1
|
Luo Z, Huang T, Men Y, Xing R, Li Y, Jiang K, Xiao K, Shen G. Fractions of smoke leakage into indoor space from residential solid fuel combustion in chimney stoves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125211. [PMID: 39477002 DOI: 10.1016/j.envpol.2024.125211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Severe indoor air pollution from solid-fuel combustion is a global health concern. Although stove chimneys can expel most of the smoke to outside, unignorable amounts can remain indoors, known as indoor fugitive emissions. Quantitative analyses of indoor emission rates (IER) and indoor fugitive fractions (IFF) are limited, particularly in field settings. This study quantified the IERs and IFFs of particulate matters (PMs) from residential solid fuel combustion, covering different fuel-stove combinations in rural China. The study showed that both IERs and IFFs were not normally distributed. The median IER for PM2.5, which peaked at 860 mg/min, was 32 mg/min. IERs very significantly among different fuel and stove types, with biomass pellets and improved stoves demonstrating lower IERs than traditional biomass and coal. Approximately 27% of PM2.5 was leaked into indoor air, but this fraction ranged largely from a low percentage to 80%. Higher IFFs were observed for coals burned in traditional stoves. The median IFFs of organic carbon and elemental carbon were 26% (12%-43% as the interquartile range) and 19% (9%-40%), respectively. The chimney lifting effect significantly affected the degree of indoor leakage, with relatively low IFFs under high gas velocity conditions. Chimney exhaust and fugitive smoke had distinct size distributions, and small particles exhibited fewer leakages than coarse particles. The study provides valuable datasets for quantifying internal combustion impacts on indoor air quality and consequently human health.
Collapse
Affiliation(s)
- Zhihan Luo
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Tianyao Huang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yatai Men
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ran Xing
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yaojie Li
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ke Jiang
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Kai Xiao
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- MOE Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; Institute of Carbon Neutrality, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Yan Q, Liu X, Kong S, Zhang W, Gao Q, Zhang Y, Li H, Wang H, Xiao T, Li J. Hourly emission amounts and concentration of water-soluble ions in primary particles from residential coal burning in rural northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124641. [PMID: 39122172 DOI: 10.1016/j.envpol.2024.124641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Residential coal burning (RCB) stands as an important contributor to ambient pollutants in China. For the effective execution of air pollution control policies, it is essential to maintain precise emission inventories of RCB. The absence of hourly emission factors (EFs) combined with the inaccuracies in the spatial-temporal distribution of activity data, constrained the quality of residential coal combustion emission inventories, thereby impeding the estimation of air pollutant emissions. This study revised the hourly EFs for PM2.5 and water-soluble ions (WSIs) emitted from RCB in China. The hourly emission inventories for PM2.5 and WSIs derived from RCB illustrate the diurnal fluctuations in emission patterns. This study found that the emissions of PM2.5, NH4+, Cl-, and SO42- showed similar emission features with emission of 106.8 Gg, 1417.6, 356.8, and 5868.5 ton in erupt period. The results provide basic data for evaluating RCB emission reduction policies, simulating particles, and preventing air pollution in both sub-regions and time periods. The spatial emission and simulated concentration distribution of PM2.5 and WSIs indicated that emission hotspot shifted from North China Plain (NCP) to Northeast region in China. The emissions in China were well-controlled in '2 + 26' region (R28) priority region, with hotspots decreasing by 99.6% in BTH region. The RCB became the dominant contributor to ambient PM2.5 with a ratio in the range of 16.2-23.7% in non-priority region.
Collapse
Affiliation(s)
- Qin Yan
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China; Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan, China
| | - Xi Liu
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR, China
| | - Shaofei Kong
- Department of Atmospheric Sciences, School of Environmental Sciences, China University of Geosciences, Wuhan, China; Research Centre for Complex Air Pollution of Hubei Province, Wuhan, China.
| | - Wenjie Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China.
| | - Qingxian Gao
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuzhe Zhang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Hui Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Han Wang
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Tingyu Xiao
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Junhong Li
- Institute of Atmospheric Environment, Chinese Research Academy of Environmental Sciences, Beijing, China
| |
Collapse
|
3
|
Liu X, Wang Z, Wang J, Xing L, Li J, Dong Z, Li M, Han Y, Cao J. Characteristics of PM 2.5 bounded carbonaceous aerosols, carbon dioxide and its stable carbon isotopes (δ 13C) in rural households in northwest China: Effect of different fuel combustion. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121004. [PMID: 38710146 DOI: 10.1016/j.jenvman.2024.121004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 05/08/2024]
Abstract
In order to fully understand the carbon emission from different fuels in rural villages of China, especially in the typical atmospheric pollution areas. The characteristics of carbonaceous aerosols and carbon dioxide (CO2) with its stable carbon isotope (δ13C) were investigated in six households, which two households used coal, two households used wood as well as two households used biogas and liquefied petroleum gas (LPG), from two rural villages in Fenwei Plain from March to April 2021. It showed that the fine particulate matter (PM2.5) emitted from biogas and LPG couldn't be as lower as expected in this area. However, the clean fuels could relatively reduce the emissions of organic carbon (OC) and element carbon (EC) in PM2.5 compare to the solid fuels. The pyrolyzed carbon (OP) accounted more total carbon (TC) in coal than the other fuels use households, indicating that more water-soluble OC existed, and it still had the highest secondary organic carbon (SOC) than the other fuels. Meantime, the coal combustions in the two villages had the highest CO2 concentration of 527.6 ppm and 1120.6 ppm, respectively, while the clean fuels could effectively reduce it. The average δ13C values (-26.9‰) was much lighter than almost all the outdoor monitoring and similar to the δ13C values for coal combustion and vehicle emission, showing that they might be the main contributors of the regional atmospheric aerosol in this area. During the sandstorm, the indoor PM2.5 mass and CO2 were increasing obviously. The indoor cancer risk of PAHs for adults and children were greater than 1 × 10-6, exert a potential carcinogenic risk to human of solid fuels combustion in rural northern China. It is important to continue concern the solid fuel combustion and its health impact in rural areas.
