1
|
Ding Q, Yuan Y, Li X, Li Y, Li PP, Qin Y, Xu LJ, Cao M, Xiong XH, Lu YC. Unraveling the Metabolic Enigma: A High-Resolution LC-MS Approach to Decipher Two Triazine Herbicides Tolerance in Radish and Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:119-134. [PMID: 39688337 DOI: 10.1021/acs.jafc.4c06173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Our study investigated the effects of terbuthylazine (TBA) and metribuzin (MT) on rice and radish at field application concentrations. Both herbicides induced oxidative stress and severely inhibited growth in the two crops. However, the radish cultivar T-33 exhibited significantly lower stress levels compared to the sensitive cultivar S-24, suggesting its higher tolerance to TBA and MT. To explore the potential role of metabolism in this tolerance, we developed a novel HPLC-Q-TOF-MS method, which demonstrated excellent performance and identified 18 TBA and 20 MT metabolites, most of which were discovered in plants for the first time. The results revealed significantly higher accumulation of both herbicides in rice compared to radish, especially in the aerial parts, with increasing translocation in rice and the opposite trend in radish. Quantitative analysis revealed significantly higher levels of glycosylated MT products and amino acid conjugates in T-33 compared to S-24, suggesting their crucial role in detoxification and tolerance mechanisms. Our findings have significant implications for food safety, crop protection, and sustainable agricultural practices in regions employing vegetable-crop rotation systems.
Collapse
Affiliation(s)
- Qian Ding
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yi Yuan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Xuan Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yun Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Pan Pan Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yi Qin
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Liang Jun Xu
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Min Cao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xiao Hui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yi Chen Lu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
2
|
Fang Y, Wang W, Xu Y, Chen Q, Jiao T, Wei J, Chen Q, Chen X. Development of a hydrophilic-lipophilic-balanced copolymer@zirconium-based metal-organic framework-based solid-phase microextraction probe for the trace determination of organophosphorus pesticides in tea infusions. Talanta 2025; 281:126823. [PMID: 39245009 DOI: 10.1016/j.talanta.2024.126823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Organophosphorus pesticides (OPPs) present in tea infusions pose a serious threat to human health. In this study, a sensitive method for the determination of OPPs was developed based on a direct-immersion solid-phase microextraction (DI-SPME) probe. By fine adjustment of the ratio and one-step polymerization of dihydroxy-functionalized zirconium-based metal-organic framework UiO-66-(OH)2 and divinylbenzene-N-vinyl pyrrolidone (DVB-NVP) microspheres, the DVB-NVP@ UiO-66-(OH)2 (D-N@U) composite with an optimal hydrophilic-lipophilic balance (HLB) was achieved. Furthermore, D-N@U was adhesively bonded to stainless-steel wires to fabricate a DI-SPME probe. OPPs, especially those with nonpolar properties characterized by a high octanol-water partition coefficient (log KOW), were selectively and efficiently enriched on the D-N@U-coated DI-SPME probe from tea infusions. Coupled with a gas chromatography-flame photometric detector, the as-fabricated D-N@U-coated DI-SPME probe achieved good performance for OPPs analysis with a wide linear dynamic range of 0.10-500.00 μg/L and low detection limits of 1.96-6.69 ng/L. Moreover, in spiked samples, the recoveries and relative standard deviations were in the ranges of 73.12%-101.20 % and 1.03%-6.56 %, respectively. Owing to its simple operation, high extraction efficiency, and high sensitivity, this approach has great potential for the rapid determination of multiple pesticide trace-level residues in food.
Collapse
Affiliation(s)
- Yuwen Fang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Wanwan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Yi Xu
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China
| | - Xiaomei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
3
|
Xu C, Cao L, Chen H, Liu T, Liang W, Li Y. Copper-Driven Formation of Prothioconazole Nanocomplex: An Innovative Strategy to Prepare Nanopesticide with Improved Bioactivity and Reduced Environmental Impacts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406419. [PMID: 39439147 DOI: 10.1002/smll.202406419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Developing cost-effective, energy-saving, and eco-friendly methods to construct nanopesticides fulfill the requirement of modern agriculture. Benefiting from the versatility of metal-based complexes, a facile copper-driven method is discovered for the formation of a fungicide prothioconazole nanocomplex (Cu-Pro) with the particle size of ≈300 ± 85 nm. Interestingly, adding 0.5-1% of anionic surfactants could generate nanocomplexes within 60 ± 12 nm and form stable dispersed nanosuspensions. Both nanocomplexes exhibit remarkable control efficacy against six plant pathogenic fungi, and the EC50 values are 1.4-4.8 times lower than that of prothioconazole technical concentrate (Pro TC). In addition, the novel nanocomplexes demonstrate better resistance against UV irradiation and the half-lives are 3.27- and 1.56-times longer than that of Pro TC, respectively. The acute toxicity of prothioconazole nanocomplexes against non-target organism zebrafish is decreased. Due to the small size and chelation with metals, the uptake and accumulation of prothioconazole in wheat plant is promoted, and the metabolites prothioconazole-desthio is significantly decreased by 42-48% than that of Pro TC. This metal coordination-based strategy seeks to open a new avenue for the high-throughput preparation of nanopesticides, providing an innovative toolbox for reducing the input of agrochemicals in sustainable plant protection.
Collapse
Affiliation(s)
- Chunli Xu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Lidong Cao
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Huiping Chen
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Tingting Liu
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
| | - Wenlong Liang
- Sustainable Polymer Chemistry, Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Faculty of Science and Technology, Universiteit Twente, PO Box 217, Enschede, 7500 AE, The Netherlands
| | - Yuanbo Li
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, No. 2 Yuanmingyuan West Road, Beijing, 100193, P. R. China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang, 453500, China
| |
Collapse
|
4
|
Fu J, Li S, Yin S, Zhao X, Zhao E, Li L. Comprehensive effects of acetamiprid uptake and translocation from soil on pak choi and lettuce at the environmental level. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106178. [PMID: 39672607 DOI: 10.1016/j.pestbp.2024.106178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/10/2024] [Accepted: 10/16/2024] [Indexed: 12/15/2024]
Abstract
Acetamiprid (ACE) is widely used in agriculture to control pests. However, its accumulation in soil and subsequent translocation to plants can impact plant growth and development through mechanisms that remain unclear. This study evaluated the comprehensive effects of residual ACE from soil on cultivated pak choi and lettuce at environmental levels. Results showed that more than 90 % of ACE residues in the soils dissipated within 14 days. The average root concentration factor (RCF) values of pak choi and lettuce were 1.442 and 0.318, respectively, while the average translocation factor (TF) values were 2.145 for pak choi and 5.346 for lettuce. Seedling height increased by 6.32 % in pak choi but decreased by 8.54 % in lettuce. Furthermore, chlorophyll content decreased by 14.6 % in pak choi and increased by 23.7 % in lettuce. Non-targeted metabolomics analysis showed significant disturbances in carbohydrates, amino acids, and secondary metabolite levels. Additionally, KEGG pathway analysis revealed the down-regulation of amino acid metabolites in both vegetables, alongside an up-regulation of flavone and flavonol biosynthesis in pak choi. This research enhances the understanding of the effects and underlying metabolic mechanism of ACE on different vegetables.
Collapse
Affiliation(s)
- Jizhen Fu
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Suzhen Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Shijie Yin
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Xiaojun Zhao
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China
| | - Ercheng Zhao
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Li Li
- Shanxi Key Laboratory of Integrated Pest Management in Agriculture, College of Plant Protection, Shanxi Agricultural University, Taiyuan 030031, China.
| |
Collapse
|
5
|
Dong Y, Li J, Guo Z, Han L, Zhao J, Wu X, Chen X. Unveiling responses and mechanisms of spice crop chive exposure to three typical pesticides using metabolomics combined with transcriptomics, physiology and biochemistry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176285. [PMID: 39288875 DOI: 10.1016/j.scitotenv.2024.176285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/19/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Pesticides are frequently used to control target pests in the production of spice crops such as chives (Allium ascalonicum). However, little information is available on the responses and underlying mechanisms of pesticide exposure in this crop. Our findings revealed that the uptake, transportation, and subcellular distribution of three typical pesticides-the fungicide pyraclostrobin (PAL), insecticide acetamiprid (ATP), and herbicide pendimethalin (PND) in chives, as well as their physiological, biochemical, metabolic, and transcriptomic responses-were dependent on pesticide properties, especially hydrophobicity. The distribution of PAL and PND in chives decreased in the order root > stem > leaf, but the distribution order of ATP was the opposite. The proportion of PAL and PND in the solid phase of the root cells gradually increased, but ATP mainly existed in the cell-soluble component, indicating that the latter had an upward translocation ability and thus mainly accumulated in the leaves. Malondialdehyde levels in chive leaves were not significantly affected by exposure to these pesticides; however, the activities of superoxide dismutase (SOD) and catalase (CAT) in chive leaves increased significantly. Moreover, these pesticides exhibited critical differences in chive responses through the interaction of metabolites and regulation of differentially expressed genes. PAL dramatically influenced five carbohydrate metabolic pathways (34.35 %), disturbing the starch-to-sucrose balance. ATP strongly affected five amino acid (AC) metabolic pathways (33.38 %), enhancing four free amino acid levels. PND notably affected eight fatty acid (FA) metabolic pathways (25.38 %), increasing two unsaturated and decreasing one saturated FA. Simultaneously, PND, ATP, and PND accumulated in the chives could be detoxified through metabolic pathways mediated by cytochrome P450 (P450) and glycosyltransferase (GT)/glutathione S-transferase (GST), producing phase I (7, 4, and 5) and II (11, 13, and 10) metabolites, respectively. This study provides important molecular insights into the responses and underlying mechanisms of spice crop exposure to pesticides.
Collapse
Affiliation(s)
- Yibo Dong
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Jiaohong Li
- Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China
| | - Zhenxiang Guo
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Lei Han
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Zhao
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China
| | - Xiaomao Wu
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China; Institute of Vegetable Research, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Xiangsheng Chen
- National Key Laboratory of Green Pesticide, Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
6
|
Qin Z, Stubbings WA, Chen M, Li F, Wu F, Wang S. Co-exposure with Copper Alters the Uptake, Accumulation, Subcellular Distribution, and Biotransformation of Organophosphate Triesters in Rice ( Oryza sativa L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19312-19322. [PMID: 39166886 DOI: 10.1021/acs.jafc.4c04778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
This study investigated the uptake pathways, acropetal translocation, subcellular distribution, and biotransformation of OPEs by rice (Oryza sativa L.) after Cu exposure. The symplastic pathway was noted as the major pathway for the uptake of organophosphate triesters (tri-OPEs) and diesters (di-OPEs) by rice roots. Cu exposure enhanced the accumulation of tri-OPEs in rice roots, and such enhancement was positively correlated with Cu concentrations, attributing to the Cu-induced root damage. The hydrophilic Cl-OPEs in the cell-soluble fraction of rice tissues were enhanced after Cu exposure, while the subcellular distributions of alkyl- and aryl-OPEs were not affected by Cu exposure. Significantly higher biotransformation rates of tri-OPEs to di-OPEs occurred in leaves, followed by those in stems and roots. Our study reveals the mechanisms associated with the uptake, translocation, and biotransformation of various OPEs in rice after Cu exposure, which provides new insights regarding the phytoremediation of soils cocontaminated with heavy metal and OPEs.
