1
|
Goliszek M, Kochaniec M, Podkościelna BB. Insight into the Structure of MOF-Containing Hybrid Polymeric Microspheres. Chemphyschem 2023; 24:e202300490. [PMID: 37563995 DOI: 10.1002/cphc.202300490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/12/2023]
Abstract
Polymer science exploited metal organic frameworks (MOFs) for various purposes, which is due to the fact that these materials are ideal platforms for identifying design features for advanced functional materials. The mechanism of polymerization using MOFs, is still largely unexplored and the detailed characterization of both materials in essential to understand the important interactions between the components. In this work modern advanced research methods were used to investigate the properties of MOF-containing hybrid polymeric microspheres. Hydrothermal conversion of CFA-derived iron particles was used to obtain MOF nanostructures, which were then introduced to the structure of hybrid polymer microspheres based on ethylene glycol dimethylacrylate (EGDMA) and triethoxyvinylsilane (TEVS). Chemical structures were confirmed by ATR-FTIR method. To provide information about the elemental composition of the tested materials and for the determination of chemical bonds present in the tested samples XPS method was applied. Morphology was studied using SEM microscopy, whereas porosity was investigated using ASAP technique. Swellability coefficients were determined using typical organic solvents and distilled water. Moreover, the ecological aspect concerning the use of fly ashes deserves to be emphasized.
Collapse
Affiliation(s)
- Marta Goliszek
- Analytical Laboratory, Institute of Chemical Science, Faculty of Chemistry, Maria Curie-Skłodowska University, M. Curie-Skłodowska Sq. 3, 20-031, Lublin, Poland
| | - Maria Kochaniec
- Chemical Faculty, Warsaw University of Technology, Noakowskiego 3, 00-664, Warsaw, Poland
| | - B Beata Podkościelna
- Department of Polymer Chemistry, Institute of Chemical Science, Faculty of Chemistry, Maria Curie-Skłodowska University, Gliniana 33, 20-614, Lublin, Poland
| |
Collapse
|
2
|
Liu P, Qin S, Wang J, Zhang S, Tian Y, Zhang F, Liu C, Cao L, Zhou Y, Wang L, Wei Z, Zhang S. Effective CO 2 capture by in-situ nitrogen-doped nanoporous carbon derived from waste antibiotic fermentation residues. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121972. [PMID: 37295710 DOI: 10.1016/j.envpol.2023.121972] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/12/2023]
Abstract
It is of great environmental benefit to rationally dispose of and utilize antibiotic fermentation residues. In this study, oxytetracycline fermentation residue was transformed into an in-situ nitrogen-doped nanoporous carbon material with high CO2 adsorption performance by low-temperature pyrolysis pre-carbonization coupled with pyrolytic activation. The results indicated the activation under mild conditions (600 °C, KOH/OC = 2) was able to increase micropores and reduce the loss of in-situ nitrogen content. The developed microporous structure was beneficial for the filling adsorption of CO2, and the in-situ nitrogen doping in a high oxygen-containing carbon framework also strengthened the electrostatic adsorption with CO2. The maximum CO2 adsorption reached 4.38 mmol g-1 and 6.40 mmol g-1 at 25 °C and 0 °C (1 bar), respectively, with high CO2/N2 selectivity (32/1) and excellent reusability (decreased by 4% after 5 cycles). This study demonstrates the good application potential of oxytetracycline fermentation residue as in-situ nitrogen-doped nanoporous carbon materials for CO2 capture.
