. 485), Fe (536 vs. 612), Cu (198 vs. 212), Ni (128 vs. 129), Cr (48.5 vs. 54), Cd (118 vs. 124), Mn (120 vs. 119), As (51 vs. 67), Hg (37 vs. 50), Zn (302 vs. 332) and Pb (266 vs. 351) were obtained. The results of the MTT assay showed that the highest percentage of cell survival according to the exposure concentration was 25 > 50 > 100 > 200. Also, the lowest percentage of survival (58.8%) was observed in the winter season and in industrial areas with a concentration of 200 μg/ml. The carcinogenic risk assessment of heavy metals indicated that except for Cr, whose carcinogenicity was 1.32E-03, other metals were in the safe range (10-4-10-6) for human health. The high concentration of PM2.5 and heavy metals can increase respiratory and cardiovascular diseases and reduce the public health level of Ahvaz citizens.
Collapse
Affiliation(s)
- Babak Goodarzi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Hormozgan University of Medical Sciences, Bandar Abbas, Hormozgan, Iran
| | - Maryam Azimi Mohammadabadi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Kermani
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran.
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
- Air Pollution Research Center, Iran University of Medical Sciences, Tehran, Iran.
| | - Mohammad-Ali Assarehzadegan
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran.
| | - Abbas Shahsavani
- Environmental and Occupational Hazards Control Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Poulsen AH, Sørensen M, Hvidtfeldt UA, Christensen JH, Brandt J, Frohn LM, Ketzel M, Andersen C, Jensen SS, Münzel T, Raaschou-Nielsen O. Concomitant exposure to air pollution, green space, and noise and risk of stroke: a cohort study from Denmark. THE LANCET REGIONAL HEALTH. EUROPE 2023; 31:100655. [PMID: 37265507 PMCID: PMC10230828 DOI: 10.1016/j.lanepe.2023.100655] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Background Air pollution, road traffic noise, and green space are correlated factors, associated with risk of stroke. We investigated their independent relationship with stroke in multi-exposure analyses and estimated their cumulative stroke burden. Methods For all persons, ≥50 years of age and living in Denmark from 2005 to 2017, we established complete address histories and estimated running 5-year mean exposure to fine particles (PM2.5), ultrafine particles, elemental carbon, nitrogen dioxide (NO2), and road traffic noise at the most, and least exposed façade. For air pollutants, we estimated total, and non-traffic contributions. Green space around the residence was estimated from land use maps. Hazard ratios (HR) and 95% confidence limits (CL) were estimated with Cox proportional hazards models and used to calculate cumulative risk indices (CRI). We adjusted for the individual and sociodemographic covariates available in our dataset (which did not include information about individual life styles and medical conditions). Findings The cohort accumulated 18,344,976 years of follow-up and 94,256 cases of stroke. All exposures were associated with risk of stroke in single pollutant models. In multi-pollutant analyses, only PM2.5 (HR: 1.058, 95% CI: 1.040-1.075) and noise at most exposed façade (HR: 1.033, 95% CI: 1.024-1.042) were independently associated with a higher risk of stroke. Both noise and air pollution contributed substantially to the CRI (1.103, 95% CI: 1.092-1.114) in the model with noise, green space, and total PM2.5 concentrations. Interpretation Environmental exposure to air pollution and noise were both independently associated with risk of stroke. Funding Health Effects Institute (HEI) (Assistance Award No. R-82811201).