Collapse
Affiliation(s)
- Zifei Qin
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - William A Stubbings
- School of Geography, Earth, and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fangbai Li
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Fengchang Wu
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Shaorui Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
7
|
Ye Y, Zhang H, You Y, Liao F, Shi J, Zhang K. Accumulation, translocation, metabolism and subcellular distribution of mandipropamid in cherry radish: A comparative study under hydroponic and soil-cultivated conditions. Food Chem 2024; 448:139169. [PMID: 38569412 DOI: 10.1016/j.foodchem.2024.139169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
The accumulation and transportation of pesticides in plants can provide valuable insights to assess potential risks and ensure food safety. The uptake and downward translocation of mandipropamid were examined in hydroponic and soil-cultivated cherry radishes. The uptake of mandipropamid in cherry radish was rapid (bioconcentration factors of 1.1-10.7), whereas the downward translocation was limited (translocation factors of 0.1-0.9). The subcellular distribution results indicated a predominant accumulation in solid fractions of cherry radish (proportions of 52.9-98.7%), potentially because of the hydrophobicity (log Kow of 3.2) of mandipropamid. Owing to the decrease in half-life (>10%), the cultivation of cherry radish enhanced the dissipation of mandipropamid in both nutrient solutions (without stereoselectivity) and soils (with stereoselectivity). In addition, eleven metabolites and three pathways are proposed. This study provides valuable insights for the varying extent of translocation and proper utilization and safety evaluation of mandipropamid in crops.
Collapse
Affiliation(s)
- Yu Ye
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Hao Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ye You
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fanxia Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jing Shi
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D of Guizhou Medical University, Guiyang 550004, China
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
8
|
Jiang S, Lin J, Zhang R, Wu Q, Li H, Zhang Q, Wang M, Dai L, Xie D, Zhang Y, Zhang X, Han B. In situ mass spectrometry imaging reveals pesticide residues and key metabolic pathways throughout the entire cowpea growth process. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134534. [PMID: 38733786 DOI: 10.1016/j.jhazmat.2024.134534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/18/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024]
Abstract
Cowpea plants, renowned for their high edibility, pose a significant risk of pesticide residue contamination. Elucidating the behavior of pesticide residues and their key metabolic pathways is critical for ensuring cowpea safety and human health. This study investigated the migration of pesticide residues and their key metabolic pathways in pods throughout the growth process of cowpea plants via in situ mass spectrometry. To this end, four pesticides--including systemic (thiram), and nonsystemic (fluopyram, pyriproxyfen, and cyromazine) pesticides--were selected. The results indicate the direct upward and downward transmission of pesticides in cowpea stems and pods. Systemic pesticides gradually migrate to the core of cowpea plants, whereas nonsystemic pesticides remain on the surface of cowpea peels. The migration rate is influenced by the cowpea maturity, logarithmic octanol-water partition coefficient (log Kow) value, and molecular weight of the pesticide. Further, 20 types of key metabolites related to glycolysis, tricarboxylic acid cycle, and flavonoid synthesis were found in cowpea pods after pesticide treatment. These findings afford insights into improving cowpea quality and ensuring the safe use of pesticides.
Collapse
Affiliation(s)
- Shufan Jiang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China; Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin 300392, China
| | - Jingling Lin
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Rui Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Qiong Wu
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Hongxing Li
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Qun Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Mingyue Wang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Longjun Dai
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
| | - Defang Xie
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China
| | - Yue Zhang
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China.
| | - Xinzhong Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Bingjun Han
- Analysis and Test Center, Chinese Academy of Tropical Agricultural Sciences; Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs; Hainan Provincial Key Laboratory of Quality and Safety for Tropical Fruits and Vegetables; Key Laboratory of Nutritional Quality and Health Benefits of Tropical Agricultural Products of Haikou City, Haikou 571101, Hainan, China.
| |
Collapse
|
9
|
Liu S, Yan J, Xu B, Huang X, Qin H, Zhao J, Xia C, Yan S, Liu G. Fates and models for exposure pathways of pyrethroid pesticide residues: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116342. [PMID: 38657457 DOI: 10.1016/j.ecoenv.2024.116342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/04/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Pyrethroids (PYs) are widely applied pesticides whose residues pose potential health risks. This review describes current knowledge on PY chemical properties, usage patterns, environmental and food contamination, and human exposure models. It evaluates life cycle assessment (LCA), chemical alternatives assessment (CAA), and high-throughput screening (HTS) as tools for pesticide policy. Despite efforts to mitigate PY presence, their pervasive residues in the environment and food persist. And the highest concentrations ranged from 54,360 to 80,500 ng/L in water samples from agricultural fields. Food processing techniques variably reduce PY levels, yet no method guarantees complete elimination. This review provides insights into the fates and exposure pathways of PY residues in agriculture and food, and highlights the necessity for improved PY management and alternative practices to safeguard health and environment.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jisha Yan
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Bowen Xu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Xinyi Huang
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Haixiong Qin
- College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China
| | - Jiayuan Zhao
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| | - Chen Xia
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Science, Chengdu, Sichuan 610066, PR China
| | - Shen Yan
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, Henan 450000, PR China
| | - Gang Liu
- Key Laboratory of Land Resources Evaluation and Monitoring in Southwest (Sichuan Normal University), Ministry of Education, Chengdu, Sichuan 610101, PR China; College of Life Science, Sichuan Normal University, Chengdu, Sichuan 610101, PR China.
| |
Collapse
|
10
|
Rawat S, Agarwal M, Goel S, Jagannath A. Use of hydroponics-based evaluation for phenotyping tolerance/susceptibility to the aphid, Uroleucon compositae and inheritance analysis of aphid tolerance in a global germplasm collection of Carthamus tinctorius L. (Safflower). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1021-1027. [PMID: 38974355 PMCID: PMC11222344 DOI: 10.1007/s12298-024-01467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/09/2024]
Abstract
Carthamus tinctorius L. (Safflower) is an important oilseed crop that is cultivated globally. Aphids are a serious pest of safflower and cause significant yield losses of up to 80% due to their ability to multiply rapidly by parthenogenesis. In this study, we report the identification of an aphid-tolerant accession in safflower following screening of a representative global germplasm collection of 327 accessions from 37 countries. Field-based screening methods gave inconsistent and ambiguous results for aphid tolerance between natural and controlled infestation assays and required ~ 3 months for completion. Therefore, we used a rapid, high-throughput hydroponics-based assay system that allows phenotyping of aphid tolerance/susceptibility in a large number of plants in a limited area, significantly reduces the time required to ~ 45 days and avoids inconsistencies observed in field-based studies. We identified one accession out of the 327 tested germplasm lines that demonstrated aphid tolerance in field-based natural and controlled infestation studies and also using the hydroponics approach. Inheritance analysis of the trait was conducted using the hydroponics approach on F1 and F2 progeny generated from a cross between the tolerant and susceptible lines. Aphid-tolerance was observed to be a dominant trait governed by a single locus/gene that can be mobilized after mapping into cultivated varieties of safflower. The hydroponics-based assay described in this study would be very useful for studying the molecular mechanism of aphid-tolerance in safflower and can also be used for bioassays in several other crops that are amenable to hydroponics-based growth. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01467-0.
Collapse
Affiliation(s)
- Sapna Rawat
- Department of Botany, University of Delhi, Delhi, 110007 India
| | - Manu Agarwal
- Department of Botany, University of Delhi, Delhi, 110007 India
| | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007 India
| | - Arun Jagannath
- Department of Botany, University of Delhi, Delhi, 110007 India
| |
Collapse
|
11
|
Lu Y, Han H, Jiang C, Liu H, Wang Z, Chai Y, Zhang X, Qiu J, Chen H. Uptake, accumulation, translocation and transformation of seneciphylline (Sp) and seneciphylline-N-oxide (SpNO) by Camellia sinensis L. ENVIRONMENT INTERNATIONAL 2024; 188:108765. [PMID: 38810495 DOI: 10.1016/j.envint.2024.108765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/05/2024] [Accepted: 05/19/2024] [Indexed: 05/31/2024]
Abstract
Pyrrolizidine alkaloids (PAs) and their N-oxide (PANOs), as emerging environmental pollutants and chemical hazards in food, have become the focus of global attention. PAs/PANOs enter crops from soil and reach edible parts, but knowledge about their uptake and transport behavior in crops is currently limited. In this study, we chose tea (Camellia sinensis L.) as a representative crop and Sp/SpNO as typical PAs/PANOs to analyze their root uptake and transport mechanism. Tea roots efficiently absorbed Sp/SpNO, utilizing both passive and active transmembrane pathways. Sp predominantly concentrated in roots and SpNO efficiently translocated to above-ground parts. The prevalence of SpNO in cell-soluble fractions facilitated its translocation from roots to stems and leaves. In soil experiment, tea plants exhibited weaker capabilities for the uptake and transport of Sp/SpNO compared to hydroponic conditions, likely due to the swift degradation of these compounds in the soil. Moreover, a noteworthy interconversion between Sp and SpNO in tea plants indicated a preference for reducing SpNO to Sp. These findings represent a significant stride in understanding the accumulation and movement mechanisms of Sp/SpNO in tea plants. The insights garnered from this study are pivotal for evaluating the associated risks of PAs/PANOs and formulating effective control strategies.
Collapse
Affiliation(s)
- Yuting Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Changling Jiang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ziqi Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Xiangchun Zhang
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 10081, China.