Collapse
Affiliation(s)
- Peiliang Liu
- Miami College, Henan University, Kaifeng, 475004, China
| | - Shumeng Qin
- Miami College, Henan University, Kaifeng, 475004, China
| | - Jieni Wang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Shuqin Zhang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Yijun Tian
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Fangfang Zhang
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Chenxiao Liu
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Leichang Cao
- Miami College, Henan University, Kaifeng, 475004, China; College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China.
| | - Yanmei Zhou
- College of Chemistry and Molecular Sciences, Henan University, Kaifeng, 475004, China
| | - Lin Wang
- Miami College, Henan University, Kaifeng, 475004, China
| | - Zhangdong Wei
- Miami College, Henan University, Kaifeng, 475004, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
3
|
Abunowara M, Bustam MA, Sufian S, Babar M, Eldemerdash U, Mukhtar A, Ullah S, Assiri MA, Al-Sehemi AG, Lam SS. High pressure CO 2 adsorption onto Malaysian Mukah-Balingian coals: Adsorption isotherms, thermodynamic and kinetic investigations. ENVIRONMENTAL RESEARCH 2023; 218:114905. [PMID: 36442522 DOI: 10.1016/j.envres.2022.114905] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/06/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
CO2 sequestration into coalbed seams is one of the practical routes for mitigating CO2 emissions. The adsorption mechanisms of CO2 onto Malaysian coals, however, are not yet investigated. In this research CO2 adsorption isotherms were first performed on dry and wet Mukah-Balingian coal samples at temperatures ranging from 300 to 348 K and pressures up to 6 MPa using volumetric technique. The dry S1 coal showed the highest CO2 adsorption capacity of 1.3 mmol g-1, at 300 K and 6 MPa among the other coal samples. The experimental results of CO2 adsorption were investigated using adsorption isotherms, thermodynamics, and kinetic models. Nonlinear analysis has been employed to investigate the data of CO2 adsorption onto coal samples via three parameter isotherm equilibrium models, namely Redlich Peterson, Koble Corrigan, Toth, Sips, and Hill, and four parameter equilibrium model, namely Jensen Seaton. The results of adsorption isotherm suggested that the Jensen Seaton model described the experimental data well. Gibb's free energy change values are negative, suggesting that CO2 adsorption onto the coal occurred randomly. Enthalpy change values in the negative range established that CO2 adsorption onto coal is an exothermic mechanism. Webber's pore-diffusion model, in particular, demonstrated that pore-diffusion was the main controlling stage in CO2 adsorption onto coal matrix. The activation energy of the coals was calculated to be below -13 kJ mol-1, indicating that adsorption of CO2 onto coals occurred through physisorption. The results demonstrate that CO2 adsorption onto coal matrix is favorable, spontaneous, and the adsorbed CO2 molecules accumulate more onto coal matrix. The observations of this investigation have significant implications for a more accurate measurement of CO2 injection into Malaysian coalbed seams.
Collapse
Affiliation(s)
- Mustafa Abunowara
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia.
| | - Mohamad Azmi Bustam
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Suriati Sufian
- Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak, Malaysia
| | - Muhammad Babar
- Department of Chemical Engineering, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Usama Eldemerdash
- Department of Chemical Engineering, Faculty of Engineering, Benha University, Benha 13511, Egypt; Egypt Japan University of Science and Technology (EJUST), Egypt
| | - Ahmad Mukhtar
- Department of Chemical Engineering, NFC Institute of Engineering and Fertilizer Research, Faisalabad, Pakistan
| | - Sami Ullah
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia.