Collapse
Affiliation(s)
- Aslak H. Poulsen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Mette Sørensen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, 4000, Roskilde, Denmark
| | - Ulla A. Hvidtfeldt
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
| | - Jesper H. Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- iClimate—Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- iClimate—Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Lise M. Frohn
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- iClimate—Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | - Christopher Andersen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Roskilde, Denmark
| | - Steen Solvang Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
- iClimate—Interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| | - Thomas Münzel
- University Medical Center Mainz of the Johannes Gutenberg University, Center for Cardiology, Cardiology I, Mainz, Germany
| | - Ole Raaschou-Nielsen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100, Copenhagen, Denmark
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000, Roskilde, Denmark
| |
Collapse
|
6
|
Borlaza LJS, Uzu G, Ouidir M, Lyon-Caen S, Marsal A, Weber S, Siroux V, Lepeule J, Boudier A, Jaffrezo JL, Slama R. Personal exposure to PM 2.5 oxidative potential and its association to birth outcomes. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2023; 33:416-426. [PMID: 36369373 DOI: 10.1038/s41370-022-00487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/03/2023]
Abstract
BACKGROUND Prenatal exposure to fine particulate matter (PM2.5) assessed through its mass concentration has been associated with foetal growth restriction in studies based on outdoor levels. Oxidative potential of PM2.5 (OP) is an emerging metric a priori relevant to mechanisms of action of PM on health, with very limited evidence to indicate its role on birth outcomes. OBJECTIVES We investigated the association of OP with birth outcomes and compared it with that of PM2.5 mass concentration. METHODS 405 pregnant women from SEPAGES cohort (Grenoble area) carried PM2.5 personal dosimeters for one or two one-week periods. OP was measured using dithiothreitol (DTT) and ascorbic acid (AA) assays from the collected filters. Associations of each exposure metric with offspring weight, height, and head circumference at birth were estimated adjusting for potential confounders. RESULTS The correlation between PM2.5 mass concentration and [Formula: see text] was 0.7. An interquartile range increase in .. was associated with reduced weight (adjusted change, -64 g, -166 to -11, p = 0.02) and height (-4 mm, -6 to -1, p = 0.01) at birth. PM2.5 mass concentration showed similar associations with weight (-53 g, -99 to -8, p = 0.02) and height (-2 mm, -5 to 0, p = 0.05). In birth height models mutually adjusted for the two exposure metrics, the association with [Formula: see text] was less attenuated than that with mass concentration, while for weight both effect sizes attenuated similarly. There was no clear evidence of associations with head circumference for any metric, nor for [Formula: see text] with any growth parameter. IMPACT PM2.5 pregnancy exposure assessed from personal dosimeters was associated with altered foetal growth. Personal OP exposure was associated with foetal growth restrictions, specifically decreased weight and height at birth, possibly to a larger extent than PM2.5 mass concentration alone. These results support OP assessed from DTT as being a health-relevant metric. Larger scale cohort studies are recommended to support our findings.
Collapse
Affiliation(s)
| | - Gaëlle Uzu
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France.
| | - Marion Ouidir
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Sarah Lyon-Caen
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anouk Marsal
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Samuël Weber
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Valérie Siroux
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Johanna Lepeule
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
| | - Anne Boudier
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France
- Pediatrics, CHU Grenoble-Alpes, Grenoble, France
| | - Jean-Luc Jaffrezo
- University of Grenoble Alpes, CNRS, IRD, INP-G, IGE (UMR 5001), F-38000, Grenoble, France
| | - Rémy Slama
- University of Grenoble Alpes, Inserm, CNRS, IAB, Team of Environmental Epidemiology applied to Reproduction and Respiratory Health, Grenoble, France.
| |
Collapse
|
7
|
Sørensen M, Poulsen AH, Hvidtfeldt UA, Brandt J, Frohn LM, Ketzel M, Christensen JH, Im U, Khan J, Münzel T, Raaschou-Nielsen O. Air pollution, road traffic noise and lack of greenness and risk of type 2 diabetes: A multi-exposure prospective study covering Denmark. ENVIRONMENT INTERNATIONAL 2022; 170:107570. [PMID: 36334460 DOI: 10.1016/j.envint.2022.107570] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/07/2022] [Accepted: 10/05/2022] [Indexed: 05/26/2023]
Abstract
OBJECTIVE Air pollution, road traffic noise and lack of greenness coexist in urban environments and have all been associated with type 2 diabetes. We aimed to investigate how these co-exposures were associated with type 2 diabetes in a multi-exposure perspective. METHODS We estimated 5-year residential mean exposure to fine particles (PM2.5), ultrafine particles (UFP), elemental carbon (EC), nitrogen dioxide (NO2) and road traffic noise at the most (LdenMax) and least (LdenMin) exposed facade for all persons aged > 50 years living in Denmark in 2005 to 2017. For each air pollutant, we estimated total concentrations and traffic contributions. Based on land use maps, we estimated proportion of green and non-green space within 150 and 1000 m of all residences. In total, 1.9 million persons were included and 128,358 developed type 2 diabetes during follow-up. We performed analyses using Cox proportional hazards models, with adjustment for individual and neighborhood-level sociodemographic co-variates. RESULTS In single-pollutant models, all air pollutants, noise and lack of green space were associated with higher risk of diabetes. In two-, three- and four-pollutant analyses of the air pollutants, only UFP and NO2 remained associated with higher diabetes risk in all models. LdenMax, LdenMin and the two proxies of green space remained associated with diabetes in two-pollutant models of, respectively, noise and green space. In a multi-pollutant analysis, we found hazard ratios (95 % confidence intervals) per interquartile range of 1.021 (1.005; 1.038) for UFP, 1.012 (0.996; 1.028) for NO2, 1.022 (1.012; 1.033) for LdenMin, 1.013 (1.004; 1.022) for LdenMax, and 1.038 (1.031; 1.044) and 1.018 (1.010; 1.025) for lack of green space within, respectively, 150 m and 1000 m, and a cumulative risk index of 1.131 (1.113; 1.149). CONCLUSIONS Air pollution, road traffic noise and lack of green space were independently associated with higher risk of type 2 diabetes.
