1
|
Dai MJ, Zhang LD, Li J, Zhu CQ, Song LY, Huang HZ, Xu CQ, Li QH, Chen L, Jiang CK, Lu HL, Ling QT, Jiang QH, Wei J, Shen GX, Zhu XY, Zheng HL, Hu WJ. Calcium regulates the physiological and molecular responses of Morus alba roots to cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136210. [PMID: 39437474 DOI: 10.1016/j.jhazmat.2024.136210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/10/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Heavy metal cadmium (Cd) is toxic to organisms. Mulberry (Morus alba L.) is a fast-growing perennial that is also an economical Cd phytoremediation material with large biomass. However, the molecular mechanisms underlying its Cd tolerance remain unclear. Here, we reveal the physiological and molecular mechanisms underlying Cd toxicity under varying calcium (Ca) treatments. First, under low-Ca treatment (0.1 mM Ca), mulberry growth was severely inhibited and the root surface structure was damaged by Cd stress. Second, electrophysiological data demonstrated that 0.1 mM Ca induced an increased Cd2+ influx, leading to its accumulation in the entire root and root cell walls. Third, high-Ca treatment (10 mM Ca) largely alleviated growth inhibition, activated antioxidant enzymes, increased Ca content, decreased Cd2+ flux, and inhibited Cd uptake by roots. Finally, 0.1 mM Ca resulted in the activation of metal transporters and the disruption of Ca signaling-related gene expression, which facilitated Cd accumulation in the roots, aggravating oxidative stress. These adverse effects were reversed by treatment with 10 mM Ca. This study preliminarily revealed the mechanism by which varying Ca levels regulate Cd uptake and accumulation in mulberry roots, provided an insight into the interrelationships between Ca and Cd in the ecological and economic tree mulberry and offered a theoretical basis for Ca application in managing Cd pollution.
Collapse
Affiliation(s)
- Ming-Jin Dai
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China; Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lu-Dan Zhang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China; Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taiyuan, Shanxi 030000, PR China
| | - Jing Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chun-Quan Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, Zhejiang 310006, PR China
| | - Ling-Yu Song
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - He-Zi Huang
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Chao-Qun Xu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Qing-Hua Li
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Lin Chen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Chen-Kai Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Hong-Ling Lu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qiu-Tong Ling
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Qi-Hong Jiang
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Jia Wei
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Guo-Xin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China
| | - Xue-Yi Zhu
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China
| | - Hai-Lei Zheng
- Key Laboratory for Subtropical Wetland Ecosystem Research of MOE, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, PR China.
| | - Wen-Jun Hu
- Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, PR China.
| |
Collapse
|
2
|
Kou B, Huo L, Cao M, Ke Y, Wang L, Tan W, Yuan Y, Zhu X. Insights into the critical roles of water-soluble organic matter and humic acid within kitchen compost in influencing cadmium bioavailability. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122769. [PMID: 39369524 DOI: 10.1016/j.jenvman.2024.122769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/08/2024]
Abstract
Compost has demonstrated potential as a cadmium (Cd) remediation agent, while it still remains unclear about the core components in driving the bioactive transformation of Cd. To address this issue, this study isolated three components-kitchen compost powder (KC), humic acid (HA), and water-soluble organic matter (DOM)-from kitchen compost to regulate soil properties, bacterial community structures and functions, and Cd migration risks. The results revealed that the addition of 20% KC and HA reduced the bioavailability factor of Cd by 47.20% and 16.74%, respectively, with HA contributing 35.47% of the total reduction achieved with KC. Conversely, the application of DOM increased the Cd risk through a reduction in soil pH and an increase in the abundance of Cd-activating bacteria, which adversely affected the stability of Cd complexes. However, the porous structure and organic matter in KC and HA provided adsorption sites for Cd passivation and promoted the growth of Cd-fixing bacteria. This study effectively identifies both the positive and negative effects of key compost components on Cd migration and provides scientific guidance for applying kitchen compost in soil management.
Collapse
Affiliation(s)
- Bing Kou
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China; State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Lin Huo
- Swiss Federal Institute of Technology (ETH) Zurich, Universitaetstrasse 16, 8092, Zurich, Switzerland
| | - Minyi Cao
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Yuxin Ke
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Lei Wang
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China
| | - Wenbing Tan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Ying Yuan
- State Key Laboratory of Environmental Criteria and Risk Assessment, and State Environmental Protection Key Laboratory of Simulation and Control of Groundwater Pollution, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Xiaoli Zhu
- College of Urban and Environmental Science, Northwest University, Xi'an, 710127, China.
| |
Collapse
|
3
|
Zhao X, Huang S, Yao Q, He R, Wang H, Xu Z, Xing W, Liu D. ABA-regulated MAPK signaling pathway promotes hormesis in sugar beet under cadmium exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135968. [PMID: 39342845 DOI: 10.1016/j.jhazmat.2024.135968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Sugar beet (Beta vulgaris L.) shows potential as an energy crop for cadmium (Cd) phytoremediation. To elucidate its in vivo response strategy to Cd exposure, seedlings were treated with 1, 3, and 5 mmol/L CdCl2 (Cd-1, Cd-3, and Cd-5) for 6 h, using 0 mmol/L CdCl2 (Cd-0) as the control. The results showed that Cd-3 promoted a unique "hormesis" effect, leading to superior growth performance, increased levels of chlorophyll, soluble protein, and SOD activity, and reduced MDA content in sugar beet, compared to Cd-1, Cd-5, and even Cd-0. GO and KEGG enrichments and PPI networks of transcriptomic analysis revealed that the differentially expressed genes (DEGs) were primarily involved in lipid metabolism, cellular protein catabolism, and photosynthesis. Notably, the MAPK signaling pathway was significantly enriched only under Cd-3, with the up-regulation of ABA-related core gene BvPYL9 and an increase in ABA content after 6 h of Cd exposure. Furthermore, overexpression of BvPYL9 in Arabidopsis thaliana (OE-1 and OE-2) resulted in enhanced growth (fresh weight, dry weight, and root length), as well as higher ABA and soluble protein contents under different Cd treatments. Cd-induced transcriptional responses of BvPYL9 were also evident in OE-1 and OE-2, especially at 10 µmol/L, indicated by qRT-PCR. These findings suggest that ABA-mediated MAPK signaling pathway is activated in response to Cd toxicity, with BvPYL9 being a key factor in the cascade effects for the Cd-induced hormesis in sugar beet.