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety & Risk Assessment, Ministry of Agriculture, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
12
|
Chang J, Gao K, Li R, Dong F, Zheng Y, Zhang Q, Li Y. Comparative uptake, translocation and metabolism of phenamacril in crops under hydroponic and soil cultivation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171670. [PMID: 38485020 DOI: 10.1016/j.scitotenv.2024.171670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 03/22/2024]
Abstract
Many studies investigate the plant uptake and metabolism of xenobiotics by hydroponic experiments, however, plants grown in different conditions (hydroponic vs. soil) may result in different behaviors. To explore the potential differences, a comparative study on the uptake, translocation and metabolism of the fungicide phenamacril in crops (wheat/rice) under hydroponic and soil cultivation conditions was conducted. During 7-14 days of exposure, the translocation factors (TFs) of phenamacril were greatly overestimated in hydroponic-wheat (3.6-5.2) than those in soil-wheat systems (1.1-2.0), with up to 3.3 times of difference between the two cultivation systems, implying it should be cautious to extrapolate the results obtained from hydroponic to field conditions. M-144 was formed in soil pore water (19.1-29.9 μg/L) in soil-wheat systems but not in the hydroponic solution in hydroponics; M-232 was only formed in wheat shoots (89.7-103.0 μg/kg) under soil cultivation conditions, however, it was detected in hydroponic solution (20.1-21.2 μg/L), wheat roots (146.8-166.0 μg/kg), and shoots (239.2-348.1 μg/kg) under hydroponic conditions. The root concentration factors (RCFs) and TFs of phenamacril in rice were up to 2.4 and 3.6 times higher than that in wheat for 28 days of the hydroponic exposure, respectively. These results highlighted that cultivation conditions and plant species could influence the fate of pesticides in crops, which should be considered to better assess the potential accumulation and transformation of pesticides in crops.
Collapse
Affiliation(s)
- Jinhe Chang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Kang Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Runan Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China.
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Qingming Zhang
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, XinXiang 453500, China
| |
Collapse
|
13
|
Wan Q, Li Y, Cheng J, Wang Y, Ge J, Liu T, Ma L, Li Y, Liu J, Zhou C, Li H, Sun X, Chen X, Li QX, Yu X. Two aquaporins, PIP1;1 and PIP2;1, mediate the uptake of neonicotinoid pesticides in plants. PLANT COMMUNICATIONS 2024; 5:100830. [PMID: 38297839 PMCID: PMC11121740 DOI: 10.1016/j.xplc.2024.100830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 01/29/2024] [Indexed: 02/02/2024]
Abstract
Neonicotinoids (NEOs), a large class of organic compounds, are a type of commonly used pesticide for crop protection. Their uptake and accumulation in plants are prerequisites for their intra- and intercellular movements, transformation, and function. Understanding the molecular mechanisms that underpin NEO uptake by plants is crucial for effective application, which remains elusive. Here, we demonstrate that NEOs enter plant cells primarily through the transmembrane symplastic pathway and accumulate mainly in the cytosol. Two plasma membrane intrinsic proteins discovered in Brassica rapa, BraPIP1;1 and BraPIP2;1, were found to encode aquaporins (AQPs) that are highly permeable to NEOs in different plant species and facilitate NEO subcellular diffusion and accumulation. Their conserved transport function was further demonstrated in Xenopus laevis oocyte and yeast assays. BraPIP1;1 and BraPIP2;1 gene knockouts and interaction assays suggested that their proteins can form functional heterotetramers. Assessment of the potential of mean force indicated a negative correlation between NEO uptake and the energy barrier of BraPIP1;1 channels. This study shows that AQPs transport organic compounds with greater osmolarity than previously thought, providing new insight into the molecular mechanisms of organic compound uptake and facilitating innovations in systemic pesticides.
Collapse
Affiliation(s)
- Qun Wan
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yixin Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jinjin Cheng
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Ya Wang
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jing Ge
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Tingli Liu
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Resource Utilization, Nanjing Xiaozhuang University, 3601 Hongjin Avenue, Nanjing 211171, China
| | - Liya Ma
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Yong Li
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Jianan Liu
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Haocong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xing Sun
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Xiaolong Chen
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, HI 96822, USA
| | - Xiangyang Yu
- Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China.
| |
Collapse
|
14
|
Chang J, Liao F, Xiong W, Tian W, Zhang K. Unveiling the absorption, translocation, and metabolism of penthiopyrad in pakchoi under hydroponic and soil-cultivated conditions. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 201:105859. [PMID: 38685213 DOI: 10.1016/j.pestbp.2024.105859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Accepted: 03/08/2024] [Indexed: 05/02/2024]
Abstract
The efficient use of pesticides has long been a topic of public concern, necessitating a thorough understanding of their movement in plants. This study investigates the translocation and distribution of penthiopyrad in pakchoi plants cultivated both in hydroponic and soil-cultivated conditions. Results indicate that penthiopyrad predominantly accumulates in the roots, with concentrations of 11.3-53.9 mg/kg following root application, and in the leaves, with concentrations of 2.0-17.1 mg/kg following foliar application. The bioconcentration factor exceeded 1, with values ranging from 1.2 to 23.9 for root application and 6.4 to 164.0 for foliar application, indicating a significant role in the absorption and accumulation processes. The translocation factor data, which were <1, suggest limited the translocations within pakchoi plants. The limitation may be attributed to the hydrophobic properties of penthiopyrad (log Kow = 3.86), as evidenced by its predominant distribution in the subcellular solid fractions of pakchoi tissues, accounting for 93.1% to 99.5% of the total proportion. Six metabolites (753-A-OH, M12, 754-T-DO, M11, PCA, and PAM) were identified in this study as being formed during this process. These findings provide valuable insights into the absorption, translocation, and metabolism of penthiopyrad in pakchoi.
Collapse
Affiliation(s)
- Jinming Chang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fanxia Liao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wenhao Xiong
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wang Tian
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Kankan Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
15
|
Xia B, Wang S, Li R, Dong F, Zheng Y, Li Y. From Water to Water: Insight into the Translocation of Pesticides from Plant Rhizosphere Solution to Leaf Guttation and the Associated Ecological Risks. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7600-7608. [PMID: 38629313 DOI: 10.1021/acs.est.3c10925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Plant guttation is an important source of water/nutrients for many beneficial insects, while the presence of pesticides in guttation has been considered as a new exposure route for nontarget insects. This study aimed to elucidate how 15 diverse pesticides are translocated from growth media to guttation by maize plants through a hydroponic experiment. All pesticides were effectively translocated from the growth solution to maize guttation and reached a steady state within 5 days. The strong positive correlation (R2 = 0.43-0.84) between the concentrations of pesticides in guttation and in xylem sap demonstrated that xylem sap was a major source of pesticides in guttation. The relationship between the bioaccumulation of pesticides in guttation (BCFguttation) and the chemical Kow was split into two distinct patterns: for pesticides with log Kow > 3, we identified a good negative linear correlation between log BCFguttation and log Kow (R2 = 0.71); however, for pesticides with log Kow < 3, all data fall close to a horizontal line of BCFguttation ≅ 1, indicating that hydrophilic pesticides can easily pass through the plants from rhizosphere solution to leaf guttation and reach saturation status. Besides, after feeding with pesticide-contaminated guttation, the mortality of honeybees was significantly impacted, even at very low levels (e.g., ∑600 μg/L with a mortality of 93%). Our results provide essential information for predicting the contamination of plant guttation with pesticides and associated ecological risks.
Collapse
Affiliation(s)
- Beiqi Xia
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Sijia Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Runan Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Yongquan Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
16
|
Chen ZJ, Wang HW, Li SY, Zhang YH, Qu YN, He ZH, Li XS, Liu XL. Uptake, translocation, accumulation, and metabolism of fluroxypyr-meptyl and oxidative stress induction in rice seedling. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6094-6105. [PMID: 38147256 DOI: 10.1007/s11356-023-31604-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Fluroxypyr-meptyl (FLUME) is heterocyclic herbicide with internal absorption and transmission characteristics. Owing to its low cost and rapid efficacy, it has been widely used to control broad-leaved weeds in wheat, corn, and rice fields. However, the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings and the extent of oxidative stress induced by it remain largely unknown, which consequently restricts the comprehensive risk assessment of FLUME residues in the environment during rice production. Hence, we systematically investigated the growth and physiological responses of rice to FLUME and analyzed its uptake, translocation, accumulation, and metabolism in rice seedlings. The results indicated that under 0-0.12 mg/L FLUME treatment, only a small proportion of FLUME was translocated upward and accumulated in rice shoots following absorption via roots, with all the translocation factor values being < 1. Moreover, the distribution and enrichment ability of FLUME in rice seedlings were greater in roots than in shoots. Furthermore, we revealed that FLUME accumulation in rice seedlings evidently inhibited their growth and activated the defense system against oxidative stress, with an increase in the activity of antioxidant and detoxifying enzymes. In addition, multiple metabolic reactions of FLUME were observed in rice seedlings, including dehalogenation, hydroxylation, glycosylation, acetylation, and malonylation. Our study provides systematic insights into the uptake, translocation, accumulation, and metabolism of FLUME in rice seedlings as well as the oxidative stress induced by FLUME accumulation, which can help improve FLUME applications and environmental risk assessments in crops.
Collapse
Affiliation(s)
- Zhao Jie Chen
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Hao Wen Wang
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Si Ying Li
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Yong Heng Zhang
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Ya Nan Qu
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Zhi Hai He
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Xue Sheng Li
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China
| | - Xiao Liang Liu
- College of Agriculture, Guangxi University, Da Xue East Road No. 100, Nanning, 530004, Guangxi, China.