Collapse
Affiliation(s)
- Xiuqun Liu
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Zedong Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Jingzhi Wang
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China; Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China.
| | - Li Xing
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Jiayu Li
- Mechanical and Aerospace Engineering, University of Miami, Coral Gables, USA; Center for Aerosol Science & Technology, University of Miami, Coral Gables, USA
| | - Zhibao Dong
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Minrui Li
- National Demonstration Center for Experimental Geography Education, School of Geography and Tourism, Shaanxi Normal University, Xi'an, China
| | - Yongming Han
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Junji Cao
- Key Lab of Aerosol Chemistry & Physics, State Key Lab of Loess and Quaternary Geology (SKLLQG), Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
4
|
Hou W, Wang J, Hu R, Chen Y, Shi J, Lin X, Qin Y, Zhang P, Du W, Tao S. Systematically quantifying the dynamic characteristics of PM 2.5 in multiple indoor environments in a plateau city: Implication for internal contribution. ENVIRONMENT INTERNATIONAL 2024; 186:108641. [PMID: 38621323 DOI: 10.1016/j.envint.2024.108641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/04/2024] [Accepted: 04/08/2024] [Indexed: 04/17/2024]
Abstract
People generally spend most of their time indoors, making a comprehensive evaluation of air pollution characteristics in various indoor microenvironments of great significance for accurate exposure estimation. In this study, field measurements were conducted in Kunming City, Southwest China, using real-time PM2.5 sensors to characterize indoor PM2.5 in ten different microenvironments including three restaurants, four public places, and three household settings. Results showed that the daily average PM2.5 concentrations in restaurants, public spaces, and households were 78.4 ± 24.3, 20.1 ± 6.6, and 18.0 ± 4.3 µg/m3, respectively. The highest levels of indoor PM2.5 in restaurants were owing to strong internal emissions from cooking activities. Dynamic changes showed that indoor PM2.5 levels increased during business time in restaurants and public places, and cooking time in residential kitchens. Compared with public places, restaurants generally exhibit more rapid increases in indoor PM2.5 due to cooking activities, which can elevate indoor PM2.5 to high levels (5.1 times higher than the baseline) in a short time. Furthermore, indoor PM2.5 in restaurants were dominated by internal emissions, while outdoor penetration contributed mostly to indoor PM2.5 in public places and household settings. Results from this study revealed large variations in indoor PM2.5 in different microenvironments, and suggested site-specific measures for indoor PM2.5 pollution alleviation.
Collapse
Affiliation(s)
- Weiying Hou
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Jinze Wang
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ruijing Hu
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China; Southwest United Graduate School, Kunming 650092, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Jianwu Shi
- Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Xianbiao Lin
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yiming Qin
- School of Energy and Environment, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Peng Zhang
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science &Technology, Kunming 650500, China.
| | - Shu Tao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
5
|
Vicente ED, Calvo AI, Sainnokhoi TA, Kováts N, de la Campa AS, de la Rosa J, Oduber F, Nunes T, Fraile R, Tomé M, Alves CA. Indoor PM from residential coal combustion: Levels, chemical composition, and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170598. [PMID: 38340837 DOI: 10.1016/j.scitotenv.2024.170598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Indoor air quality is crucial for human health due to the significant time people spend at home, and it is mainly affected by internal sources such as solid fuel combustion for heating. This study investigated the indoor air quality and health implications associated with residential coal burning covering gaseous pollutants (CO, CO2 and total volatile organic compounds), particulate matter, and toxicity. The PM10 chemical composition was obtained by ICP-MS/OES (elements), ion chromatography (water-soluble ions) and thermal-optical analysis (organic and elemental carbon). During coal combustion, PM10 levels were higher (up to 8.8 times) than background levels and the indoor-to-outdoor ratios were, on average, greater than unity, confirming the existence of a significant indoor source. The chemical characterisation of PM10 revealed increased concentrations of organic carbon and elemental carbon during coal combustion as well as arsenic, cadmium and lead. Carcinogenic risks associated with exposure to arsenic exceeded safety thresholds. Indoor air quality fluctuated during the study, with varying toxicity levels assessed using the Aliivibrio fischeri bioluminescence inhibition assay. These findings underscore the importance of mitigating indoor air pollution associated with coal burning and highlight the potential health risks from long-term exposure. Effective interventions are needed to improve indoor air quality and reduce health risks in coal-burning households.