Collapse
Affiliation(s)
- Xiaoxin Zhao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Shuoqi Huang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Qi Yao
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Rui He
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region & Key Laboratory of Molecular Biology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Hao Wang
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Zhaodan Xu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Wang Xing
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China
| | - Dali Liu
- National Beet Medium-Term Gene Bank, Heilongjiang University, Harbin 150080, China; Key Laboratory of Beet Genetics and Breeding/College of Modern Agriculture and Ecological Environment, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
4
|
Yang H, Zhou J, Zhou J. Interactive effects of ammonium sulfate and lead on alfalfa in rare earth tailings: Physiological responses and toxicity thresholds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174439. [PMID: 38971260 DOI: 10.1016/j.scitotenv.2024.174439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024]
Abstract
Ion-adsorption rare earth ore contains significant levels of leaching agents and heavy metals, leading to substantial co-contamination. This presents significant challenges for ecological rehabilitation, yet there is limited understanding of the toxicity thresholds associated with the co-contamination of ammonium sulfate (AS) and lead (Pb) on pioneer plants. Here, we investigated the toxicity thresholds of various aspects of alfalfa, including growth, ultrastructural changes, metabolism, antioxidant system response, and Pb accumulation. The results indicated that the co-contamination of AS-Pb decreased the dry weight of shoot and root by 26 %-77 % and 18 %-92 %, respectively, leading to irregular root cell morphology and nucleus disintegration. The high concentration and combined exposures to AS and Pb induced oxidative stress on alfalfa, which stimulated the defense of the antioxidative system and resulted in an increase in proline levels and a decrease in soluble sugars. Structural equation modeling analysis and integrated biomarker response elucidated that the soluble sugars, proline, and POD were the key physiological indicators of alfalfa under stresses and indicated that co-exposure induced more severe oxidative stress in alfalfa. The toxicity thresholds under single exposure were 496 (EC5), 566 (EC10), 719 (EC25), 940 (EC50) mg kg-1 for AS and 505 (EC5), 539 (EC10), 605 (EC25), 678 (EC50) mg kg-1 for Pb. This study showed that AS-Pb pollution notably influenced plant growth performance and had negative impacts on the growth processes, metabolite levels, and the antioxidant system in plants. Our findings contribute to a theoretical foundation and research necessity for evaluating ecological risks in mining areas and assessing the suitability of ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Zhou
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Zhu S, Zhao W, Sheng L, Yang X, Mao H, Sun S, Chen Z. Integrated transcriptome and metabolomics analyses revealed key functional genes in Canna indica under Cr stress. Sci Rep 2024; 14:14090. [PMID: 38890328 PMCID: PMC11189463 DOI: 10.1038/s41598-024-64877-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
Chromium (Cr) can interfere with plant gene expression, change the content of metabolites and affect plant growth. However, the molecular response mechanism of wetland plants at different time sequences under Cr stress has yet to be fully understood. In this study, Canna indica was exposed to 100 mg/kg Cr-contaminated soil for 0, 7, 14, and 21 days and analyzed using untargeted metabolomics (LC-MS) and transcriptomics. The results showed that Cr stress increased the activities of superoxide dismutase (SOD), ascorbate peroxidase (APX) and peroxidase (POD), the contents of glutathione (GSH), malondialdehyde (MDA), and oxygen free radical (ROS), and inhibited the biosynthesis of photosynthetic pigments, thus leading to changes in plant growth and biomass. Metabonomics analysis showed that Cr stress mainly affected 12 metabolic pathways, involving 38 differentially expressed metabolites, including amino acids, phenylpropane, and flavonoids. By transcriptome analysis, a total of 16,247 differentially expressed genes (DEGs, 7710 up-regulated genes, and 8537 down-regulated genes) were identified, among which, at the early stage of stress (Cr contaminate seven days), C. indica responds to Cr toxicity mainly through galactose, starch and sucrose metabolism. With the extension of stress time, plant hormone signal transduction and MAPK signaling pathway in C. indica in the Cr14 (Cr contaminate 14 days) treatment group were significantly affected. Finally, in the late stage of stress (Cr21), C. indica co-defuses Cr toxicity by activating its Glutathione metabolism and Phenylpropanoid biosynthesis. In conclusion, this study revealed the molecular response mechanism of C. indica to Cr stress at different times through multi-omics methods.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol, 16500, Czech Republic
| |
Collapse
|
6
|
Wang J, Chen X, Chu S, Hayat K, Chi Y, Liao X, Zhang H, Xie Y, Zhou P, Zhang D. Conjoint analysis of physio-biochemical, transcriptomic, and metabolomic reveals the response characteristics of solanum nigrum L. to cadmium stress. BMC PLANT BIOLOGY 2024; 24:567. [PMID: 38880885 PMCID: PMC11181532 DOI: 10.1186/s12870-024-05278-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/10/2024] [Indexed: 06/18/2024]
Abstract
Cadmium (Cd) is a nonessential element in plants and has adverse effects on the growth and development of plants. However, the molecular mechanisms of Cd phytotoxicity, tolerance and accumulation in hyperaccumulators Solanum nigrum L. has not been well understood. Here, physiology, transcriptome, and metabolome analyses were conducted to investigate the influence on the S. nigrum under 0, 25, 50, 75 and 100 µM Cd concentrations for 7 days. Pot experiments demonstrated that compared with the control, Cd treatment significantly inhibited the biomass, promoted the Cd accumulation and translocation, and disturbed the balance of mineral nutrient metabolism in S. nigrum, particularly at 100 µM Cd level. Moreover, the photosynthetic pigments contents were severely decreased, while the content of total protein, proline, malondialdehyde (MDA), H2O2, and antioxidant enzyme activities generally increased first and then slightly declined with increasing Cd concentrations, in both leaves and roots. Furthermore, combined with the previous transcriptomic data, numerous crucial coding-genes related to mineral nutrients and Cd ion transport, and the antioxidant enzymes biosynthesis were identified, and their expression pattern was regulated under different Cd stress. Simultaneously, metabolomic analyses revealed that Cd treatment significantly changed the expression level of many metabolites related to amino acid, lipid, carbohydrate, and nucleotide metabolism. Metabolic pathway analysis also showed that S. nigrum roots activated some differentially expressed metabolites (DEMs) involved in energy metabolism, which may enhance the energy supply for detoxification. Importantly, central common metabolism pathways of DEGs and DEMs, including the "TCA cycle", "glutathione metabolic pathway" and "glyoxylate and dicarboxylate metabolism" were screened using conjoint transcriptomics and metabolomics analysis. Our results provide some novel evidences on the physiological and molecular mechanisms of Cd tolerance in hyperaccumulator S. nigrum plants.
Collapse
Affiliation(s)
- Juncai Wang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Xunfeng Chen
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shaohua Chu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kashif Hayat
- Key Laboratory of Pollution Exposure and Health Intervention, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yaowei Chi
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofeng Liao
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
- Guizhou University, Guiyang, 550025, China
| | - Hongliang Zhang
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China
| | - Yuangui Xie
- Guizhou Academy of Sciences, Guiyang, Guizhou, 550001, China.
- The Land Greening Remediation Engineering Research Center of Guizhou Province, Guiyang, 550001, China.
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Wang J, Zhu H, Huang R, Xu J, Huang L, Yang J, Chen W. CIP1, a CIPK23-interacting transporter, is implicated in Cd tolerance and phytoremediation. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134276. [PMID: 38640682 DOI: 10.1016/j.jhazmat.2024.134276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/21/2024]
Abstract
Environmental pollution from cadmium (Cd) presents a serious threat to plant growth and development. Therefore, it's crucial to find out how plants resist this toxic metal to develop strategies for remediating Cd-contaminated soils. In this study, we identified CIP1, a transporter protein, by screening interactors of the protein kinase CIPK23. CIP1 is located in vesicles membranes and can transport Cd2+ when expressed in yeast cells. Cd stress specifically induced the accumulation of CIP1 transcripts and functional proteins, particularly in the epidermal cells of the root tip. CIKP23 could interact directly with the central loop region of CIP1, phosphorylating it, which is essential for the efficient transport of Cd2+. A loss-of-function mutation of CIP1 in wild-type plants led to increased sensitivity to Cd stress. Conversely, tobacco plants overexpressing CIP1 exhibited improved Cd tolerance and increased Cd accumulation capacity. Interestingly, this Cd accumulation was restricted to roots but not shoots, suggesting that manipulating CIP1 does not risk Cd contamination of plants' edible parts. Overall, this study characterizes a novel Cd transporter, CIP1, with potential to enhance plant tolerance to Cd toxicity while effectively eliminating environmental contamination without economic losses.