Collapse
Affiliation(s)
- Mette Sørensen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Natural Science and Environment, Roskilde University, Universitetsvej 1, 4000 Roskilde, Denmark.
| | - Aslak H Poulsen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Ulla A Hvidtfeldt
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark
| | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; iClimate - interdisciplinary Centre for Climate Change, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, U.K
| | - Jesper H Christensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Ulas Im
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Jibran Khan
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark; Danish Big Data Centre for Environment and Health (BERTHA), Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| | - Thomas Münzel
- University Medical Center Mainz of the Johannes Gutenberg University, Center for Cardiology, Cardiology I, Mainz, Germany
| | - Ole Raaschou-Nielsen
- Environment and Cancer, Danish Cancer Society Research Center, Strandboulevarden 49, 2100 Copenhagen, Denmark; Department of Environmental Science, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark
| |
Collapse
|
8
|
Guo LC, Lv Z, Ma W, Xiao J, Lin H, He G, Li X, Zeng W, Hu J, Zhou Y, Li M, Yu S, Xu Y, Zhang J, Zhang H, Liu T. Contribution of heavy metals in PM 2.5 to cardiovascular disease mortality risk, a case study in Guangzhou, China. CHEMOSPHERE 2022; 297:134102. [PMID: 35219707 DOI: 10.1016/j.chemosphere.2022.134102] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals play an important role in inducing fine particulate matter (PM2.5) related cardiovascular disease (CVD). However, most of the past researches concerned the associations between CVD mortality and the PM2.5 mass, which may not reveal the CVD mortality risk contributed by heavy metals in PM2.5. This study explored the correlations between individual heavy metals in PM2.5 and CVD mortality, identified the heavy metals that significantly contribute to PM2.5-related CVD, heart disease (HD), and cerebrovascular disease (CEV) mortality, and attempted to establish corresponding source control measures. Over a 2-year study period, PM2.5 was sampled daily in Guangzhou, China and analyzed for heavy metals. The airborne pollution and weather data, along with CVD, HD, and CEV mortality, were obtained at the same time. The excess risk (ER) of mortality was linked to the individual heavy metals using a distributed lag non-linear model. PM2.5 and most heavy metals showed significant correlations with the CVD, HD, and CEV mortality; the largest cumulative ER (LCER) values of CVD mortality associated with an interquartile range increase in the levels of lead, cadmium, arsenic, selenium, antimony, nickel, thallium, aluminum, iron, and PM2.5 were 2.43%, 2.23%, 1.66%, 2.39%, 1.19%, 1.21%, 2.69%, 3.29%, 1.74%, and 2.40%, respectively. Most heavy metals showed comparable LCER values of HD and CEV mortality. Heavy metals with the addition of PM2.5 were divided into three groups following their LCER values; lead, cadmium, arsenic, antimony, thallium, zinc, aluminum, and iron, whose contributions were greater than or equal to the average effect of the PM2.5 components, should be limited on a priority basis. These findings indicated that heavy metals play roles in the CVD, HD, and CEV mortality risk of PM2.5, and specific control measures which aimed at the emission sources should be taken to reduce the CVD mortality risk of PM2.5.
