1
|
Gao M, Li C, Li Y, Wen S, Zhang Y, Liu L, Zhang J, Chen M, Yang J. Integration of ecological restoration and landscape aesthetics: Mechanisms of microplastic retention by optimization of aquatic plants landscape design in urban constructed wetlands - A case study of the living water park in Chengdu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177331. [PMID: 39515391 DOI: 10.1016/j.scitotenv.2024.177331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/27/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Microplastic (MP) pollution is prevalent in urban water environments, with increasing evidence of its negative environmental impacts. This study examines the role and mechanisms of aquatic plant landscapes in the ecological remediation of MP (0.05-5 mm) in urban constructed wetland parks, using the Living Water Park in Chengdu as a case study. Over a period of two years, a systematic investigation of MP characteristics, abundance and distribution in the water environment as well as aquatic plant landscapes in the park. Sampling was carried out for the three stages of the Fuhe River before, during and after its flow through the park, and for the water bodies at each step of the water purification system within the Living Water Park, and a total of 66 samples of freshwater microplastics (MPs)were collected at 8 preliminary and 25 official sampling sites selected. MPs were observed in all samples, with higher abundance found in more close-to-natural areas, such as ecological wetlands and streams. Aquatic plants play a crucial role in MP remediation through adsorption, uptake (Mp ≤ 5 μm) and accumulation. A positive correlation was found between MP abundance, aquatic plant species diversity, and public landscape evaluation. More diverse and layered wetland plant configurations exhibited better MP remediation capabilities. The study suggests specific aquatic plant species and combinations for optimal MP remediation, emphasizing the importance and feasibility of aquatic plant landscapes in urban constructed wetland parks. The findings highlight the potential of urban constructed wetland parks for MP remediation and provide important doi:ces for their long-term development and landscape design, proposing strategies from plant combination optimization to integrated landscape design and maintenance.
Collapse
Affiliation(s)
- Mengyao Gao
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Chen Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yiye Li
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Shu Wen
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Yanting Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Liang Liu
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Jing Zhang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China
| | - Mingkun Chen
- Chengdu Institute for Park City Construction and Development, Chengdu, Sichuan 610036, China
| | - Jie Yang
- College of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, China; Yibin Industrial Tachnology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping Distyict, Yibing, Sichuan 644000, China.
| |
Collapse
|
2
|
Zhao W, Ge ZM, Zhu KH, Lyu Q, Liu SX, Chen HY, Li ZF. Impacts of plastic pollution on soil-plant properties and greenhouse gas emissions in wetlands: A meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136167. [PMID: 39413522 DOI: 10.1016/j.jhazmat.2024.136167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/25/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Plastic pollution in wetlands has recently emerged as an urgent environmental problem. However, the impacts of plastic contamination on soil-plant properties and greenhouse gas (GHG) emissions in wetlands remain unclear. Thus, this study conducted a meta-analysis based on 44 study sites to explore the influence of plastic pollution on soil physicochemical variables, soil microorganisms, enzyme activity, functional genes, plant characteristics, and GHG emissions (CO2, CH4, and N2O) in different wetland types. Based on the collected dataset, the plastic pollution significantly increased soil organic matter and organic carbon by on average 28.9 % and 34.2 %, respectively, while decreased inorganic nutrient elements, bacteria alpha diversity and enzyme activities by an average of 5.9 -14.2 %. The response of bacterial abundance to plastic pollution varied depending on phylum classes. Plant biomass and photosynthetic efficiency were decreased by an average of 12.8 % and 18.4 % due to plastic pollution. The concentration and exposure time of plastics play a key role in influencing the soil and plant properties in wetlands. Furthermore, plastic exposure notably increased the abundance of the functional genes related to C degradation and the ammonia oxidizing microorganisms, and the consequent CO2 and N2O emissions (with effect sizes of 2.10 and 1.94, respectively). We also found that plastic concentrations and exposure duration affected the wetland soil-plant system. Our results might be helpful to design further investigations on plastic effects and develop appropriate measures for mitigating plastic pollution in wetlands.
