1
|
Sahabudin E, Kubo S, Yuzir MAM, Othman N, Nadia Md Akhir F, Suzuki K, Yoneda K, Maeda Y, Suzuki I, Hara H, Iwamoto K. The cadmium tolerance and bioaccumulation mechanism of Tetratostichococcus sp. P1: insight from transcriptomics analysis. Bioengineered 2024; 15:2314888. [PMID: 38375815 DOI: 10.1080/21655979.2024.2314888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Cadmium (Cd) has become a severe issue in relatively low concentration and attracts expert attention due to its toxicity, accumulation, and biomagnification in living organisms. Cd does not have a biological role and causes serious health issues. Therefore, Cd pollutants should be reduced and removed from the environment. Microalgae have great potential for Cd absorption for waste treatment since they are more environmentally friendly than existing treatment methods and have strong metal sorption selectivity. This study evaluated the tolerance and ability of the microalga Tetratostichococcus sp. P1 to remove Cd ions under acidic conditions and reveal mechanisms based on transcriptomics analysis. The results showed that Tetratostichococcus sp. P1 had a high Cd tolerance that survived under the presence of Cd up to 100 µM, and IC50, the half-maximal inhibitory concentration value, was 57.0 μM, calculated from the change in growth rate based on the chlorophyll content. Long-term Cd exposure affected the algal morphology and photosynthetic pigments of the alga. Tetratostichococcus sp. P1 removed Cd with a maximum uptake of 1.55 mg g-1 dry weight. Transcriptomic analysis revealed the upregulation of the expression of genes related to metal binding, such as metallothionein. Group A, Group B transporters and glutathione, were also found upregulated. While the downregulation of the genes were related to photosynthesis, mitochondria electron transport, ABC-2 transporter, polysaccharide metabolic process, and cell division. This research is the first study on heavy metal bioremediation using Tetratostichococcus sp. P1 and provides a new potential microalga strain for heavy metal removal in wastewater.[Figure: see text]Abbreviations:BP: Biological process; bZIP: Basic Leucine Zipper; CC: Cellular component; ccc1: Ca (II)-sensitive cross complementary 1; Cd: Cadmium; CDF: Cation diffusion facilitator; Chl: Chlorophyll; CTR: Cu TRansporter families; DAGs: Directed acyclic graphs; DEGs: Differentially expressed genes; DVR: Divinyl chlorophyllide, an 8-vinyl-reductase; FPN: FerroportinN; FTIR: Fourier transform infrared; FTR: Fe TRansporter; GO: Gene Ontology; IC50: Growth half maximal inhibitory concentration; ICP: Inductively coupled plasma; MF: molecular function; NRAMPs: Natural resistance-associated aacrophage proteins; OD: Optical density; RPKM: Reads Per Kilobase of Exon Per Million Reads Mapped; VIT1: Vacuolar iron transporter 1 families; ZIPs: Zrt-, Irt-like proteins.
Collapse
Affiliation(s)
- Eri Sahabudin
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Shohei Kubo
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Muhamad Ali Muhammad Yuzir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Nor'azizi Othman
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Fazrena Nadia Md Akhir
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| | - Kengo Suzuki
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
- Euglena Co. Ltd, Minato‑ku, Japan
- Microalgae Production Control Technology Laboratory, Yokohama, Kanagawa, Japan
| | - Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hirofumi Hara
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
| | - Koji Iwamoto
- Department of Chemical and Environmental Engineering, Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
2
|
Zhou Y, Zhu Y, Wu F, Pan X, Li W, Han J. Transcriptomics revealed the key molecular mechanisms of ofloxacin-induced hormesis in Chlorella pyrenoidosa at environmentally relevant concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124887. [PMID: 39236839 DOI: 10.1016/j.envpol.2024.124887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/07/2024]
Abstract
Emerging pollutants such as antibiotics have aroused great concern in recent years. However, the knowledge of low concentration-induced hormesis was not well understood. This study evaluated and quantified hormetic effects of ofloxacin on Chlorella pyrenoidosa. LogNormal model predicted the maximal non-effect concentration was 0.13 mg/L and 2.96 mg/L at 3 and 21 d, respectively. The sensitive alterations in chlorophyll fluorescence suggested PSII was the main target. Transcriptomics revealed ofloxacin inhibited genes related to photosynthetic system while the cyclic electron around PSI decreased the pH value in stroma side and stimulated photoprotection via up-regulating psbS. The stimulation in citrate cycle pathway met the urgent requirements of energy for DNA replication and repair. In addition, the negative feedback of G3P in glycolysis pathway inhibited Calvin cycle. The degradation products illustrated the occurrence of multiple detoxification mechanisms such as demethylation and ring-opening. The mobilization of cytochrome P450 generated the constant detoxication of ofloxacin while glutathione was consumptively involved in biological binding. This study provided new insights into the molecular mechanisms of antibiotic-induced hormesis in microalgae.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Feifan Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, Jiangsu, 210037, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu, 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu, 223100, China
| |
Collapse
|
3
|
Pagli C, Chamizo S, Migliore G, Rugnini L, De Giudici G, Braglia R, Canini A, Cantón Y. Isolation of biocrust cyanobacteria and evaluation of Cu, Pb, and Zn immobilisation potential for soil restoration and sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174020. [PMID: 38897475 DOI: 10.1016/j.scitotenv.2024.174020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/30/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
Soil contamination by heavy metals represents an important environmental and public health problem of global concern. Biocrust-forming cyanobacteria offer promise for heavy metal immobilisation in contaminated soils due to their unique characteristics, including their ability to grow in contaminated soils and produce exopolysaccharides (EPS). However, limited research has analysed the representativeness of cyanobacteria in metal-contaminated soils. Additionally, there is a lack of studies examining how cyanobacteria adaptation to specific environments can impact their metal-binding capacity. To address this research gap, we conducted a study analysing the bacterial communities of cyanobacteria-dominated biocrusts in a contaminated area from South Sardinia (Italy). Additionally, by using two distinct approaches, we isolated three Nostoc commune strains from cyanobacteria-dominated biocrust and we also evaluated their potential to immobilise heavy metals. The first isolation method involved acclimatizing biocrust samples in liquid medium while, in the second method, biocrust samples were directly seeded onto agar plates. The microbial community analysis revealed Cyanobacteria, Bacteroidota, Proteobacteria, and Actinobacteria as the predominant groups, with cyanobacteria representing between 13.3 % and 26.0 % of the total community. Despite belonging to the same species, these strains exhibited different growth rates (1.1-2.2 g L-1 of biomass) and capacities for EPS production (400-1786 mg L-1). The three strains demonstrated a notable ability for metal immobilisation, removing up to 88.9 % of Cu, 86.2 % of Pb, and 45.3 % of Zn from liquid medium. Cyanobacteria EPS production showed a strong correlation with the removal of Cu, indicating its role in facilitating metal immobilisation. Furthermore, differences in Pb immobilisation (40-86.2 %) suggest possible environmental adaptation mechanisms of the strains. This study highlights the promising application of N. commune strains for metal immobilisation in soils, offering a potential bioremediation tool to combat the adverse effects of soil contamination and promote environmental sustainability.
Collapse
Affiliation(s)
- Carlotta Pagli
- Department of Biology, University of Rome Tor Vergata, Italy; Department of Agronomy, University of Almería, Spain; PhD Program in Evolutionary Biology and Ecology, University of Rome Tor Vergata, Italy.
| | - Sonia Chamizo
- Department of Agronomy, University of Almería, Spain; Department of Desertification and Geo-Ecology, Experimental Station of Arid Zones (EEZA-CSIC), Almería, Spain
| | - Giada Migliore
- ENEA, Territorial and Production Systems Sustainability Department, Italy
| | - Lorenza Rugnini
- Department of Biology, University of Rome Tor Vergata, Italy
| | - Giovanni De Giudici
- Department of Chemical and Geological Sciences, University of Cagliari, Italy
| | - Roberto Braglia
- Department of Biology, University of Rome Tor Vergata, Italy
| | | | - Yolanda Cantón
- Department of Agronomy, University of Almería, Spain; Center for Research on Scientific Collections of the University of Almeria (CECOUAL), Spain
| |
Collapse
|
4
|
Passucci V, Thomas-Chemin O, Dib O, Assaf AA, Durand MJ, Dague E, Areco MM, Formosa-Dague C. Investigating the role of extracellular polymeric substances produced by Parachlorella kessleri in Zn(II) bioremediation using atomic force microscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125082. [PMID: 39374767 DOI: 10.1016/j.envpol.2024.125082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/25/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Microalgae, such as Parachlorella kessleri, have significant potential for environmental remediation, especially in removing heavy metals like zinc from water. This study investigates how P. kessleri, isolated from a polluted river in Argentina, can remediate zinc. Using atomic force microscopy (AFM), the research examined the interactions between Zn particles and cells grown with different nitrogen sources-nitrate or ammonium. The results showed that cells grown with nitrate produced extracellular polymeric substances (EPS), while those grown with ammonium did not. Raman spectroscopy revealed distinct metabolic responses based on the nitrogen source, with nitrate-grown cells showing altered profiles after zinc exposure. Zinc exposure also changed the surface roughness and nanomechanical properties of the cells, particularly in those producing EPS. AFM force spectroscopy experiments then confirmed strong Zn binding to EPS in nitrate-grown cells, while interactions were weaker in ammonium-grown cells that lacked EPS. Overall, our results elucidate the critical role of EPS in Zn removal by P. kessleri cells and show that Zn remediation is mediated by EPS adsorption. This study underscores the significance of regulating nitrogen sources to stimulate EPS production, offering insights that are essential for subsequent bioremediation applications.
Collapse
Affiliation(s)
- Victoria Passucci
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina
| | | | - Omar Dib
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Antony Ali Assaf
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Marie-José Durand
- Nantes Université, ONIRIS, CNRS, GEPEA, UMR 6144, La Roche-sur-Yon, F-85000, France
| | - Etienne Dague
- LAAS-CNRS, Université de Toulouse, CNRS, 31400, Toulouse, France
| | - Maria Mar Areco
- IIIA-UNSAM-CONICET, Instituto de Investigación e Ingeniería Ambiental, Escuela de Hábitat y Sostenibilidad (EHyS), Universidad Nacional de San Martín (UNSAM), Campus Miguelete, 25 de mayo y Francia, 1650, San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Godoy Cruz 2290 CP (1033), Buenos Aires, Argentina.
| | | |
Collapse
|
5
|
Yang Z, Li A, Chen J, Dai Z, Su J, Deng C, Ye G, Cheng C, Tang Q, Zhang X, Xu Y, Chen X, Wu B, Zhang Z, Zheng X, Yang L, Xiao L. Machine learning phenotyping and GWAS reveal genetic basis of Cd tolerance and absorption in jute. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124918. [PMID: 39260553 DOI: 10.1016/j.envpol.2024.124918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Cadmium (Cd) is a dangerous environmental contaminant. Jute (Corchorus sp.) is an important natural fiber crop with strong absorption and excellent adaptability to metal-stressed environments, used in the phytoextraction of heavy metals. Understanding the genetic and molecular mechanisms underlying Cd tolerance and accumulation in plants is essential for efficient phytoremediation strategies and breeding novel Cd-tolerant cultivars. Here, machine learning (ML) and hyperspectral imaging (HSI) combining genome-wide association studies (GWAS) and RNA-seq reveal the genetic basis of Cd resistance and absorption in jute. ML needs a small number of plant phenotypes for training and can complete the plant phenotyping of large-scale populations with efficiency and accuracy greater than 90%. In particular, a candidate gene for Cd resistance (COS02g_02406) and a candidate gene (COS06g_03984) associated with Cd absorption are identified in isoflavonoid biosynthesis and ethylene response signaling pathways. COS02g_02406 may enable plants to cope with metal stress by regulating isoflavonoid biosynthesis involved in antioxidant defense and metal chelation. COS06g_03984 promotes the binding of Cd2+ to ETR/ERS, resulting in Cd absorption and tolerance. The results confirm the feasibility of high-throughput phenotyping for studying plant Cd tolerance by combining HSI and ML approaches, facilitating future molecular breeding.