Collapse
Affiliation(s)
- Estela D Vicente
- Department of Physics, University of León, 24071 León, Spain; Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Ana I Calvo
- Department of Physics, University of León, 24071 León, Spain
| | - Tsend-Ayush Sainnokhoi
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Nora Kováts
- Centre for Environmental Sciences, University of Pannonia, Egyetem str. 10, 8200 Veszprém, Hungary
| | - Ana Sánchez de la Campa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Jesús de la Rosa
- Associate Unit CSIC-University of Huelva "Atmospheric Pollution", Centre for Research in Sustainable Chemistry - CIQSO, University of Huelva, E21071 Huelva, Spain; Department of Mining, Mechanic, Energetic and Construction Engineering, ETSI, University of Huelva, 21071 Huelva, Spain
| | - Fernanda Oduber
- Department of Physics, University of León, 24071 León, Spain
| | - Teresa Nunes
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Roberto Fraile
- Department of Physics, University of León, 24071 León, Spain
| | - Mário Tomé
- PROMETHEUS, School of Technology and Management (ESTG), Polytechnic University of Viana do Castelo, 4900-348 Viana do Castelo, Portugal
| | - Célia A Alves
- Department of Environment and Planning, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
6
|
Yang Y, Battaglia MA, Robinson ES, DeCarlo PF, Edwards KC, Fang T, Kapur S, Shiraiwa M, Cesler-Maloney M, Simpson WR, Campbell JR, Nenes A, Mao J, Weber RJ. Indoor-Outdoor Oxidative Potential of PM 2.5 in Wintertime Fairbanks, Alaska: Impact of Air Infiltration and Indoor Activities. ACS ES&T AIR 2024; 1:188-199. [PMID: 38482268 PMCID: PMC10928657 DOI: 10.1021/acsestair.3c00067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/01/2024]
Abstract
The indoor air quality of a residential home during winter in Fairbanks, Alaska, was investigated and contrasted with outdoor levels. Twenty-four-hour average indoor and outdoor filter samples were collected from January 17 to February 25, 2022, in a residential area with high outdoor PM2.5 concentrations. The oxidative potential of PM2.5 was determined using the dithiothreitol-depletion assay (OPDTT). For the unoccupied house, the background indoor-to-outdoor (I/O) ratio of mass-normalized OP (OPmDTT), a measure of the intrinsic health-relevant properties of the aerosol, was less than 1 (0.53 ± 0.37), implying a loss of aerosol toxicity as air was transported indoors. This may result from transport and volatility losses driven by the large gradients in temperature (average outdoor temperature of -19°C/average indoor temperature of 21 °C) or relative humidity (average outdoor RH of 78%/average indoor RH of 11%), or both. Various indoor activities, including pellet stove use, simple cooking experiments, incense burning, and mixtures of these activities, were conducted. The experiments produced PM2.5 with a highly variable OPmDTT. PM2.5 from cooking emissions had the lowest OP values, while pellet stove PM2.5 had the highest. Correlations between volume-normalized OPDTT (OPvDTT), relevant to exposure, and indoor PM2.5 mass concentration during experiments were much lower compared to those in outdoor environments. This suggests that mass concentration alone can be a poor indicator of possible adverse effects of various indoor emissions. These findings highlight the importance of considering both the quantity of particles and sources (chemical composition), as health metrics for indoor air quality.
Collapse
Affiliation(s)
- Yuhan Yang
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Michael A. Battaglia
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ellis S. Robinson
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Peter F. DeCarlo
- Department
of Environmental Health & Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Kasey C. Edwards
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Ting Fang
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Sukriti Kapur
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Manabu Shiraiwa
- Department
of Chemistry, University of California,
Irvine, California, 92697, United States
| | - Meeta Cesler-Maloney
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - William R. Simpson
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - James R. Campbell
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Athanasios Nenes
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
- Laboratory
of Atmospheric Processes and their Impacts (LAPI), School of Architecture,
Civil & Environmental Engineering, Ecole
Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Center for
Studies of Air Quality and Climate Change, Institute of Chemical Engineering Sciences, Foundation for Research
and Technology, Patras, Hellas 26504, Greece
| | - Jingqiu Mao
- Geophysical
Institute and Department of Chemistry & Biochemistry, University of Alaska Fairbanks, Fairbanks, Alaska 99775, United States
| | - Rodney J. Weber
- School
of Earth and Atmospheric Sciences, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
7
|
Ji W, Song L, Wang J, Song H. Carbon emissions from various natural gas end-use sectors for 31 Chinese provinces between 2017 and 2021. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122879. [PMID: 37931674 DOI: 10.1016/j.envpol.2023.122879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 10/17/2023] [Accepted: 11/04/2023] [Indexed: 11/08/2023]
Abstract
Natural gas (NG) is a low-carbon fuel that is becoming a crucial transitional energy in China for reducing carbon emissions. In this study, a life-cycle assessment was performed to correlate carbon emissions and NG consumption for different end uses in China. A bottom-up life-cycle assessment framework was combined with carbon emission coefficients to quantify NG consumption in 31 Chinese provinces between 2017 and 2021, as well as the carbon emissions (in carbon dioxide (CO2) equivalents, including CO2 and methane) released during NG production, transportation, and consumption. The carbon emission factors for different types of end-use consumption were considered. The assessment results indicate that both NG consumption and life-cycle carbon emissions from NG use have increased since 2017. Between 2017 and 2021, NG consumption in China increased from 260 to 370 billion cubic meters and life-cycle carbon emissions from NG increased by 39% (from 930 to 1292 Mt CO2). The carbon emissions released during NG production and transportation accounted for approximately 31% of NG life-cycle emissions. Considerable variations in NG life-cycle carbon emissions were identified across different provinces and sectors, highlighting the need for targeted efforts to reduce carbon emissions. The objective of this study was to provide useful insights into sustainability development of the NG industry in China for optimizing NG allocations to different end uses and maximizing the environmental and economic benefits of NG.