Collapse
Affiliation(s)
- Wei Zhao
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zhen-Ming Ge
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China; Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China.
| | - Ke-Hua Zhu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Qing Lyu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Shi-Xian Liu
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Hua-Yu Chen
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| | - Zeng-Feng Li
- State Key Laboratory of Estuarine and Coastal Research, Institute of Eco-Chongming, Center for Blue Carbon Science and Technology, East China Normal University, Shanghai, China
| |
Collapse
|
3
|
Yin L, Nie X, Deng G, Tian J, Xiang Z, Abbasi S, Chen H, Zhang W, Xiao R, Gan C, Zhang Y, Wen X. Hydrodynamic driven microplastics in Dongting Lake, China: Quantification of the flux and transportation. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136049. [PMID: 39368360 DOI: 10.1016/j.jhazmat.2024.136049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Hydrodynamic conditions have a significant effect on the fate of microplastics (MPs). Moreover, research on the relation between hydrodynamic conditions and MPs in freshwater environments is critical and unquantified. In this regard, herein, a methodological framework integrating system monitoring with numerical simulation has been developed and successfully implemented for Dongting Lake, a large freshwater lake fed by multiple rivers. According to time-series monitoring and hydrological data, 199.29/128.50 trillion MP items entered or exited Dongting Lake in 2021. In addition, a coupled numerical model identified four key areas of MP accumulation, which overlap with nature reserves and agricultural zones, posing considerable risks to the ecological gene pool and food security. The quantitative results obtained using the developed framework enable calculation of MP inflow and outflow fluxes and facilitate analysis of MP transportation. Overall, this study provides a scientific basis for preventing and controlling MP pollution in Dongting Lake and offers valuable insights for future research on related issues in freshwater ecosystems.
Collapse
Affiliation(s)
- Lingshi Yin
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| | - Xiuzhen Nie
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Guanying Deng
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Jiayi Tian
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ziyi Xiang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Sajjad Abbasi
- Department of Earth Sciences, College of Science, Shiraz University, Shiraz 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran
| | - Haojie Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenping Zhang
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - Ruihao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chuneng Gan
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha 410128, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science and Technology, Changsha 410114, China; Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha 410114, China.
| |
Collapse
|
4
|
Zhang L, Vaccari F, Bandini F, Puglisi E, Trevisan M, Lucini L. The short-term effect of microplastics in lettuce involves size- and dose-dependent coordinate shaping of root metabolome, exudation profile and rhizomicrobiome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 945:174001. [PMID: 38879040 DOI: 10.1016/j.scitotenv.2024.174001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 06/02/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
Micro- and nano-plastics (MNPs) in the soil can impact the microbial diversity within rhizospheres and induce modifications in plants' morphological, physiological, and biochemical parameters. However, a significant knowledge gap still needs to be addressed regarding the specific effects of varying particle sizes and concentrations on the comprehensive interplay among soil dynamics, root exudation, and the overall plant system. In this sense, different omics techniques were employed to clarify the mechanisms of the action exerted by four different particle sizes of polyethylene plastics considering four different concentrations on the soil-roots exudates-plant system was studied using lettuce (Lactuca sativa L. var. capitata) as a model plant. The impact of MNPs was investigated using a multi-omics integrated approach, focusing on the tripartite interaction between the root metabolic process, exudation pattern, and rhizosphere microbial modulation. Our results showed that particle size and their concentrations significantly modulated the soil-roots exudates-plant system. Untargeted metabolomics highlighted that fatty acids, amino acids, and hormone biosynthesis pathways were significantly affected by MNPs. Additionally, they were associated with the reduction of rhizosphere bacterial α-diversity, following a size-dependent trend for specific taxa. The omics data integration highlighted a correlation between Pseudomonadata and Actinomycetota phyla and Bacillaceae family (Peribacillus simplex) and the exudation of flavonoids, phenolic acids, and lignans in lettuce exposed to increasing sizes of MNPs. This study provides a novel insight into the potential effects of different particle sizes and concentrations of MNPs on the soil-plant continuum, providing evidence about size- and concentration-dependent effects, suggesting the need for further investigation focused on medium- to long-term exposure.