Collapse
Affiliation(s)
- Zemao Yang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Alei Li
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Jiquan Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Zhigang Dai
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Jianguang Su
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Canhui Deng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Gaoao Ye
- Hangzhou Guang Xun Intelligent Technology Co., LTD, Guanli Technology, South Yongfu Road, Guali, Xiaoshan District, Hangzhou, Zhejiang, China
| | - Chaohua Cheng
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Qing Tang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Xiaoyu Zhang
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Ying Xu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences / Key Laboratory of Stem-fiber Biomass and Engineering Microbiology, Ministry of Agriculture, Changsha, 410205, China
| | - Xiaojun Chen
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410125, China
| | - Bibao Wu
- Hunan Biological and Electromechanical Polytechnic, China
| | - Zhihai Zhang
- University of Illinois Urbana-Champaign Institute for Sustainability, Energy, and Environment (iSEE), Urbana, IL, 61801, USA
| | - Xuying Zheng
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1201 W Gregory Dr, Urbana, IL, 61801, USA
| | - Lu Yang
- Hunan Hybrid Rice Research Center, 736 Yuanda 2nd Road, Furong District, Changsha, Hunan, 410125, China.
| | - Liang Xiao
- Hunan Engineering Laboratory of Miscanthus Ecological Applications, College of Bioscience & Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410128, China; Department of Grassland Science, College of Agronomy, Hunan Agricultural University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Milano F, Giotta L, Lambreva MD. Perspectives on nanomaterial-empowered bioremediation of heavy metals by photosynthetic microorganisms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109090. [PMID: 39243581 DOI: 10.1016/j.plaphy.2024.109090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 07/05/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
Environmental remediation of heavy metals (HMs) is a crucial aspect of sustainable development, safeguarding natural resources, biodiversity, and the delicate balance of ecosystems, all of which are critical for sustaining life on our planet. The bioremediation of HMs by unicellular phototrophs harnesses their intrinsic detoxification mechanisms, including biosorption, bioaccumulation, and biotransformation. These processes can be remarkably effective in mitigating HMs, particularly at lower contaminant concentrations, surpassing the efficacy of conventional physicochemical methods and offering greater sustainability and cost-effectiveness. Here, we explore the potential of various engineered nanomaterials to further enhance the capacity and efficiency of HM bioremediation based on photosynthetic microorganisms. The critical assessment of the interactions between nanomaterials and unicellular phototrophs emphasised the ability of tailored nanomaterials to sustain photosynthetic metabolism and the defence system of microorganisms, thereby enhancing their growth, biomass accumulation, and overall bioremediation capacity. Key factors that could shape future research efforts toward sustainable nanobioremediation of HM are discussed, and knowledge gaps in the field have been identified. This study sheds light on the potential of nanobioremediation by unicellular phototrophs as an efficient, scalable, and cost-effective solution for HM removal.
Collapse
Affiliation(s)
- Francesco Milano
- Institute of Sciences of Food Production, National Research Council (CNR), Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Livia Giotta
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Strada Provinciale Lecce-Monteroni, 73100 Lecce, Italy.
| | - Maya D Lambreva
- Institute for Biological Systems, National Research Council (CNR), Strada Provinciale 35d, N. 9, 00010, Montelibretti, Rome, Italy.
| |
Collapse
|
7
|
Ganguly A, Nag S, Bhowmick TK, Gayen K. Phycoremediation of As(III) and Cr(VI) by Desmodesmus subspicatus: Impact on growth and biomolecules (carbohydrate, protein, chlorophyll and lipid) - A dual mode investigation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:48545-48560. [PMID: 39031311 DOI: 10.1007/s11356-024-34390-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/11/2024] [Indexed: 07/22/2024]
Abstract
Microalgae are under research focus for the simultaneous production of biomolecules (e.g., carbohydrates, proteins, pigments and lipids) and bioremediation of toxic substances from wastewater. The current study explores the capability of indigenously isolated microalgae (Desmodesmus subspicatus) for the phycoremediation of As(III) and Cr(VI). Variation of biomolecules (carbohydrate, protein, lipid and chlorophyll) was investigated during phycoremediation. D. subspicatus survived up to the toxicity level of 10 mg/L for As(III) and 0.8 mg/L for Cr(VI). A 70% decline in carbohydrate accumulation was observed at 10 mg/L of As(III). An increased content of proteins (+ 28%) and lipids (+ 32%) within the cells was observed while growing in 0.5 and 0.2 mg/L of As(III) and Cr(VI) respectively. A decrease in carbohydrate accumulation was noted with increasing Cr(VI) concentration, and the lowest (- 44%) was recorded at 0.8 mg/L Cr(VI). D. subspicatus showed an excellent maximum removal efficiency for Cr(VI) and As(III) as 77% and 90% respectively.
Collapse
Affiliation(s)
- Anisha Ganguly
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Soma Nag
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Tridib Kumar Bhowmick
- Department of Bioengineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India
| | - Kalyan Gayen
- Department of Chemical Engineering, National Institute of Technology Agartala, West Tripura, Agartala, Tripura, 799046, India.
| |
Collapse
|
8
|
Xiao W, Zhang Y, Chen X, Sha A, Xiong Z, Luo Y, Peng L, Zou L, Zhao C, Li Q. The Easily Overlooked Effect of Global Warming: Diffusion of Heavy Metals. TOXICS 2024; 12:400. [PMID: 38922080 PMCID: PMC11209588 DOI: 10.3390/toxics12060400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024]
Abstract
Since industrialization, global temperatures have continued to rise. Human activities have resulted in heavy metals being freed from their original, fixed locations. Because of global warming, glaciers are melting, carbon dioxide concentrations are increasing, weather patterns are shifting, and various environmental forces are at play, resulting in the movement of heavy metals and alteration of their forms. In this general context, the impact of heavy metals on ecosystems and organisms has changed accordingly. For most ecosystems, the levels of heavy metals are on the rise, and this rise can have a negative impact on the ecosystem as a whole. Numerous studies have been conducted to analyze the combined impacts of climate change and heavy metals. However, the summary of the current studies is not perfect. Therefore, this review discusses how heavy metals affect ecosystems during the process of climate change from multiple perspectives, providing some references for addressing the impact of climate warming on environmental heavy metals.
Collapse
Affiliation(s)
- Wenqi Xiao
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yunfeng Zhang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Zhuang Xiong
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Yingyong Luo
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (W.X.); (Y.Z.); (X.C.); (A.S.); (Z.X.); (Y.L.); (L.P.); (L.Z.)
| |
Collapse
|
9
|
Kennedy V, Kaszecki E, Donaldson ME, Saville BJ. The impact of elevated sulfur and nitrogen levels on cadmium tolerance in Euglena species. Sci Rep 2024; 14:11734. [PMID: 38777815 PMCID: PMC11111685 DOI: 10.1038/s41598-024-61964-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Heavy metal (HM) pollution threatens human and ecosystem health. Current methods for remediating water contaminated with HMs are expensive and have limited effect. Therefore, bioremediation is being investigated as an environmentally and economically viable alternative. Freshwater protists Euglena gracilis and Euglena mutabilis were investigated for their tolerance to cadmium (Cd). A greater increase in cell numbers under Cd stress was noted for E. mutabilis but only E. gracilis showed an increase in Cd tolerance following pre-treatment with elevated concentrations of S or N. To gain insight regarding the nature of the increased tolerance RNA-sequencing was carried out on E. gracilis. This revealed transcript level changes among pretreated cells, and additional differences among cells exposed to CdCl2. Gene ontology (GO) enrichment analysis reflected changes in S and N metabolism, transmembrane transport, stress response, and physiological processes related to metal binding. Identifying these changes enhances our understanding of how these organisms adapt to HM polluted environments and allows us to target development of future pre-treatments to enhance the use of E. gracilis in bioremediation relating to heavy metals.
Collapse
Affiliation(s)
- Victoria Kennedy
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Emma Kaszecki
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Michael E Donaldson
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
- Forensic Science Department, Trent University, Peterborough, ON, Canada
| | - Barry J Saville
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada.
- Forensic Science Department, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
10
|
Xie Z, Nie Y, Dong M, Nie M, Tang J. Integrated physio-biochemical and transcriptomic analysis reveals the joint toxicity mechanisms of two typical antidepressants fluoxetine and sertraline on Microcystis aeruginosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171802. [PMID: 38508265 DOI: 10.1016/j.scitotenv.2024.171802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/20/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Selective serotonin reuptake inhibitor (SSRI) antidepressants are of increasing concern worldwide due to their ubiquitous occurrence and detrimental effects on aquatic organisms. However, little is known regarding their effects on the dominant bloom-forming cyanobacterium, Microcystis aeruginosa. Here, we investigated the individual and joint effects of two typical SSRIs fluoxetine (FLX) and sertraline (SER) on M. aeruginosa at physio-biochemical and molecular levels. Results showed that FLX and SER had strong growth inhibitory effects on M. aeruginosa with the 96-h median effect concentrations (EC50s) of 362 and 225 μg/L, respectively. Besides, the mixtures showed an additive effect on microalgal growth. Meanwhile, both individual SSRIs and their mixtures can inhibit photosynthetic pigment synthesis, cause oxidative damage, destroy cell membrane, and promote microcystin-leucine-arginine (MC-LR) synthesis and release. Moreover, the mixtures enhanced the damage to photosynthesis, antioxidant system, and cell membrane and facilitated MC-LR synthesis and release compared to individuals. Furthermore, transcriptomic analysis revealed that the dysregulation of the key genes related to transport, photosystem, protein synthesis, and non-ribosomal peptide structures was the fundamental molecular mechanism underlying the physio-biochemical responses of M. aeruginosa. These findings provide a better understanding of the toxicity mechanisms of SSRIs to microalgae and their risks to aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengxin Xie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Yunfan Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Dong
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Meng Nie
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China
| | - Jun Tang
- School of Resources and Environment, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
11
|
Luo L, Jiang X, Du Y, Dzakpasu M, Yang C, Guo W, Ngo HH, Wang XC. Impact of organic matter molecular weight on hexavalent chromium enrichment in green microalgae. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134304. [PMID: 38615650 DOI: 10.1016/j.jhazmat.2024.134304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
In lightly polluted water containing heavy metals, organic matter, and green microalgae, the molecular weight of organic matter may influence both the growth of green microalgae and the concentration of heavy metals. This study elucidates the effects and mechanisms by which different molecular weight fractions of fulvic acid (FA), a model dissolved organic matter component, facilitate the bioaccumulation of hexavalent chromium (Cr(VI)) in a typical green alga, Chlorella vulgaris. Findings show that the addition of FA fractions with molecular weights greater than 10 kDa significantly enhances the enrichment of total chromium and Cr(VI) in algal cells, reaching 21.58%-31.09 % and 16.17 %-22.63 %, respectively. Conversely, the efficiency of chromium enrichment in algal cells was found to decrease with decreasing molecular weight of FA. FA molecular weight within the range of 0.22 µm-30 kDa facilitated chromium enrichment primarily through the algal organic matter (AOM) pathway, with minor contributions from the algal cell proliferation and extracellular polymeric substances (EPS) pathways. However, with decreasing FA molecular weight, the AOM and EPS pathways become less prominent, whereas the algal cell proliferation pathway becomes dominant. These findings provide new insights into the mechanism of chromium enrichment in green algae enhanced by medium molecular weight FA.
Collapse
Affiliation(s)
- Li Luo
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
| | - Xu Jiang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Yifei Du
- Yellow River Institute of Eco-Environmental Research, Henan Province, No.6, Changchun Road, Zhengzhou 450003, China
| | - Mawuli Dzakpasu
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Chao Yang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, Faculty of Engineering and Information Technology, University of Technology, Sydney, NSW 2007, Australia
| | - Xiaochang C Wang
- International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China
| |
Collapse
|
12
|
Tang CC, Hu YR, Zhang M, Chen SL, He ZW, Li ZH, Tian Y, Wang XC. Role of phosphate in microalgal-bacterial symbiosis system treating wastewater containing heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123951. [PMID: 38604305 DOI: 10.1016/j.envpol.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Phosphorus is one of the important factors to successfully establish the microalgal-bacterial symbiosis (MABS) system. The migration and transformation of phosphorus can occur in various ways, and the effects of phosphate on the MABS system facing environmental impacts like heavy metal stress are often ignored. This study investigated the roles of phosphate on the response of the MABS system to zinc ion (Zn2+). The results showed that the pollutant removal effect in the MABS system was significantly reduced, and microbial growth and activity were inhibited with the presence of Zn2+. When phosphate and Zn2+ coexisted, the inhibition effects of pollutants removal and microbial growth rate were mitigated compared to that of only with the presence of Zn2+, with the increasing rates of 28.3% for total nitrogen removal, 48.9% for chemical oxygen demand removal, 78.3% for chlorophyll-a concentration, and 13.3% for volatile suspended solids concentration. When phosphate was subsequently supplemented in the MABS system after adding Zn2+, both pollutants removal efficiency and microbial growth and activity were not recovered. Thus, the inhibition effect of Zn2+ on the MABS system was irreversible. Further analysis showed that Zn2+ preferentially combined with phosphate could form chemical precipitate, which reduced the fixation of MABS system for Zn2+ through extracellular adsorption and intracellular uptake. Under Zn2+ stress, the succession of microbial communities occurred, and Parachlorella was more tolerant to Zn2+. This study revealed the comprehensive response mechanism of the co-effects of phosphate and Zn2+ on the MABS system, and provided some insights for the MABS system treating wastewater containing heavy metals, as well as migration and transformation of heavy metals in aquatic ecosystems.