Collapse
Affiliation(s)
- Wenjing Ji
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Liying Song
- School of Economics and Management, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jing Wang
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongqing Song
- School of Civil and Resource Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
8
|
Men Y, Li Y, Luo Z, Jiang K, Yi F, Liu X, Xing R, Cheng H, Shen G, Tao S. Interpreting Highly Variable Indoor PM 2.5 in Rural North China Using Machine Learning. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:18183-18192. [PMID: 37150969 DOI: 10.1021/acs.est.3c02014] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Household air pollution associated with solid fuel use is a long-standing public concern. The global population mainly using solid fuels for cooking remains large. Besides cooking, large amounts of coal and biomass fuels are burned for space heating during cold seasons in many regions. In this study, a wintertime multiple-region field campaign was carried out in north China to evaluate indoor PM2.5 variations. With hourly resolved data from ∼1600 households, key influencing factors of indoor PM2.5 were identified from a machine learning approach, and a random forest regression (RFR) model was further developed to quantitatively assess the impacts of household energy transition on indoor PM2.5. The indoor PM2.5 concentration averaged at 120 μg/m3 but ranged from 16 to ∼400 μg/m3. Indoor PM2.5 was ∼60% lower in families using clean heating approaches compared to those burning traditional coal or biomass fuels. The RFR model had a good performance (R2 = 0.85), and the interpretation was consistent with the field observation. A transition to clean coals or biomass pellets can reduce indoor PM2.5 by 20%, and further switching to clean modern energies would reduce it an additional 30%, suggesting many significant benefits in promoting clean transitions in household heating activities.
Collapse
Affiliation(s)
- Yatai Men
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yaojie Li
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ke Jiang
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Fan Yi
- Beijing Key Lab Plant Resources Research and Development, Beijing Technology and Business University, Beijing 100048, China
| | - Xinlei Liu
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 45001, China
| | - Shu Tao
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
9
|
Saraga DΕ, Querol X, Duarte RMBO, Aquilina NJ, Canha N, Alvarez EG, Jovasevic-Stojanovic M, Bekö G, Byčenkienė S, Kovacevic R, Plauškaitė K, Carslaw N. Source apportionment for indoor air pollution: Current challenges and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165744. [PMID: 37487894 DOI: 10.1016/j.scitotenv.2023.165744] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/21/2023] [Accepted: 07/21/2023] [Indexed: 07/26/2023]
Abstract
Source apportionment (SA) for indoor air pollution is challenging due to the multiplicity and high variability of indoor sources, the complex physical and chemical processes that act as primary sources, sinks and sources of precursors that lead to secondary formation, and the interconnection with the outdoor environment. While the major indoor sources have been recognized, there is still a need for understanding the contribution of indoor versus outdoor-generated pollutants penetrating indoors, and how SA is influenced by the complex processes that occur in indoor environments. This paper reviews our current understanding of SA, through reviewing information on the SA techniques used, the targeted pollutants that have been studied to date, and their source apportionment, along with limitations or knowledge gaps in this research field. The majority (78 %) of SA studies to date focused on PM chemical composition/size distribution, with fewer studies covering organic compounds such as ketones, carbonyls and aldehydes. Regarding the SA method used, the majority of studies have used Positive Matrix Factorization (31 %), Principal Component Analysis (26 %) and Chemical Mass Balance (7 %) receptor models. The indoor PM sources identified to date include building materials and furniture emissions, indoor combustion-related sources, cooking-related sources, resuspension, cleaning and consumer products emissions, secondary-generated pollutants indoors and other products and activity-related emissions. The outdoor environment contribution to the measured pollutant indoors varies considerably (<10 %- 90 %) among the studies. Future challenges for this research area include the need for optimization of indoor air quality monitoring and data selection as well as the incorporation of physical and chemical processes in indoor air into source apportionment methodology.
Collapse
Affiliation(s)
- Dikaia Ε Saraga
- Atmospheric Chemistry & Innovative Technologies Laboratory, INRASTES, NCSR Demokritos, Aghia Paraskevi, Athens 15310, Greece.