Collapse
Affiliation(s)
- Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Filippo Vaccari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Francesca Bandini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Edoardo Puglisi
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Marco Trevisan
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Piacenza, Italy.
| |
Collapse
|
5
|
Gong K, Hu S, Zhang W, Peng C, Tan J. Topic modeling discovers trending topics in global research on the ecosystem impacts of microplastics. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:425. [PMID: 39316202 DOI: 10.1007/s10653-024-02218-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/03/2024] [Indexed: 09/25/2024]
Abstract
The ecological threats of microplastics (MPs) have sparked research worldwide. However, changes in the topics of MP research over time and space have not been evaluated quantitatively, making it difficult to identify the next frontiers. Here, we apply topic modeling to assess global spatiotemporal dynamics of MP research. We identified nine leading topics in current MP research. Over time, MP research topics have switched from aquatic to terrestrial ecosystems, from distribution to fate, from ingestion to toxicology, and from physiological toxicity to cytotoxicity and genotoxicity. In most of the nine leading topics, a disproportionate amount of independent and collaborative research activity was conducted in and between a few developed countries which is detrimental to understanding the environmental fates of MPs in a global context. This review recognizes the urgent need for more attention to emerging topics in MP research, particularly in regions that are heavily impacted but currently overlooked.
Collapse
Affiliation(s)
- Kailin Gong
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangqing Hu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Wei Zhang
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Cheng Peng
- School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai, 200233, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Jiaqi Tan
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
6
|
Zhao Y, Du A, Ge T, Li G, Lian X, Zhang S, Hu C, Wang X. Accumulation modes and effects of differentially charged polystyrene nano/microplastics in water spinach (Ipomoea aquatica F.). JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135892. [PMID: 39303613 DOI: 10.1016/j.jhazmat.2024.135892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
There is widespread concern about the risk of nano/microplastics (N/MPs) entering the food chain through higher plants. However, the primary factors that influence the absorption of N/MPs by higher plants remain largely unclear. This study examined the impact of Europium-doped N/MPs with different particle sizes and surface charges by water spinach (Ipomoea aquatica F.) to address this knowledge gap. N/MPs were visualized and quantitatively analyzed using laser confocal microscopy, scanning electron microscopy, and inductively coupled plasma-mass spectrometry. N/MPs with different surface charges were absorbed by the roots, with the apoplastic pathway as the major route of transport. After 28 days of exposure to 50 mg L-1 N/MPs, N/MPs-COOH caused the highest levels of oxidative stress and damage to the roots. The plants accumulated NPs-COOH the most (average 1640.16 mg L-1), while they accumulated NPs-NH2 the least (average 253.70 mg L-1). Particle size was the main factor influencing the translocation of N/MPs from the root to the stem, while the Zeta potential mainly influenced particle entry into the roots from the hydroponic solution as well as stem-to-leaf translocation. Different charged N/MPs induced osmotic stress in the roots. A small amount of N/MPs in the leaves significantly stimulated the production of chlorophyll, while excessive N/MPs significantly reduced its content. These results provide new insights into the mechanism of interaction between N/MPs and plants.
Collapse
Affiliation(s)
- Yachuan Zhao
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Ao Du
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Tida Ge
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Plant Virology, Ningbo University, Ningbo 315211, China
| | - Gang Li
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, China
| | - Xiaoqing Lian
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Shufeng Zhang
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China
| | - Can Hu
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China.
| | - Xufeng Wang
- College of Mechanical and Electrical Engineering, Tarim University, Alar 843300, China; Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region, China; Xinjiang Production and Construction Corps (XPCC) Key Laboratory of Utilization and Equipment of Special Agricultural and Forestry Products in Southern Xinjiang, China.
| |
Collapse
|
7
|
Bai Y, Chen Y, Song Y, Bai R, He W, Zhao M, Zhang J, Zhang W, Zhang Y, Dong S, Bai W. Screening of optimal cleaning methods to reduce microplastic residues on strawberry surfaces: Characterization of microplastics in strawberry wash water. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135310. [PMID: 39067298 DOI: 10.1016/j.jhazmat.2024.135310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/11/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Microplastics are widespread in facility strawberry greenhouses and can be deposited on the surface of strawberries through air currents. Investigating effective cleaning methods represents a viable strategy to reduce human ingestion of MPs. Therefore, different cleaning methods were compared: ultrasonic cleaning for 30 min, deionized water rinsing once, deionized water immersion for 30 min, and fruit immersion in washing salt for 30 min. The MPs in strawberry washing water were analyzed and compared using laser direct infrared imaging to investigate their characteristics and the optimal reduction of MPs on the surface of strawberries. The quality of the cleaning results was in the following order: water immersion > washing salt immersion > water rinsing > ultrasound. Water immersion was 1.3-2 times more effective in removing microplastics than other treatments. Furthermore, 21 polymer types were detected in the samples. Most MPs were less than 50 µm in size. The main polymers in this size range were polyamide, chlorinated polyethylene, and polyethylene terephthalate, and they mainly existed as fragments, fibers, and beads. This study provides a valuable reference for reducing human intake of microplastics through fresh fruits and vegetables.