| | - Mohammed Ali Assiri
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
| | - Abdullah G Al-Sehemi
- Department of Chemistry, College of Science, King Khalid University, Abha 61413, P. O. Box 9004, Saudi Arabia
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
4
|
Huang P, Chang Q, Jiang G, Wang X, Zhu H, Liu Q. Rapidly and ultra-sensitive colorimetric detection of H 2O 2 and glucose based on ferrous-metal organic framework with enhanced peroxidase-mimicking activity. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121943. [PMID: 36209713 DOI: 10.1016/j.saa.2022.121943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
In this article, a novel metal-organic framework, namely MIL-101(FeII), was firstly synthesized via a facile method. In the presence of H2O2, MIL-101(FeII) possesses excellent peroxidase-like activity toward the classical chromogenic substrate, N,N-Diethyl-p-phenylenediamine sulfate salt (DPD). The substitution of Fe2+ enhances the construction of Fe(II)-oxo nodes and accelerates electrons transfer between DPD and H2O2, thereby improving the peroxidase-mimicking catalytic activity of MIL-101(FeII) nanoenzyme. Additionally, DPD molecules could be adsorbed readily onto the surface of the nanoparticles due to the π-π interaction. The study of Michaelis constant indicates that the MIL-101(FeII) exhibits a higher affinity towards DPD (0.16 mM) in contrast to horseradish peroxidase (0.78 mM). In view of the impressive catalytic performance of MIL-101(FeII), two reliable monitoring platforms for the rapid detection of H2O2 and glucose were established with extremely low detection limits of 18.04 nM and 0.87 μM in the ranges of 40-5000 nM and 1.2-300 μM, respectively. The study of the catalytic mechanism indicates that DPD oxidation is attributed to the hydroxyl radical (·OH) produced from the decomposition of H2O2 catalyzed by MIL-101(FeII). Furthermore, the developed sensor indicates high selectivity and stability and can be effectively appropriate for the detection of H2O2 and glucose in real samples. This work not only provides a novel nanozyme with superior catalytic performance for biological analysis, but also broadens the application field of MIL-101(FeII) material.
Collapse
Affiliation(s)
- Peipei Huang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qing Chang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China.
| | - Guodong Jiang
- College of Chemistry and Chemical Engineering, Hubei Collaborative Innovation Center for High Efficient Utilization of Solar Energy, Hubei University of Technology, Wuhan 430074, Hubei, China
| | - Xu Wang
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Haipeng Zhu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| | - Qianqian Liu
- Key Laboratory of Catalysis and Materials Science of Hubei Province, College of Resources and Environmental Science, South-Central Minzu University, Wuhan 430074, Hubei, China
| |
Collapse
|
5
|
Alsaiari M, Ahmad M, Munir M, Zafar M, Sultana S, Dawood S, Almohana AI, Hassan M H AM, Alharbi AF, Ahmad Z. Efficient application of newly synthesized green Bi 2O 3 nanoparticles for sustainable biodiesel production via membrane reactor. CHEMOSPHERE 2023; 310:136838. [PMID: 36244423 DOI: 10.1016/j.chemosphere.2022.136838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/26/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
Introduction of waste and non-edible oil seeds coupled with green nanotechnology offered a pushover to sustainable and economical biofuels and bio refinery production globally. The current study encompasses the synthesis and application of novel green, highly reactive and recyclable bismuth oxide nanocatalyst derived from Euphorbia royealeana (Falc.) Boiss. leaves extract via biological method for sustainable biofuel synthesis from highly potent Cannabis sativa seed oil (34% w/w) via membrane reactors. Advanced techniques such as X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Diffraction X-Ray (EDX), and FT-IR were employed to illustrate the newly synthesized green bismuth oxide nanoparticles. 92% of FAMEs were produced under optimal reaction conditions such as a 1.5% w/w catalyst weight, 1:12 oil to methanol molar ratio, and a reaction temperature of 92 ⸰C for 3.5 h via membrane reactor. The synthesized Cannabis biodiesel was identified using the FT-IR and GC-MS techniques. The fuel properties of synthesized biofuels (acid number 0.203 mg KOH/g, density 0.8623 kg/L, kinematic viscosity 5.32 cSt, flash point 80 °C, pour point -11 °C, cloud point -11 °C, and Sulfur 0.00047 wt %, and carbon residues 0.2) were studied and established to be comparable with internationally set parameters. The experimental data (R2 = 0.997) shows that this reaction follow pseudo first-order kinetics. These findings affirm the application of green bismuth oxide nanoparticles as economical, highly reactive and eco-friendly candidate for industrial scale biodiesel production from non-edible oil seeds.