| | - Xavier Querol
- Institute of Environmental Assessment and Water Research (IDAEA), CSIC, Barcelona, Spain
| | - Regina M B O Duarte
- CESAM - Centre for Environmental and Marine Studies, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Noel J Aquilina
- Department of Chemistry - Faculty of Science, Chemistry Building, University of Malta, Malta
| | - Nuno Canha
- Centro de Ciências e Tecnologias Nucleares (C(2)TN), Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, Km 139.7, 2695-066 Bobadela LRS, Portugal
| | - Elena Gómez Alvarez
- Department of Agronomy, University of Cordoba, Campus de Rabanales, 14071 Cordoba, Spain
| | - Milena Jovasevic-Stojanovic
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, Serbia
| | - Gabriel Bekö
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby, Denmark; Healthy and Sustainable Built Environment Research Centre, Ajman University, Ajman, P.O. Box 346, United Arab Emirates
| | - Steigvilė Byčenkienė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | | | - Kristina Plauškaitė
- Department of Environmental Research, Center for Physical Sciences and Technology (FTMC), Saulėtekio ave. 3, LT-10257 Vilnius, Lithuania
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, UK
| |
Collapse
|
10
|
Li S, Men Y, Luo Z, Huang W, Xing R, Sun C, Shen G. Indoor exposure to polycyclic aromatic hydrocarbons associated with solid fuel use in rural China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8761-8770. [PMID: 37737552 DOI: 10.1007/s10653-023-01751-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants associated with various health risks including lung cancer. Indoor exposure to PAHs, particularly from the indoor burning of fuels, is significant; however, long-term large-scale assessments of indoor PAHs are hampered by high costs and time-consuming in field sampling and laboratory experiments. A simple fuel-based approach and statistical regression models were developed as a trial to predict indoor BaP, as a typical PAH, in China, and consequently spatiotemporal variations in indoor BaP and indoor exposure contributions were discussed. The results show that the national population-weighted indoor BaP concentration has decreased substantially from 46.1 ng/m3 in 1992 to 6.60 ng/m3 in 2017, primarily due to the increased use of clean energies for cooking and heating. Indoor BaP exposure contributed to > 70% of the total inhalation exposure in most cities, particularly in regions where solid fuels are widely utilized. With limited experimental observation data in building statistical models, quantitative results of the study are associated with high uncertainties; however, the study undoubtedly supports effective countermeasures on indoor PAHs from solid fuel use and the importance of promoting clean household energy usage to improve household air quality.
Collapse
Affiliation(s)
- Shiyin Li
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yatai Men
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Zhihan Luo
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Wenxuan Huang
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Ran Xing
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Chao Sun
- Shandong Warm Valley New Energy & Environmental Protection, Yantai, 264001, China
| | - Guofeng Shen
- MOE Key Lab for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
11
|
Qin L, Zhai M, Cheng H. Indoor air pollution from the household combustion of coal: Tempo-spatial distribution of gaseous pollutants and semi-quantification of source contribution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163502. [PMID: 37075989 DOI: 10.1016/j.scitotenv.2023.163502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
Coal is a widely used solid fuel for cooking and heating activities in rural households, whose incomplete combustion in inefficient household stoves releases a range of gaseous pollutants. To evaluate the impact of coal combustion on indoor air quality, this study comprehensively investigated the indoor air pollution of typical gaseous pollutants, including formaldehyde (HCHO), carbon dioxide (CO2), carbon monoxide (CO), total volatile organic compounds (TVOC), and methane (CH4), during coal combustion process in rural households using online monitoring with high tempo-spatial resolution. The indoor concentrations of gaseous pollutants were considerably elevated during the coal combustion period, with the indoor concentrations being significantly higher than those in courtyard air. The levels of several gaseous pollutants (CO2, CO, TVOC, and CH4) in indoor air were much higher during the flaming phase than the de-volatilization and smoldering phases, while HCHO peaked in the de-volatilization phase. The gaseous pollutant concentrations mostly decreased from the room ceiling to the ground level, while their horizontal distribution was relatively uniform within the room. It was estimated that coal combustion accounted for about 71 %, 92 %, 63 %, 59 %, and 21 % of total exposure to indoor CO2, CO, TVOC, CH4, and HCHO, respectively. Improved stove combined with clean fuel could effectively lower the concentrations of CO2, CO, TVOC, and CH4 in indoor air and reduce the contributions of coal combustion to these gaseous pollutants by about 21-68 %. These findings help better understand the indoor air pollution resulting from residential coal combustion and could guide the development of intervention programs to improve indoor air quality in rural households of northern China.
Collapse
Affiliation(s)
- Lifan Qin
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Mengkun Zhai
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- MOE Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
12
|
Wang J, Du W, Lei Y, Chen Y, Wang Z, Mao K, Tao S, Pan B. Quantifying the dynamic characteristics of indoor air pollution using real-time sensors: Current status and future implication. ENVIRONMENT INTERNATIONAL 2023; 175:107934. [PMID: 37086491 DOI: 10.1016/j.envint.2023.107934] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
People generally spend most of their time indoors, making indoor air quality be of great significance to human health. Large spatiotemporal heterogeneity of indoor air pollution can be hardly captured by conventional filter-based monitoring but real-time monitoring. Real-time monitoring is conducive to change air assessment mode from static and sparse analysis to dynamic and massive analysis, and has made remarkable strides in indoor air evaluation. In this review, the state of art, strengths, challenges, and further development of real-time sensors used in indoor air evaluation are focused on. Researches using real-time sensors for indoor air evaluation have increased rapidly since 2018, and are mainly conducted in China and the USA, with the most frequently investigated air pollutants of PM2.5. In addition to high spatiotemporal resolution, real-time sensors for indoor air evaluation have prominent advantages in 3-dimensional monitoring, pollution peak and source identification, and short-term health effect evaluation. Huge amounts of data from real-time sensors also facilitate the modeling and prediction of indoor air pollution. However, challenges still remain in extensive deployment of real-time sensors indoors, including the selection, performance, stability, as well as calibration of sensors. In future, sensors with high performance, long-term stability, low price, and low energy consumption are welcomed. Furthermore, more target air pollutants are also expected to be detected simultaneously by real-time sensors in indoor air monitoring.