Collapse
Affiliation(s)
- Yeran Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yanhua Chen
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yang Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Runhao Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenqing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Zhao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Jiajia Zhang
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Weidong Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Yukun Zhang
- Changping District Farmland Station, Beijing 102200, China
| | - Shuqi Dong
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| | - Wenbo Bai
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Lo Porto A, Amato G, Gargano G, Giambalvo D, Ingraffia R, Torta L, Frenda AS. Polypropylene microfibers negatively affect soybean growth and nitrogen fixation regardless of soil type and mycorrhizae presence. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135781. [PMID: 39260000 DOI: 10.1016/j.jhazmat.2024.135781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Recent studies have indicated that soil contamination with microplastics (MPs) can negatively affect agricultural productivity, although these effects vary greatly depending on the context. Furthermore, the mechanisms behind these effects remain largely unknown. In this study, we examined the impact of two concentrations of polypropylene (PP) fibers in the soil (0.4 % and 0.8 % w/w) on soybean growth, nitrogen uptake, biological nitrogen fixation (BNF), and water use efficiency by growing plants in two soil types, with and without arbuscular mycorrhizal fungi (AMF). PP contamination consistently reduced vegetative growth (-12 %, on average compared to the control), with the severity of this effect varying significantly by soil type (more pronounced in Alfisol than in Vertisol). The extent of BNF progressively reduced with the increase in PP contamination level in both soils (on average, -17.1 % in PP0.4 and -27.5 % in PP0.8 compared to the control), which poses clear agro-environmental concerns. Water use efficiency was also reduced due to PP contamination but only in the Alfisol (-9 %, on average). Mycorrhizal symbiosis did not seem to help plants manage the stress caused by PP contamination, although it did lessen the negative impact on BNF. These findings are the first to demonstrate the effect of PP on BNF in soybean plants, underscoring the need to develop strategies to reduce PP pollution in the soil and to mitigate the impact of PP on the functionality and sustainability of agroecosystems.
Collapse
Affiliation(s)
- Antonella Lo Porto
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Gaetano Amato
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Giacomo Gargano
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Dario Giambalvo
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | - Rosolino Ingraffia
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy.
| | - Livio Torta
- University of Palermo - Department of Agricultural, Food and Forestry Sciences, Italy
| | | |
Collapse
|
9
|
Nath S, Enerijiofi KE, Astapati AD, Guha A. Microplastics and nanoplastics in soil: Sources, impacts, and solutions for soil health and environmental sustainability. JOURNAL OF ENVIRONMENTAL QUALITY 2024. [PMID: 39246015 DOI: 10.1002/jeq2.20625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/31/2024] [Indexed: 09/10/2024]
Abstract
The present review discusses the growing concern of microplastics (MPs) and nanoplastics (NPs) in soil, together with their sources, concentration, distribution, and impact on soil microorganisms, human health, and ecosystems. MPs and NPs can enter the soil through various pathways, such as agricultural activities, sewage sludge application, and atmospheric deposition. Once in the soil, they can accumulate in the upper layers and affect soil structure, water retention, and nutrient availability. The presence of MPs and NPs in soil can also have ecological consequences, acting as carriers for pollutants and contaminants, such as heavy metals and persistent organic pollutants. Additionally, the leaching of chemicals and additives from MPs and NPs can pose public health risks through the food web and groundwater contamination. The detection and analyses of MPs and NPs in soil can be challenging, and methods involve spectroscopic and microscopy techniques, such as Fourier-transform infrared spectroscopy and scanning electron microscopy. To mitigate the presence and effects of MPs and NPs in soil, it is essential to reduce plastic waste production, improve waste management practices, and adopt sustainable agricultural practices. Effective mitigation measures include implementing stricter regulations on plastic use, promoting biodegradable alternatives, and enhancing recycling infrastructure. Additionally, soil amendments, such as biochar and compost, can help immobilize MPs and NPs, reducing their mobility and bioavailability. This review article aims to provide a comprehensive understanding of these emerging environmental issues and identify potential solutions to alleviate their impact on soil health, ecosystem functioning, and community health.