Collapse
Affiliation(s)
- Cong-Cong Tang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Ya-Ru Hu
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Min Zhang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Sheng-Long Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yu Tian
- State Key Laboratory of Urban Water Resource & Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaochang C Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
13
|
Wang J, Tian Q, Zhou H, Kang J, Yu X, Qiu G, Shen L. Physiological regulation of microalgae under cadmium stress and response mechanisms of time-series analysis using metabolomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170278. [PMID: 38262539 DOI: 10.1016/j.scitotenv.2024.170278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The investigation of heavy metal wastewater treatment utilizing microalgae adsorption has been extensively demonstrated. However, the response mechanism based on metabolomics to analyze the time-series changes of microalgae under Cd stress has not been described in detail. In this study, SEM/TEM demonstrated that Cd accumulated on the cell surface of microalgae and was bioconcentrated in the cytoplasm, vesicles, and chloroplasts. Carbonyl/quinone/ketone/carboxyl groups (OCO), membrane polysaccharides (OH), and phospholipids (PO) were involved in the interaction of Cd ions, and the chlorophyll content underwent a process of decreasing in the early stage (1.62 mg/g at 48 h) and recovering to the normal level in the late stage, and the contents of MDA, GSH, and SOD were all increased (29.7 nmol/g, 0.23 mg/g, and 30.01 u/106 cells) and then gradually returned to the steady state. The results of EPS content and fluorescent labeling showed that Cd induced the overexpression and synthesis of extracellular polysaccharides and proteins, which is one of the defense mechanisms participating in the reduction of cellular damage by complexed Cd. Metabolomics results indicated that the malate synthesis pathway was activated after Cd-20 h, and the microalgal cells began to shift the metabolic pathway to storage lipid or polysaccharide biosynthesis. In the Calvin cycle, the expression of D-Sedoheptulose 7-phosphate in Cd-20 h_vs_ck and Cd-72 h_vs_Cd-20 h firstly declined and then increased, and the photosynthesis system was suppressed at the beginning, and then gradually returned to normal to maintain the successful development of the dark reaction. The results of time series analysis revealed that the response of microalgae to Cd was categorized into fast response and slow response to regulate cell adsorption and growth metabolism.
Collapse
Affiliation(s)
- Junjun Wang
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Qinghua Tian
- School of Metallurgy and Environment, Central South University, Changsha, Hunan 410083, China
| | - Hao Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Jue Kang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Xinyi Yu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan 410083, China.
| |
Collapse
|
14
|
Qiu X, Wang J, Xin F, Wang Y, Liu Z, Wei J, Sun X, Li P, Cao X, Zheng X. Compensatory growth of Microcystis aeruginosa after copper stress and the characteristics of algal extracellular organic matter (EOM). CHEMOSPHERE 2024; 352:141422. [PMID: 38341000 DOI: 10.1016/j.chemosphere.2024.141422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/24/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Cyanobacterial blooms can impair drinking water quality due to the concomitant extracellular organic matter (EOM). As copper is often applied as an algicide, cyanobacteria may experience copper stress. However, it remains uncertain whether algal growth compensation occurs and how EOM characteristics change in response to copper stress. This study investigated the changes in growth conditions, photosynthetic capacity, and EOM characteristics of M. aeruginosa under copper stress. In all copper treatments, M. aeruginosa experienced a growth inhibition stage followed by a growth compensation stage. Notably, although chlorophyll-a fluorescence parameters dropped to zero immediately following high-intensity copper stress (0.2 and 0.5 mg/L), they later recovered to levels exceeding those of the control, indicating that photosystem II was not destroyed by copper stress. Copper stress influenced the dissolved organic carbon (DOC) content, polysaccharides, proteins, excitation-emission matrix spectra, hydrophobicity, and molecular weight (MW) distribution of EOM, with the effects varying based on stress intensity and growth stage. Principal component analysis revealed a correlation between the chlorophyll-a fluorescence parameters and EOM characteristics. These results imply that copper may not be an ideal algicide. Further research is needed to explore the dynamic response of EOM characteristics to environmental stress.
Collapse
Affiliation(s)
- Xiaopeng Qiu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| | - Jiaqi Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Fengdan Xin
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Yangtao Wang
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Zijun Liu
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Jinli Wei
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xin Sun
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Pengfei Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xin Cao
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China
| | - Xing Zheng
- Department of Municipal and Environmental Engineering, School of Water Resources and Hydro-Electric Engineering, Xi'an University of Technology, Xi'an, 710048, PR China; State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, 710048, PR China.
| |
Collapse
|
15
|
Huang J, Su B, Fei X, Che J, Yao T, Zhang R, Yi S. Enhanced microalgal biomass and lipid production with simultaneous effective removal of Cd using algae-bacteria-activated carbon consortium added with organic carbon source. CHEMOSPHERE 2024; 350:141088. [PMID: 38163470 DOI: 10.1016/j.chemosphere.2023.141088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
Recently, using microalgae to remediate heavy metal polluted water has been attained a huge attention. However, heavy metals are generally toxic to microalgae and consequently decrease biomass accumulation. To address this issue, the feasibility of adding exogenous glucose, employing algae-bacteria system and algae-bacteria-activated carbon consortium to enhance microalgae growth were evaluated. The result showed that Cd2+ removal efficiency was negatively correlated with microalgal specific growth rate. The exogenous glucose alleviated the heavy metal toxicity to algal cells and thus increased the microalgae growth rate. Among the different treatments, the algae-bacteria-activated carbon combination had the highest biomass concentration (1.15 g L-1) and lipid yield (334.97 mg L-1), which were respectively 3.03 times of biomass (0.38 g L-1) and 4.92 times of lipid yield (68.08 mg L-1) in the single microalgae treatment system. Additionally, this algae-bacteria-activated carbon consortium remained a high Cd2+ removal efficiency (91.61%). In all, the present study developed an approach that had a great potential in simultaneous heavy metal wastewater treatment and microalgal lipid production.
Collapse
Affiliation(s)
- Jianke Huang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China.
| | - Bocheng Su
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Xingyi Fei
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Jiayi Che
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ting Yao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Ruizeng Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| | - Sanjiong Yi
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, 210024, China; College of Oceanography, Hohai University, Nanjing, 210024, China
| |
Collapse
|
16
|
Chaloupsky P, Kolackova M, Dobesova M, Pencik O, Tarbajova V, Capal P, Svec P, Ridoskova A, Bytesnikova Z, Pelcova P, Adam V, Huska D. Mechanistic transcriptome comprehension of Chlamydomonas reinhardtii subjected to black phosphorus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115823. [PMID: 38176180 DOI: 10.1016/j.ecoenv.2023.115823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/06/2024]
Abstract
Two-dimensional materials have recently gained significant awareness. A representative of such materials, black phosphorous (BP), earned attention based on its comprehensive application potential. The presented study focuses on the mode of cellular response underlying the BP interaction with Chlamydomonas reinhardtii as an algal model organism. We observed noticeable ROS formation and changes in outer cellular topology after 72 h of incubation at 5 mg/L BP. Transcriptome profiling was employed to examine C. reinhardtii response after exposure to 25 mg/L BP for a deeper understanding of the associated processes. The RNA sequencing has revealed a comprehensive response with abundant transcript downregulation. The mode of action was attributed to cell wall disruption, ROS elevation, and chloroplast disturbance. Besides many other dysregulated genes, the cell response involved the downregulation of GH9 and gametolysin within a cell wall, pointing to a shift to discrete manipulation with resources. The response also included altered expression of the PRDA1 gene associated with redox governance in chloroplasts implying ROS disharmony. Altered expression of the Cre-miR906-3p, Cre-miR910, and Cre-miR914 pointed to those as potential markers in stress response studies.
Collapse
Affiliation(s)
- Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Ondrej Pencik
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Andrea Ridoskova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Zuzana Bytesnikova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavlina Pelcova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
17
|
Çelekli A, Alkan E. Effect of lead ions on biochemical behavior of Cladophora glomerata in sterilized and non-sterilized media. PROTOPLASMA 2024; 261:77-87. [PMID: 37479817 DOI: 10.1007/s00709-023-01882-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Freshwater ecosystems are under peril globally due to anthropogenic influences, most notably metals. The present study aimed to evaluate the morphological and biochemical responses of Cladophora glomerata obtained from a freshwater stream to various lead concentrations (0.0, 7.5, 15, 30, and 60 mg/L Pb2+) in sterilized and non-sterilized media. Pigments, proline, malondialdehyde (MDA), total phenolic compounds (TPC), hydrogen peroxide, and protein content of the green alga were determined in response to various growing conditions. Pb2+ stress had a detrimental effect not only on biochemical components of C. glomerata but also on the algal cell's shape and surface structure. High Pb2+ concentrations significantly decreased chlorophyll-a (from 1350 μg/g in non-sterilized and 1340 μg/g in sterilized media for the control group to 1067 μg/g in non-sterilized and 1049 μg/g in sterile media at 60 mg/L Pb2+) and protein contents (from 34.47 mg/g for the sterilized and 35.89 mg/g for non-sterilized of the control to 24.82 mg/g for the sterilized and 26.18 mg/g for the non-sterilized at 60 mg/L Pb2+) of algal biomass but increased the concentrations of stress compounds (e.g., MDA, proline, and TPC). Variation in the macroalgal biomass composition was also indicated by FTIR analysis based on interactions between amino, amide, and anionic surface groups on the algal biomass and Pb2+ ions. Morphological and biochemical responses of C. glomerata reveal that non-sterile conditions encouraged the proliferation of this macroalga under Pb2+ exposure.
Collapse
Affiliation(s)
- Abuzer Çelekli
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310, Gaziantep, Turkey.
| | - Elif Alkan
- Department of Biology, Faculty of Art and Science, Gaziantep University, 27310, Gaziantep, Turkey
| |
Collapse
|
18
|
Zhou XR, Wang R, Tang CC, Varrone C, He ZW, Li ZH, Wang XC. Advances, challenges, and prospects in microalgal-bacterial symbiosis system treating heavy metal wastewater. CHEMOSPHERE 2023; 345:140448. [PMID: 37839742 DOI: 10.1016/j.chemosphere.2023.140448] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/29/2023] [Accepted: 10/12/2023] [Indexed: 10/17/2023]
Abstract
Heavy metal (HM) pollution, particularly in its ionic form in water bodies, is a chronic issue threatening environmental security and human health. The microalgal-bacterial symbiosis (MABS) system, as the basis of water ecosystems, has the potential to treat HM wastewater in a sustainable manner, with the advantages of environmental friendliness and carbon sequestration. However, the differences between laboratory studies and engineering practices, including the complexity of pollutant compositions and extreme environmental conditions, limit the applications of the MABS system. Additionally, the biomass from the MABS system containing HMs requires further disposal or recycling. This review summarized the recent advances of the MABS system treating HM wastewater, including key mechanisms, influence factors related to HM removal, and the tolerance threshold values of the MABS system to HM toxicity. Furthermore, the challenges and prospects of the MABS system in treating actual HM wastewater are analyzed and discussed, and suggestions for biochar preparation from the MABS biomass containing HMs are provided. This review provides a reference point for the MABS system treating HM wastewater and the corresponding challenges faced by future engineering practices.