Collapse
Affiliation(s)
- Jinze Wang
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wei Du
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China.
| | - Yali Lei
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Zhenglu Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu 610041, China
| | - Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Shu Tao
- Key Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Pan
- Yunnan Provincial Key Laboratory of Soil Carbon Sequestration and Pollution Control, Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| |
Collapse
|
13
|
Shi T, Yang W, Qi A, Li P, Qiao J. LASSO and attention-TCN: a concurrent method for indoor particulate matter prediction. APPL INTELL 2023; 53:1-15. [PMID: 37363388 PMCID: PMC10052318 DOI: 10.1007/s10489-023-04507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2023] [Indexed: 03/31/2023]
Abstract
Long time exposure to indoor air pollution environments can increase the risk of cardiovascular and respiratory system damage. Most previous studies focus on outdoor air quality, while few studies on indoor air quality. Current neural network-based methods for indoor air quality prediction ignore the optimization of input variables, process input features serially, and still suffer from loss of information during model training, which may lead to the problems of memory-intensive, time-consuming and low-precision. We present a novel concurrent indoor PM prediction model based on the fusion model of Least Absolute Shrinkage and Selection Operator (LASSO) and an Attention Temporal Convolutional Network (ATCN), together called LATCN. First, a LASSO regression algorithm is used to select features from PM1, PM2.5, PM10 and PM (>10) datasets and environmental factors to optimize the inputs for indoor PM prediction model. Then an Attention Mechanism (AM) is applied to reduce the redundant temporal information to extract key features in inputs. Finally, a TCN is used to forecast indoor particulate concentration in parallel with inputting the extracted features, and it reduces information loss by residual connections. The results show that the main environmental factors affecting indoor PM concentration are the indoor heat index, indoor wind chill, wet bulb temperature and relative humidity. Comparing with Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU) approaches, LATCN systematically reduced the prediction error rate (19.7% ~ 28.1% for the NAE, and 16.4% ~ 21.5% for the RMSE) and improved the model running speed (30.4% ~ 81.2%) over these classical sequence prediction models. Our study can inform the active prevention of indoor air pollution, and provides a theoretical basis for indoor environmental standards, while laying the foundations for developing novel air pollution prevention equipment in the future.
Collapse
Affiliation(s)
- Ting Shi
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Wu Yang
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Ailin Qi
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Pengyu Li
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| | - Junfei Qiao
- Faculty of Information Technology, Beijing University of Technology, Beijing, China
| |
Collapse
|
14
|
Liu X, Li Y, Luo Z, Xing R, Men Y, Huang W, Jiang K, Zhang L, Sun C, Xie L, Cheng H, Shen H, Chen Y, Du W, Shen G, Tao S. Identification of Factors Determining Household PM 2.5 Variations at Regional Scale and Their Implications for Pollution Mitigation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3722-3732. [PMID: 36826460 DOI: 10.1021/acs.est.2c05750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Indoor PM2.5, particulate matter no more than 2.5 μm in aerodynamic equivalent diameter, has very high spatiotemporal variabilities; and exploring the key factors influencing the variabilities is critical for purifying air and protecting human health. Here, we conducted a longer-term field monitoring campaign using low-cost sensors and evaluated inter- and intra-household PM2.5 variations in rural areas where energy or stove stacking is common. Household PM2.5 varied largely across different homes but also within households. Using generalized linear models and dominance analysis, we estimated that outdoor PM2.5 explained 19% of the intrahousehold variation in indoor daily PM2.5, whereas factors like the outdoor temperature and indoor-outdoor temperature difference that was associated with energy use directly or indirectly, explained 26% of the temporal variation. Inter-household variation was lower than intrahousehold variation. The inter-household variation was strongly associated with distinct internal sources, with energy-use-associated factors explaining 35% of the variation. The statistical source apportionment model estimated that solid fuel burning for heating contributed an average of 31%-55% of PM2.5 annually, whereas the contribution of sources originating from the outdoors was ≤10%. By replacing raw biomass or coal with biomass pellets in gasifier burners for heating, indoor PM2.5 could be significantly reduced and indoor temperature substantially increased, providing thermal comforts in addition to improved air quality.