| |
Collapse
|
17
|
Chen Y, Feng X, Liu X, Zhang L, Mao L, Zhu L, Zheng Y. Bioavailability assessment of difenoconazole to earthworms (Eisenia fetida) in soil by oleic acid-embedded cellulose acetate membrane. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167276. [PMID: 37741384 DOI: 10.1016/j.scitotenv.2023.167276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 09/25/2023]
Abstract
Passive sampling technology is widely used to evaluate the bioavailability of pollutants. However, relatively few studies have used passive sampling membranes (PSMs) to evaluate the environmental risks of pollutants in soil, particularly pesticides. Here, the bioavailability of difenoconazole to earthworms (Eisenia fetida) was evaluated using an oleic acid-embedded cellulose acetate membrane (OECAM) for the first time. Difenoconazole reached 94 % equilibrium (T94%) within 1 d in OECAM. For soil pore water, the freely dissolved concentration (Cfree) of difenoconazole was determined using OECAM (R2 = 0.969). In the soil system, a strong linear correlation between the difenoconazole concentration in OECAM and earthworms was observed (R2 = 0.913). The bioavailability of difenoconazole was affected by the soil type and biochar content. The higher the content of soil organic matter and biochar, the lower the concentration of difenoconazole in earthworms, OECAM, and soil pore water. The concentrations of difenoconazole in pore water, earthworms, and OECAM decreased by 65.3, 42.0, and 41.6 %, respectively, when 0.5 % biochar was added. Difenoconazole mainly enters OECAM and earthworms through passive diffusion with similar uptake pathways. Therefore, the bioavailability of difenoconazole to earthworms in different soils can be evaluated using the OECAM.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaojian Feng
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
18
|
Li J, Tian Z, Han A, Li J, Luo A, Liu R, Zhang Z. Integrative physiological, critical plant endogenous hormones, and transcriptomic analyses reveal the difenoconazole stress response mechanism in wheat (Triticum aestivum L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105688. [PMID: 38072543 DOI: 10.1016/j.pestbp.2023.105688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/04/2023] [Accepted: 11/04/2023] [Indexed: 12/18/2023]
Abstract
Difenoconazole (DFN) is widely utilized as a fungicide in wheat production. However, its accumulation in plant tissues has a profound impact on the physiological functions of wheat plants, thus severely threatening wheat growth and even jeopardizing human health. This study aims to comprehensively analyze the dynamic dissipation patterns of DFN, along with an investigation into the physiological, hormonal, and transcriptomic responses of wheat seedlings exposed to DFN. The results demonstrated that exposure of wheat roots to DFN (10 mg/kg in soil) led to a significant accumulation of DFN in wheat plants, with the DFN content in roots being notably higher than that in leaves. Accumulating DFN triggered an increase in reactive oxygen species content, malonaldehyde content, and antioxidant enzyme activities, while concurrently inhibiting photosynthesis. Transcriptome analysis further revealed that the number of differentially expressed genes was greater in roots compared with leaves under DFN stress. Key genes in roots and leaves that exhibited a positive response to DFN-induced stress were identified through weighted gene co-expression network analysis. Metabolic pathway analysis indicated that these key genes mainly encode proteins involved in glutathione metabolism, plant hormone signaling, amino acid metabolism, and detoxification/defense pathways. Further results indicated that abscisic acid and salicylic acid play vital roles in the detoxification of leaf and root DFN, respectively. In brief, the abovementioned findings contribute to a deeper understanding of the detrimental effects of DFN on wheat seedlings, while shedding light on the molecular mechanisms underlying the responses of wheat root and leaves to DFN exposure.
Collapse
Affiliation(s)
- Jingchong Li
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhixiang Tian
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Aohui Han
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Jingkun Li
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Aodi Luo
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Runqiang Liu
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Zhiyong Zhang
- School of Resources and Environment/School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
19
|
Yang X, Zhou Q, Wang Q, Wu J, Zhu H, Zhang A, Sun J. Congener-specific uptake and accumulation of bisphenols in edible plants: Binding to prediction of bioaccumulation by attention mechanism multi-layer perceptron machine learning model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122552. [PMID: 37714399 DOI: 10.1016/j.envpol.2023.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 08/06/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023]
Abstract
Plant accumulation of phenolic contaminants from agricultural soils can cause human health risks via the food chain. However, experimental and predictive information for plant uptake and accumulation of bisphenol congeners is lacking. In this study, the uptake, translocation, and accumulation of five bisphenols (BPs) in carrot and lettuce plants were investigated through hydroponic culture (duration of 168 h) and soil culture (duration of 42 days) systems. The results suggested a higher bioconcentration factor (BCF) of bisphenol AF (BPAF) in plants than that of the other four BPs. A positive correlation was found between the log BCF and the log Kow of BPs (R2carrot = 0.987, R2lettuce = 0.801, P < 0.05), while the log (translocation factor) exhibited a negative correlation with the log Kow (R2carrot = 0.957, R2lettuce = 0.960, P < 0.05). The results of molecular docking revealed that the lower binding energy of BPAF with glycosyltransferase, glutathione S-transferase, and cytochrome P450 (-4.34, -4.05, and -3.52 kcal/mol) would be responsible for its higher accumulation in plants. Based on the experimental data, an attention mechanism multi-layer perceptron (AM-MLP) model was developed to predict the BCF of eight untested BPs by machine learning, suggesting the relatively high BCF of bisphenol BP, bisphenol PH, and bisphenol TMC (BCFcarrot = 1.37, 1.50, 1.03; BCFlettuce = 1.02, 0.98, 0.67). The prediction of BCF for ever-increasing varieties of BPs by machine learning would reduce repetitive experimental tests and save resources, providing scientific guidance for the production and application of BPs from the perspective of priority pollutants.
Collapse
Affiliation(s)
- Xindong Yang
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qinghua Zhou
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qianwen Wang
- Research and Teaching Center of Agriculture, Zhejiang Open University, Hangzhou, 310012, China
| | - Juan Wu
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Haofeng Zhu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Anping Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jianqiang Sun
- Key Laboratory of Microbial Control Technology for Industrial Pollution in Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
20
|
Chen Y, Liu X, Zhou Y, Zhang L, Mao L, Zhu L, Zheng Y. Bioavailability evaluation of epoxiconazole and difenoconazole in rice and the influence of dissolved organic matter in reducing uptake and translocation. CHEMOSPHERE 2023; 341:140060. [PMID: 37673178 DOI: 10.1016/j.chemosphere.2023.140060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/24/2023] [Accepted: 09/02/2023] [Indexed: 09/08/2023]
Abstract
The aim of this study was to assess the bioavailability of epoxiconazole (EPO) and difenoconazole (DIF) in rice plants by evaluating their uptake, translocation, and accumulation. The results showed that the concentration of DIF in the roots was approximately three times higher than EPO, and both accumulated mainly in the roots. In addition, EPO continued to be transported from stems to leaves, causing a rise in its concentration in leaves. Contrastingly, only a minimal amount of DIF was transported to the leaves. This phenomenon is mainly governed by their differing octanol-water partition coefficient. The effects of dissolved organic carbon (DOC) on the accumulation of EPO and DIF in the roots were similar to those of the freely dissolved concentration measured by OECAMs. The concentrations of EPO and DIF in the roots and OECAMs consistently decreased with increasing DOC levels. Furthermore, a significant linear relationship was observed between the EPO and DIF concentrations in root and OECAMs. We also confirmed the accuracy and usefulness of the OECAMs method in predicting the bioavailability of EPO and DIF in rice roots. Therefore, OECAMs show good potential for use as a passive sampler to evaluate the bioavailability of EPO and DIF.
Collapse
Affiliation(s)
- Yajie Chen
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193, China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yanming Zhou
- Environment Division, Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, 100125, China.
| | - Lan Zhang
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Liangang Mao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Lizhen Zhu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
21
|
Li Z, Fantke P. Including the bioconcentration of pesticide metabolites in plant uptake modeling. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:1708-1717. [PMID: 37772314 DOI: 10.1039/d3em00266g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Although several models of pesticide uptake into plants are available, there are few modeling studies on the bioconcentration of metabolites in plants. Ignoring metabolites in plant uptake models can result in an underestimation of the parent compound's overall impacts on human health associated with pesticide residues in harvested food crops. To address this limitation, we offer a metabolite-based plant uptake model to predict the bioconcentration of the parent compound and its metabolites in plants. We used the uptake of glyphosate and its major metabolite (aminomethylphosphonic acid, AMPA) into potato as an example. The analysis of variability revealed that soil properties (affecting the soil sorption coefficient), dissipation half-life in soil, and metabolic half-life in the potato had a significant impact on the simulated AMPA concentration in the potato, indicating that regional variability could be generated in the plant bioconcentration process of metabolites. The proposed model was further compared using the non-metabolite model. The findings of the comparison suggested that the non-metabolite model, which is integrated with the AMPA bioconcentration process, can predict the AMPA concentration in the potato similarly to the proposed model. In conclusion, we provide insight into the bioconcentration process of metabolites in tuber plants from a modeling viewpoint, with some crucial model inputs, such as biotransformation and metabolic rate constants, requiring confirmation in future studies. The modeling demonstration emphasizes that it is relevant to consider bioaccumulation of metabolites, which can propagate further into increased overall residues of harmful compounds, especially in cases where metabolites have higher toxicity effect potency than their respective parent compounds.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, Guangdong 518107, China.
| | - Peter Fantke
- Quantitative Sustainability Assessment, Department of Environmental and Resource Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
22
|
Zhu T, Zhang Y, Li Y, Tao T, Tao C. Contribution of molecular structures and quantum chemistry technique to root concentration factor: An innovative application of interpretable machine learning. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132320. [PMID: 37604035 DOI: 10.1016/j.jhazmat.2023.132320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/23/2023]
Abstract
Root concentration factor (RCF) is a significant parameter to characterize uptake and accumulation of hazardous organic contaminants (HOCs) by plant roots. However, complex interactions among chemicals, plant roots and soil make it challenging to identify underlying mechanisms of uptake and accumulation of HOCs. Here, nine machine learning techniques were applied to investigate major factors controlling RCF based on variable combinations of molecular descriptors (MD), MACCS fingerprints, quantum chemistry descriptors (QCD) and three physicochemical properties related to chemical-soil-plant system. Compared to models with variables including MACCS fingerprints or solitary physicochemical properties, the XGBoost-6 model developed by the variable combination of MD, QCD and three physicochemical properties achieved the most remarkable performance, with R2 of 0.977. Model interpretation achieved by permutation variable importance and partial dependence plots revealed the vital importance of HOCs lipophilicity, lipid content of plant roots, soil organic matter content, the overall deformability and the molecular dispersive ability of HOCs for regulating RCF. The integration of MD and QCD with physicochemical properties could improve our knowledge of underlying mechanisms regarding HOCs accumulation in plant roots from innovative structural perspectives. Multiple variables combination-oriented performance improvement of model can be extended to other parameters prediction in environmental risk assessment field.