Collapse
Affiliation(s)
- Soumitra Nath
- Department of Biotechnology, Gurucharan College, Silchar, Assam, India
| | - Kingsley Erhons Enerijiofi
- Department of Biological Sciences, College of Basic and Applied Sciences, Glorious Vision University, Ogwa, Edo State, Nigeria
| | | | - Anupam Guha
- Michael Madhusudan Dutta College, Sabroom, Tripura, India
| |
Collapse
|
10
|
Jadhav B, Medyńska-Juraszek A. Microplastic and Nanoplastic in Crops: Possible Adverse Effects to Crop Production and Contaminant Transfer in the Food Chain. PLANTS (BASEL, SWITZERLAND) 2024; 13:2526. [PMID: 39274010 PMCID: PMC11397527 DOI: 10.3390/plants13172526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/16/2024]
Abstract
With the increasing amounts of microplastic (MP) deposited in soil from various agricultural activities, crop plants can become an important source of MP in food products. The last three years of studies gave enough evidence showing that plastic in the form of nanoparticles (<100 nm) can be taken up by the root system and transferred to aboveground plant parts. Furthermore, the presence of microplastic in soil affects plant growth disturbing metabolic processes in plants, thus reducing yields and crop quality. Some of the adverse effects of microplastic on plants have been already described in the meta-analysis; however, this review provides a comprehensive overview of the latest findings about possible adverse effects and risks related to wide microplastic occurrence in soil on crop production safety, including topics related to changes of pesticides behavior and plant pathogen spreading under the presence MP and possibly threaten to human health.
Collapse
Affiliation(s)
- Bhakti Jadhav
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| | - Agnieszka Medyńska-Juraszek
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Wroclaw University of Environmental and Life Sciences, 53 Grunwaldzka Str., 50-357 Wrocław, Poland
| |
Collapse
|
11
|
Li X, Shi F, Zhou M, Wu F, Su H, Liu X, Wei Y, Wang F. Migration and accumulation of microplastics in soil-plant systems mediated by symbiotic microorganisms and their ecological effects. ENVIRONMENT INTERNATIONAL 2024; 191:108965. [PMID: 39167856 DOI: 10.1016/j.envint.2024.108965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
The coexistence of microorganisms in complex soil environments greatly affects the environmental behavior and ecological effects of microplastics (MPs). However, relevant studies are sparse, and internal mechanisms remain unclear. Herein, arbuscular mycorrhizal fungi (AMF), a common symbiotic microorganism in the soil-plant system, was proved to significantly affect MPs absorption and migration with a "size effect". Specifically, the existence of AMF accelerated small-sized MPs (0.5 μm) uptake but slowed large-sized MPs (2 μm) uptake in lettuce. The content of 0.5 μm MPs absorbed by plants with AMF was 1.26 times that of the non-AMF group, while the content of 2 μm MPs was only 77.62 % that of non-AMF group. Additionally, the different effects of microorganisms on the intake content of MPs with different particle sizes in plants also led to different toxic effects of MPs on lettuce, that is, AMF exacerbated small-size MPs toxicity in lettuce (e.g., reduced plant biomass, photosynthesis, etc), and it weakened large-sized MPs toxicity (e.g., increased plant height, antioxidant enzyme activity, etc). The above phenomenon mainly because of the change in AMF on the plant root structure, which can be visually observed through the intraradical and extraradical hyphae. The symbiotic structure (hyphae) formed by AMF and host plants root could enhance the absorption pathway for small-sized MPs in lettuce, although not for large-sized MPs. Additionally, the effects of AMF varied with the soil environment of differently sized MPs, which promoted the migration of small-particle MPs to plants but aggravated large-particle MPs fixation at the soil interface. These findings could deepen the understanding of MPs pollution in terrestrial systems and provide theoretical basis and technical support to accurately assess soil MPs pollution.