Collapse
Affiliation(s)
- Xinlei Liu
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Key Laboratory of Agricultural Renewable Resource Utilization Technology, Northeast Agricultural University, Harbin 150006, China
| | - Yaojie Li
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Zhihan Luo
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ran Xing
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yatai Men
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxuan Huang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Ke Jiang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Lu Zhang
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Chao Sun
- Shandong Warm Valley New Energy and Environmental Protection, Yantai 264001, China
| | - Longjiao Xie
- Health Science Center, Peking University, Beijing 100871, China
| | - Hefa Cheng
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huizhong Shen
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Research Center of Environmental Science, Zhejiang University of Technology, Hangzhou 310032, China
| | - Wei Du
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Guofeng Shen
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Shu Tao
- Laboratory for Earth Surface Process, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
15
|
Shi Y, Hu Y, Jin Z, Li J, Zhang J, Li F. Nitrate sources and its formation in precipitation during typhoons (In-fa and Chanthu) in multiple cities, East China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155949. [PMID: 35588835 DOI: 10.1016/j.scitotenv.2022.155949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 06/15/2023]
Abstract
A clear understanding of the factors governing dual isotopes (δ15N-NO3- and δ18O-NO3-) in typhoons is essential for understanding their NO3- sources and its formation mechanisms. In this study, sequential precipitation samples during typhoons, including In-fa and Chanthu, were collected from Ningbo, Hangzhou and Huzhou. The chemical compositions, nitrogen and oxygen isotopes of NO3- and oxygen isotopes of H2O (δ18O-H2O) were measured. The results showed that the δ15N-NO3- and δ18O-NO3- values ranged from -6.3‰ to 6.0‰, and 38.0‰ to 66.5‰, respectively. The lower δ18O-NO3- values (less than 52‰) indicated the importance of peroxy radicals (RO2 or HO2) in NOx oxidation to NO3- formation pathways. By the Monte Carlo simulation of δ18O-NO3- values of typhoons, the calculated oxidation proportions of NO by RO2 (or HO2) during the OH· pathway ranged from 0% to 27% of In-fa and from 0% to 32% of Chanthu, respectively, in the three cities. More NOx emissions from marine microbial processes caused the lower δ15N-NO3- values of typhoons in Ningbo than those in Hangzhou and Huzhou. The variation in δ15N-NO3- values in sequential samples in In-fa reflected the decreased marine sources (lightning) and the increased anthropogenic sources in land (coal combustion and microbial N cycle) from Phrase I to Phrase II and III. Based on the improved Bayesian model with nitrogen isotopic fractionation, the contributions of lightning + biomass burning, coal combustion, mobile sources and the microbial N cycle were 35.7%, 22.5%, 27.1% and 14.7% in In-fa, and 28.3%, 32.3%, 28.0% and 11.4% in Chanthu, respectively, in the three cities, emphasizing the influence of marine NOx sources (lightning). The results highlight the importance of RO2 (or HO2) in NOx oxidation pathways in typhoons and provide valuable insight into the NOx sources of typhoons.
Collapse
Affiliation(s)
- Yasheng Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Yuming Hu
- Zhejiang Zone-King Environmental Sci & Tech Co., Ltd, Hanghzou 310004, China
| | - Zanfang Jin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China.
| | - Jiawen Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Junfeng Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Feili Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| |
Collapse
|
16
|
Ainiwaer S, Chen Y, Shen G, Shen H, Ma J, Cheng H, Tao S. Characterization of the vertical variation in indoor PM 2.5 in an urban apartment in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119652. [PMID: 35760202 DOI: 10.1016/j.envpol.2022.119652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Indoor air pollution has aroused increasing concerns due to its significant adverse health impacts. Indoor PM2.5 exposure assessments often rely on PM2.5 concentration measured at a single height, which overlooks the vertical variation of PM2.5 concentrations accompanied by various indoor activities. In this study, we characterize the vertical profile of PM2.5 concentration by monitoring PM2.5 concentration at eight different heights in the kitchen and the bedroom, respectively, using low-cost sensors with high temporal resolution. The localized enhancement of PM2.5 concentration in elevated heights in the kitchen during cooking was observed on clean and polluted days, showing dominating contribution from cooking activities. The source contribution from cooking and outdoor penetration was semi-quantified using regression models. Stratified source contribution from cooking activities was evident in the kitchen during the cooking period. The contribution in elevated heights (above 170 cm) almost tripled the contrition in bottom layers (below 140 cm). In contrast, little vertical variation was observed during other times of the day in the kitchen or the bedroom. The exposure level calculated using the multi-height measurement in this study is consistently higher than the exposure level estimated from the single-height (at 110 cm) measurement. A more significant discrepancy existed for the cookers (17.8%) than the non-cookers (13.5%). By profiling the vertical gradient of PM2.5 concentration, we show the necessity to conduct multi-height measurements or proper breathing-height measurements to obtain unbiased concentration information for source apportionment and exposure assessment. In particular, the multi-height measuring scheme will be crucial to inform household cooking emission regulations.
Collapse
Affiliation(s)
- Subinuer Ainiwaer
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Yilin Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Guofeng Shen
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Huizhong Shen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jianmin Ma
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Hefa Cheng
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China
| | - Shu Tao
- College of Urban Environmental Sciences, Laboratory for Earth Surface Processes, Sino-French Institute for Earth System, Peking University, Beijing, 100871, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
17
|
Integration of Indoor Air Quality Prediction into Healthy Building Design. SUSTAINABILITY 2022. [DOI: 10.3390/su14137890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Healthy building design is an emerging field of architecture and building engineering. Indoor air quality (IAQ) is an inevitable factor that should be considered in healthy building design due to its demonstrated links with human health and well-being. This paper proposes to integrate IAQ prediction into healthy building design by developing a simulation toolbox, termed i-IAQ, using MATLAB App Designer. Within the i-IAQ, users can input information of building layout and wall-openings and select air pollutant sources from the database. As an output, the toolbox simulates indoor levels of carbon dioxide (CO2), total volatile organic compounds (TVOC), inhalable particles (PM10), fine particles (PM2.5), nitrogen dioxide (NO2), and ozone (O3) during the occupied periods. Based on the simulation results, the toolbox also offers diagnosis and recommendations to improve the design. The accuracy of the toolbox was validated by a case study in an apartment where physical measurements of air pollutants took place. The results suggest that designers can integrate the i-IAQ toolbox in building design, so that the potential IAQ issues can be resolved at the early design stage at a low cost. The paper outcomes have the potential to pave a way towards more holistic healthy building design, and novel and cost-effective IAQ management.