Collapse
Affiliation(s)
- Xing-Rui Zhou
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Rong Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Cong-Cong Tang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, Fredrik Bajers Vej 7H 9220, Aalborg Ø, Denmark
| | - Zhang-Wei He
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Zhi-Hua Li
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Xiaochang C Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, Ministry of Education, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China
| |
Collapse
|
19
|
Park K, Kwak IS. Growth retardation and suppression of ubiquitin-dependent catabolic processes in the brackish water clam Corbicula japonica in response to salinity changes and bioaccumulation of toxic heavy metals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122554. [PMID: 37717895 DOI: 10.1016/j.envpol.2023.122554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
The brackish water clam (Corbicula japonica) is constantly exposed to stressful salinity gradients and high levels of heavy metals in the freshwater-saltwater interface of estuary environments, which are introduced from upstream regions and land. To identify the key molecular pathways involved in the response to salinity changes and heavy metal bioaccumulation, we obtained the transcriptomes of C. japonica inhabiting different salinities and heavy metal distributions in Gwangyang Bay (Korea) using RNA sequencing. Among a total of 404,486 assembled unigenes, 5534 differentially expressed genes were identified in C. japonica inhabiting different conditions, 1549 of which were significantly upregulated and 1355 were significantly downregulated. Correlation analyses revealed distinct gene expression patterns between the low and high conditions of salinity and heavy metal bioaccumulation. Functional annotation revealed significant downregulation of genes involved in "ubiquitin-dependent protein catabolic process," "tricarboxylic acid cycle," and "intracellular protein transport" in C. japonica from the high condition compared to the low condition. Transcription and translation pathways were significantly enriched in the high condition. Additionally, upon comparison of the low and high conditions by qRT-PCR and proteasome enzyme activity analyses, our findings demonstrated that environmental stress could suppress the ubiquitin-proteasome complex (UPC). Additionally, transcriptomic changes under high salinity stress conditions may be related to an increase in cellular protection by defense enzymes, which leads to more energy being required and a disruption of energy homeostasis. Ultimately, this could cause growth retardation in the clam C. japonica. In summary, this study provides the first evidence of UPC suppression induced by a combination of high salinity and heavy metal bioaccumulation stress in C. japonica, which could compromise the survival and growth of estuarine bivalves.
Collapse
Affiliation(s)
- Kiyun Park
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea
| | - Ihn-Sil Kwak
- Fisheries Science Institute, Chonnam National University, Yeosu, 59626, South Korea; Department of Ocean Integrated Science, Chonnam National University, Yeosu 59626, South Korea.
| |
Collapse
|
20
|
Lin B, Tan B, Liu X, Li M, Peng H, Zhang Q, Chen J, Shen H, He Q. Elucidating the roles of Cr(VI)-Cu(II) Co-pollution in the stress of aniline degradation stress: Insights into metabolic pathways and functional genes. BIORESOURCE TECHNOLOGY 2023; 387:129613. [PMID: 37544539 DOI: 10.1016/j.biortech.2023.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 07/29/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
In order to examine the impact of Cu(II)-Cr(VI) co-pollution in printing and dyeing wastewater on the aniline biodegradation system (ABS), loading experiments were conducted on ABS at varying concentrations of Cu(II)-Cr(VI). The synergistic stress imposed by Cu(II)-Cr(VI) accelerated the deterioration of the systems, with only the C2-3 (2 mg/L Cr(VI)-3 mg/L Cu(II)) sustaining stable operation for 42 days. However, its nitrogen removal performance remained significantly impaired, resulting in a total nitrogen (TN) removal rate below 40%. High-throughput sequencing analysis revealed a stronger correlation between Cr(VI) and microbial diversity compared to Cu(II). Metagenomic sequencing results demonstrated that Cu(II) emerged as the dominant factor influencing the distribution of dominant bacteria in C2-3, as well as its contribution to contaminant degradation. The complex co-pollution systems hindered aniline degradation and nitrogen metabolism through the combined bio-toxicity of heavy metals and aniline, thereby disrupting the transport chain within the systems matrix.
Collapse
Affiliation(s)
- Bing Lin
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Bin Tan
- CCCC Second Highway Consultants Co., Ltd, Wuhan 430056, China
| | - Xiangyu Liu
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China
| | - Haojin Peng
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China; Sanya Science and Education Innovation Park, Wuhan University of Technology, Hainan 572024, China.
| | - Jiajing Chen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Qi He
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|
21
|
Tarbajova V, Kolackova M, Chaloupsky P, Dobesova M, Capal P, Pilat Z, Samek O, Zemanek P, Svec P, Sterbova DS, Vaculovicova M, Richtera L, Pérez-de-Mora A, Adam V, Huska D. Physiological and transcriptome profiling of Chlorella sorokiniana: A study on azo dye wastewater decolorization. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132450. [PMID: 37708651 DOI: 10.1016/j.jhazmat.2023.132450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/02/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023]
Abstract
Over decades, synthetic dyes have become increasingly dominated by azo dyes posing a significant environmental risk due to their toxicity. Microalgae-based systems may offer an alternative for treatment of azo dye effluents to conventional physical-chemical methods. Here, microalgae were tested to decolorize industrial azo dye wastewater (ADW). Chlorella sorokiniana showed the highest decolorization efficiency in a preliminary screening test. Subsequently, the optimization of the experimental design resulted in 70% decolorization in a photobioreactor. Tolerance of this strain was evidenced using multiple approaches (growth and chlorophyll content assays, scanning electron microscopy (SEM), and antioxidant level measurements). Raman microspectroscopy was employed for the quantification of ADW-specific compounds accumulated by the microalgal biomass. Finally, RNA-seq revealed the transcriptome profile of C. sorokiniana exposed to ADW for 72 h. Activated DNA repair and primary metabolism provided sufficient energy for microalgal growth to overcome the adverse toxic conditions. Furthermore, several transporter genes, oxidoreductases-, and glycosyltransferases-encoding genes were upregulated to effectively sequestrate and detoxify the ADW. This work demonstrates the potential utilization of C. sorokiniana as a tolerant strain for industrial wastewater treatment, emphasizing the regulation of its molecular mechanisms to cope with unfavorable growth conditions.
Collapse
Affiliation(s)
- Vladimira Tarbajova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Martina Kolackova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Pavel Chaloupsky
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Dobesova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Petr Capal
- Institute of Experimental Botany, Centre of the Region Hana for Biotechnological and Agricultural Research, Slechtitelu 241/27, 783 71 Olomouc, Czech Republic
| | - Zdenek Pilat
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Zemanek
- Institute of Scientific Instruments of the Czech Academy of Sciences, v.v.i., Kralovopolska 147, 612 64 Brno, Czech Republic
| | - Pavel Svec
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dagmar Skopalova Sterbova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Marketa Vaculovicova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Alfredo Pérez-de-Mora
- Department of Soil and Groundwater, TAUW GmbH, Landsbergerstr. 404, 81241 Munich, Germany
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic
| | - Dalibor Huska
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, 613 00 Brno, Czech Republic.
| |
Collapse
|
22
|
Thabet J, Elleuch J, Martínez F, Abdelkafi S, Hernández LE, Fendri I. Characterization of cellular toxicity induced by sub-lethal inorganic mercury in the marine microalgae Chlorococcum dorsiventrale isolated from a metal-polluted coastal site. CHEMOSPHERE 2023; 338:139391. [PMID: 37414298 DOI: 10.1016/j.chemosphere.2023.139391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023]
Abstract
Mercury (Hg) is a global pollutant that affects numerous marine aquatic ecosystems. We isolated Chlorococcum dorsiventrale Ch-UB5 microalga from coastal areas of Tunisia suffering from metal pollution and analyzed its tolerance to Hg. This strain accumulated substantial amounts of Hg and was able to remove up to 95% of added metal after 24 and 72 h in axenic cultures. Mercury led to lesser biomass growth, higher cell aggregation, significant inhibition of photochemical activity, and appearance of oxidative stress and altered redox enzymatic activities, with proliferation of starch granules and neutral lipids vesicles. Such changes matched the biomolecular profile observed using Fourier Transformed Infrared spectroscopy, with remarkable spectral changes corresponding to lipids, proteins and carbohydrates. C. dorsiventrale accumulated the chloroplastic heat shock protein HSP70B and the autophagy-related ATG8 protein, probably to counteract the toxic effects of Hg. However, long-term treatments (72 h) usually resulted in poorer physiological and metabolic responses, associated with acute stress. C. dorsiventrale has potential use for Hg phycoremediation in marine ecosystems, with the ability to accumulating energetic reserves that could be used for biofuel production, supporting the notion of using of C. dorsiventrale for sustainable green chemistry in parallel to metal removal.
Collapse
Affiliation(s)
- Jihen Thabet
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia; Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Jihen Elleuch
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Flor Martínez
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe Biotechnologie des Algues, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, Sfax, Tunisia
| | - Luis Eduardo Hernández
- Laboratory of Plant Physiology-Department of Biology, Universidad Autónoma Madrid, Darwin 2, ES28049, Madrid, Spain.
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales Appliquées à l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax, Tunisia
| |
Collapse
|
23
|
Tibon J, Gomez-Delgado AI, Agüera A, Strohmeier T, Silva MS, Lundebye AK, Larsen MM, Sloth JJ, Amlund H, Sele V. Arsenic speciation in low-trophic marine food chain - An arsenic exposure study on microalgae (Diacronema lutheri) and blue mussels (Mytilus edulis L.). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122176. [PMID: 37437757 DOI: 10.1016/j.envpol.2023.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/12/2023] [Accepted: 07/09/2023] [Indexed: 07/14/2023]
Abstract
Microalgae and blue mussels are known to accumulate undesirable substances from the environment, including arsenic (As). Microalgae can biotransform inorganic As (iAs) to organoarsenic species, which can be transferred to blue mussels. Knowledge on As uptake, biotransformation, and trophic transfer is important with regards to feed and food safety since As species have varying toxicities. In the current work, experiments were conducted in two parts: (1) exposure of the microalgae Diacronema lutheri to 5 and 10 μg/L As(V) in seawater for 4 days, and (2) dietary As exposure where blue mussels (Mytilus edulis L.) were fed with D. lutheri exposed to 5 and 10 μg/L As(V), or by aquatic exposure to 5 μg/L As(V) in seawater, for a total of 25 days. The results showed that D. lutheri can take up As from seawater and transform it to methylated As species and arsenosugars (AsSug). However, exposure to 10 μg/L As(V) resulted in accumulation of iAs in D. lutheri and lower production of methylated As species, which may suggest that detoxification mechanisms were overwhelmed. Blue mussels exposed to As via the diet and seawater showed no accumulation of As. Use of linear mixed models revealed that the blue mussels were gradually losing As instead, which may be due to As concentration differences in the mussels' natural environment and the experimental setup. Both D. lutheri and blue mussels contained notable proportions of simple methylated As species and AsSug. Arsenobetaine (AB) was not detected in D. lutheri but present in minor fraction in mussels. The findings suggest that low-trophic marine organisms mainly contain methylated As species and AsSug. The use of low-trophic marine organisms as feed ingredients requires further studies since AsSug are regarded as potentially toxic, which may introduce new risks to feed and food safety.
Collapse
Affiliation(s)
- Jojo Tibon
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Ana I Gomez-Delgado
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Antonio Agüera
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Tore Strohmeier
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | - Marta S Silva
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway
| | | | - Martin M Larsen
- Aarhus University, Institute of Ecoscience, Frederiksborgvej 399, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Jens J Sloth
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway; National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Heidi Amlund
- National Food Institute, Technical University of Denmark, Kemitorvet, Building 201, DK-2800, Kgs. Lyngby, Denmark
| | - Veronika Sele
- Institute of Marine Research, P.O. Box 1870 Nordnes, NO-5817, Bergen, Norway.
| |
Collapse
|
24
|
Cruces E, Barrios AC, Cahue YP, Januszewski B, Sepulveda P, Cubillos V, Perreault F. Toxicity mechanisms of graphene oxide and cadmium in Microcystis aeruginosa: evaluation of photosynthetic and oxidative responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106703. [PMID: 37748231 DOI: 10.1016/j.aquatox.2023.106703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 09/27/2023]
Abstract
The potential ecotoxicological hazard of gaphene oxide (GO) is not fully clarified for photoautotrophic organisms, especially when the interactions of GO with other environmental toxicants are considered. The objective of the current study was to better understand the mechanisms of toxicity of GO in the cyanobacteria Microcystis aeruginosa, and to identify its interactions with cadmium (Cd). The individual and combined contribution of both pollutants in cyanobacteria were evaluated after 96 hours of exposure to GO and/or Cd, using photosynthetic pigments, photosynthetic parameters, cellular indicators of peroxidative damage, viability, and intracellular ROS formation as indicators of toxicity. Interactions between GO and Cd were evaluated using Toxic Units based on the EC50 of each parameter evaluated. The results of this study indicate that single concentrations ≥ 5 µg mL-1 of GO and ≥ 0.1 µg mL-1 of Cd induced a decrease in cell biomass and a change in the photosynthetic parameters associated with primary productivity in M. aeruginosa. In the combined experiments, higher GO ratios (≥ 9.1 µg mL-1) in terms of Toxic Units decreased photochemical processes and cellular metabolism, increased oxidative stress, and ultimately affected the size of M. aeruginosa. Finally, the relationship between GO concentration, Cd concentration, and the adsorption capacity of GO with respect to the co-pollutant must be taken into account when assessing the environmental risk of GO in aquatic environments.