Collapse
Affiliation(s)
- Tengyi Zhu
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China.
| | - Yu Zhang
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Yi Li
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| | - Tianyun Tao
- College of Agriculture, Yangzhou University, Yangzhou 225009, Jiangsu, China
| | - Cuicui Tao
- School of Environmental Science and Engineering, Yangzhou University, Yangzhou 225127, Jiangsu, China
| |
Collapse
|
23
|
Ponepal CM, Soare LC, Drăghiceanu OA, Mihăescu CF, Șuțan NA, Țânțu MM, Păunescu A. Evaluation of the Morphological, Physiological and Biochemical Effects Induced by Coragen 20 SC in Some Non-Target Species. TOXICS 2023; 11:618. [PMID: 37505583 PMCID: PMC10383946 DOI: 10.3390/toxics11070618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 07/29/2023]
Abstract
Coragen 20 SC is an insecticide based on chlorantraniliprole that is applied on many crops. Considered an effective product with an incremental cost-benefit ratio, it has been widely used globally. Residual pesticides affect non-target organisms, so it is necessary to explore the possible effects induced by these xenobiotics on different species. This work aimed to assess some morphological, physiological and biochemical effects induced by Coragen 20 SC on two non-target species: Perca fluviatilis (Linné, 1758) and Triticum aestivum L. The concentrations used were the same for all tested species (0.0125, 0.025 and 0.05 mL L-1), and the experiments were of the acute, subchronic and chronic type. The toxicological effects of Coragen 20 SC on perch recorded behavioral changes, a decrease in respiratory rate and oxygen consumption, an increase in blood glucose levels and a decrease in the number of erythrocytes and leukocytes. The results obtained from the evaluation of Coragen 20 SC toxicity using the Triticum test indicate a weak to moderate phytotoxicity for the considered parameters at the applied doses. Only the assimilatory pigments were significantly modified at the concentration of 0.025 mL L-1 for the growth of the axial organs and the wet and dry weight, with the changes obtained not being statistically significant.
Collapse
Affiliation(s)
- Cristina Maria Ponepal
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Liliana Cristina Soare
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Oana-Alexandra Drăghiceanu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Cristina Florina Mihăescu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Nicoleta Anca Șuțan
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Monica Marilena Țânțu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| | - Alina Păunescu
- Natural Science Department, Faculty of Sciences, Physical Education and Informatics, University of Pitesti, 110040 Pitesti, Romania
| |
Collapse
|
24
|
Fang N, Zhao X, Li Y, Luo Y, Wang X, He H, Zhang C, Jiang J. Uptake, translocation and subcellular distribution of broflanilide, afidopyropen, and flupyradifurone in mustard (Brassica juncea). JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131381. [PMID: 37030221 DOI: 10.1016/j.jhazmat.2023.131381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 03/17/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Novel pesticides broflanilide (BFI), afidopyropen (ADP), and flupyradifurone (FPO) have been widely used and become the new organic pollutants. However, uptake, translocation and residual distribution of BFI, ADP, and FPO in plants remain unclear. Therefore, residues distribution, uptake, and translocation of BFI, ADP, and FPO were investigated in mustard field trials and hydroponic experiments. The field results indicated that the residues of BFI, ADP, and FPO were 0.001-1.87 mg/kg at 0-21 d and dissipated fast in mustard (half-lives=5.2-11.3 d). More than 66.5 % of FPO residues were distributed in the cell-soluble fractions because of their high hydrophilicity, while hydrophobic BFI and ADP were primarily stored in the cell walls and organelles. The hydroponic data showed that the foliar uptake rates of BFI, ADP, and FPO were weak (bioconcentration factors<1), but the root uptake rate was strong (bioconcentration factors>1). The upward and downward translations of BFI, ADP, and FPO were limited (translation factor<1). BFI and ADP are uptake by roots via apoplast pathway, and FPO is uptake via symplastic pathway. This study contributes to the understanding of the formation of pesticide residues in plants and provides a reference for safe application and risk assessment of BFI, ADP, and FPO.
Collapse
Affiliation(s)
- Nan Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xueping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yanjie Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yuqin Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangyun Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hongmei He
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Changpeng Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Jinhua Jiang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ministry of Agriculture and Rural Affairs Key Laboratory for Pesticide Residue Detection, Institute of Agro-Products Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
25
|
Barchanska H, Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Shakeel N, Płonka J. The metabolic processes of selected pesticides and their influence on plant metabolism. A case study of two field-cultivated wheat varieties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162709. [PMID: 36907395 DOI: 10.1016/j.scitotenv.2023.162709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Pesticides that are absorbed by plants undergo biotransformation and might affect plant metabolic processes. The metabolisms of two cultivated wheat varieties, Fidelius and Tobak, treated with commercially available fungicides (fluodioxonil, fluxapyroxad, and triticonazole) and herbicides (diflufenican, florasulam, and penoxsulam) were studied under field conditions. The results provide novel insights regarding the effects of these pesticides on plant metabolic processes. Plants (roots and shoots) were sampled six times during the six-week experiment. Pesticides and pesticide metabolites were identified using GC-MS/MS, LC-MS/MS, and LC-HRMS, while root and shoot metabolic fingerprints were determined using non-targeted analysis. Fungicide dissipation kinetics were analyzed according to the quadratic mechanism (R2: 0.8522-0.9164) for Fidelius roots, and zero-order for Tobak roots (R2: 0.8455-0.9194); shoot dissipation kinetics were analyzed according to first-order (R2: 0.9593-0.9807) and quadratic (R2: 0.8415-0.9487) mechanisms for Fidelius and Tobak, respectively. The fungicide degradation kinetics were different compared to reported literature values, most likely due to differences in pesticide application methods. The following metabolites were respectively identified in shoot extracts of both wheat varieties for fluxapyroxad, triticonazole, and penoxsulam: 3-(difluoromethyl)-N-(3',4',5'-trifluorobiphenyl-2-yl)-1H pyrazole-4-carboxamide, 2-chloro-5-{(E)-[2-hydroxy-3,3-dimethyl-2-(1H-1,2,4-triazol-1-ylmethyl)-cyclopentylidene]-methyl}phenol, and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6 (trifluoromethyl)benzene sulfonamide. Metabolite dissipation kinetics varied depending on the wheat variety. These compounds were more persistent than parent compounds. Despite having the same cultivation conditions, the two wheat varieties varied in their metabolic fingerprints. The study revealed that pesticide metabolism has a greater dependence on plant variety and method of administration compared to the physicochemical properties of the active substance. This highlights the necessity of conducting research on pesticide metabolism under field conditions.
Collapse
Affiliation(s)
- Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland.
| | - Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153 Sośnicowice, Gliwicka 29, Poland
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV 1076, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153 Sośnicowice, Gliwicka 29, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100 Gliwice, Poland.
| |
Collapse
|
26
|
Zhang S, Zhang Y, Ren S, Lu H, Li J, Liang X, Wang L, Li Y, Wang M, Zhang C. Uptake, translocation and metabolism of acetamiprid and cyromazine by cowpea (Vigna unguiculata L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 331:121839. [PMID: 37201568 DOI: 10.1016/j.envpol.2023.121839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/02/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
Acetamiprid (ACE) and cyromazine (CYR) are the two pesticides that are used relatively frequently and in large quantities in cowpea growing areas in Hainan. The uptake, translocation and metabolic patterns and subcellular distribution of these two pesticides in cowpea are important factors affecting pesticide residues in cowpea and assessing the dietary safety of cowpea. In this study, we investigated the uptake, translocation, subcellular distribution, and metabolic pathway of ACE and CYR in cowpea under laboratory hydroponic conditions. The distribution trends of both ACE and CYR in cowpea plants were leaves > stems > roots. The distribution of both pesticides in subcellular tissues of cowpea was cell soluble fraction > cell wall > cell organelle, and both transport modes were passive. A multiplicity of metabolic reactions of both pesticides occurred in cowpea, including dealkylation, hydroxylation and methylation. The results of the dietary risk assessment indicate that ACE is safe for use in cowpeas, but CYR poses an acute dietary risk to infants and young children. This study provided a basis for insights into the transport and distribution of ACE and CYR in vegetables and contributes to the assessment of whether pesticide residues in vegetables could pose a potential threat to human health at high concentrations of pesticides in the environment.
Collapse
Affiliation(s)
- Shanying Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Yu Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Saihao Ren
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Hongwei Lu
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Jiaomei Li
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China
| | - Xiaoyu Liang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Lifeng Wang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, PR China
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, PR China
| | - Meng Wang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China
| | - Chenghui Zhang
- College of Food Science and Engineering, Sanya Nanfan Research Institute, College of Plant Protection, Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests, PR China; Key Laboratory of Tropical Fruits and Vegetables Quality and Safety for State Market Regulation, PR China.
| |
Collapse
|
27
|
Liu Y, Zhang Q, Dong W, Li Z, Liu T, Wei W, Zuo M. Autoformer-Based Model for Predicting and Assessing Wheat Quality Changes of Pesticide Residues during Storage. Foods 2023; 12:1833. [PMID: 37174371 PMCID: PMC10178581 DOI: 10.3390/foods12091833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Proper grain storage plays a critical role in maintaining food quality. Among a variety of grains, wheat has emerged as one of the most important grain reserves globally due to its short growing period, high yield, and storage resistance. To improve the quality assessment of wheat during storage, this study collected and analyzed monitoring data from more than 20 regions in China, including information on storage environmental parameters and changes in wheat pesticide residue concentrations. Based on these factors, an Autoformer-based model was developed to predict the changes in wheat pesticide residue concentrations during storage. A comprehensive wheat quality assessment index Q was set for the predicted and true values of pesticide residue concentrations, then combined with the K-means++ algorithm to assess the quality of wheat during storage. The results of the study demonstrate that the Autoformer model achieved the optimal prediction results and the smallest error values. The mean absolute error (MAE) and the other four error values are 0.11017, 0.01358, 0.04681, 0.11654, and 0.13005. The findings offer technical assistance and a scientific foundation for enhancing the quality of stored wheat.
Collapse
Affiliation(s)
- Yingjie Liu
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Qingchuan Zhang
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Dong
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Zihan Li
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Tianqi Liu
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Wei
- School of Modern Post, Beijing University of Posts and Telecommunications, Beijing 100876, China
| | - Min Zuo
- National Engineering Research Centre for Agri-Product Quality Traceability, Beijing Technology and Business University, Beijing 100048, China
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
28
|
Li J, Geng R, Kong X, Li L, Zhang Z, Liu R. Transcriptomic and physiological properties reveal the tolerance mechanism to difenoconazole toxicity in wheat (Triticum aestivum L.). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 255:114787. [PMID: 36948013 DOI: 10.1016/j.ecoenv.2023.114787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/11/2023] [Accepted: 03/14/2023] [Indexed: 06/18/2023]
Abstract
Difenoconazole (DFZ) is a broad-spectrum fungicide widely applied in wheat production. However, excessive accumulation is linked to phytotoxicity. The effects of DFZ on plants and the response mechanisms to DFZ toxicity are poorly understood. Herein, the uptake, accumulation, and translocation of DFZ and induced changes in the morphology, physiology, and gene expression were investigated under hydroculture of roots treated with 50, 100, and 200 mg/L DFZ concentrations. Compared with the control, DEZ treatment upregulated the expression of genes encoding 4-coumarate-CoA ligase (4CL) and peroxidase (POD) involved in the lignin biosynthesis pathway and enhanced lignin biosynthesis. DFZ accumulated more in older leaves (cotyledons and lower true leaves), with 0.49-5.71 and 0.09-2.14 folds higher than levels in new upper leaves and roots, respectively. The excessive accumulation of DFZ in tissues was rapidly degraded, with a 15.7-69.3% reduction of DFZ content in roots and leaves from 3 DAT to 6 DAT. The genes expression and activity of glutathione S-transferase (GST) were increased. Furthermore, DFZ treatments upregulated genes encoding chalcone synthase (CHS), chalcone isomerase (CHI), and anthocyanidin synthase (ANS) involved in the flavonoid biosynthesis pathway and increased the amount of flavonoid and anthocyanins in leaves. This study provides new insights into the self-protective behaviors exhibited by wheat plants under DFZ stress. The mechanisms included hindering DFZ penetration from roots by enhancing lignin biosynthesis, accumulating more in old leaves, degrading by GST, and alleviating oxidative damage by increasing the content of flavonoids and anthocyanins in leaves.