Collapse
Affiliation(s)
- Xinru Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Feng Shi
- National Center for Science & Technology Evaluation, Beijing 100081, China
| | - Min Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Fengchang Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hailei Su
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xuesong Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yuan Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Fanfan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| |
Collapse
|
12
|
Lasota J, Błońska E, Kempf M, Kempf P, Tabor S. Impact of various microplastics on the morphological characteristics and nutrition of the young generation of beech (Fagus sylvatica L.). Sci Rep 2024; 14:19284. [PMID: 39164338 PMCID: PMC11336185 DOI: 10.1038/s41598-024-70046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 08/12/2024] [Indexed: 08/22/2024] Open
Abstract
Microplastics have the capacity to accumulate in soil due to their high resistance to degradation, consequently altering soil properties and influencing plant growth. This study focused on assessing the impact of various types and doses of microplastics on beech seedling growth. In our experiment, we used polypropylene and styrene granules with diameter of 4.0 mm in quantities of 2.5% and 7%. The hypothesis was that microplastics significantly affect seedlings' nutritional status and growth characteristics. The research analysed seedlings' nutrition, root morphological features, above-ground growth, and enzymatic activity in the substrate. Results confirmed the importance of microplastics in shaping the nutritional status of young beech trees. Microplastic type significantly impacted N/P and Ca/Mg stoichiometry, while microplastic quantity influenced Ca/Al and Ca+K+Mg/Al stoichiometry. Notably, only in the case of root diameter were significantly thicker roots noted in the control variant, whereas microplastics played a role in shaping the leaves' characteristics of the species studied. The leaf area was significantly larger in the control variant compared to the variant with polypropylene in the amount of 2.5% and styrene in the amount of 7%. Additionally, the study indicates a significant impact of microplastics on enzyme activity. In the case of CB and SP, the activity was twice as high in the control variant compared to the variants with microplastics. In the case of BG, the activity in the control variant was higher in relation to the variants used in the experiment. Research on the impact of microplastics on the growth of beech seedlings is crucial for enhancing our understanding of the effects of environmental pollution on forest ecosystems. Such studies are integral in shaping forestry management practices and fostering a broader public understanding of the ecological implications of plastic pollution.
Collapse
Affiliation(s)
- Jarosław Lasota
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| | - Ewa Błońska
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland
| | - Marta Kempf
- Department of Ecology and Silviculture, Faculty of Forestry, University of Agriculture in Krakow, 29 Listopada 46 Str., 31-425, Kraków, Poland.
| | - Piotr Kempf
- Krakow Regional Directorate of State Forests, Juliusza Słowackiego 17a, 31-159, Kraków, Poland
| | - Sylwester Tabor
- Department of Machinery Exploitation, Ergonomics and Production Processes, University of Agriculture in Krakow, ul. Balicka 116B, 31-149, Kraków, Poland
| |
Collapse
|
13
|
Kumar D, Biswas JK, Mulla SI, Singh R, Shukla R, Ahanger MA, Shekhawat GS, Verma KK, Siddiqui MW, Seth CS. Micro and nanoplastics pollution: Sources, distribution, uptake in plants, toxicological effects, and innovative remediation strategies for environmental sustainability. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108795. [PMID: 38878390 DOI: 10.1016/j.plaphy.2024.108795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
Microplastics and nanoplastics (MNPs), are minute particles resulting from plastic fragmentation, have raised concerns due to their widespread presence in the environment. This study investigates sources and distribution of MNPs and their impact on plants, elucidating the intricate mechanisms of toxicity. Through a comprehensive analysis, it reveals that these tiny plastic particles infiltrate plant tissues, disrupting vital physiological processes. Micro and nanoplastics impair root development, hinder water and nutrient uptake, photosynthesis, and induce oxidative stress and cyto-genotoxicity leading to stunted growth and diminished crop yields. Moreover, they interfere with plant-microbe interactions essential for nutrient cycling and soil health. The research also explores the translocation of these particles within plants, raising concerns about their potential entry into the food chain and subsequent human health risks. The study underscores the urgency of understanding MNPs toxicity on plants, emphasizing the need for innovative remediation strategies such as bioremediation by algae, fungi, bacteria, and plants and eco-friendly plastic alternatives. Addressing this issue is pivotal not only for environmental conservation but also for ensuring sustainable agriculture and global food security in the face of escalating plastic pollution.