Collapse
Affiliation(s)
- Edgardo Cruces
- Centro de Investigaciones Costeras Universidad de Atacama, Avenida Copayapu 485, Copiapo, Chile
| | - Ana C Barrios
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Yaritza P Cahue
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Brielle Januszewski
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005
| | - Pamela Sepulveda
- Centro de Nanotecnología Aplicada (CNAP), Facultad de Ciencias, Ingeniería y Tecnología, Universidad Mayor, Santiago, Chile
| | - Victor Cubillos
- Instituto de Ciencias Marinas y Limnológicas, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile; Laboratorio Costero de Recursos Acuáticos de Calfuco, Facultad de Ciencias, Universidad Austral de Chile,Valdivia, Chile
| | - François Perreault
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ, 85287-3005; Department of Chemistry, University of Quebec in Montreal, CP 8888, Succ. Centre-Ville, Montreal, QC, H3C 3P8, Canada.
| |
Collapse
|
25
|
García-Balboa C, Martínez-Alesón P, López-Rodas V, Costas EC, Díaz MF. An exploratory study on the possibilities of microalgal biotechnology to obtain the essential 6Li isotope as fusion fuel. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:141. [PMID: 37735438 PMCID: PMC10515020 DOI: 10.1186/s13068-023-02394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/09/2023] [Indexed: 09/23/2023]
Abstract
Future energy supply needs to overcome two challenges: environmental impact and dependence on geopolitically unstable countries. A very promising alternative is based on lithium, an element for batteries, and whose isotope 6Li will be essential in nuclear fusion. The objective of this research has been to determine if it is possible to achieve isotopic fractionation of lithium through a process mediated by microalgae. For this purpose, Chlamydomonas reinhardtii was selected and grown in presence of 5 mg/L of lithium. Results revealed that this specie survives at the selected lithium concentration, discriminates isotopes and preferentially capture 6Li (6δ = 10.029 ± 3.307) through a process independent of the cellular growth. Concomitate recovered up 0.206 mg/L of lithium along a process of 21 days. The result of this study lets to affirm that Chlamydomonas reinhardtii might be used to obtain lithium enriched in the lighter isotope.
Collapse
Affiliation(s)
- Camino García-Balboa
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - Paloma Martínez-Alesón
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Victoria López-Rodas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Eduardo Costas Costas
- School of Veterinary Medicine, Complutense University of Madrid, Av. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - Marta Fernández Díaz
- Spanish Research Centre for Energy, Environment and Technology (CIEMAT), Av. Complutense 40, 28040, Madrid, Spain
| |
Collapse
|
26
|
Liu XY, Hong Y, Liang M, Zhai QY. Bioremediation of zinc and manganese in swine wastewater by living microalgae: Performance, mechanism, and algal biomass utilization. BIORESOURCE TECHNOLOGY 2023:129382. [PMID: 37352991 DOI: 10.1016/j.biortech.2023.129382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
The remediation effects of living Chlorella sp. HL on zinc and manganese in swine wastewater was investigated, and the responses of algal cells and the mechanism were explored. In the wastewater with Zn(II) concentration of 1.85 mg/L and Mn(II) of 1 or 6 mg/L, the highest removal of Zn(II) by Chlorella reached 86.72% and 97.16%, respectively, and the Mn(II) removal were 42.74% and 30.33%, respectively. The antioxidant system of cells was activated by a significant increase in superoxide dismutase and catalase enzyme activities and a significant decrease in malondialdehyde in the mixed system compared to the single system. The presence of Mn(II) could positively regulate the differentially expressed genes related to catalytic activity and metabolic processes between the single Zn system and the mixed systems, reducing the stress of Zn(II) on Chlorella and more favorable to chlorophyll synthesis. The heavy metal-containing microalgal biomass obtained has the potential as feed additives.
Collapse
Affiliation(s)
- Xiao-Ya Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Yu Hong
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| | - Man Liang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Qing-Yu Zhai
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
27
|
Wang X, Dai Z, Zhao H, Hu L, Dahlgren RA, Xu J. Heavy metal effects on multitrophic level microbial communities and insights for ecological restoration of an abandoned electroplating factory site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121548. [PMID: 37011779 DOI: 10.1016/j.envpol.2023.121548] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
The response of soil microbes to heavy metal pollution provides a metric to evaluate the soil health and ecological risks associated with heavy metal contamination. However, a multitrophic level perspective of how soil microbial communities and their functions respond to long-term exposure of multiple heavy metals remains unclear. Herein, we examined variations in soil microbial (including protists and bacteria) diversity, functional guilds and interactions along a pronounced metal pollution gradient in a field surrounding an abandoned electroplating factory. Given the stressful soil environment resulting from extremely high heavy metal concentrations and low nutrients, beta diversity of protist increased, but that of bacteria decreased, at high versus low pollution sites. Additionally, the bacteria community showed low functional diversity and redundancy at the highly polluted sites. We further identified indicative genus and "generalists" in response to heavy metal pollution. Predatory protists in Cercozoa were the most sensitive protist taxa with respect to heavy metal pollution, whereas photosynthetic protists showed a tolerance for metal pollution and nutrient deficiency. The complexity of ecological networks increased, but the communication among the modules disappeared with increasing metal pollution levels. Subnetworks of tolerant bacteria displaying functional versatility (Blastococcus, Agromyces and Opitutus) and photosynthetic protists (microalgae) became more complex with increasing metal pollution levels, indicating their potential for use in bioremediation and restoration of abandoned industrial sites contaminated by heavy metals.
Collapse
Affiliation(s)
- Xuehua Wang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Haochun Zhao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Lingfei Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
28
|
Nagar N, Saxena H, Pathak A, Mishra A, Poluri KM. A review on structural mechanisms of protein-persistent organic pollutant (POP) interactions. CHEMOSPHERE 2023; 332:138877. [PMID: 37164191 DOI: 10.1016/j.chemosphere.2023.138877] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/20/2023] [Accepted: 05/06/2023] [Indexed: 05/12/2023]
Abstract
With the advent of the industrial revolution, the accumulation of persistent organic pollutants (POPs) in the environment has become ubiquitous. POPs are halogen-containing organic molecules that accumulate, and remain in the environment for a long time, thus causing toxic effects in living organisms. POPs exhibit a high affinity towards biological macromolecules such as nucleic acids, proteins and lipids, causing genotoxicity and impairment of homeostasis in living organisms. Proteins are essential members of the biological assembly, as they stipulate all necessary processes for the survival of an organism. Owing to their stereochemical features, POPs and their metabolites form energetically favourable complexes with proteins, as supported by biological and dose-dependent toxicological studies. Although individual studies have reported the biological aspects of protein-POP interactions, no comprehensive study summarizing the structural mechanisms, thermodynamics and kinetics of protein-POP complexes is available. The current review identifies and classifies protein-POP interaction according to the structural and functional basis of proteins into five major protein targets, including digestive and other enzymes, serum proteins, transcription factors, transporters, and G-protein coupled receptors. Further, analysis detailing the molecular interactions and structural mechanism evidenced that H-bonds, van der Waals, and hydrophobic interactions essentially mediate the formation of protein-POP complexes. Moreover, interaction of POPs alters the protein conformation through kinetic and thermodynamic processes like competitive inhibition and allostery to modulate the cellular signalling processes, resulting in various pathological conditions such as cancers and inflammations. In summary, the review provides a comprehensive insight into the critical structural/molecular aspects of protein-POP interactions.
Collapse
Affiliation(s)
- Nupur Nagar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Harshi Saxena
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Aakanksha Pathak
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
29
|
Chakravorty M, Nanda M, Bisht B, Sharma R, Kumar S, Mishra A, Vlaskin MS, Chauhan PK, Kumar V. Heavy metal tolerance in microalgae: Detoxification mechanisms and applications. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 260:106555. [PMID: 37196506 DOI: 10.1016/j.aquatox.2023.106555] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/15/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
The proficiency of microalgae to resist heavy metals has potential to be beneficial in resolving various environmental challenges. Global situations such as the need for cost-effective and ecological ways of remediation of contaminated water and for the development of bioenergy sources could employ microalgae. In a medium with the presence of heavy metals, microalgae utilize different mechanisms to uptake the metal and further detoxify it. Biosorption and the next process of bioaccumulation are two such major steps and they also include the assistance of different transporters at different stages of heavy metal tolerance. This capability has also proved to be efficient in eradicating many heavy metals like Chromium, Copper, Lead, Arsenic, Mercury, Nickel and Cadmium from the environment they are present in. This indicates the possibility of the application of microalgae as a biological way of remediating contaminated water. Heavy metal resistance quality also allows various microalgal species to contribute in the generation of biofuels like biodiesel and biohydrogen. Many research works have also explored the capacity of microalgae in nanotechnology for the formation of nanoparticles due to its relevant characteristics. Various studies have also revealed that biochar deduced from microalgae or a combination of biochar and microalgae can have wide applications specially in deprivation of heavy metals from an environment. This review focuses on the strategies adopted by microalgae, various transporters involved in the process of tolerating heavy metals and the applications where microalgae can participate owing to its ability to resist metals.
Collapse
Affiliation(s)
- Manami Chakravorty
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Manisha Nanda
- Department of Biotechnology, Dolphin (PG) Institute of Biomedical & Natural Sciences, Dehradun-248007, India
| | - Bhawna Bisht
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Rohit Sharma
- School of Engineering, University of Petroleum and Energy Studies, Dehradun, India
| | - Sanjay Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Abhilasha Mishra
- Department of Chemistry, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow 125412, Russian Federation
| | - P K Chauhan
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan 173229, HP, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
30
|
Tao Y, He M, Chen B, Ruan G, Xu P, Xia Y, Song G, Bi Y, Hu B. Evaluation of Cd 2+ stress on Synechocystis sp. PCC6803 based on single-cell elemental accumulation and algal toxicological response. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106499. [PMID: 36965429 DOI: 10.1016/j.aquatox.2023.106499] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 06/18/2023]
Abstract
With the development of single cell analysis techniques, the concept of precision toxicology has been proposed in recent years. Due to the heterogeneity of cells, we need to perform toxicological assessments on individual cells. Microalgae, one kind of important primary producers, play as a major pathway by which heavy metals enter the food chain and thus accumulate/transfer to higher trophic levels. Herein, the biosorption of Cd (Ex-Cd) and bioaccumulation of Cd (In-Cd) for Synechocystis sp. PCC 6803 were investigated by online 3D droplet microfluidic device combined with inductively coupled plasma mass spectrometry detection. Meanwhile, the algal toxicological responses of the algae cell to Cd2+ exposure under different concentration (50, 100, and 150 μg L - 1) and time (15 min, 24, 48 and 96 h) were studied. Combining single-cell analysis with toxicological indicators, the toxicity mechanism of Cd2+to algal was discussed. The single cell analysis results revealed heterogeneity in cellular uptake of Cd2+. The proportion of Cd-containing cells and Cd content in single algal cells all reached the maximum at 24 h. The uptake of Cd2+ occurred within 15 min under all tested exposure concentrations and a large part of Cd2+ were adsorbed on the algal cells surface. The Pearson correlation analysis showed that cell density, chlorophyll a and carotenoids were significantly negatively correlated with Cd accumulation, whereas ROS level and SOD activity were significantly positively correlated with Cd accumulation. It suggested that Cd2+accumulated intracellular would show toxic effects on the algal cells and oxidative stress is the main mechanism of Cd toxicity to algal cells. This work promotes our understanding of the toxicological responses of microalgae under Cd stress at single cells level.