Collapse
Affiliation(s)
- Jiayi Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huihui Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China
| | - Ru'nan Huang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiming Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China
| | - Jianli Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Vegetable Biology, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China.
| | - Weiwei Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
8
|
Fan W, Kong Q, Chen Y, Lu F, Wang S, Zhao A. Safe utilization and remediation potential of the mulberry-silkworm system in heavy metal-contaminated lands: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172352. [PMID: 38608900 DOI: 10.1016/j.scitotenv.2024.172352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/24/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
Mulberry cultivation and silkworm rearing hold a prominent position in the agricultural industries of many Asian countries, contributing to economic growth, sustainable development, and cultural heritage preservation. Applying the soil-mulberry-silkworm system (SMSS) to heavy metal (HM)-contaminated areas is significant economically, environmentally, and socially. The ultimate goal of this paper is to review the main research progress of SMSS under HM stress, examining factors affecting its safe utilization and remediation potential for HM-contaminated soils. HM tolerance of mulberry and silkworms relates to their growth stages. Based on the standards for HM contaminants in various mulberry and silkworm products and the bioconcentration factor of HMs at different parts of SMSS, we calculated maximum safe Cd and Pb levels for SMSS application on contaminated lands. Several remediation practices demonstrated mulberry's ability to grow on barren lands, absorb various HMs, while silkworm excreta can adsorb HMs and improve soil fertility. Considering multiple factors influencing HM tolerance and accumulation, we propose a decision model to guide SMSS application in polluted areas. Finally, we discussed the potential of using molecular breeding techniques to screen or develop varieties better suited for HM-contaminated regions. However, actual pollution scenarios are often complex, requiring consideration of multiple factors. More large-scale applications are crucial to enhance the theoretical foundation for applying SMSS in HM pollution risk areas.
Collapse
Affiliation(s)
- Wei Fan
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Qiuyue Kong
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Yuane Chen
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China
| | - Fuping Lu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Shuchang Wang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Aichun Zhao
- State Key Laboratory of Resource Insects, Institute of Sericulture and Systems Biology, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Tan C, Nie W, Liu Y, Wang Y, Yuan Y, Liu J, Chang E, Xiao W, Jia Z. Physiological response and molecular mechanism of Quercus variabilis under cadmium stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108724. [PMID: 38744084 DOI: 10.1016/j.plaphy.2024.108724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Heavy metal pollution is a global environmental problem, and Quercus variabilis has a stronger tolerance to Cd stress than do other species. We aimed to explore the physiological response and molecular mechanisms of Q. variabilis to Cd stress. In this study, the antioxidant enzyme activities of leaves were determined, while the photosynthetic parameters of leaves were measured using Handy PEA, and ion fluxes and DEGs in the roots were investigated using noninvasive microtest technology (NMT) and RNA sequencing techniques, respectively. Cd stress at different concentrations and for different durations affected the uptake patterns of Cd2+ and H+ by Q. variabilis and affected the photosynthetic efficiency of leaves. Moreover, there was a positive relationship between antioxidant enzyme (CAT and POD) activity and Cd concentration. Transcriptome analysis revealed that many genes, including genes related to the cell wall, glutathione metabolism, ion uptake and transport, were significantly upregulated in response to cadmium stress in Q. variabilis roots. WGCNA showed that these DEGs could be divided into eight modules. The turquoise and blue modules exhibited the strongest correlations, and the most significantly enriched pathways were the phytohormone signaling pathway and the phenylpropanoid biosynthesis pathway, respectively. These findings suggest that Q. variabilis can bolster plant tolerance by modulating signal transduction and increasing the synthesis of compounds, such as lignin, under Cd stress. In summary, Q. variabilis can adapt to Cd stress by increasing the activity of antioxidant enzymes, and regulating the fluxes of Cd2+ and H+ ions and the expression of Cd stress-related genes.
Collapse
Affiliation(s)
- Cancan Tan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China; State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wen Nie
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yifu Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ya Wang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yanchao Yuan
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Jianfeng Liu
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ermei Chang
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Wenfa Xiao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institution, Chinese Academy of Forestry, Beijing, 100091, China
| | - Zirui Jia
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing, 100091, China; Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
10
|
Li S, Li H, Wang J, Lu S, Liu Z, Jia H, Wei T, Guo J. The response of physiological and xylem anatomical traits under cadmium stress in Pinus thunbergii seedlings. TREE PHYSIOLOGY 2024; 44:tpae046. [PMID: 38676919 DOI: 10.1093/treephys/tpae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 04/29/2024]
Abstract
Studying the response of physiological and xylem anatomical traits under cadmium stress is helpful to understand plants' response to heavy metal stress. Here, seedlings of Pinus thunbergii Parl. were treated with 50, 100 and 150 mg kg-1 Cd2+ for 28 days. Cadmium and nonstructural carbohydrate content of leaves, stems and roots, root Cd2+ flux, cadmium distribution pattern in stem xylem and phloem, stem xylem hydraulic traits, cell wall component fractions of stems and roots, phytohormonal content such as abscisic acid, gibberellic acid 3, molecule -indole-3-acetic acid, and jasmonic acid from both leaves and roots, as well as xylem anatomical traits from both stems and roots were measured. Root Cd2+ flux increased from 50 to 100 mmol L-1 Cd2+ stress, however it decreased at 150 mmol L-1 Cd2+. Cellulose and hemicellulose in leaves, stems and roots did not change significantly under cadmium stress, while pectin decreased significantly. The nonstructural carbohydrate content of both leaves and stems showed significant changes under cadmium stress while the root nonstructural carbohydrate content was not affected. In both leaves and roots, the abscisic acid content significantly increased under cadmium stress, while the gibberellic acid 3, indole-3-acetic acid and jasmonic acid methylester content significantly decreased. Both xylem specific hydraulic conductivity and xylem water potential decreased with cadmium stress, however tracheid diameter and double wall thickness of the stems and roots were not affected. High cadmium intensity was found in both the stem xylem and phloem in all cadmium stressed treatments. Our study highlighted the in situ observation of cadmium distribution in both the xylem and phloem, and demonstrated the instant response of physiological traits such as xylem water potential, xylem specific hydraulic conductivity, root Cd2+ flux, nonstructural carbohydrate content, as well as phytohormonal content under cadmium stress, and the less affected traits such as xylem anatomical traits, cellulose and hemicellulose.
Collapse
Affiliation(s)
- Shan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Huan Li
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Jing Wang
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Sen Lu
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Zepeng Liu
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Honglei Jia
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Ting Wei
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| | - Junkang Guo
- Department of Environmental Science and Ecology, School of Environmental Science and Engineering, Shaanxi University of Science and Technology, Xi'an Weiyang University Park, Weiyang District, Xi'an, Shaanxi Province, 710021, P.R. China
| |
Collapse
|
11
|
Liu C, Chang J, Yang J, Li H, Wu J, Wu J, Dai X, Wei F, Zhang X, Su X, Xia Z. Overexpression of NtDOGL4 improves cadmium tolerance through abscisic acid signaling pathway in tobacco. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133462. [PMID: 38215520 DOI: 10.1016/j.jhazmat.2024.133462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/02/2024] [Accepted: 01/05/2024] [Indexed: 01/14/2024]
Abstract
The DELAY OF GERMINATION1-LIKE (DOGL) genes play an essential role in diverse biological processes in plants. However, their exact involvement in the response to cadmium (Cd) stress via the ABA pathway remains unclear. Here, we focused on NtDOGL4, a tobacco DOGL gene whose expression is highly induced upon exposure to Cd. Overexpression of NtDOGL4 in tobacco resulted in elevated endogenous ABA levels, reduced Cd accumulation, and increased tolerance to Cd. Moreover, NtDOGL4 overexpression led to decreased accumulation of reactive oxygen species (ROS) and improved ROS scavenging capacity under Cd stress. Further analyses revealed the direct binding of the transcription factor ABSCISIC ACID-INSENSITIVE 5 (ABI5) to the NtDOGL4 promoter, positively regulating its expression in tobacco. Notably, NtDOGL4 overexpression promoted suberin formation and deposition, while suppressing the expression of Cd transporter genes in tobacco roots, as evidenced by histochemical staining, suberin fraction determination, and qRT-PCR assays. Collectively, our results demonstrate that NtDOGL4 overexpression reduces Cd accumulation, thereby improving Cd stress tolerance through the modulation of antioxidant system, transcription of Cd transporters, and suberin deposition. Notably, the NtABI5-NtDOGL4 module functions as a positive regulator in tobacco's Cd tolerance, underscoring its potential as a molecular target for developing low-Cd crops to ensure environmental safety.