Collapse
Affiliation(s)
- Jingchong Li
- School of Life Science and Technology/School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Runlian Geng
- College of Life Science, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiangjun Kong
- School of Life Science and Technology/School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Lijie Li
- School of Life Science and Technology/School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China
| | - Zhiyong Zhang
- School of Life Science and Technology/School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| | - Runqiang Liu
- School of Life Science and Technology/School of Resources and Environment, Henan Institute of Science and Technology, Xinxiang, Henan 453003, China.
| |
Collapse
|
29
|
Li X, Hu Y, Li D, Su Y. Transport and removal mechanism of benzene by Tradescantia zebrina Bosse and Epipremnum aureum (Linden ex André) G.S. Bunting in air-plant-solution system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58282-58294. [PMID: 36977874 PMCID: PMC10047475 DOI: 10.1007/s11356-023-26618-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 03/19/2023] [Indexed: 05/07/2023]
Abstract
Phytoremediation is considered an effective method for indoor air pollution control. The removal rate and mechanism of benzene in air by two plants, Tradescantia zebrina Bosse and Epipremnum aureum (Linden ex André) G. S. Bunting, were investigated through fumigation experiments under the condition of plant hydroponics culturing. Results showed that the plant removal rates increased with increase in benzene concentration in air. When the benzene concentration in air was set at 432.25-1314.75 mg·m-3, the removal rates of T. zebrina and E. aureum ranged from 23.05 ± 3.07 to 57.42 ± 8.28 mg·kg-1·h-1 FW and from 18.82 ± 3.73 to 101.58 ± 21.20 mg·kg-1·h-1 FW, respectively. The removal capacity was positively related to the transpiration rate of plants, indicating that gas exchange rate could be a key factor for the evaluation of removal capacity. There existed fast reversible transport of benzene on air-shoot interface and root-solution interface. After shoot exposure to benzene for 1 h, downward transport was the dominant mechanism in the removal of benzene in air by T. zebrina, while in vivo fixation was the dominant mechanism at exposure time of 3 and 8 h. Within 1-8 h of shoot exposure time, in vivo fixation capacity was always the key factor affecting the removal rate of benzene in the air by E. aureum. Contribution ratio of in vivo fixation in the total benzene removal rate increased from 6.29 to 92.29% for T. zebrina and from 73.22 to 98.42% for E. aureum in the experimental conditions. Reactive oxygen species (ROS) burst induced by benzene exposure was responsible for the contribution ratio change of different mechanisms in the total removal rate, which also was verified by the change of activities of antioxidant enzymes (CAT, POD, and SOD). Transpiration rate and antioxidant enzyme activity could be considered parameters to evaluate the plant removal ability to benzene and to screen plants for establishment of plant-microbe combination technology.
Collapse
Affiliation(s)
- Xiaojuan Li
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yuanfang Hu
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Depeng Li
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi, 830046, People's Republic of China.
| |
Collapse
|
30
|
Seri̇n S. A comprehensive DFT study on organosilicon-derived fungicide flusilazole and its germanium analogue: A computational approach to Si/Ge bioisosterism. J INDIAN CHEM SOC 2023. [DOI: 10.1016/j.jics.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
31
|
Liu J, Cheng J, Zhou C, Ma L, Chen X, Li Y, Sun X, Yan X, Geng R, Wan Q, Yu X. Uptake kinetics and subcellular distribution of three classes of typical pesticides in rice plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159826. [PMID: 36374729 DOI: 10.1016/j.scitotenv.2022.159826] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Food safety problems caused by pesticide residues have always been a concern for many people. In this study, we investigated the uptake, translocation and subcellular distribution of neonicotinoid insecticides, triazole fungicides, and sulfonylurea herbicides in rice plants (Oryza sativa L.). The time-dependent uptake kinetics of the three categories of pesticides with different molecular structures fit a first-order one-compartment kinetic model. The neonicotinoids (log Kow -0.66-0.8) were mainly concentrated in the leaves, and the triazoles (log Kow 3.72-4.4) were mainly concentrated in the roots. Neonicotinoid pesticides in the roots were preferentially transported across the membrane through the symplastic pathway; triazole pesticides except for triadimefon and myclobutanil preferentially passed through the symplastic pathway; and sulfonylurea pesticides (log Kow 0.034-2.89) were first transported upward through the apoplastic pathway. In the roots, neonicotinoids, triazoles, and sulfonylurea herbicides were mainly concentrated in the soluble fractions, cell wall and apoplast fractions, respectively. In addition, there was a high positive correlation between the subcellular distribution of pesticides in the roots, stems and leaves. Molecular weight and log Kow jointly affected the enrichment of triazole pesticides in the roots, stems and leaves and the transfer from stems to leaves, while water solubility and log Kow commonly affected neonicotinoids. There was a correlation between pesticide absorption and the molecular structures of pesticides. To develop pesticides with strong uptake and transport capabilities, it is necessary to consider that the electronegativity of some atoms is stronger, the sum of the topological indices of heteroatoms can be large, and the van der Waals volume increases accordingly.
Collapse
Affiliation(s)
- Jianan Liu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Jinjin Cheng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Chunli Zhou
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Liya Ma
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xiaolong Chen
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Yong Li
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xing Sun
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Xiaolong Yan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Renhua Geng
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| | - Qun Wan
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Xiangyang Yu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China; Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing 210014, China; Key Laboratory of Food Quality and Safety of Jiangsu Province, State Key Laboratory Breeding Base, Nanjing 210014, China
| |
Collapse
|
32
|
Yu Y, Yu X, Zhang D, Jin L, Huang J, Zhu X, Sun J, Yu M, Zhu L. Biotransformation of Organophosphate Esters by Rice and Rhizosphere Microbiome: Multiple Metabolic Pathways, Mechanism, and Toxicity Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1776-1787. [PMID: 36656265 DOI: 10.1021/acs.est.2c07796] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The biotransformation behavior and toxicity of organophosphate esters (OPEs) in rice and rhizosphere microbiomes were comprehensively studied by hydroponic experiments. OPEs with lower hydrophobicity were liable to be translocated acropetally, and rhizosphere microbiome could reduce the uptake and translocation of OPEs in rice tissues. New metabolites were successfully identified in rice and rhizosphere microbiome, including hydrolysis, hydroxylated, methylated, and glutathione-, glucuronide-, and sulfate-conjugated products. Rhizobacteria and plants could cooperate to form a complex ecological interaction web for OPE elimination. Furthermore, active members of the rhizosphere microbiome during OPE degradation were revealed and the metagenomic analysis indicated that most of these active populations contained OPE-degrading genes. The results of metabolomics analyses for phytotoxicity assessment implied that several key function metabolic pathways of the rice plant were found perturbed by metabolites, such as diphenyl phosphate and monophenyl phosphate. In addition, the involved metabolism mechanisms, such as the carbohydrate metabolism, amino acid metabolism and synthesis, and nucleotide metabolism in Escherichia coli, were significantly altered after exposure to the products mixture of OPEs generated by rhizosphere microbiome. This work for the first time gives a comprehensive understanding of the entire metabolism of OPEs in plants and associated microbiome, and provides support for the ongoing risk assessment of emerging contaminants and, most critically, their transformation products.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Dongqing Zhang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Ling Jin
- Department of Civil and Environmental Engineering and Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon999077, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon999077, Hong Kong
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Xifen Zhu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong525000, China
| | - Miao Yu
- The Jackson Laboratory For Genomic Medicine, 10 Discovery Dr., Farmington, Connecticut06032, United States
| | - Lizhong Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang310058, China
| |
Collapse
|
33
|
Tan H, Wu Q, Hao R, Wang C, Zhai J, Li Q, Cui Y, Wu C. Occurrence, distribution, and driving factors of current-use pesticides in commonly cultivated crops and their potential risks to non-target organisms: A case study in Hainan, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158640. [PMID: 36113805 DOI: 10.1016/j.scitotenv.2022.158640] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Multiple pesticides are heavily applied in crops grown in China's tropics due to the prevalence of diseases and pests, thus posing potential risks to nontarget organisms (e.g., honeybees, lacewings, ladybugs, and humans). However, there is little information on this topic. This study is the first assessment of the occurrence, driving factors, and ecological/human health risks of 32 current-use pesticides (CUPs) in 10 frequently-planted crops collected from practicing rice-vegetable rotation systems in Hainan, China. Of the 132 whole crop samples, 44 (33.3 %) residues from ≥8 pesticides were detected in 9.09 % of crop samples with concentrations ≥0.5 mg kg-1. Six pesticide residues, namely carbendazim, pyraclostrobin, acetamiprid, thiophanate methyl, phoxim, and imidacloprid, were detected in 72.7 % of samples, with concentrations ranging from 0.0021 to 13.5 (median = 0.032) mg kg-1. Among them, carbendazim, pyraclostrobin, and acetamiprid were the most common, contributions from 10.2 to 25.5 % and a detection frequency ranging from 25.6 to 56.1 %. The order of total concentration of 32 CUPs (∑32 CUP) concentrations during the year was January > May > November > August and vegetables > rice, being highly related with pesticides usage pattern, crop type, plant accumulation/dissipation and plant lipid contents. The ecological risk quotients (RQs) to four beneficial terrestrial organisms showed that 9.6-39.1 % of samples posed a potential medium or high ecological risk, with 13.6-65.9 % of samples at ∑RQ > 1 being highly affected by the residues of neonicotinoids and emamectin benzoate. Emamectin benzoate (8.9 %) and acetamiprid (5.6 %) exceeded the individual Maximum Residue Levels based on Chinese legislation (GB2763-2021). Moreover, cumulative dietary exposure presented a higher risk to humans in 11.0 and 22.0 % of the cases for acute and chronic, mainly originating from the higher concentration contributors of systemic pesticides in edible crops. Therefore, the regulation and monitoring of CUP residues is imperative for rice-vegetable rotation systems in tropical China to avoid negative effects on nontarget organisms.