Collapse
Affiliation(s)
- Mabkhoot Alsaiari
- Promising Centre for Sensors and Electronic Devices (PCSED), Advanced Materials and Nano Research Centre, Najran University, Najran, 11001, Saudi Arabia; Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan.
| | - Mamoona Munir
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Muhammad Zafar
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Shazia Sultana
- Department of Plant Sciences, Quaid- i- Azam University, Islamabad, 45320, Pakistan
| | - Sumreen Dawood
- Department of Botany, Rawalpindi Women University, Rawalpindi, Pakistan
| | - Abdulaziz Ibrahim Almohana
- Department of Civil Engineering, College of Engineering, King Saud University, P.O. Box 800, Riyadh, 11421, Saudi Arabia
| | | | | | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| |
Collapse
|
6
|
Khurram AR, Rafiq S, Tariq A, Jamil A, Iqbal T, Mahmood H, Mehdi MS, Abdulrahman A, Ali A, Akhtar MS, Asif S. Environmental remediation through various composite membranes moieties: Performances and thermomechanical properties. CHEMOSPHERE 2022; 309:136613. [PMID: 36183888 DOI: 10.1016/j.chemosphere.2022.136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/12/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
Pollution harms ecosystems and poses a serious threat to human health around the world through direct or indirect effects on air, water, and land. The importance of remediating effluents is paramount to reducing environmental concerns. CO2 emissions are removed efficiently and efficaciously with mixed matrix membranes (MMMs), which are viable replacements for less efficient and costly membranes. In the field of membrane technology, MMMs are advancing rapidly due to their good separation properties. The selection of filler to be incorporated in mixed matrix membranes is very considered very important. There has been considerable interest in MOFs, carbon nanotubes (CNTs), ionic liquids (ILs), carbon molecular sieves (CMSs), sulfonated fillers (SFs), and layered silicates (LSs) as inorganic fillers for improving the properties of mixed matrix membranes. These fillers promise superb results and long durability for mixed matrix membranes based on them. The purpose of this review is to review different fillers used in MMMs for improving separation properties, limitations, and thermomechanical properties for environmental control and remediation.
Collapse
Affiliation(s)
- Abdul Rehman Khurram
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Sikander Rafiq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan; Department of Food Engineering and Biotechnology, University of Engineering and Technology, Lahore, New Campus, Pakistan.
| | - Alisha Tariq
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Asif Jamil
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Tanveer Iqbal
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Hamayoun Mahmood
- Department of Chemical, Polymer & Composite Materials Engineering, University of Engineering and Technology, Lahore, New Campus, Pakistan
| | - Muhammad Shozab Mehdi
- Department of Chemical Engineering, Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Topi, Khyber Pakhtunkhwa, Pakistan
| | - Aymn Abdulrahman
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Abulhassan Ali
- Department of Chemical Engineering, University of Jeddah, Jeddah, Saudi Arabia
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, South Korea.
| | - Saira Asif
- Sustainable Process Integration Laboratory, SPIL, NETME Centra, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, Brno, 616 00, Czech Republic.