Collapse
Affiliation(s)
- Can Liu
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China; College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China
| | - Jianbo Chang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jianxin Yang
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Hongchen Li
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Jiang Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Junlin Wu
- Henan Provincial Tobacco Company, Zhengzhou 450018, China
| | - Xiaoyan Dai
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Fengjie Wei
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, China.
| | - Xinhong Su
- Henan Provincial Tobacco Company, Zhengzhou 450018, China.
| | - Zongliang Xia
- College of Life Science, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
12
|
Cao S, Wang M, Pan J, Luo D, Mubeen S, Wang C, Yue J, Wu X, Wu Q, Zhang H, Chen C, Rehman M, Xie S, Li R, Chen P. Physiological, transcriptome and gene functional analysis provide novel sights into cadmium accumulation and tolerance mechanisms in kenaf. J Environ Sci (China) 2024; 137:500-514. [PMID: 37980034 DOI: 10.1016/j.jes.2023.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 11/20/2023]
Abstract
Kenaf is considered to have great potential for remediation of heavy metals in ecosystems. However, studies on molecular mechanisms of root Cd accumulation and tolerance are still inadequate. In this study, two differently tolerant kenaf cultivars were selected as materials and the physiological and transcriptomic effects were evaluated under Cd stress. This study showed that 200 µmol/L CdCl2 treatment triggered the reactive oxygen species (ROS) explosion and membrane lipid peroxidation. Compared with the Cd-sensitive cultivar 'Z', the Cd-tolerant cultivar 'F' was able to resist oxidative stress in cells by producing higher antioxidant enzyme activities and increasing the contents of ascorbic acid (AsA) and glutathione (GSH). The root cell wall of 'F' exhibited higher polysaccharide contents under Cd treatment, providing more Cd-binding sites. There were 3,439 differentially expressed genes (DEGs) that were co-regulated by Cd treatment in two cultivars. Phenylpropanoid biosynthesis and plant hormone signal transduction pathways were significantly enriched by functional annotation analysis. DEGs associated with pectin, cellulose, and hemi-cellulose metabolism were involved in Cd chelation of root cell wall; V-ATPases, ABCC3 and Narmp3 could participated in vacuolar compartmentalization of Cd; PDR1 was responsible for Cd efflux; the organic acid transporters contributed to the absorption of Cd in soil. These genes might have played key roles in kenaf Cd tolerance and Cd accumulation. Moreover, HcZIP2 was identified to be involved in Cd uptake and transport in kenaf. Our findings provide a deeper understanding of the molecular pathways underlying Cd accumulation and detoxification mechanisms in kenaf.
Collapse
Affiliation(s)
- Shan Cao
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Meng Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Pan
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Dengjie Luo
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Samavia Mubeen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Caijin Wang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Jiao Yue
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Xia Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Qijing Wu
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Hui Zhang
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Canni Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Muzammal Rehman
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Sichen Xie
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China
| | - Ru Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Peng Chen
- Guangxi Key Laboratory of Agro-environment and Agric-products safety, Key Laboratory of Plant Genetics and Breeding, College of Agriculture, Guangxi University, Nanning 530004, China.
| |
Collapse
|
13
|
Torun H, Cetin B, Stojnic S, Petrík P. Salicylic acid alleviates the effects of cadmium and drought stress by regulating water status, ions, and antioxidant defense in Pterocarya fraxinifolia. FRONTIERS IN PLANT SCIENCE 2024; 14:1339201. [PMID: 38283971 PMCID: PMC10811004 DOI: 10.3389/fpls.2023.1339201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/22/2023] [Indexed: 01/30/2024]
Abstract
Introduction Pterocarya fraxinifolia (Poiret) Spach (Caucasian wingnut, Juglandaceae) is a relict tree species, and little is known about its tolerance to abiotic stress factors, including drought stress and heavy metal toxicity. In addition, salicylic acid (SA) has been shown to have a pivotal role in plant responses to biotic and abiotic stresses. Methods The current study is focused on evaluating the impact of foliar application of SA in mediating Caucasian wingnut physiological and biochemical responses, including growth, relative water content (RWC), osmotic potential (Ψs), quantum yield (Fv/Fm), electrolyte leakage, lipid peroxidation, hydrogen peroxide, and antioxidant enzymes, to cadmium (Cd; 100 µM) and drought stress, as well as their interaction. Moreover, the antioxidant activity (e.g., ascorbate peroxidase, catalase, glutathione reductase, peroxidase, and superoxide dismutase activities) of the stressed trees was investigated. The study was conducted on 6-month-old seedlings under controlled environmental conditions in a greenhouse for 3 weeks. Results and discussion Leaf length, RWC, Ψs, and Fv/Fm were decreased under all treatments, although the effect of drought stress was the most pronounced. An efficient antioxidant defense mechanism was detected in Caucasian wingnut. Moreover, SA-treated Caucasian wingnut plants had lower lipid peroxidation, as one of the indicators of oxidative stress, when compared to non-SA-treated groups, suggesting the tolerance of this plant to Cd stress, drought stress, and their combination. Cadmium and drought stress also changed the ion concentrations in Caucasian wingnut, causing excessive accumulation of Cd in leaves. These results highlight the beneficial function of SA in reducing the negative effects of Cd and drought stress on Caucasian wingnut plants.
Collapse
Affiliation(s)
- Hülya Torun
- Faculty of Agriculture, Düzce University, Düzce, Türkiye
| | - Bilal Cetin
- Faculty of Forestry, Düzce University, Düzce, Türkiye
| | - Srdjan Stojnic
- Institute of Lowland Forestry and Environment, University of Novi Sad, Novi Sad, Serbia
| | - Peter Petrík
- Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), Garmisch-Partenkirchen, Germany
| |
Collapse
|
14
|
Wang L, Liu X, Wang Y, Wang X, Liu J, Li T, Guo X, Shi C, Wang Y, Li S. Stability and ecological risk assessment of nickel (Ni) in phytoremediation-derived biochar. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166498. [PMID: 37633368 DOI: 10.1016/j.scitotenv.2023.166498] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 08/28/2023]
Abstract
Improper treatment of heavy metal-enriched biomass generated after phytoremediation might cause secondary pollution in soil and water. At present, the pyrolysis process is an effective method for the treatment of phytoremediation residue. In this study, Ni-enriched biomass was prepared using hydroponics method and further pyrolyzed at different temperatures (300-700 °C). At low pyrolysis temperatures (below 500 °C), carbonate precipitation was the main reason of Ni stabilization in biochar. Nevertheless, the formed phosphate and aluminosilicate were important factors for immobilizing Ni in biochar at high pyrolysis temperatures (above 500 °C). Moreover, the oxidizable (F3) and residual (F4) components of Ni in biochar increased with increasing pyrolysis temperature, which indicated that higher pyrolysis temperature could effectively reduce the bioavailability of Ni in biochar. The results of deionized water, acidification, oxidation, and toxic characteristic leaching procedure (TCLP) experiments showed that pyrolysis temperature was the dominant factor for Ni stabilization in biochar. The ecological risk assessments further proved that pyrolyzed Ni-enriched biochar could reduce the environmental toxicity and potential ecological risks of Ni. In the soil simulated experiment, the soil microenvironment gradually promoted the transformation of Ni in BCNiX from bioavailable fraction to stable fraction. Overall, this study would expose more reasonable reference for the long-term storage of phytoremediation residues.