Collapse
Affiliation(s)
- Huadong Tan
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Qiumin Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Rong Hao
- School of Resources and Environment, Central China Agricultural University, Wuhan 430070, PR China
| | - Chuanmi Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Jinlin Zhai
- College of Tropical Crops, Hainan University, Haikou 570228, PR China
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China
| | - Yanmei Cui
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China
| | - Chunyuan Wu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, PR China; Danzhou Scientific Observing and Experimental Station of Agro-Environment, Ministry of Agriculture and Rural Affairs, Danzhou 571737, PR China; National Agricultural Experimental Station for Agricultural Environment, Danzhou 571737, PR China; Hainan Engineering Research Center for Non-point Source and Heavy Metal Pollution Control, Danzhou 571737, PR China.
| |
Collapse
|
34
|
Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Płonka J, Shakeel N, Barchanska H. Targeted and non-targeted analysis for the investigation of pesticides influence on wheat cultivated under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120468. [PMID: 36283473 DOI: 10.1016/j.envpol.2022.120468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive approach was applied to evaluate the effects of pesticides on the metabolism of wheat (Triticum aestivum L). The application of commercially available pesticide formulations under field cultivation conditions provided a source of metabolic data unlimited by model conditions, representing a novel approach to study the effects of pesticides on edible plants. Gas and liquid chromatography coupled to tandem mass spectrometry were employed for targeted and non-targeted analysis of wheat roots and shoots sampled six times during the six-week experiment. The applied pesticides: prothioconazole, tebuconazole, fluoxastrobin, diflufenican, florasulam, and penoxulam were found at concentrations ranging 0.0070-25.20 mg/kg and 0.0020-2.2 mg/kg in the wheat roots and shoots, respectively. The following pesticide metabolites were identified in shoots: prothioconazole-desthio (prothioconazole metabolite), 5-(4-chlorophenyl)-2,2-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentane-1,3-diol (tebuconazole metabolite), and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6-(trifluoromethyl)benzene sulphonamide (penoxulam metabolite). The metabolic fingerprints and profiles changed during the experiment, reflecting the cumulative response of wheat to both its growth environment and pesticides, as well as their metabolites. Approximately 15 days after the herbicide treatment no further changes in the plant metabolic profiles were observed, despite the presence of pesticide and their metabolites in both roots and shoots. This is the first study to combine the determination of pesticides and their metabolites plant tissues with the evaluation of plant metabolic responses under field conditions. This exhaustive approach contributes to broadening the knowledge of pesticide effects on edible plants, relevant to food safety.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|
35
|
Feng X, Liu G, Wang X, An K, Guo Y, Liu Y, Dong J. Uptake, Translocation, and Subcellular Distribution of Oxathiapiprolin and Famoxadone in Tomato Plants ( Lycopersicon esculentum Miller). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12310-12319. [PMID: 36134436 DOI: 10.1021/acs.jafc.2c03668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The uptake, translocation, and subcellular distribution of oxathiapiprolin and famoxadone in tomato plants were investigated using hydroponic experiments. Oxathiapiprolin and famoxadone mainly accumulated in the tomato roots with limited translocation capacity from the roots to the upper part. The root absorption and inhibitor results noted the dominance of the apoplastic and symplastic pathways in the oxathiapiprolin and famoxadone uptake by the tomato roots, respectively. Furthermore, the uptake process for the two fungicides followed passive and aquaporin-dependent transport. Insoluble cell components (cell organelles and walls) were the dominant storage compartments for oxathiapiprolin and famoxadone. In the protoplast, oxathiapiprolin in the soluble fraction had a higher proportion than that of famoxadone. Finally, the uptake and distribution of the two fungicides by the tomato plants was accurately predicted using a partition-limited model. Thus, this study provides an in-depth understanding of the transfer of oxathiapiprolin and famoxadone from the environment to tomato plants.
Collapse
Affiliation(s)
- Xiaoxiao Feng
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Guoxin Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Xinyue Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Kai An
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Yajing Guo
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Yingchao Liu
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jingao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071000, P. R. China
| |
Collapse
|
36
|
Liu G, Feng X, Wan Y, Liu Q, Liu Y, Dong J. Uptake, translocation, and degradation of spirotetramat in tomato (Lycopersicon esculentum Miller): Impact of the mixed-application with pymetrozine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60133-60144. [PMID: 35419685 DOI: 10.1007/s11356-022-20198-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
In this study, we investigated the impact of the mixed-application with pymetrozine on the behavior (i.e., uptake, translocation, and degradation) of spirotetramat in tomatoes under laboratory conditions. Results showed that pymetrozine promoted the uptake of spirotetramat from the nutrition solution after root application. The root concentration factor was 0.290 and 1.566 after spirotetramat single application and mixed-application with pymetrozine, respectively. It had little effect on the degradation of spirotetramat, with the metabolites of M-keto, M-enol, and M-glu in tomato issue (root, stems, and leaves). After foliar treatments, pymetrozine accelerated the translocation of spirotetramat from leaves to stems, with the translocation factor of 0.145 and 0.402 after spirotetramat single application and mixtures with pymetrozine, respectively. Pymetrozine also promoted the degradation of spirotetramat to M-kto and M-enol in leaves. Besides, a partition-limited model was used to describe the distribution processes of spirotetramat in the tomato-water system after root application. It showed that pymetrozine accelerated the distribution balance of spirotetramat in the whole system. Our result indicates that the interaction among pesticides should be considered when studied for the uptake, translocation, and degradation of pesticides in crops.
Collapse
Affiliation(s)
- Guoxin Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Xiaoxiao Feng
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Yamei Wan
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| | - Qianyu Liu
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan, 056000, People's Republic of China
| | - Yingchao Liu
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China.
| | - Jingao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, People's Republic of China
| |
Collapse
|
37
|
Wang S, Li R, Dong F, Zheng Y, Li Y. Determination of a novel pesticide cyetpyrafen and its two main metabolites in crops, soils and water. Food Chem 2022; 400:134049. [DOI: 10.1016/j.foodchem.2022.134049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 10/14/2022]
|
38
|
Xu S, Song J, Shen F, Wang Y, Zhang L, Fang H, Yu Y. Uptake, Accumulation, and translocation of azoxystrobin by Vegetable plants in soils: influence of soil characteristics and plant species. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:386-392. [PMID: 35670838 DOI: 10.1007/s00128-022-03556-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
Although azoxystrobin has been widely applied on various crops, little is known about the bioavailability of azoxystrobin in the soil-vegetable system. In this study, the uptake, accumulation and translocation of azoxystrobin as affected by soil characteristics and plant species were respectively investigated. The accumulation amount of azoxystrobin in pakchoi increased as soil adsorption decreased and was positively associated with its concentration in pore water (Cpw), which was mainly affected by soil organic matter content. Therefore, Cpw could be a candidate for the estimation of azoxystrobin accumulation in pakchoi. In all the tested vegetables, azoxystrobin was mainly accumulated in roots, and its upward translocation was limited. Root lipid content was a major factor affecting the uptake and translocation of azoxystrobin in different vegetables.
Collapse
Affiliation(s)
- Shiji Xu
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Jialu Song
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Fan Shen
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Yingnan Wang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Luqing Zhang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China.
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, The Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
39
|
Hrynko I, Kaczyński P, Pietruszyńska M, Łozowicka B. The effect of food thermal processes on the residue concentration of systemic and non-systemic pesticides in apples. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
40
|
Dittrich J, Brethauer C, Goncharenko L, Bührmann J, Zeisler-Diehl V, Pariyar S, Jakob F, Kurkina T, Schreiber L, Schwaneberg U, Gohlke H. Rational Design Yields Molecular Insights on Leaf-Binding of Anchor Peptides. ACS APPLIED MATERIALS & INTERFACES 2022; 14:28412-28426. [PMID: 35604777 DOI: 10.1021/acsami.2c00648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In times of a constantly growing world population and increasing demand for food, sustainable agriculture is crucial. The rainfastness of plant protection agents is of pivotal importance to reduce the amount of applied nutrients, herbicides, and fungicides. As a result of protective agent wash-off, plant protection is lost, and soils and groundwater are severely polluted. To date, rainfastness of plant protection products has been achieved by adding polymeric adjuvants to the agrochemicals. However, polymeric adjuvants will be regarded as microplastics in the future, and environmentally friendly alternatives are needed. Anchor peptides (APs) are promising biobased and biodegradable adhesion promoters. Although the adhesion of anchor peptides to artificial surfaces, such as polymers, has already been investigated in theory and experimentally, exploiting the adhesion to biological surfaces remains challenging. The complex nature and composition of biological surfaces such as plant leaves and fruit surfaces complicate the generation of accurate models. Here, we present the first detailed three-layered atomistic model of the surface of apple leaves and use it to compute free energy profiles of the adhesion and desorption of APs to and from that surface. Our model is validated by a novel fluorescence-based microtiter plate (MTP) assay that mimics these complex processes and allows for quantifying them. For the AP Macaque Histatin, we demonstrate that aromatic and positively charged amino acids are essential for binding to the waxy apple leaf surface. The established protocols should generally be applicable for tailoring the binding properties of APs to biological interfaces.