| |
Collapse
|
7
|
Khan MS, Idris A, Sahith Sayani JK, Lal B, Moujdin IA, Sabil KM. Effect of ammonium hydroxide-based ionic liquids' freezing point and hydrogen bonding on suppression temperature of different gas hydrates. CHEMOSPHERE 2022; 307:136102. [PMID: 36007731 DOI: 10.1016/j.chemosphere.2022.136102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The study presents the effect of freezing point depression and hydrogen bonding energy interaction on four ammonium hydroxide-based ionic liquids (AHILs) of gas hydrate systems. The AHILs investigated are tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, and tetrabutylammonium hydroxide. The considered hydrate system includes methane (CH4), carbon dioxide (CO2), and three binary mixed gas hydrates (70-30 CO2 + CH4, 50-50 CO2 + CH4, 30-70 CO2 + CH4), which are often encountered in the flow assurance pipelines. The experimental temperature range is between 274.0 and 285.0 K, corresponding to pipeline pressures for different gas systems. The thermodynamic influence, i.e., average suppression temperature (ΔŦ) of the studied system, was reported for different mass concentrations (1, 5, and 10 wt%) and correlated with the freezing point depression and hydrogen bonding energy interaction of AHILs. The study also covers the structural impact of AHILs (in the form of alkyl chain variation) on the thermodynamic hydrate inhibition (THI) behaviour via freezing point and hydrogen bonding energy interactions. Findings revealed that the increased alkyl chain length of AHILs reduced the ΔŦ due to a decrease in hydrogen bonding ability. The highest THI inhibition (ΔŦ = 2.27 K) is attained from the lower alkyl chain AHIL, i.e., TMAOH (10 wt%) for the CO2 hydrate system. The freezing point depression of AHILs is a concentration-dependent phenomenon. Increased concentration of the AHILs in the system yielded lower freezing point temperature, positively influencing hydrate mitigation. Although the study provided the initial insight between the freezing point tendency and hydrogen bonding energies of AHILs on thermodynamic inhibition (ΔŦ). Based on the freezing point depression and hydrogen bonding energy interaction, a more generalized correlation should be developed to predict any potential ionic liquids regarded as promising hydrate inhibitors.
Collapse
Affiliation(s)
- Muhammad Saad Khan
- CO(2) Research Center, Universiti Teknologi PETRONAS, Bander Seri Iskander, Perak, Malaysia.
| | - Alamin Idris
- Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden; MoRe Research Örnsköldsvik AB, Örnsköldsvik, Sweden
| | - Jai Krishna Sahith Sayani
- CO(2) Research Center, Universiti Teknologi PETRONAS, Bander Seri Iskander, Perak, Malaysia; School of Chemical & Bioprocess Engineering, University College Dublin, Ireland
| | - Bhajan Lal
- CO(2) Research Center, Universiti Teknologi PETRONAS, Bander Seri Iskander, Perak, Malaysia; Chemical Engineering Department, Universiti Teknologi PETRONAS, Bander Seri Iskander, Perak, Malaysia.
| | - Iqbal Ahmed Moujdin
- Mechanical Engineering Department, King Abdulaziz University, Jeddah, Saudi Arabia
| | | |
Collapse
|
8
|
Steenhaut T, Lacour S, Barozzino-Consiglio G, Robeyns K, Crits R, Hermans S, Filinchuk Y. Synthesis, Structure, and Thermal Stability of a Mesoporous Titanium(III) Amine-Containing MOF. Inorg Chem 2022; 61:11084-11094. [PMID: 35817416 DOI: 10.1021/acs.inorgchem.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first mesoporous bimetallic TiIII/Al metal-organic framework (MOF) containing amine functionalities on its linkers has been selectively obtained by converting the cheap commercially available (TiCl3)3AlCl3 into Ti3-xAlxCl3(THF)3 and reacting this complex with 2-aminoterephthalic acid in dimethylformamide (DMF) under soft solvothermal conditions. This compound is structurally related to the previously described NH2-MIL-101(M) (M = Cr, Al, and Fe) MOFs. Thermal gravimetric analyses and in situ powder X-ray diffraction (PXRD) measurements demonstrated that this highly air-sensitive TiIII-containing MOF is structurally stable up to 200 °C. Nuclear magnetic resonance (NMR) spectroscopy, elemental analysis, and inductively coupled plasma (ICP) revealed that NH2-MIL-101(TiIII) contains trinuclear Ti3(μ3-O)Cl(DMF)2(RCOO)6 clusters with strongly bound DMF molecules and a small amount of aluminum. Sorption experiments revealed a higher affinity of this MOF for hydrogen compared to the previously described monometallic unfunctionalized MIL-101(TiIII) MOF.