Collapse
Affiliation(s)
- Dharmendra Kumar
- Department of Botany, University of Delhi, New Delhi-110007, Delhi, India
| | - Jayanta Kumar Biswas
- International Centre for Ecological Engineering, Department of Ecological Studies, University of Kalyani, Kalyani, Nadia- 741235, West Bengal, India
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore- 560064, Karnataka, India
| | - Rachana Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Noida- 201308, India
| | - Ravindra Shukla
- Department of Botany, Indira Gandhi National Tribal University, Amarkantak- 484887, Madhya Pradesh, India
| | - Mohammad Abass Ahanger
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan 666303, China
| | - Gyan Singh Shekhawat
- Department of Botany, Jai Narain Vyas University, Jodhpur, 342005, Rajasthan, India
| | - Krishan K Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences, Nanning-530007, China
| | - Mohammed Wasim Siddiqui
- Department of Food Science and Postharvest Technology, Bihar Agricultural University, Sabour-813210, Bhagalpur, Bihar, India
| | | |
Collapse
|
14
|
Saha U, Kumari P, Ghosh A, Sinha A, Jena S, Kirti A, Gupta A, Choudhury A, Simnani FZ, Nandi A, Sahoo RN, Singh S, Mishra R, Kaushik NK, Singh D, Suar M, Verma SK. Detrimental consequences of micropolymers associated plasticizers on endocrinal disruption. Mater Today Bio 2024; 27:101139. [PMID: 39027679 PMCID: PMC11255117 DOI: 10.1016/j.mtbio.2024.101139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 07/20/2024] Open
Abstract
The prevalence of polymer usage in everyday activities has emerged as a detriment to both human life and the environment. A large number of studies describe severe impacts of micropolymers (MP) and nanopolymers (NP) on various organ systems, including the endocrine system. Additionally, plasticizers utilized as additives have been identified as endocrine-disrupting chemicals (EDCs). MP/NP, along with associated plasticizers, affect principal signalling pathways of endocrine glands such as the pituitary, thyroid, adrenal, and gonads, thereby disrupting hormone function and metabolic processes crucial for maintaining homeostasis, fertility, neural development, and fetal growth. This review delves into the sources, distribution, and effects of micropolymers, nanopolymers, and associated plasticizers acting as EDCs. Furthermore, it provides a detailed review of the mechanisms underlying endocrine disruption in relation to different types of MP/NP.
Collapse
Affiliation(s)
- Utsa Saha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Puja Kumari
- Department of Biotechnology, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, Brno, 61137, Czech Republic
| | - Aishee Ghosh
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Adrija Sinha
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Snehashmita Jena
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Apoorv Kirti
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Abha Gupta
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Anmol Choudhury
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | | | - Aditya Nandi
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Rudra Narayan Sahoo
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Shalini Singh
- Markham College of Commerce, Vinoba Bhave University, Hazaribagh, Jharkhand, 825001, India
| | - Richa Mishra
- Department of Computer Engineering, Parul University, Ta. Waghodia, Vadodara, Gujarat, 391760, India
| | - Nagendra Kumar Kaushik
- Plasma Bioscience Research Center, Department of Electrical and Biological Physics, Kwangwoon University, 01897, Seoul, South Korea
| | - Deobrat Singh
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20, Uppsala, Sweden
| | - Mrutyunjay Suar
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| | - Suresh K. Verma
- KIIT School of Biotechnology, KIIT University, Bhubaneswar, 751024, Odisha, India
| |
Collapse
|
15
|
Okla MK, Mumtaz S, Javed S, Saleh IA, Zomot N, Alwasel YA, Abdel-Maksoud MA, Song B, Adil MF. Elucidating the role of rice straw biochar in modulating Helianthus annuus L. antioxidants, secondary metabolites and soil post-harvest characteristics in different types of microplastics. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108865. [PMID: 38936071 DOI: 10.1016/j.plaphy.2024.108865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/21/2024] [Accepted: 06/19/2024] [Indexed: 06/29/2024]
Abstract
The emergence of microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant threats to soil ecosystems. Given the widespread contamination of ecosystems by various types of MPs, including polystyrene (PS), polyvinyl chloride (PVC), and polyethylene (PE), it is crucial to understand their effects on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC, and PE) on various aspects of sunflower (Helianthus annuus L.) growth with the addition of rice straw biochar (RSB). This study aimed to examine plant growth and biomass, photosynthetic pigments and gas exchange characteristics, oxidative stress indicators, and the response of various antioxidants (enzymatic and non-enzymatic) and their specific gene expression, proline metabolism, the AsA-GSH cycle, cellular fractionation in the plants and post-harvest soil properties. The research outcomes indicated that elevated levels of different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments, and gas exchange attributes. Different types of MPs also induced oxidative stress, which caused an increase in various enzymatic and non-enzymatic antioxidant compounds, gene expression and sugar content; notably, a significant increase in proline metabolism, AsA-GSH cycle, and pigmentation of cellular components was also observed. Favorably, the addition of RSB significantly increased plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds, and relevant gene expression while decreasing oxidative stress. In addition, RSB amendment decreased proline metabolism and AsA-GSH cycle in H. annuus plants, thereby enhancing cellular fractionation and improving post-harvest soil properties. These results open new avenues for sustainable agriculture practices and show great potential for resolving the urgent issues caused by microplastic contamination in agricultural soils.