Collapse
Affiliation(s)
- Jonas Dittrich
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
| | - Christin Brethauer
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Liudmyla Goncharenko
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Jens Bührmann
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | | | - Shyam Pariyar
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Crop Science and Resource Conservation, University of Bonn, Bonn 53115, Germany
| | - Felix Jakob
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Tetiana Kurkina
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
| | - Lukas Schreiber
- Department of Ecophysiology, University of Bonn, Bonn 53115, Germany
| | - Ulrich Schwaneberg
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute of Biotechnology, RWTH Aachen University, Aachen 52074, German
- DWI - Leibniz-Institute for Interactive Materials, Aachen 52074, Germany
| | - Holger Gohlke
- Bioeconomy Science Center (BioSC), Forschungszentrum Jülich, Jülich 52425, Germany
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Dusseldorf, Dusseldorf 40225, Germany
- John von Neumann Institute for Computing (NIC), Jülich Supercomputing Centre (JSC), Institute of Biological Information Processing (IBI-7: Structural Biochemistry), and Institute of Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich GmbH, Jülich 52425, Germany
| |
Collapse
|
41
|
Cao J, Liu X, Wu X, Xu J, Dong F, Zheng Y. Uptake and distribution of difenoconazole in rice plants under different culture patterns. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2022; 39:1100-1108. [PMID: 35357266 DOI: 10.1080/19440049.2022.2056640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The effects of spraying and root irrigation on the uptake and transport of the fungicide difenoconazole under hydroponic and soil cultivation were investigated. Rice was used as the crop for a short-term exposure experiment. A modified QuEChERS pre-treatment combined with ultra-high-performance liquid chromatography-tandem mass spectrometry was used to extract and detect difenoconazole from rice plants, water and soil. The recoveries of difenoconazole were in the range of 72.8-110.5%, with a relative standard deviation of 2.4-19.5% for all the samples when spiked with 0.01, 0.1 and 1 mg kg-1 of difenoconazole, respectively. The limit of quantitation (LOQ) of this method was 0.01 mg kg-1. The exposure results showed that difenoconazole could be absorbed by rice plants and transmitted to different parts of rice plants in all the treatments. In the hydroponic experiment, difenoconazole was mainly distributed in the roots of rice regardless of whether irrigation or spraying was used. For rice cultivated in soil, difenoconazole mainly accumulated in leaves after the root irrigation treatment, whereas after the spraying treatment, the rice roots were the main site of accumulation of difenoconazole. This experiment extends our knowledge of the influence of the cultivation system and application mode on the translocation of difenoconazole in rice plants.
Collapse
Affiliation(s)
- Junli Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,Shanxi Center for Testing of Functional Agro-Products, Shanxi Agricultural University, Taiyuan, People's Republic of China
| | - Xingang Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaohu Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Jun Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Fengshou Dong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yongquan Zheng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Key Laboratory of Control of Biological Hazard Factors (Plant Origin) for Agricultural Product Quality and Safety, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.,College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, People's Republic of China
| |
Collapse
|
42
|
Gao F, Shen Y, Brett Sallach J, Li H, Zhang W, Li Y, Liu C. Predicting crop root concentration factors of organic contaminants with machine learning models. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127437. [PMID: 34678561 DOI: 10.1016/j.jhazmat.2021.127437] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/15/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Accurate prediction of uptake and accumulation of organic contaminants by crops from soils is essential to assessing human exposure via the food chain. However, traditional empirical or mechanistic models frequently show variable performance due to complex interactions among contaminants, soils, and plants. Thus, in this study different machine learning algorithms were compared and applied to predict root concentration factors (RCFs) based on a dataset comprising 57 chemicals and 11 crops, followed by comparison with a traditional linear regression model as the benchmark. The RCF patterns and predictions were investigated by unsupervised t-distributed stochastic neighbor embedding and four supervised machine learning models including Random Forest, Gradient Boosting Regression Tree, Fully Connected Neural Network, and Supporting Vector Regression based on 15 property descriptors. The Fully Connected Neural Network demonstrated superior prediction performance for RCFs (R2 =0.79, mean absolute error [MAE] = 0.22) over other machine learning models (R2 =0.68-0.76, MAE = 0.23-0.26). All four machine learning models performed better than the traditional linear regression model (R2 =0.62, MAE = 0.29). Four key property descriptors were identified in predicting RCFs. Specifically, increasing root lipid content and decreasing soil organic matter content increased RCFs, while increasing excess molar refractivity and molecular volume of contaminants decreased RCFs. These results show that machine learning models can improve prediction accuracy by learning nonlinear relationships between RCFs and properties of contaminants, soils, and plants.
Collapse
Affiliation(s)
- Feng Gao
- Department of Genetics, School of Medicine, Yale University, New Haven, CT 06510, United States
| | - Yike Shen
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY 10032, United States
| | - J Brett Sallach
- Department of Environment and Geography, University of York, Heslington, York YO10 5NG, United Kingdom
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48823, United States
| | - Yuanbo Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China.
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
43
|
Reyes-Calderón A, Pérez-Uribe S, Ramos-Delgado AG, Ramalingam S, Oza G, Parra-Saldívar R, Ramirez-Mendoza RA, Iqbal HMN, Sharma A. Analytical and regulatory considerations to mitigate highly hazardous toxins from environmental matrices. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127031. [PMID: 34479083 DOI: 10.1016/j.jhazmat.2021.127031] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/09/2021] [Accepted: 08/23/2021] [Indexed: 02/08/2023]
Abstract
The ubiquitous occurrence, toxicological influence, and bioaccumulation of toxic entities, e.g., pesticides and toxic elements in the environment, biota, and humans, directly or indirectly, are posing severe social, ecological, and human health concerns. Much attention has been given to the rising bioaccumulation of toxins and their adverse impact on various environmental matrices. For example, the inappropriate and exacerbated use of xenobiotics and related hazardous substances have caused the deterioration of the agricultural environment, e.g., fertile soils where plants are grown. Moreover, the harmful toxins have negatively impacted human health through the trophic chains. However, the analytical and regulatory considerations to effectively monitor and mitigate any or many pesticides and toxic elements from environmental matrices are still lacking in the existing literature. For decades, the scientific community has overseen the consequences caused by pollutants, however, the improvement of analytical detection methods and regulatory considerations are not yet fully covered. This review covers the notable literature gap by stressing the development and deployment of robust analytical and regulatory considerations for an efficient abatement of hazardous substances. Following detailed information on occurrence, toxicological influence, and bioaccumulation of pesticides and toxic elements, the most relevant analytical detection tools and regulatory measures are given herein, with suitable examples, to mitigate or reduce the damage caused by these pollutants.
Collapse
Affiliation(s)
- Almendra Reyes-Calderón
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Samantha Pérez-Uribe
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Ana Gabriela Ramos-Delgado
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico
| | - Sathishkumar Ramalingam
- Plant Genetic Engineering Laboratory, Department of Biotechnology, Bharathiar University, Coimbatore 641046, India
| | - Goldie Oza
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica (CIDETEQ), Parque Tecnológico Querétaro s/n, Sanfandila. Pedro Escobedo, Querétaro 76703, Mexico
| | | | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | - Ashutosh Sharma
- Tecnologico de Monterrey, School of Engineering and Sciences, Centre of Bioengineering, Campus Queretaro, Av. Epigmenio González 500, Fracc. SanPablo, CP 76130 Queretaro, Mexico.
| |
Collapse
|
44
|
Sumei Y, Xin L, Shuhong H, Hongchao Z, Maojun J, Yongquan Z, Luqing Z, Yunlong Y. Uptake and translocation of triadimefon by wheat (Triticum aestivum L.) grown in hydroponics and soil conditions. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127011. [PMID: 34461532 DOI: 10.1016/j.jhazmat.2021.127011] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 08/14/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Residual pesticides in soil may be taken in by plants and thus have a risk for plant growth and food safety. In this study, uptake of triadimefon and its subsequent translocation and accumulation were investigated with wheat as model plants. The results from hydroponics indicated that triadimefon was absorbed by wheat roots mainly through apoplastic pathway and predominantly distributed into the water soluble fractions (66.7-76.0%). After being uptaken by roots, triadimefon was easily translocated upward to wheat shoots and leaves. Interestingly, triadimefon in leaves was mainly distributed in the soluble fraction by 52.5% at the beginning, and gradually transferred into the cell wall by 47.2% at equilibrium. The uptake of triadimefon from soils by wheat plants was similar to that in hydroponics. Its accumulation were mainly governed by adsorption of the fungicide onto soils, and positively correlated with its concentration in in situ pore water (CIPW). Thus, CIPW can be suitable for predicting the uptake of triadimefon by wheat from soils. Accordingly, uptake of triadimefon by wheat was predicted well by using the partition-limited model. Our study provides valuable information for guiding the practical application and safety evaluation of triadimefon.
Collapse
Affiliation(s)
- Yu Sumei
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Li Xin
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - He Shuhong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Zhang Hongchao
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jin Maojun
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng Yongquan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Yuanmingyuan West Road, Beijing 100193, China
| | - Zhang Luqing
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yu Yunlong
- Institute of Pesticide and Environmental Toxicology, the Key Laboratory of Molecular Biology of Crop Pathogens and Insects, College of Agricultural and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
45
|
Torabi E, Talebi Jahromi K, Homayoonzadeh M, Torshiz AO, Tavakoli E. Residue kinetics of neonicotinoids and abamectin in pistachio nuts under field conditions: model selection, effects of multiple sprayings, and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2598-2612. [PMID: 34370195 DOI: 10.1007/s11356-021-15822-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 08/01/2021] [Indexed: 06/13/2023]
Abstract
Pistachio is an economically valuable crop, and Iran is among the biggest producers, exporters, and consumers of this product in the world. During the growing season, pistachios are subjected to multiple sprayings with various pesticides, which result in the accumulation of their residues in nuts. These residues have raised concerns regarding consumers' health. In this research, uptake and dissipation kinetics of insecticides imidacloprid (IMI), thiacloprid (THI), thiamethoxam (THX), and abamectin (ABA) were investigated in pistachio nuts. Field experiments were conducted in a pistachio orchard. Pistachio trees were sprayed with the recommended dose of each insecticide formulation and water as the control. Samplings were performed for up to 49 days. Based on the results, pesticides uptake and dissipation kinetics were best fitted to first-order exponential growth (FOEG) and single first-order kinetic (SFOK) models, respectively. Variations in pesticides uptake/dissipation rates were mostly related to their water solubility, pKa, and log Kow. THX showed a higher uptake rate (0.16 ± 0.04) compared to IMI (0.10 ± 0.01) and THI (0.06 ± 0.01). The fastest dissipation rates were observed for IMI (0.04 ± 0.002 day-1) and THX (0.03 ± 0.001 day-1), while the slowest belonged to THI (0.02 ± 0.003 day-1). ABA residues were below the quantification limit (LOQ) throughout the experiment. Based on FOEG and SFOK model predictions, multiple sprayings with THI and THX resulted in final concentrations exceeding the maximum residue limit (MRL). Hazard quotients for all pesticides were <1, indicating no risk to humans via consumption of the pistachio nut.
Collapse
Affiliation(s)
- Ehssan Torabi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Khalil Talebi Jahromi
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad Homayoonzadeh
- Department of Plant Protection, Faculty of Agricultural Science and Engineering, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Ali Olyaie Torshiz
- Department of Plant Protection, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Kashmar Higher Education Institute, Kashmar, Iran
| | - Ebrahim Tavakoli
- Department of Plant Protection, Academic Center for Education, Culture, and Research (ACECR)-Khorasan Razavi, Kashmar Higher Education Institute, Kashmar, Iran
| |
Collapse
|