Collapse
|
18
|
Luo Z, Xing R, Huang W, Xiong R, Qin L, Ren Y, Li Y, Liu X, Men Y, Jiang K, Tian Y, Shen G. Impacts of Household Coal Combustion on Indoor Ultrafine Particles-A Preliminary Case Study and Implication on Exposure Reduction. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:5161. [PMID: 35564556 PMCID: PMC9101610 DOI: 10.3390/ijerph19095161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023]
Abstract
Ultrafine particles (UFPs) significantly affect human health and climate. UFPs can be produced largely from the incomplete burning of solid fuels in stoves; however, indoor UFPs are less studied compared to outdoor UFPs, especially in coal-combustion homes. In this study, indoor and outdoor UFP concentrations were measured simultaneously by using a portable instrument, and internal and outdoor source contributions to indoor UFPs were estimated using a statistical approach based on highly temporally resolved data. The total concentrations of indoor UFPs in a rural household with the presence of coal burning were as high as 1.64 × 105 (1.32 × 105-2.09 × 105 as interquartile range) #/cm3, which was nearly one order of magnitude higher than that of outdoor UFPs. Indoor UFPs were unimodal, with the greatest abundance of particles in the size range of 31.6-100 nm. The indoor-to-outdoor ratio of UFPs in a rural household was about 6.4 (2.7-16.0), while it was 0.89 (0.88-0.91) in a home without strong internal sources. A dynamic process illustrated that the particle number concentration increased by ~5 times during the coal ignition period. Indoor coal combustion made up to over 80% of indoor UFPs, while in an urban home without coal combustion sources indoors, the outdoor sources may contribute to nearly 90% of indoor UFPs. A high number concentration and a greater number of finer particles in homes with the presence of coal combustion indicated serious health hazards associated with UFP exposure and the necessity for future controls on indoor UFPs.
Collapse
Affiliation(s)
- Zhihan Luo
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ran Xing
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Wenxuan Huang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Rui Xiong
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Lifan Qin
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yuxuan Ren
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yaojie Li
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Xinlei Liu
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yatai Men
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Ke Jiang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| | - Yanlin Tian
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control (AEMPC), Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; (Z.L.); (R.X.); (W.H.); (R.X.); (L.Q.); (Y.R.); (Y.L.); (X.L.); (Y.M.); (K.J.); (Y.T.)
| |
Collapse
|
19
|
Du W, Zhuo S, Wang J, Luo Z, Chen Y, Wang Z, Lin N, Cheng H, Shen G, Tao S. Substantial leakage into indoor air from on-site solid fuel combustion in chimney stoves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 291:118138. [PMID: 34520950 DOI: 10.1016/j.envpol.2021.118138] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Exposure to household air pollution (HAP) from solid fuel use (SFU) causes millions of premature deaths globally. Direct leakage from stoves into indoor air is believed to be the main cause of severe HAP. However, previous laboratory-based measurements reported leakage of minimal fractions from wood fuel combustion. Using a newly developed measurement method, on-site measurements were conducted to quantitatively evaluate the leakage of gases and particulate matter from different fuel-stove combinations. The fraction of indoor leakage to the total emission (F) of the measured air pollutants varied from 23 ± 11% to 40 ± 16% for different pollutants and fuel-stove combinations, and these were significantly higher than previously lab-based results. Fuel differences overwhelmed stove differences in influencing F values, with higher values from biomass burning than from coal combustion. The particles had higher F values than gases. Fugitive emission rates (ERs) were log-normally distributed, and biomass burning had higher ERs than coal burning. Indoor PM2.5 (fine particulate matter) and CO (carbon monoxide) concentrations measured during the burning period increased by nearly 1-2 orders of magnitude compared to concentrations before or after burning, confirming substantially high indoor leakage from fuel combustion in cookstoves. High fugitive emissions in indoor cookstoves quantified from the present on-site measurements effectively explain the high HAP levels observed in rural SFU households, and call for interventions to improve indoor air quality.
Collapse
Affiliation(s)
- Wei Du
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Shaojie Zhuo
- Shanghai Key Laboratory of Forensic Medicine, Institute of Forensic Science, Ministry of Justice, PR China, Shanghai, 200063, China
| | - Jinze Wang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhihan Luo
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yuanchen Chen
- College of Environment, Research Centre of Environmental Science, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhenglu Wang
- College of Oceanography, Hohai University, Nanjing, Jiangsu, China
| | - Nan Lin
- Department of Environmental Health, School of Public Health, Shanghai Jiao Tong University, China
| | - Hefa Cheng
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Guofeng Shen
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China.
| | - Shu Tao
- Laboratory of Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
20
|
Tao S, Shen G, Cheng H, Ma J. Toward Clean Residential Energy: Challenges and Priorities in Research. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13602-13613. [PMID: 34597039 DOI: 10.1021/acs.est.1c02283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Solid fuels used for cooking, heating, and lighting are major emission sources of many air pollutants, specifically PM2.5 and black carbon, resulting in adverse environmental and health impacts. At the same time, the transition from using residential solid fuels toward using cleaner energy sources can result in significant health benefits. Here, we briefly review recent research progress on the emissions of air pollutants from the residential sector and the impacts of emissions on ambient and indoor air quality, population exposure, and health consequences. The major challenges and future research priorities are identified and discussed.
Collapse
Affiliation(s)
- Shu Tao
- College of Environmental Science and Technology, Southern University of Science and Technology, Shenzhen 518055, China
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Hefa Cheng
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Jianmin Ma
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| |
Collapse
|