Collapse
Affiliation(s)
- Yao Tao
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Gang Ruan
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pingping Xu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yixue Xia
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Gaofei Song
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yonghong Bi
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
31
|
Song X, Kong F, Liu BF, Song Q, Ren NQ, Ren HY. Thallium-mediated NO signaling induced lipid accumulation in microalgae and its role in heavy metal bioremediation. WATER RESEARCH 2023; 239:120027. [PMID: 37167853 DOI: 10.1016/j.watres.2023.120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/12/2023] [Accepted: 04/29/2023] [Indexed: 05/13/2023]
Abstract
Thallium (Tl+) is a trace metal with extreme toxicity and is highly soluble in water, posing a great risk to ecological and human safety. This work aimed to investigate the role played by Tl+ in regulating lipid accumulation in microalgae and the removal efficiency of Tl+. The effect of Tl+ on the cell growth, lipid production and Tl+ removal efficiency of Parachlorella kessleri R-3 was studied. Low concentrations of Tl+ had no significant effect on the biomass of microalgae. When the Tl+ concentration exceeded 5 μg L-1, the biomass of microalgae showed significant decrease. The highest lipid content of 63.65% and lipid productivity of 334.55 mg L-1 d-1 were obtained in microalgae treated with 10 and 5 μg L-1 Tl+, respectively. Microalgae can efficiently remove Tl+ and the Tl+ removal efficiency can reach 100% at Tl+ concentrations of 0-25 μg L-1. The maximum nitric oxide (NO) level of 470.48 fluorescence intensity (1 × 106 cells)-1 and glutathione (GSH) content of 343.51 nmol g-1 (fresh alga) were obtained under 5 μg L-1 Tl+ stress conditions. Furthermore, the exogenous donor sodium nitroprusside (SNP) supplemented with NO was induced in microalgae to obtain a high lipid content (59.99%), lipid productivity (397.99 mg L-1 d-1) and GSH content (430.22 nmol g-1 (fresh alga)). The corresponding analysis results indicated that NO could participate in the signal transduction pathway through modulation of reactive oxygen species (ROS) signaling to activate the antioxidant system by increasing the GSH content to eliminate oxidative damage induced by Tl+ stress. In addition, NO regulation of ROS signaling may enhance transcription factors associated with lipid synthesis, which stimulates the expression of genes related to lipid synthesis, leading to increased lipid biosynthesis in microalgae. Moreover, it was found that the change in Tl+ had little effect on the fatty acid components and biodiesel properties. This study showed that Tl+ stress can promote lipid accumulation in microalgae for biodiesel production and simultaneously effectively remove Tl+, which provided evidence that NO was involved in signal transduction and antioxidant defense, and improved the understanding of the interrelation between NO and ROS to regulate lipid accumulation in microalgae.
Collapse
Affiliation(s)
- Xueting Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Fanying Kong
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin 150030, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingqing Song
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
32
|
Quevedo-Ospina C, Arroyave C, Peñuela-Vásquez M, Villegas A. Effect of mercury in the influx and efflux of nutrients in the microalga Desmodesmus armatus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106496. [PMID: 36941145 DOI: 10.1016/j.aquatox.2023.106496] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 02/15/2023] [Accepted: 03/12/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic activities such as mining and the metallurgical industry are the main sources of mercury contamination. Mercury is one of the most serious environmental problems in the world. This study aimed to investigate, using experimental kinetic data, the effect of different inorganic mercury (Hg2+) concentrations on the response of microalga Desmodesmus armatus stress. Cell growth, nutrients uptake and mercury ions from the extracellular medium, and oxygen production were determined. A Compartment Structured Model allowed elucidating the phenomena of transmembrane transport, including influx and efflux of nutrients, metal ions and bioadsorption of metal ions on the cell wall, which are difficult to determine experimentally. This model was able to explain two tolerance mechanisms against mercury, the first one was the adsorption of Hg2+ions onto the cell wall and the second was the efflux of mercury ions. The model predicted a competition between internalization and adsorption with a maximum tolerable concentration of 5.29 mg/L of HgCl2. The kinetic data and the model showed that mercury causes physiological changes in the cell, which allow the microalga to adapt to these new conditions to counteract the toxic effects. For this reason, D. armatus can be considered as a Hg-tolerant microalga. This tolerance capacity is associated with the activation of the efflux as a detoxification mechanism that facilitates the maintenance of the osmotic balance for all the modeled chemical species. Furthermore, the accumulation of mercury in the cell membrane suggests the presence of thiol groups associated with its internalization, leading to the conclusion that metabolically active tolerance mechanisms are dominant over passive ones.
Collapse
Affiliation(s)
- Catalina Quevedo-Ospina
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia.
| | - Catalina Arroyave
- GRINBIO Research Group, Department of Environmental Engineering, Universidad de Medellín UdeM, Carrera 87 #30-65, Medellín 050026, Colombia
| | - Mariana Peñuela-Vásquez
- Bioprocess Research Group, Department of Chemical Engineering, Faculty of Engineering, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050010, Colombia
| | - Adriana Villegas
- TERMOMEC Research Group, Faculty of Engineering, Universidad Cooperativa de Colombia UCC, Medellín 050012, Colombia
| |
Collapse
|
33
|
Chen D, Wang G, Chen C, Feng Z, Jiang Y, Yu H, Li M, Chao Y, Tang Y, Wang S, Qiu R. The interplay between microalgae and toxic metal(loid)s: mechanisms and implications in AMD phycoremediation coupled with Fe/Mn mineralization. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131498. [PMID: 37146335 DOI: 10.1016/j.jhazmat.2023.131498] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/10/2023] [Accepted: 04/24/2023] [Indexed: 05/07/2023]
Abstract
Acid mine drainage (AMD) is low-pH with high concentration of sulfates and toxic metal(loid)s (e.g. As, Cd, Pb, Cu, Zn), thereby posing a global environmental problem. For decades, microalgae have been used to remediate metal(loid)s in AMD, as they have various adaptive mechanisms for tolerating extreme environmental stress. Their main phycoremediation mechanisms are biosorption, bioaccumulation, coupling with sulfate-reducing bacteria, alkalization, biotransformation, and Fe/Mn mineral formation. This review summarizes how microalgae cope with metal(loid) stress and their specific mechanisms of phycoremediation in AMD. Based on the universal physiological characteristics of microalgae and the properties of their secretions, several Fe/Mn mineralization mechanisms induced by photosynthesis, free radicals, microalgal-bacterial reciprocity, and algal organic matter are proposed. Notably, microalgae can also reduce Fe(III) and inhibit mineralization, which is environmentally unfavorable. Therefore, the comprehensive environmental effects of microalgal co-occurring and cyclical opposing processes must be carefully considered. Using chemical and biological perspectives, this review innovatively proposes several specific processes and mechanisms of Fe/Mn mineralization that are mediated by microalgae, providing a theoretical basis for the geochemistry of metal(loid)s and natural attenuation of pollutants in AMD.
Collapse
Affiliation(s)
- Daijie Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Guobao Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chiyu Chen
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Zekai Feng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanyuan Jiang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Hang Yu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengyao Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
34
|
Shi Z, Guo M, Du H, Yang K, Liu X, Xu H. Investigation of cytotoxic cadmium in aquatic green algae by synchrotron radiation-based Fourier transform infrared spectroscopy: Role of dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 870:161870. [PMID: 36731571 DOI: 10.1016/j.scitotenv.2023.161870] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The heavy metal Cd can cause severe toxicity on aquatic algae, but there are few studies on the cytotoxicity of heavy metal on algae based on synchrotron radiation technology. In this study, synchrotron radiation-based Fourier transform infrared spectromicroscopy (SR-FTIR) was used to characterize in vivo the toxic effects of Cd on Cosmarium sp. cells, emphasizing the influence of dissolved organic matter (DOM) on Cd toxicity. Results showed that, in the absence of DOM, obvious growth inhibition, cell volume reduction, and photosynthesis disruption could be observed with increasing Cd concentrations (0-500 μg/L). Based on the SR-FTIR imaging and functional group quantification, it was shown that the biosynthesis of biomolecules such as proteins, lipids, and carbohydrates was inhibited in algal cells. However, the addition of DOM caused significant heterogeneities in biomacromolecule biosynthesis that an increased biosynthesis of carbohydrates and structural lipids but an inhibited biosynthesis of proteins and storage lipids were observed. Furthermore, the correlation analysis and principal component analysis showed a good correlation between v(C-OH)/Amide II and biochemical parameters, indicating that changes of carbohydrates could be used as the biomarker to indicate the cytotoxicity of heavy metals to algal cells. These findings provide insight into the mechanisms of heavy metal cytotoxicity to aquatic algae and systematic cytotoxicity assessment under various aquatic conditions.
Collapse
Affiliation(s)
- Zhiqiang Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Mengjing Guo
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China.
| | - Haiyan Du
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China
| | - Keli Yang
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Xin Liu
- Key Laboratory of Comprehensive and Highly Efficient Utilization of Salt Lake Resources, Qinghai Technology Research and Development Center of Comprehensive Utilization of Salt Lakes Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, China
| | - Huacheng Xu
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an, China; State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, China.
| |
Collapse
|
35
|
Zhang B, Tang Y, Yu F, Peng Z, Yao S, Deng X, Long H, Wang X, Huang K. Translatomics and physiological analyses of the detoxification mechanism of green alga Chlamydomonas reinhardtii to cadmium toxicity. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130990. [PMID: 36860060 DOI: 10.1016/j.jhazmat.2023.130990] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Cadmium (Cd) is one of the most toxic pollutants found in aquatic ecosystems. Although gene expression in algae exposed to Cd has been studied at the transcriptional level, little is known about Cd impacts at the translational level. Ribosome profiling is a novel translatomics method that can directly monitor RNA translation in vivo. Here, we analyzed the translatome of the green alga Chlamydomonas reinhardtii following treatment with Cd to identify the cellular and physiological responses to Cd stress. Interestingly, we found that the cell morphology and cell wall structure were altered, and starch and high-electron-density particles accumulated in the cytoplasm. Several ATP-binding cassette transporters that responded to Cd exposure were identified. Redox homeostasis was adjusted to adapt to Cd toxicity, and GDP-L-galactose phosphorylase (VTC2), glutathione peroxidase (GPX5), and ascorbate were found to play important roles in maintaining reactive oxygen species homeostasis. Moreover, we found that the key enzyme of flavonoid metabolism, i.e., hydroxyisoflavone reductase (IFR1), is also involved in the detoxification of Cd. Thus, in this study, translatome and physiological analyses provided a complete picture of the molecular mechanisms of green algae cell responses to Cd.
Collapse
Affiliation(s)
- Baolong Zhang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Yuxin Tang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Fei Yu
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Zhao Peng
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Sheng Yao
- School of Life Sciences and Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Central China Normal University, Wuhan 430079, Hubei, China
| | - Xuan Deng
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Huan Long
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China
| | - Xun Wang
- School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, Hubei, China
| | - Kaiyao Huang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, Hubei, China.
| |
Collapse
|
36
|
Pan X, Yue Z, She Z, He X, Wang S, Chuai X, Wang J. Eukaryotic Community Structure and Interspecific Interactions in a Stratified Acidic Pit Lake Water in Anhui Province. Microorganisms 2023; 11:microorganisms11040979. [PMID: 37110402 PMCID: PMC10142529 DOI: 10.3390/microorganisms11040979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The stratified acidic pit lake formed by the confluence of acid mine drainage has a unique ecological niche and is a model system for extreme microbial studies. Eukaryotes are a component of the AMD community, with the main members including microalgae, fungi, and a small number of protozoa. In this study, we analyzed the structural traits and interactions of eukaryotes (primarily fungi and microalgae) in acidic pit lakes subjected to environmental gradients. Based on the findings, microalgae and fungi were found to dominate different water layers. Specifically, Chlorophyta showed dominance in the well-lit aerobic surface layer, whereas Basidiomycota was more abundant in the dark anoxic lower layer. Co-occurrence network analysis showed that reciprocal relationships between fungi and microalgae were prevalent in extremely acidic environments. Highly connected taxa within this network were Chlamydomonadaceae, Sporidiobolaceae, Filobasidiaceae, and unclassified Eukaryotes. Redundancy analysis (RDA) and random forest models revealed that Chlorophyta and Basidiomycota responded strongly to environmental gradients. Further analysis indicated that eukaryotic community structure was mainly determined by nutrient and metal concentrations. This study investigates the potential symbiosis between fungi and microalgae in the acidic pit lake, providing valuable insights for future eukaryotic biodiversity studies on AMD remediation.