Collapse
Affiliation(s)
- Ling-Chuan Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Zhanlu Lv
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Wenjun Ma
- School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Hualiang Lin
- Department of Medical Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Guanhao He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yan Zhou
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Min Li
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Shengbing Yu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Yanjun Xu
- Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, 511430, China
| | - Jinliang Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Han Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Tao Liu
- School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
9
|
Zhang N, Geng C, Xu J, Zhang L, Li P, Han J, Gao S, Wang X, Yang W, Bai Z, Zhang W, Han B. Characteristics, Source Contributions, and Source-Specific Health Risks of PM 2.5-Bound Polycyclic Aromatic Hydrocarbons for Senior Citizens during the Heating Season in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:4440. [PMID: 35457316 PMCID: PMC9030979 DOI: 10.3390/ijerph19084440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/02/2022] [Accepted: 04/06/2022] [Indexed: 02/04/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have carcinogenic impacts on human health. However, limited studies are available on the characteristics, sources, and source-specific health risks of PM2.5-bound PAHs based on personal exposure data, and comparisons of the contributions of indoor and outdoor sources are also lacking. We recruited 101 senior citizens in the winter of 2011 for personal PM2.5 sample collection. Fourteen PAHs were analyzed, potential sources were apportioned using positive matrix factorization (PMF), and inhalational carcinogenic risks of each source were estimated. Six emission sources were identified, including coal combustion, gasoline emission, diesel emission, biomass burning, cooking, and environmental tobacco smoking (ETS). The contribution to carcinogenic risk of each source occurred in the following sequence: biomass burning > diesel emission > gasoline emission > ETS > coal combustion > cooking. Moreover, the contributions of biomass burning, diesel emission, ETS, and indoor sources (sum of cooking and ETS) to PAH-induced carcinogenic risk were higher than those to the PAH mass concentration, suggesting severe carcinogenic risk per unit contribution. This study revealed the contribution of indoor and outdoor sources to mass concentration and carcinogenic risk of PM2.5-bound PAHs, which could act as a guide to mitigate the exposure level and risk of PM2.5-bound PAHs.
Collapse
Affiliation(s)
- Nan Zhang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Chunmei Geng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Jia Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Liwen Zhang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China;
| | - Penghui Li
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China;
| | - Jinbao Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China;
| | - Shuang Gao
- School of Geographic and Environmental Sciences, Tianjin Normal University, Tianjin 300387, China;
| | - Xinhua Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wen Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Zhipeng Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| | - Wenge Zhang
- Particle Laboratory, Center for Environmental Metrology, National Institute of Metrology, Beijing 100022, China
| | - Bin Han
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; (N.Z.); (C.G.); (J.X.); (X.W.); (W.Y.); (Z.B.)
| |
Collapse
|
10
|
Sørensen M, Poulsen AH, Hvidtfeldt UA, Frohn LM, Ketzel M, Christensen JH, Brandt J, Geels C, Raaschou-Nielsen O. Exposure to source-specific air pollution and risk for type 2 diabetes: a nationwide study covering Denmark. Int J Epidemiol 2022; 51:1219-1229. [PMID: 35285908 DOI: 10.1093/ije/dyac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Only few epidemiological studies have investigated whether chronic exposure to air pollution from different sources have different impacts on risk of diabetes. We aimed to investigate associations between air pollution from traffic versus non-traffic sources and risk of type 2 diabetes in the Danish population. METHODS We estimated long-term exposure to traffic and non-traffic contributions of particulate matter with a diameter <2.5 µg (PM2.5), elemental carbon (EC), ultrafine particles (UFP) and nitrogen dioxide (NO2) for all persons living in Denmark for the period 2005-17. In total, 2.6 million persons aged >35 years were included, of whom 148 020 developed type 2 diabetes during follow-up. We applied Cox proportional hazards models for analyses, using 5-year time-weighted running means of air pollution and adjustment for individual- and area-level demographic and socioeconomic covariates. RESULTS We found that 5-year exposure to all particle measures (PM2.5, UFP and EC) and NO2 were associated with higher type 2 diabetes risk. We observed that for UFP, EC and potentially PM2.5, the pollution originating from traffic was associated with higher risks than the non-traffic contributions, whereas for NO2 similar hazard ratios (HR) were observed. For example, in two-source models, hazard ratios (HRs) per interquartile change in traffic UFP, EC and PM2.5 were 1.025, 1.045 and 1.036, respectively, whereas for non-traffic UFP, EC and PM2.5, the HRs were 1.013, 1.018 and 1.001, respectively. CONCLUSIONS Our finding of stronger associations with particulate matter from traffic compared with non-traffic sources implies that prevention strategies should focus on limiting traffic-related particulate matter air pollution.
Collapse
Affiliation(s)
- Mette Sørensen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Natural Science and Environment, Roskilde University, Roskilde, Denmark
| | - Aslak H Poulsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Ulla A Hvidtfeldt
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Lise M Frohn
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Matthias Ketzel
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,Global Centre for Clean Air Research (GCARE), Department of Civil and Environmental Engineering, University of Surrey, Guildford, UK
| | | | - Jørgen Brandt
- Department of Environmental Science, Aarhus University, Roskilde, Denmark.,iClimate-Interdisciplinary Centre for Climate Change, Aarhus University, Roskilde, Denmark
| | - Camilla Geels
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Ole Raaschou-Nielsen
- Work, Environment and Cancer, Danish Cancer Society Research Center, Copenhagen, Denmark.,Department of Environmental Science, Aarhus University, Roskilde, Denmark
| |
Collapse
|