Collapse
Affiliation(s)
- Lei Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Xunjie Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China; Tianjin Key Laboratory of Refrigeration Technology, Tianjin University of Commerce, Tianjin 300134, PR China
| | - Yangyang Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China; School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Xiaoshu Wang
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Jin Liu
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Tongtong Li
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, PR China
| | - Xiaomeng Guo
- Eco-Environmental Science Center (Guangdong, Hong-Kong, Macau), Guangzhou 510555, PR China
| | - Chao Shi
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China
| | - Ying Wang
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, PR China.
| | - Shaofeng Li
- School of Materials and Environmental Engineering, Institute of Urban Ecology and Environment Technology, Shenzhen Polytechnic, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
Dong Q, Wu Y, Li B, Chen X, Peng L, Sahito ZA, Li H, Chen Y, Tao Q, Xu Q, Huang R, Luo Y, Tang X, Li Q, Wang C. Multiple insights into lignin-mediated cadmium detoxification in rice (Oryza sativa). JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131931. [PMID: 37379605 DOI: 10.1016/j.jhazmat.2023.131931] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/06/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023]
Abstract
Cadmium (Cd) is readily absorbed by rice and enters the food chain, posing a health risk to humans. A better understanding of the mechanisms of Cd-induced responses in rice will help in developing solutions to reduce Cd uptake in rice. Therefore, this research attempted to reveal the detoxification mechanisms of rice in response to Cd through physiological, transcriptomic and molecular approaches. The results showed that Cd stress restricted rice growth, led to Cd accumulation and H2O2 production, and resulted cell death. Transcriptomic sequencing revealed glutathione and phenylpropanoid were the major metabolic pathways under Cd stress. Physiological studies showed that antioxidant enzyme activities, glutathione and lignin contents were significantly increased under Cd stress. In response to Cd stress, q-PCR results showed that genes related to lignin and glutathione biosynthesis were upregulated, whereas metal transporter genes were downregulated. Further pot experiment with rice cultivars with increased and decreased lignin content confirmed the causal relationship between increased lignin and reduced Cd in rice. This study provides a comprehensive understanding of lignin-mediated detoxification mechanism in rice under Cd stress and explains the function of lignin in production of low-Cd rice to ensure human health and food safety.
Collapse
Affiliation(s)
- Qin Dong
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Yingjie Wu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| | - Bing Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xi Chen
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Peng
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Zulfiqar Ali Sahito
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huanxiu Li
- College of Horticulture, Sichuan Agricultural University, Chengdu 611130, China
| | - Yulan Chen
- Sichuan tobacco company, Liangshanzhou company, Xichang 615000, China
| | - Qi Tao
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Xu
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Rong Huang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Youlin Luo
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiaoyan Tang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiquan Li
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China
| | - Changquan Wang
- College of Resources, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
16
|
You Y, Wang L, Ju C, Wang X, Wang Y. How does phosphorus influence Cd tolerance strategy in arbuscular mycorrhizal - Phragmites australis symbiotic system? JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131318. [PMID: 37011447 DOI: 10.1016/j.jhazmat.2023.131318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/13/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
To clarify how phosphorus (P) influences arbuscular mycorrhizal fungi (AMF) interactions with host plants, we measured the effects of variation in environmental P levels and AMF colonization on photosynthesis, element absorption, ultrastructure, antioxidant capacity, and transcription mechanisms in Phragmites australis (P. australis) under cadmium (Cd) stress. AMF maintained photosynthetic stability, element balance, subcellular integrity and enhanced antioxidant capacity by upregulating antioxidant gene expression. Specifically, AMF overcame Cd-induced stomatal limitation, and mycorrhizal dependence peaked in the high Cd-moderate P treatment (156.08%). Antioxidants and compatible solutes responded to P-level changes: the primary driving forces of removing reactive oxygen species (ROS) and maintaining osmotic balance were superoxide dismutase, catalase, and sugars at limited P levels and total polyphenol, flavonoid, peroxidase, and proline at abundant P levels, we refer to this phenomenon as "functional link." AMF and phosphorus enhanced Cd tolerance in P. australis, but the regulation of AMF was P-dependent. Phosphorus prevented increases in total glutathione content and AMF-induced GSH/GSSG ratio (reduced to oxidized glutathione ratio) by inhibiting the expression of assimilatory sulfate reduction and glutathione reductase genes. The AMF-induced flavonoid synthesis pathway was regulated by P, and AMF activated Cd-tolerance mechanisms by inducing P-dependent signaling.
Collapse
Affiliation(s)
- Yongqiang You
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Li Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China.
| | - Chang Ju
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Xin Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| | - Yujiao Wang
- State Key Lab of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, No. 73, Huanghe Road, Nangang, Harbin 150090, People's Republic of China
| |
Collapse
|
17
|
Li X, Liu L, Sun S, Li Y, Jia L, Ye S, Yu Y, Dossa K, Luan Y. Physiological and transcriptional mechanisms associated with cadmium stress tolerance in Hibiscus syriacus L. BMC PLANT BIOLOGY 2023; 23:286. [PMID: 37248551 PMCID: PMC10226262 DOI: 10.1186/s12870-023-04268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 05/06/2023] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cadmium (Cd) pollution of soils is a global concern because its accumulation in plants generates severe growth retardation and health problems. Hibiscus syriacus is an ornamental plant that can tolerate various abiotic stresses, including Cd stress. Therefore, it is proposed as a plant material in Cd-polluted areas. However, the molecular mechanisms of H. syriacus tolerance to Cd are not yet understood. RESULTS This study investigated the physiological and transcriptional response of "Hongxing", a Cd2+-tolerant H. syriacus variety, grown on a substrate containing higher concentration of Cd (400 mg/kg). The Cd treatment induced only 28% of plant mortality, but a significant decrease in the chlorophyll content was observed. Malondialdehyde content and activity of the antioxidant enzymes catalase, peroxidase, and superoxide dismutase were significantly increased under Cd stress. Transcriptome analysis identified 29,921 differentially expressed genes (DEGs), including 16,729 down-regulated and 13,192 up-regulated genes, under Cd stress. Functional enrichment analyses assigned the DEGs mainly to plant hormone signal transduction, transport, nucleosome and DNA processes, mitogen-activated protein kinase signaling pathway, antioxidant process, fatty acid metabolism, and biosynthesis of secondary metabolites. Many MYB, EP2/ERF, NAC, WRKY family genes, and genes containing metal binding domains were up-regulated, implying that they are essential for the Cd-stress response in H. syriacus. The most induced genes were filtered out, providing valuable resources for future studies. CONCLUSIONS Our findings provide insights into the molecular responses to Cd stress in H. syriacus. Moreover, this study offers comprehensive and important resources for future studies toward improving the plant Cd tolerance and its valorization in phytoremediation.
Collapse
Affiliation(s)
- Xiang Li
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China
| | - Lanlan Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Shixian Sun
- Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China
| | - Yanmei Li
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Lu Jia
- Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China
| | - Shili Ye
- Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China
| | - Yanxuan Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China
| | - Komivi Dossa
- CIRAD, UMR AGAP Institut, 34398, Montpellier, France
| | - Yunpeng Luan
- The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China.