Collapse
Affiliation(s)
- Timothy Steenhaut
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Séraphin Lacour
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | | | - Koen Robeyns
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Robin Crits
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Sophie Hermans
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| | - Yaroslav Filinchuk
- Université catholique de Louvain, MOST, Place Louis Pasteur 1, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
9
|
Lu Y, Liu C, Mei C, Sun J, Lee J, Wu Q, Hubbe MA, Li MC. Recent advances in metal organic framework and cellulose nanomaterial composites. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214496] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Zhan M, Ge C, Hussain S, Alkorbi AS, Alsaiari R, Alhemiary NA, Qiao G, Liu G. Enhanced NO 2 gas-sensing performance by core-shell SnO 2/ZIF-8 nanospheres. CHEMOSPHERE 2022; 291:132842. [PMID: 34767849 DOI: 10.1016/j.chemosphere.2021.132842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Timely detection of harmful, poisonous and air pollutant gases is of vital importance to the protection of human beings from exposure to rigorous gases. The development of gas-sensing devices based on sphere-like porous SnO2/ZIF-8 nanocomposites is required to overcome this challenge. Nanostructures with high surface area, more porosity and hollow interior provide plenty of active cites for high responses in metal oxide gas sensors. The engineered gas sensors have excellent sensing sensitivity (164), rapid response and recovery times (60, 45 s), and favorable selectivity for NO2 gases under 300 °C. Consequently, NO2 gas sensors based on core-shell SnO2/ZIF-8 nanospheres are regarded viable capacity industrial applicants.
Collapse
Affiliation(s)
- Mengmeng Zhan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ali S Alkorbi
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Raiedhah Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Nabil A Alhemiary
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
11
|
Abstract
The ZIF-8 crystals were successfully postsynthetically modified using methylamine (MA), ethylenediamine (ED), and N, N
-dimethylethylenediamine (MMEN) to improve their adsorption performance toward CO2. Results showed that, compared with the original ZIF-8, the BET specific surface area of MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 has increased by 118.2%, 92.0%, and 29.8%, respectively. In addition, their total pore volume increased separately by 130.8%, 100%, and 48.7%. The adsorption capacities of CO2 on the amine-modified ZIF-8 samples followed the order
. The CO2 adsorption capacities at 298 K on MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 were increased by 118.2%, 90.2%, and 29.8%, respectively. What is more, the CO2/N2 selectivities calculated using an IAST model of the amine@ZIF-8 samples at 0.01 bar and 298 K were also significantly improved and followed the order
, which increased by 173.0%, 121.4%, and 22.6%, respectively. The isosteric heat of CO2 adsorption (
) on the MA-ZIF-8, MMEN-ZIF-8, and ED-ZIF-8 all becomes higher, while
of N2 on these samples was slightly lower in comparison with that on the ZIF-8. Furthermore, after six recycle runs of gravimetric CO2 adsorption-desorption on MA-ZIF-8, the adsorption performance of CO2 is still very good, indicating that the MA-ZIF-8 sample has good regeneration performance and can be applied into industrial CO2 adsorption and separation.