Collapse
Affiliation(s)
- Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| | - Xiao He
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Shaoping Wang
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Xin Chuai
- Nanshan Mining Company Ltd., Anhui Maanshan Iron and Steel Mining Resources Group, Maanshan 243000, China
| | - Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China
- Anhui Engineering Research Center of Industrial Wastewater Treatment and Resource Recovery, Hefei 230009, China
| |
Collapse
|
37
|
Kan C, Zhao Y, Sun KM, Tang X, Zhao Y. The inhibition and recovery mechanisms of the diatom Phaeodactylum tricornutum in response to high light stress - A study combining physiological and transcriptional analysis. JOURNAL OF PHYCOLOGY 2023; 59:418-431. [PMID: 36798977 DOI: 10.1111/jpy.13323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 05/28/2023]
Abstract
By combining physiological/biochemical and transcriptional analysis, the inhibition and recovery mechanisms of Phaeodactylum tricornutum in response to extreme high light stress (1300 μmol photons · m-2 · s-1 ) were elucidated. The population growth was inhibited in the first 24 h and started to recover from 48 h. At 24 h, photoinhibition was exhibited as the changes of PSII photosynthetic parameters and decrease in cellular pigments, corresponding to the downregulation of genes encoding light-harvesting complex and pigments synthesis. Changes in those photosynthetic parameters and genes were kept until 96 h, indicating that the decrease of light absorption abilities might be one strategy for photoacclimation. In the meanwhile, we observed elevated cellular ROS levels, dead cells proportions, and upregulation of genes encoding antioxidant materials and proteasome pathway at 24 h. Those stress-related parameters and genes recovered to the controls at 96 h, indicating a stable intracellular environment after photoacclimation. Finally, genes involving carbon metabolisms were upregulated from 24 to 96 h, which ensured the energy supply for keeping high base and nucleotide excision repair abilities, leading to the recovery of cell cycle progression. We concluded that P. tricornutum could overcome photoinhibition by decreasing light-harvesting abilities, enhancing carbon metabolisms, activating anti-oxidative functions, and elevating repair abilities. The parameters of light harvesting, carbon metabolisms, and repair processes were responsible for the recovery phase, which could be considered long-term adaptive strategies for diatoms under high light stress.
Collapse
Affiliation(s)
- Chengxiang Kan
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Yirong Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
| | - Kai-Ming Sun
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yan Zhao
- College of Marine Life Sciences, Department of Marine Ecology, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
38
|
Bui QTN, Ki JS. Two novel superoxide dismutase genes (CuZnSOD and MnSOD) in the toxic marine dinoflagellate Alexandrium pacificum and their differential responses to metal stressors. CHEMOSPHERE 2023; 313:137532. [PMID: 36509186 DOI: 10.1016/j.chemosphere.2022.137532] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Superoxide dismutase (SOD) is an important antioxidant enzyme that is involved in the first line of defense against reactive oxygen species (ROS) within cells. Herein, we determined two novel CuZnSOD and MnSOD genes from the toxic marine dinoflagellate Alexandrium pacificum (designated as ApCuZnSOD and ApMnSOD) and characterized their structural features and phylogenetic affiliations. In addition, we examined the relative gene expression and ROS levels following exposure to heavy metals. ApCuZnSOD encoded 358 amino acids (aa) with two CuZnSOD-conserved domains. ApMnSOD encoded 203 aa that contained a mitochondrial-targeting signal and a MnSOD signature motif but missed an N-terminal domain. Phylogenetic trees showed that ApCuZnSOD clustered with other dinoflagellates, whereas ApMnSOD formed a clade with green algae and plants. Based on the 72-h median effective concentration (EC50), A. pacificum showed toxic responses in the order of Cu, Ni, Cr, Zn, Cd, and Pb. SOD expression levels dramatically increased after 6 h of Pb (≥6.5 times) and 48 h of Cu treatment (≥3.9 times). These results are consistent with the significant increase in ROS production in the A. pacificum exposed to Pb and Cu. These suggest that the two ApSODs are involved in the antioxidant defense system but respond differentially to individual metals.
Collapse
Affiliation(s)
- Quynh Thi Nhu Bui
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea
| | - Jang-Seu Ki
- Department of Biotechnology, Sangmyung University, Seoul, 03016, South Korea.
| |
Collapse
|
39
|
Dubey S, Chen CW, Haldar D, Tambat VS, Kumar P, Tiwari A, Singhania RR, Dong CD, Patel AK. Advancement in algal bioremediation for organic, inorganic, and emerging pollutants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 317:120840. [PMID: 36496067 DOI: 10.1016/j.envpol.2022.120840] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/25/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Rapidly changing bioremediation prospects are key drive to develop sustainable options that can offer extra benefits rather than only environmental remediation. Algal remediating is gaining utmost attention due to its mesmerising sustainable features, removing odour and toxicity, co-remediating numerous common and emerging inorganic and organic pollutants from gaseous and aqueous environments, and yielding biomass for a range of valuable products refining. Moreover, it also improves carbon footprint via carbon-capturing offers a better option than any other non-algal process for several high CO2-emitting industries. Bio-uptake, bioadsorption, photodegradation, and biodegradation are the main mechanisms to remediate a range of common and emerging pollutants by various algae species. Bioadsorption was a dominant remediation mechanism among others implicating surface properties of pollutants and algal cell walls. Photodegradable pollutants were photodegraded by microalgae by adsorbing photons on the surface and intracellularly via stepwise photodissociation and breakdown. Biodegradation involves the transportation of selective pollutants intracellularly, and enzymes help to convert them into simpler non-toxic forms. Robust models are from the green microalgae group and are dominated by Chlorella species. This article compiles the advancements in microalgae-assisted pollutants remediation and value-addition under sustainable biorefinery prospects. Moreover, filling the knowledge gaps, and recommendations for developing an effective platform for emerging pollutants remediation and realization of commercial-scale algal bioremediation.
Collapse
Affiliation(s)
- Siddhant Dubey
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Dibyajyoti Haldar
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Vaibhav Sunil Tambat
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Prashant Kumar
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Ashutosh Tiwari
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, 641114, India
| | - Cheng-Di Dong
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Sustainable Environment Research Centre, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Department of Marine Environmental Engineering, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Anil Kumar Patel
- Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow, 226 029, Uttar Pradesh, India.
| |
Collapse
|
40
|
Xiao X, Li W, Jin M, Zhang L, Qin L, Geng W. Responses and tolerance mechanisms of microalgae to heavy metal stress: A review. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105805. [PMID: 36375224 DOI: 10.1016/j.marenvres.2022.105805] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/26/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Microalgae, the primary producers in water ecosystems, are the main food of fish and shrimp. Microalgae have a great capacity to absorb heavy metals, and low concentrations of heavy metals can promote the growth of them. But high concentrations have a strong influence on the physiological and biochemical processes in algae, such as growth, photosynthesis, cell ultrastructure, protein content and fatty acid composition. Heavy metals may also induce the formation of reactive oxygen species (ROS), which causes the oxidation damage of protein, lipid and thiol peptides, and activates the antioxidant system. Heavy metals can be removed or converted into another state by biosorption of cell surface, accumulation in cells, combining with antioxidant enzymes and so on. This review summarized the responses of microalgae to heavy metals and comprehensively described the removal and tolerance mechanisms by extracellular adsorption and intracellular accumulation, which are helpful to treat pollution and improve the culture of microalgae.
Collapse
Affiliation(s)
- Xinfeng Xiao
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China.
| | - Wenfang Li
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Meng Jin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Linlin Zhang
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Liguo Qin
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| | - Weiwei Geng
- College of Safety and Environment Engineering, Shandong University of Science and Technology, Qingdao, 266510, China
| |
Collapse
|
41
|
Liu H, Tian X, Gong X, Han D, Ren L, Cui Y, Jiang F, Zhao J, Chen J, Jiang L, Xu Y, Li H. Analyzing toxicological effects of AsIII and AsV to Chlamys farreri by integrating transcriptomic and metabolomic approaches. MARINE POLLUTION BULLETIN 2023; 186:114385. [PMID: 36459772 DOI: 10.1016/j.marpolbul.2022.114385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 06/17/2023]
Abstract
Inorganic arsenic (iAs) is a widespread contaminant in marine environments, which is present in two different oxidation states (arsenate (AsV) and arsenite (AsIII)) that have complex toxic effects on marine organisms. The scallop Chlamys farreri (C. farreri) accumulates high levels of As and is a suitable bioindicator of As. In this report, we integrated transcriptomics and metabolomics to investigate genetic and metabolite changes and functional physiological disturbances in C. farreri exposured to inorganic arsenic. Physiological indicators antioxidant factors and cell apoptosis analysis macroscopically corroborated the toxic effects of inorganic arsenic revealed by omics results. Toxic effects of inorganic arsenic on C. farreri were signaling-mediated, causing interference with a variety of cell growth and small molecule metabolism. The results provide evidence that inorganic arsenic disrupts the physiological functions of bivalves, highlighting the correlations between different metabolic pathways and providing new insights into the toxic effects of environmental pollutants on marine organisms.
Collapse
Affiliation(s)
- Huan Liu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Xiuhui Tian
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Xianghong Gong
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Dianfeng Han
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lihua Ren
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yanmei Cui
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Fang Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Junqiang Zhao
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China; College of Food Sciences & Technology, Shanghai Ocean University, Shanghai, China
| | - Jianqiang Chen
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Lisheng Jiang
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China
| | - Yingjiang Xu
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| | - Huanjun Li
- Shandong Key Laboratory of Marine Ecological Restoration, Shandong Marine Resource & Environment Research Institute, Yantai, China.
| |
Collapse
|
42
|
Zhao Z, Yang H, Feng Z, Huo Y, Fu L, Zhou D. Role of naphthaleneacetic acid in the degradation of bisphenol A and wastewater treatment by microalgae: Enhancement and signaling. CHEMOSPHERE 2022; 307:135829. [PMID: 35948092 DOI: 10.1016/j.chemosphere.2022.135829] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/07/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Coupling microalgae cultivation with wastewater treatment is a promising environmentally sustainable development strategy. However, toxics such as Bisphenol A (BPA) in wastewater damage microalgae cells and reduces bioresources production. Phytohormone regulation has the potential to solve this issue. However, phytohormone research is still in its infancy. In this work, 0.2 μM naphthyl acetic acid (NAA) significantly enhanced Chlorella vulgaris BPA detoxification by 127.3% and Chlorella biomass production by 46.4%. NAA helps Chlorella convert bisphenol A into small non-toxic intermediates by enhancing the expression of associated enzymes. Simultaneously, NAA promoted carbon fixation and photosynthetic metabolism. Activation of the mitogen-activated protein kinase (MAPK) pathway strengthened the downstream antioxidant system while improving photosynthesis and intracellular starch and lipid synthesis. Carbohydrates, pigment, and lipid production was significantly enhanced by 20.0%, 46.9%, and 21.8%, respectively. A new insight is provided into how phytohormones may increase microalgae in wastewater's bioresource transformation and toxicity resistance.
Collapse
Affiliation(s)
- Zhenhao Zhao
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Huiwen Yang
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Zhixuan Feng
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China
| | - Yang Huo
- College of Physics, Northeast Normal University, Changchun, 130117, China
| | - Liang Fu
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| | - Dandan Zhou
- Engineering Lab for Water Pollution Control and Resources Recovery of Jilin Province, School of Environment, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
43
|
Xiao M, Xin J, Fan J, Ji B. Response mechanisms of microalgal-bacterial granular sludge to zinc oxide nanoparticles. BIORESOURCE TECHNOLOGY 2022; 361:127713. [PMID: 35926556 DOI: 10.1016/j.biortech.2022.127713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/25/2022] [Accepted: 07/26/2022] [Indexed: 06/15/2023]
Abstract
Currently, zinc oxide nanoparticles (ZnO-NPs) with their widespread applications lead to their increasing dosages in wastewater, posing an urgent threat to wastewater treatment. Herein, the responses of the emerging microalgal-bacterial granular sludge (MBGS) to ZnO-NPs were investigated. The results showed that the performance of MBGS was significantly affected when the concentration of ZnO-NPs reached 10 mg/L, especially for the removal of ammonia and phosphorus. ZnO-NPs on the granular surface could affect microalgae photosynthesis by shading, while antioxidant enzymes could be generated against overproduced reactive oxygen species. Specifically, ZnO-NPs addition to MBGS systems altered the microbial community structure (e.g. Cyanobacteria) and function (e.g. biosynthesis) of prokaryotes rather than eukaryotes. Overall, the MBGS could exhibit multiple mechanisms to alleviate the ZnO-NPs toxicity. This study is expected to add knowledge on MBGS in the treatment of wastewater containing nanoparticles.