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
18
|
Lu Y, Peng F, Wang Y, Yang Z, Li H. Transcriptomic analysis reveals the molecular mechanisms of Boehmeria nivea L. in response to antimonite and antimonate stresses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 343:118195. [PMID: 37229860 DOI: 10.1016/j.jenvman.2023.118195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
Soil antimony (Sb) pollution is a global concern that threatens food security and human health. Boehmeria nivea L. (ramie) is a promising phytoremediation plant exhibiting high tolerance and enrichment capacity for Sb. To reveal the molecular mechanisms and thus enhance the ramie uptake, transport, and detoxification of Sb with practical strategies, a hydroponic experiment was conducted to compare the physiological and transcriptomic responses of ramie towards antimonite (Sb(Ⅲ)) and antimonate (Sb(Ⅴ)). Phenotypic results showed that Sb(Ⅲ) had a stronger inhibitory effect on the growth of ramie. Root Sb content under Sb(Ⅲ) was 2.43 times higher than that in Sb(Ⅴ) treatment. Based on the ribonucleic acid sequencing (RNA-Seq) technique, 3915 and 999 significant differentially expressed genes (DEGs) were identified under Sb(Ⅲ) and Sb(Ⅴ), respectively. Transcriptomic analysis revealed that ramie showed different adaptation strategies to Sb(Ⅲ) and Sb(V). Key DEGs and their involved pathways such as catalytic activity, carbohydrate metabolisms, phenylpropanoid biosynthesis, and cell wall modification were identified to perform crucial roles in Sb tolerance and detoxification. Two heavy metal-associated domain-type genes, six heavy metal-associated isoprenylated plant proteins, and nine ABC transporters showed possible roles in the transport and detoxification of Sb. The significant upregulation of NRAMP5 and three NIPs suggested their roles in the transport of Sb(V). This study is the basis for future research to identify the exact genes and biological processes that can effectively enhance Sb accumulation or improve plant tolerance to Sb, thereby promoting the phytoremediation of Sb-polluted soils.
Collapse
Affiliation(s)
- Yi Lu
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Fangyuan Peng
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Yingyang Wang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Zhaoguang Yang
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China
| | - Haipu Li
- Center for Environment and Water Resources, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Changsha, 410083, China.
| |
Collapse
|
19
|
Liu Z, Wu X, Hou L, Ji S, Zhang Y, Fan W, Li T, Zhang L, Liu P, Yang L. Effects of cadmium on transcription, physiology, and ultrastructure of two tobacco cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161751. [PMID: 36690104 DOI: 10.1016/j.scitotenv.2023.161751] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) is one of the most toxic heavy metal pollutants worldwide. Tobacco is an important cash crop; however, the accumulation of Cd in its biomass is very high. Cadmium may enter the body of smokers with contaminated tobacco and the surrounding environment via smoke. Therefore, it is important to understand the mechanisms of Cd accumulation and tolerance in tobacco plants, especially in the leaves. In this study, the effects of Cd on the growth, accumulation, and biochemical indices of two tobacco varieties, K326 (Cd resistant) and NC55 (Cd sensitive), were studied through transcriptomic and physiological experiments. Transcriptome and physiological analyses showed differences in the expression of Cd transport and Cd resistance related genes between NC55 and K326 under Cd stress. The root meristem cells of NC55 were more severely damaged. The antioxidant enzyme activity, ABA and ZT content, chlorophyll content, photosynthetic rate, and nitrogen metabolism enzyme activity in K326 leaves were higher than in NC55. These data elucidate the mechanisms of low Cd accumulation and high Cd tolerance in K326 leaves and provide a theoretical basis for cultivating tobacco varieties with low Cd accumulation and high Cd resistance.
Collapse
Affiliation(s)
- Zhiguo Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Xiuzhe Wu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Lei Hou
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Shengzhe Ji
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Yao Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Weiru Fan
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Tong Li
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai'an 271000, China.
| |
Collapse
|
20
|
Transcriptional Regulatory Network of Plant Cadmium Stress Response. Int J Mol Sci 2023; 24:ijms24054378. [PMID: 36901809 PMCID: PMC10001906 DOI: 10.3390/ijms24054378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/14/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023] Open
Abstract
Cadmium (Cd) is a non-essential heavy metal with high toxicity to plants. Plants have acquired specialized mechanisms to sense, transport, and detoxify Cd. Recent studies have identified many transporters involved in Cd uptake, transport, and detoxification. However, the complex transcriptional regulatory networks involved in Cd response remain to be elucidated. Here, we provide an overview of current knowledge regarding transcriptional regulatory networks and post-translational regulation of the transcription factors involved in Cd response. An increasing number of reports indicate that epigenetic regulation and long non-coding and small RNAs are important in Cd-induced transcriptional responses. Several kinases play important roles in Cd signaling that activate transcriptional cascades. We also discuss the perspectives to reduce grain Cd content and improve crop tolerance to Cd stress, which provides a theoretical reference for food safety and the future research of plant varieties with low Cd accumulation.
Collapse
|
21
|
Yu G, Ullah H, Wang X, Liu J, Chen B, Jiang P, Lin H, Sunahara GI, You S, Zhang X, Shahab A. Integrated transcriptome and metabolome analysis reveals the mechanism of tolerance to manganese and cadmium toxicity in the Mn/Cd hyperaccumulator Celosia argentea Linn. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130206. [PMID: 36279652 DOI: 10.1016/j.jhazmat.2022.130206] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/30/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Understanding the molecular mechanism of tolerance to heavy metals in hyperaccumulators is important for improving the efficiency of phytoremediation and is interesting for evolutionary studies on plant adaption to abiotic stress. Celosia argentea Linn. was recently discovered to hyperaccumulate both manganese (Mn) and cadmium (Cd). However, the molecular mechanisms underlying Mn and Cd detoxification in C. argentea are poorly understood. Laboratory studies were conducted using C. argentea seedlings exposed to 360 μM Mn and 8.9 μM Cd hydroponic solutions. Plant leaves were analyzed using transcriptional and metabolomic techniques. A total of 3960 differentially expressed genes (DEGs) in plants were identified under Cd stress, among which 17 were associated with metal transport, and 10 belonged to the ATP transporter families. Exposures to Mn or Cd led to the differential expression of three metal transport genes (HMA3, ABCC15, and ATPase 4). In addition, 33 and 77 differentially expressed metabolites (DEMs) were identified under Mn and Cd stresses, respectively. Metabolic pathway analysis showed that the ABC transporter pathway was the most affected in Mn/Cd exposed seedlings. Conjoint transcriptome and metabolome analysis showed that the glutathione (GSH) metabolic pathway was over-represented in the KEGG pathway of both DEGs and DEMs. Our results confirm that the ABC transporter and GSH metabolic pathways play important roles in Mn and Cd detoxification. These findings provide new insight into the molecular mechanisms of tolerance to Mn and Cd toxicity in plants.