Collapse
|
12
|
Lawan J, Wichai S, Chuaypen C, Nuiyen A, Phenrat T. Constructed sediment microbial fuel cell for treatment of fat, oil, grease (FOG) trap effluent: Role of anode and cathode chamber amendment, electrode selection, and scalability. CHEMOSPHERE 2022; 286:131619. [PMID: 34346343 DOI: 10.1016/j.chemosphere.2021.131619] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
For wastewater treatment, sediment microbial fuel cells (SMFCs) have advantages over traditional microbial fuel cells in cost (due to their membrane-less structure) and operation (less intensive maintenance). Nevertheless, the technical obstacles of SMFCs include their high internal electrical resistance due to sediment in the anode chamber and slow oxygen reduction reaction (ORR) in the cathode chamber, which is responsible for their low power density (PD) (0.2-50 mW/m2). This study evaluated several SMFC improvements, including anode and cathode chamber amendment, electrode selection, and scaling the chamber size up to obtain optimally constructed single-chamber SMFCs to treat fat, oil, and grease (FOG) trap effluent. The chemical oxygen demand (COD) removal efficiency, PD, and electrical energy conversion efficiency concerning theoretically available chemical energy from FOG trap effluent treatment (%ECWW) were examined. Packing biochar in the anode chamber reduced its electrical resistance by 5.76 times, but the improvement in PD was trivial. Substantial improvement occurred when packing the cathode chamber with activated carbon (AC), which presumably catalyzed the ORR, yielding a maximum PD of 109.39 mW/m2, 959 times greater than without AC in the cathode chamber. This SMFC configuration resulted in a COD removal efficiency of 85.80 % and a %ECWW of 99.74 % in 30 days. Furthermore, using the most appropriate electrode pair and chamber volume increased the maximum PD to 1787.26 mW/m2, around 1.7 times greater than the maximum PD by SMFCs reported thus far. This optimally constructed SMFC is low cost and applicable for household wastewater treatment.
Collapse
Affiliation(s)
- Jesada Lawan
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Sustainability of Health, Environment, and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Siriwan Wichai
- Department of Medical Science, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Choopong Chuaypen
- Department of Mechanical of Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand
| | - Aussanee Nuiyen
- Department of Medical Science, Faculty of Medical Science, Naresuan University, Phitsanulok, 65000, Thailand
| | - Tanapon Phenrat
- Research Unit for Integrated Natural Resources Remediation and Reclamation (IN3R), Department of Civil Engineering, Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand; Center of Excellence for Sustainability of Health, Environment, and Industry (SHEI), Faculty of Engineering, Naresuan University, Phitsanulok, 65000, Thailand.
| |
Collapse
|
13
|
Ahmadipouya S, Ahmadijokani F, Molavi H, Rezakazemi M, Arjmand M. CO2/CH4 separation by mixed-matrix membranes holding functionalized NH2-MIL-101(Al) nanoparticles: Effect of amino-silane functionalization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Rastkari N, Akbari S, Brahmand MB, Takhvar A, Ahmadkhaniha R. Synthesis and characterization of tetraethylene pentamine functionalized MIL-101(Cr) for removal of metals from water. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1735-1742. [PMID: 34900302 PMCID: PMC8617245 DOI: 10.1007/s40201-021-00728-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 06/14/2023]
Abstract
PURPOSE Metal contamination in water is a worldwide persistent problem. We developed a nano-adsorbent, TEPA-MIL-101(Cr) that exhibits effective removal of heavy metals from real water samples. METHODS MIL-101(Cr) was synthesized under solvo-thermal condition. Then MIL-101(Cr) was dehydrated and degassed at high temperature under vacuum to generate the coordinately unsaturated sites which are used for tetraethylene pentamine (TEPA) grafting. The structures, morphologies, and compositions of the sorbents have been characterized. Langmuir and Freundlich isotherm models were applied for describing the adsorption process onto TEPA-MIL-101(Cr). RESULTS The successful grafting of TEPA on MIL-101(Cr) was verified by Fourier transform infrared. The results of X-ray diffraction, scanning electron microscopy, and CHN analysis show that the structure of TEPA-MIL-101(Cr) retains the original structure of MIL-101(Cr). Thermogravimetric analysis indicates thermo-stability of the adsorbent up to 300 °C. Optimal conditions for adsorption were determined as pH = 6.5 and contact time = 1 h. The adsorption capacities of TEPA-MIL-101(Cr) for Pb(II), Cu(II), Cd(II), and Co(II) from aqueous samples were 227.5, 217.7, 221.4, and 215.6 mg/g respectively, which is on average more than 8 times that of MIL-101(Cr). Analysis of Langmuir and Freundlich models for describing the adsorption isotherms of TEPA-MIL-101(Cr) reveals that the metal ions were absorbed onto TEPA-MIL-101(Cr) by a favorable physical absorption process. CONCLUSIONS TEPA-MIL-101(Cr) was synthesized successfully by a simple, and cost-effective method. The removal efficiency of TEPA-MIL-101(Cr) for the metal ions achieved more than 95 % in real water samples, which in addition to its thermal stability character make it a promising candidate for water treatment purposes.