Collapse
Affiliation(s)
- Meixing Xiao
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jiayi Xin
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Jie Fan
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, School of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
| |
Collapse
|
44
|
Dai X, Zhang J, Zeng X, Huang J, Lin J, Lu Y, Liang S, Ye M, Xiao M, Zhao J, Overmans S, Xia J, Jin P. Adaptation of a marine diatom to ocean acidification increases its sensitivity to toxic metal exposure. MARINE POLLUTION BULLETIN 2022; 183:114056. [PMID: 36058179 DOI: 10.1016/j.marpolbul.2022.114056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Most previous studies investigating the interplay of ocean acidification (OA) and heavy metal on marine phytoplankton were only conducted in short-term, which may provide conservative estimates of the adaptive capacity of them. Here, we examined the physiological responses of long-term (~900 generations) OA-adapted and non-adapted populations of the diatom Phaeodactylum tricornutum to different concentrations of the two heavy metals Cd and Cu. Our results showed that long-term OA selected populations exhibited significantly lower growth and reduced photosynthetic activity than ambient CO2 selected populations at relatively high heavy metal levels. Those findings suggest that the adaptations to high CO2 results in an increased sensitivity of the marine diatom to toxic metal exposure. This study provides evidence for the costs and the cascading consequences associated with the adaptation of phytoplankton to elevated CO2 conditions, and improves our understanding of the complex interactions of future OA and heavy metal pollution in marine waters.
Collapse
Affiliation(s)
- Xiaoying Dai
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiale Zhang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaopeng Zeng
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiali Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jiamin Lin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Yucong Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Shiman Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengcheng Ye
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Mengting Xiao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jingyuan Zhao
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Sebastian Overmans
- King Abdullah University of Science and Technology (KAUST), Biological and Environmental Sciences and Engineering Division (BESE), Thuwal 23955-6900, Saudi Arabia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
45
|
Gu S, Su Y, Lan CQ. Effect of phosphate in medium on cell growth and Cu(II) biosorption by green alga Neochloris oleoabundans. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
46
|
Kochoni E, Doose C, Gonzalez P, Fortin C. Role of iron in gene expression and in the modulation of copper uptake in a freshwater alga: Insights on Cu and Fe assimilation pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119311. [PMID: 35439593 DOI: 10.1016/j.envpol.2022.119311] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/21/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
Metal uptake and toxicity can generally be related to its aqueous speciation and to the presence of competitive ions as described by the biotic ligand model. Beyond these simple chemical interactions at the surface of aquatic organisms, several internal biological feedback mechanisms can also modulate metal uptake. This is particularly important for essential elements for which specific transport systems were developed over the course of evolution. Based on the results of short-term Cu2+ uptake experiments and on the analysis of the expression of certain genes involved in Cu and Fe homeostasis, we studied the effects of Fe3+ on Cu2+ uptake by the freshwater green alga Chlamydomonas reinhardtii. We observed a significant increase in Cu2+ uptake rate in algal cells acclimated to a low Fe3+ medium up to 4.7 times greater compared to non-acclimated algal cells. The overexpression of the ferroxidase FOX1 and permease FTR1 genes suggests an activation of the high affinity Fe3+ assimilation system, which could constitute a plausible explanation for the increase in Cu2+ uptake rate in acclimatized algae. We show that Fe availability can have a significant impact on Cu uptake. Our observations reinforce the importance of considering physiological factors to better predict metal bioavailability.
Collapse
Affiliation(s)
- Emeric Kochoni
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada
| | - Caroline Doose
- Laboratoire de Biologie des Organismes et des écosystèmes Aquatiques, Muséum National d'Histoire Naturelle, Station Marine Concarneau, 29900, Concarneau, France
| | - Patrice Gonzalez
- Université de Bordeaux, CNRS, EPOC, EPHE, UMR 5805, 33600, Pessac, France
| | - Claude Fortin
- EcotoQ, Institut National de la Recherche Scientifique, Centre Eau Terre Environnement, 490 de la Couronne, Québec, QC, G1K 9A9, Canada.
| |
Collapse
|
47
|
Li M, Ali A, Li Y, Su J, Zhang S. The performance and mechanism of simultaneous removal of calcium and heavy metals by Ochrobactrum sp. GMC12 with the chia seed (Salvia hispanica) gum as a synergist. CHEMOSPHERE 2022; 297:134061. [PMID: 35192851 DOI: 10.1016/j.chemosphere.2022.134061] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/27/2022] [Accepted: 02/18/2022] [Indexed: 06/14/2023]
Abstract
A bacterium Ochrobactrum sp. GMC12, capable of biomineralization and denitrification, was employed to investigate the performance and mechanism of heavy metals removal. A chia seeds (Salvia hispanica) gum was proposed as a synergist for the first time. The results showed that strain GMC12 reduced Ca2+, Cd2+, Zn2+, and nitrate by 83.38, 98.89, 98.95, and 100% (2.09, 0.29, 0.55, and 0.79 mg L-1 h-1), respectively, over 96 h continuous determination experiments. The concentration gradient test revealed that strain GMC12 would effectively remove Cd2+ and Zn2+ by 99.80 and 99.91% (0.67 and 1.35 mg L-1 h-1), respectively, under the synergistic effect of gum (1.0%, w/v). The SEM-EDS and XRD manifested that Ca2+, HMs ions, and anionic groups coated on the bacteria surface to form CaCO3, Ca5(PO4)3OH, CdCO3, Cd5(PO4)3OH, ZnCO3, and Zn2(PO4)OH. The fluorescence spectrometry and fourier transform infrared (FTIR) spectra illustrated that extracellular polymeric substance (EPS) was the key product for the nucleation site of bacteria, and the gum promoted the accumulation of bio-precipitates and accelerated the removal of HMs. In this research, Ochrobactrum sp. GMC12 exhibited great potential in wastewater treatment and chia seeds gum would go deep into material preparation and wastewater treatment due to its non-toxic nature, high viscosity, and advantageous morphology.
Collapse
Affiliation(s)
- Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
48
|
Jean N, Perié L, Dumont E, Bertheau L, Balliau T, Caruana AMN, Amzil Z, Laabir M, Masseret E. Metal stresses modify soluble proteomes and toxin profiles in two Mediterranean strains of the distributed dinoflagellate Alexandrium pacificum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151680. [PMID: 34793790 DOI: 10.1016/j.scitotenv.2021.151680] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
HABs involving Alexandrium pacificum have been reported in metal-contaminated ecosystems, suggesting that this distributed species adapts to and/or can tolerate the effects of metals. Modifications in soluble proteomes and PST contents were characterized in two Mediterranean A. pacificum strains exposed to mono- or polymetallic stresses (zinc, lead, copper, cadmium). These strains were isolated from two anthropized locations: Santa Giusta Lagoon (Italy, SG C10-3) and the Tarragona seaport (Spain, TAR C5-4F). In both strains, metals primarily downregulated key photosynthesis proteins. Metals also upregulated other proteins involved in photosynthesis (PCP in both strains), the oxidative stress response (HSP 60, proteasome and SOD in SG C10-3; HSP 70 in TAR C5-4F), energy metabolism (AdK in TAR C5-4F), neoglucogenesis/glycolysis (GAPDH and PEP synthase in SG C10-3) and protein modification (PP in TAR C5-4F). These proteins, possibly involved in adaptive proteomic responses, may explain the development of these A. pacificum strains in metal-contaminated ecosystems. The two strains showed different proteomic responses to metals, with SG C10-3 upregulating more proteins, particularly PCP. Among the PSTs, regardless of the metal and the strain studied, C2 and GTX4 predominated, followed by GTX5. Under the polymetallic cocktail, (i) total PSTs, C2 and GTX4 reached the highest levels in SG C10-3 only, and (ii) total PSTs, C2, GTX5 and neoSTX were higher in SG C10-3 than in TAR C5-4F, whereas in SG C10-3 under copper stress, total PSTs, GTX5, GTX1 and C1 were higher than in the controls, revealing variability in PST biosynthesis between the two strains. Total PSTs, C2, GTX4 and GTX1 showed significant positive correlations with PCP, indicating that PST production may be positively related to photosynthesis. Our results showed that the A. pacificum strains adapt their proteomic and physiological responses to metals, which may contribute to their ecological success in highly anthropized areas.
Collapse
Affiliation(s)
- Natacha Jean
- Université de Toulon, Aix Marseille Univ, CNRS, IRD, MIO, Toulon, France.
| | - Luce Perié
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University, 30(th) St., New York, NY 10016, USA
| | - Estelle Dumont
- UMR_MD1, Aix-Marseille Univ, U-1261-INSERM, SSA, IRBA, MCT, Marseille, France
| | - Lucie Bertheau
- UMR PAM A 02.102 Procédés Alimentaires et Microbiologiques, Université de Bourgogne Franche-Comté, AgroSup Dijon, esplanade Erasme, 21 000 Dijon, France
| | - Thierry Balliau
- PAPPSO-GQE-Le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, 91 190 Gif-sur-Yvette, France
| | - Amandine M N Caruana
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Zouher Amzil
- IFREMER, Phycotoxin Laboratory, rue de l'île d'Yeu, BP 21105, 44 311 Nantes, France
| | - Mohamed Laabir
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| | - Estelle Masseret
- Marbec, Univ Montpellier, IRD, Ifremer, CNRS, Montpellier, France
| |
Collapse
|
49
|
Singh DV, Singh RP. Algal consortia based metal detoxification of municipal wastewater: Implication on photosynthetic performance, lipid production, and defense responses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:151928. [PMID: 34843763 DOI: 10.1016/j.scitotenv.2021.151928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The present investigation was carried out to assess the competence of artificially engineered microalgal consortia i.e. consortia 1 (Scenedesmus vacuolatus + Chlorococcum humicola), consortia 2 (Tetradesmus sp. + Scenedesmus vacuolatus), and consortia 3 (Chlorococcum humicola + Scenedesmus vacuolatus + Tetradesmus sp.) for municipal wastewater treatment and lipid production under laboratory conditions. The purpose of the present study was to screen the competent microalgae consortia based on wastewater remediation, photosynthetic performance, and antioxidant defense responses. The outcome based on nutrient reutilization (78.98-98%), metal detoxification (50-94%), and biomass production (1.43-1.65 folds) reflected greater adaptability and tolerance of consortia 2 against different concentrations of wastewater. The photosynthetic performance parameters such as active photosystem II reaction centre, the quantum yield, and photosynthetic performance index were increased by 1.20-2.35 folds in consortia 2 after treatment with different concentrations of wastewater. Additionally, Fourier transform infrared spectroscopy peak showed at 1750 cm-1 confirmed neutral lipid accumulation in consortia 2 at 100% concentration of wastewater. The measurement of oxidative stress markers such as thiobarbituric acid reactive species and hydrogen peroxide showed considerable decline in consortia 2 as compared to consortia 1 and 3. Interestingly, increased non-enzymatic (1.02-2.44 folds) and enzymatic antioxidant (1.05-4.14 folds) activity in consortia 2 reflected that oxidative stress was attenuated by the amplified activity of ascorbic acid, proline, cysteine, superoxide dismutase, catalase, and glutathione reductase. Overall, photosynthetic performance, lipid production, and antioxidants activity represented that the consortia 2 can be effectively used for sustainable wastewater treatment and lipid production. Thus, the synergistic association of two microalgae may be the superior and neoteric paradigm with multilevel benefits such as sustainable nutrient resource utilization, metal detoxification, and lipid production.
Collapse
Affiliation(s)
- Dig Vijay Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - Rana Pratap Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India.
| |
Collapse
|
50
|
Transcriptomic and Physiological Responses of Chlorella pyrenoidosa during Exposure to 17α-Ethinylestradiol. Int J Mol Sci 2022; 23:ijms23073583. [PMID: 35408944 PMCID: PMC8999151 DOI: 10.3390/ijms23073583] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022] Open
Abstract
17α-ethinylestradiol (17α-EE2) is frequently detected in water bodies due to its use being widespread in the treatment of prostate and breast cancer and in the control of alopecia, posing a threat to humans and aquatic organisms. However, studies on its toxicity to Chlorella pyrenoidosa have been limited to date. This study investigated the effects of 17α-EE2 on the growth, photosynthetic activity, and antioxidant system of C. pyrenoidosa and revealed related molecular changes using transcriptomic analysis. The cell density of algae was inhibited in the presence of 17α-EE2, and cell morphology was also altered. Photosynthetics were damaged, while reactive oxygen species (ROS), superoxide dismutase (SOD), and malondialdehyde (MDA) content increased. Further transcriptomic analysis revealed that the pathways of photosynthesis and DNA replication were affected at three concentrations of 17α-EE2, but several specific pathways exhibited various behaviors at different concentrations. Significant changes in differentially expressed genes and their enrichment pathways showed that the low-concentration group was predominantly impaired in photosynthesis, while the higher-concentration groups were biased towards oxidative and DNA damage. This study provides a better understanding of the cellular and molecular variations of microalgae under 17α-EE2 exposure, contributing to the environmental risk assessment of such hazardous pollutants on aquatic organisms.
Collapse
|