Collapse
Affiliation(s)
- Guo Yu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Habib Ullah
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Xinshuai Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Jie Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Pingping Jiang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Geoffrey I Sunahara
- Department of Natural Resource Sciences, McGill University, Montreal, Quebec, Canada.
| | - Shaohong You
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Xuehong Zhang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| | - Asfandyar Shahab
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin, China.
| |
Collapse
|
22
|
He F, Wu Z, Zhao Z, Chen G, Wang X, Cui X, Zhu T, Chen L, Yang P, Bi L, Lin T. Drought stress drives sex-specific differences in plant resistance against herbivores between male and female poplars through changes in transcriptional and metabolic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157171. [PMID: 35809724 DOI: 10.1016/j.scitotenv.2022.157171] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Drought stress poses adverse influence on plant growth and further alters plant-herbivore interactions. Such effect is enhanced as drought occurrence is reported to increase due to global warming. Although dioecious plant species have shown sex-specific response to drought stress through the changes in growth performance and stress tolerance, whether such changes will drive sex-specific differences in defense against herbivores between male and female plant conspecifics is barely studied. In the current study, female and male poplar full-siblings were submitted to moderate (75 % field water capacity) and severe drought (50 % field water capacity) stresses, followed by herbivore growth and feeding bioassays to test the effect of plant gender on herbivore growth and feeding performance of two specialist and two generalist leaf herbivores. The results showed that although the growth of both plant sexes was inhibited by the two drought levels, male plants performed better than female conspecifics. In the paired-choice bioassays, the specialist herbivores preferred female plants while the generalist herbivores fed more on the male plants without drought stress. Both the moderate and severe drought stresses reversed such preferences. In the triple-choice bioassays, the specialist herbivores preferred female control plants while the generalist herbivores fed more on female plants under severe drought. In addition, the specialist herbivores fed on female plants from severe drought stress grew the worst while the generalist herbivores gained the highest fresh weight. The transcriptomic and metabolomic profiling revealed that female plant leaves contained higher levels of flavonoids than males under control condition while severe drought stress remarkably reduced the levels of defensive metabolites such as flavonoids, isoflavonoids, neoflavonoids and alkaloids in female but not in male plant leaves.
Collapse
Affiliation(s)
- Fang He
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Zhengqin Wu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Zhengbao Zhao
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China; College of Resources and Environmental Engineering, Sichuan Water Conservancy College, 611231 Chongzhou, China
| | - Gang Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Xuegui Wang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Xinglei Cui
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Tianhui Zhu
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Lianghua Chen
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Peng Yang
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Lingfeng Bi
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China
| | - Tiantian Lin
- Key Laboratory of National Forestry & Grassland Administration on Forest Resources Conservation and Ecological Safety in the Upper Reaches of the Yangtze River, College of Forestry, Sichuan Agricultural University, 611130 Chengdu, China.
| |
Collapse
|
23
|
Li Y, Yu C, Mo R, Zhu Z, Dong Z, Hu X, Deng W, Zhuang C. Screening and Verification of Photosynthesis and Chloroplast-Related Genes in Mulberry by Comparative RNA-Seq and Virus-Induced Gene Silencing. Int J Mol Sci 2022; 23:ijms23158620. [PMID: 35955752 PMCID: PMC9368790 DOI: 10.3390/ijms23158620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/20/2022] [Accepted: 07/29/2022] [Indexed: 12/05/2022] Open
Abstract
Photosynthesis is one of the most important factors in mulberry growth and production. To study the photosynthetic regulatory network of mulberry we sequenced the transcriptomes of two high-yielding (E1 and E2) and one low-yielding (H32) mulberry genotypes at two-time points (10:00 and 12:00). Re-annotation of the mulberry genome based on the transcriptome sequencing data identified 22,664 high-quality protein-coding genes with a BUSCO-assessed completeness of 93.4%. A total of 6587 differentially expressed genes (DEGs) were obtained in the transcriptome analysis. Functional annotation and enrichment revealed 142 out of 6587 genes involved in the photosynthetic pathway and chloroplast development. Moreover, 3 out of 142 genes were further examined using the VIGS technique; the leaves of MaCLA1- and MaTHIC-silenced plants were markedly yellowed or even white, and the leaves of MaPKP2-silenced plants showed a wrinkled appearance. The expression levels of the ensiled plants were reduced, and the levels of chlorophyll b and total chlorophyll were lower than those of the control plants. Co-expression analysis showed that MaCLA1 was co-expressed with CHUP1 and YSL3; MaTHIC was co-expressed with MaHSP70, MaFLN1, and MaEMB2794; MaPKP2 was mainly co-expressed with GH9B7, GH3.1, and EDA9. Protein interaction network prediction revealed that MaCLA1 was associated with RPE, TRA2, GPS1, and DXR proteins; MaTHIC was associated with TH1, PUR5, BIO2, and THI1; MaPKP2 was associated with ENOC, LOS2, and PGI1. This study offers a useful resource for further investigation of the molecular mechanisms involved in mulberry photosynthesis and preliminary insight into the regulatory network of photosynthesis.
Collapse
Affiliation(s)
- Yong Li
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Cui Yu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Rongli Mo
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhixian Zhu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Zhaoxia Dong
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Xingming Hu
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
| | - Wen Deng
- Cash Crops Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (C.Y.); (R.M.); (Z.Z.); (Z.D.); (X.H.)
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| | - Chuxiong Zhuang
- College of Life Sciences, South China Agricultural University, Guangzhou 510642, China;
- Correspondence: (W.D.); (C.Z.); Tel.: +86-27-87106001 (W.D.); +86-20-85288399 (C.Z.)
| |
Collapse
|
24
|
Yu F, Yi L, Mao X, Song Q, Korpelainen H, Liu M. Nitrogen addition alleviated sexual differences in responses to cadmium toxicity by regulating the antioxidant system and root characteristics, and inhibiting Cd translocation in mulberry seedlings. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113288. [PMID: 35149410 DOI: 10.1016/j.ecoenv.2022.113288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
Cadmium (Cd) toxicity and nitrogen (N) deposition are two major environmental stresses which can affect plant growth. It's less clear that how the combined Cd accumulation and N deposition affect the male and female plants of dioecious species. The aim of the present study was to detect sex-specific responses to Cd stress and simulated N deposition in one-year-old male, female and hermaphrodite seedlings of Morus alba. Changes in morphology, physiology, root architecture and biomass of the three sex types of mulberry seedlings were determined. The results showed that Cd toxicity caused limited growth, impaired photosynthetic apparatus and decreased gas exchange rates with significant sex-specific differences. Mulberry was found to deploy detoxification mechanisms to avoid or tolerate toxic Cd effects through the activation of the antioxidant system, increasing proline and non-protein thiol contents, translocating Cd into different plant parts and decreasing biomass. Females displayed a low tolerance to high Cd and were more sensitive to Cd stress. Simulated N deposition alleviated the negative effects of Cd on leaves and decreased sex-specific differences in the three kinds of mulberry seedlings, but N fertilizer did not affect the total biomass. The N-stimulated increasing in proline and non-protein thiol contents might play a crucial role in resisting the damage caused by Cd stress, and the three kinds of mulberry seedlings had slightly different ways of improving Cd tolerance by N deposition. Sexual differences in Cd accumulation are correlated with root architecture. This study provides evidence for the utilization of mulberry to treat Cd-contaminated soils under N deposition.