Collapse
Affiliation(s)
- Noushin Rastkari
- Center for Air Pollution Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Somaye Akbari
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Binesh Brahmand
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Azra Takhvar
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Ahmadkhaniha
- Department of Human Ecology, School of Public Health, Tehran University of Medical Sciences, Tehran, 1417613151 Iran
| |
Collapse
|
15
|
Dawood S, Koyande AK, Ahmad M, Mubashir M, Asif S, Klemeš JJ, Bokhari A, Saqib S, Lee M, Qyyum MA, Show PL. Synthesis of biodiesel from non-edible (Brachychiton populneus) oil in the presence of nickel oxide nanocatalyst: Parametric and optimisation studies. CHEMOSPHERE 2021; 278:130469. [PMID: 33839393 DOI: 10.1016/j.chemosphere.2021.130469] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
The present study defines a novel green method for the synthesis of the nickel oxide nanocatalyst by using an aqueous latex extract of the Ficus elastic. The catalyst was examined for the conversion of novel Brachychiton populneus seed oil (BPSO) into biodiesel. The Brachychiton populneus seeds have a higher oil content (41 wt%) and free fatty acid value (3.8 mg KOH/g). The synthesised green nanocatalyst was examined by the Fourier transform infrared (FT-IR) spectroscopy, energy dispersive X-Ray (EDX) spectroscopy, X-Ray diffraction (XRD) spectroscopy and scanning electron microscopy (SEM). The obtained results show that the synthesised green nanocatalyst was 22-26 nm in diameter and spherical-cubic in shape with a higher rate of catalytic efficiency. It was utilised further for the conversion of BPSO into biofuel. Due to the high free fatty acid value, the biodiesel was synthesised by the two-step process, i.e., pretreatment of the BPSO by means of acid esterification and then followed by the transesterification reaction. The acidic catalyst (H2SO4) was used for the pretreatment of BPSO. The optimum condition for the transesterification of the pretreated BPSO was 1:9 of oil-methanol molar ratio, 2.5 wt % of prepared nanocatalyst concentration and 85 °C of reaction temperature corresponding to the highest biodiesel yield of 97.5 wt%. The synthesised biodiesel was analysed by the FT-IR and GC-MS technique to determine the chemical composition of fatty acid methyl esters. Fuel properties of Brachychiton populneus seed oil biodiesel (BPSOB) were also examined, compared, and it falls in the prescribed range of ASTM standards.
Collapse
Affiliation(s)
- Sumreen Dawood
- Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Apurav Krishna Koyande
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Mushtaq Ahmad
- Department of Plant Sciences, Quaid-i-Azam University, 45320, Islamabad, Pakistan
| | - Muhammad Mubashir
- Department of Petroleum Engineering, Faculty of Computing, Engineering & Technology, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia
| | - Saira Asif
- Faculty of Sciences, Department of Botany, PMAS Arid Agriculture University, Rawalpindi, Punjab, 46300, Pakistan
| | - Jiří Jaromír Klemeš
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic
| | - Awais Bokhari
- Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology, VUT Brno, Technická 2896/2, 616 00, Brno, Czech Republic; Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan
| | - Sidra Saqib
- Chemical Engineering Department, COMSATS University Islamabad (CUI), Lahore Campus, Lahore, Punjab, 54000, Pakistan
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Muhammad Abdul Qyyum
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty Science and Engineering, University of Nottingham, Malaysia, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|