Collapse
Affiliation(s)
- Fei Yu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Lita Yi
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoyu Mao
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Qi Song
- Department of Health and Agriculture, Hangzhou Wanxiang Polytechnic, Hangzhou 310023, China
| | - Helena Korpelainen
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, P.O. Box 27 (Latokartanonkaari 5), Helsinki FI-00014, Finland
| | - Meihua Liu
- College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
25
|
Teng Y, Guan W, Yu A, Li Z, Wang Z, Yu H, Zou L. Exogenous melatonin improves cadmium tolerance in Solanum nigrum L. without affecting its remediation potential. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 24:1284-1291. [PMID: 35016578 DOI: 10.1080/15226514.2021.2025204] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium (Cd). Thus, the development of eco-friendly strategies to enhance its tolerance, maintaining remediation potential is of special interest. The present work aimed to evaluate the effects of exogenous application of melatonin (MT) in the physiological and biochemical responses of S. nigrum and remediation potential exposed to Cd. After 30 days of exposure, the results revealed that Cd-mediated inhibitory effects on biomass and photosynthetic pigment synthesis were efficiently mitigated upon application of melatonin, without affecting Cd accumulation. Higher levels of Cd were found in roots, regardless of the pretreatment with the melatonin. Foliar application of melatonin, however, induced distinctive effects, lowering malondialdehyde (MDA), relative electrical conductivity (REL), and proline levels in shoots. These changes contributed to improvements in the water status, photosynthetic pigment synthesis, and biomass production of S. nigrum under Cd stresses. Overall, our results indicate a protective effect of melatonin on S. nigrum response to excess Cd, contributing to a better tolerance and growth rate, without disturbing its phytoremediation potential.Novelty statementAlthough Solanum nigrum L. is a phytoremediator for different metals, its growth and physiology are still influenced by toxic levels of cadmium. This study evaluated the potential of melatonin to boost S. nigrum defence against Cd toward a better growth rate and remediation potential.
Collapse
Affiliation(s)
- Yue Teng
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou, China
| | - Wenjie Guan
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - An Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhishuai Li
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Zhenjun Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Hongyan Yu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| | - Luyi Zou
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environmental and Civil Engineering, Jiangnan University, Wuxi, China
| |
Collapse
|
26
|
Xiao Y, Dai MX, Zhang GQ, Yang ZX, He YM, Zhan FD. Effects of the Dark Septate Endophyte (DSE) Exophiala pisciphila on the Growth of Root Cell Wall Polysaccharides and the Cadmium Content of Zea mays L. under Cadmium Stress. J Fungi (Basel) 2021; 7:jof7121035. [PMID: 34947018 PMCID: PMC8708371 DOI: 10.3390/jof7121035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/27/2021] [Accepted: 11/30/2021] [Indexed: 02/06/2023] Open
Abstract
This paper aims to investigate the mechanism by which dark septate endophytes (DSEs) enhance cadmium (Cd) tolerance in there host plants. Maize (Zea mays L.) was inoculated with a DSE, Exophiala pisciphila, under Cd stress at different concentrations (0, 5, 10, and 20 mg·kg−1). The results show that, under 20 mg/kg Cd stress, DSE significantly increased maize biomass and plant height, indicating that DSE colonization can be utilized to increase the Cd tolerance of host plants. More Cd was retained in DSE-inoculated roots, especially that fixed in the root cell wall (RCW). The capability of DSE to induce a higher Cd holding capacity in the RCW is caused by modulation of the total sugar and uronic acid of DSE-colonized RCW, mainly the pectin and hemicellulose fractions. The fourier-transform spectroscopy analysis results show that carboxyl, hydroxyl, and acidic groups are involved in Cd retention in the DSE-inoculated RCW. The promotion of the growth of maize and improvement in its tolerance to Cd due to DSEs are related to restriction of the translocation of Cd from roots to shoots; resistance of Cd uptake Cd inside cells; and the increase in RCW-integrated Cd through modulating RCW polysaccharide components.
Collapse
|
27
|
Gan T, Lin Z, Bao L, Hui T, Cui X, Huang Y, Wang H, Su C, Jiao F, Zhang M, Qian Y. Comparative Proteomic Analysis of Tolerant and Sensitive Varieties Reveals That Phenylpropanoid Biosynthesis Contributes to Salt Tolerance in Mulberry. Int J Mol Sci 2021; 22:9402. [PMID: 34502318 PMCID: PMC8431035 DOI: 10.3390/ijms22179402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022] Open
Abstract
Mulberry, an important woody tree, has strong tolerance to environmental stresses, including salinity, drought, and heavy metal stress. However, the current research on mulberry resistance focuses mainly on the selection of resistant resources and the determination of physiological indicators. In order to clarify the molecular mechanism of salt tolerance in mulberry, the physiological changes and proteomic profiles were comprehensively analyzed in salt-tolerant (Jisang3) and salt-sensitive (Guisangyou12) mulberry varieties. After salt treatment, the malondialdehyde (MDA) content and proline content were significantly increased compared to control, and the MDA and proline content in G12 was significantly lower than in Jisang3 under salt stress. The calcium content was significantly reduced in the salt-sensitive mulberry varieties Guisangyou12 (G12), while sodium content was significantly increased in both mulberry varieties. Although the Jisang3 is salt-tolerant, salt stress caused more reductions of photosynthetic rate in Jisang3 than Guisangyou12. Using tandem mass tags (TMT)-based proteomics, the changes of mulberry proteome levels were analyzed in salt-tolerant and salt-sensitive mulberry varieties under salt stress. Combined with GO and KEGG databases, the differentially expressed proteins were significantly enriched in the GO terms of amino acid transport and metabolism and posttranslational modification, protein turnover up-classified in Guisangyou12 while down-classified in Jisang3. Through the comparison of proteomic level, we identified the phenylpropanoid biosynthesis may play an important role in salt tolerance of mulberry. We clarified the molecular mechanism of mulberry salt tolerance, which is of great significance for the selection of excellent candidate genes for saline-alkali soil management and mulberry stress resistance genetic engineering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (T.G.); (Z.L.); (L.B.); (T.H.); (X.C.); (Y.H.); (H.W.); (C.S.); (F.J.)
| |
Collapse
|
28
|
Zeng P, Guo Z, Xiao X, Zhou H, Gu J, Liao B. Tolerance capacities of Broussonetia papyrifera to heavy metal(loid)s and its phytoremediation potential of the contaminated soil. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2021; 24:580-589. [PMID: 34369831 DOI: 10.1080/15226514.2021.1958746] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Broussonetia papyrifera, is a promising fast-growing woody plant for the phytoremediation of heavy metal(loid) (HM)-contaminated soil. In this study, a greenhouse experiment was conducted to explore the tolerance capacities of B. papyrifera and its phytoremediation potential in the HM-contaminated soil. The results indicated that B. papyrifera could effectively decrease malondialdehyde (MDA) content by enhancing the antioxidant enzyme activities along with the cultivation in the HM-contaminated soil. Significant (p < 0.05) negative relationships were found between MDA content and superoxide dismutase (r = -0.620) and catalase activities (r = -0.702) in B. papyrifera leaves. Fourier Transform Infrared Spectroscopy analysis indicated that the main functional groups in B. papyrifera roots were slightly influenced by HMs, and organic acids, carbohydrates, protein, and amino acids might bind with HMs in plant roots to alleviate the adverse effect of HMs on plants growth. Meanwhile, B. papyrifera had great potential used for the phytoextraction of Cd and Zn in HM-contaminated soil. The maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, respectively. These observations suggested that B. papyrifera has large biomass and high tolerance to HMs, which can be regarded as a promising plant for the eco-remediation of HM-contaminated sites.Novelty statement In this study, a fast-growing woody plant, Broussonetia papyrifera, was used for heavy metal(loid) (HM)-contaminated soil remediation. We found that B. papyrifera can effectively alleviate the adverse effect of HMs on plant growth by enhancing the antioxidant enzyme activities in leaves and binding HMs with organic acids, carbohydrates, protein, and amino acids in roots. Furthermore, the maximum total Cd and Zn accumulation amount in B. papyrifera shoots could attach to 2.26 and 66.8 mg·pot-1, which suggested that B. papyrifera might be regarded as a promising woody plant used for the phytoextraction of Cd and Zn in the contaminated soil.
Collapse
Affiliation(s)
- Peng Zeng
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Zhaohui Guo
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Xiyuan Xiao
- School of Metallurgy and Environment, Central South University, Changsha, China
| | - Hang Zhou
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Jiaofeng Gu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Bohan Liao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|