Collapse
Affiliation(s)
- Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sahar Mumtaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Sadia Javed
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan.
| | | | - Naser Zomot
- Faculty of Science, Zarqa University, Zarqa 13110, Jordan
| | - Yasmeen A Alwasel
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Baiquan Song
- National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Faheem Adil
- Department of Agronomy, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
16
|
Rajendran D, Kamalakannan M, Doss GP, Chandrasekaran N. Surface functionalization, particle size and pharmaceutical co-contaminant dependent impact of nanoplastics on marine crustacean - Artemia salina. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1130-1146. [PMID: 38655700 DOI: 10.1039/d4em00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Despite a significant amount of research on micronanoplastics (MNPs), there is still a gap in our understanding of their function as transporters of other environmental pollutants (known as the Trojan horse effect) and the combined effects of ingestion, bioaccumulation, and toxicity to organisms. This study examined the individual effects of polystyrene nanoplastics (PSNPs) with various surface functionalizations (plain (PS), carboxylated (PS-COOH), and aminated (PS-NH2)), particle sizes (100 nm and 500 nm), and a pharmaceutical co-contaminant (metformin hydrochloride (MH), an anti-diabetic drug) on the marine crustacean - Artemia salina. The study specifically aimed to determine if MH alters the detrimental effects of PSNPs on A. salina. The potential toxicity of these emerging pollutants was assessed by examining mortality, hatching rate, morphological changes, and biochemical changes. Smaller nanoparticles had a more significant impact than larger ones, and PS-NH2 was more harmful than PS and PS-COOH. Exposure to the nanoparticle complex with MH resulted in a decrease in hatching rate, an increase in mortality, developmental abnormalities, an increase in reactive oxygen species, catalase, and lipid peroxidase, and a decrease in total protein and superoxide dismutase, indicating a synergistic effect. There were no significant differences between the complex and the individual nanoparticles. However, accumulating these particles in organisms could contaminate the food chain. These results highlight the potential environmental risks associated with the simultaneous exposure of aquatic species to plastics, particularly smaller PS, aminated PS, and pharmaceutical complex PS.
Collapse
Affiliation(s)
- Durgalakshmi Rajendran
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| | | | - George Priya Doss
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | | |
Collapse
|
17
|
Vohl S, Kristl M, Stergar J. Harnessing Magnetic Nanoparticles for the Effective Removal of Micro- and Nanoplastics: A Critical Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1179. [PMID: 39057856 PMCID: PMC11279442 DOI: 10.3390/nano14141179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The spread of micro- (MPs) and nanoplastics (NPs) in the environment has become a significant environmental concern, necessitating effective removal strategies. In this comprehensive scientific review, we examine the use of magnetic nanoparticles (MNPs) as a promising technology for the removal of MPs and NPs from water. We first describe the issues of MPs and NPs and their impact on the environment and human health. Then, the fundamental principles of using MNPs for the removal of these pollutants will be presented, emphasizing that MNPs enable the selective binding and separation of MPs and NPs from water sources. Furthermore, we provide a short summary of various types of MNPs that have proven effective in the removal of MPs and NPs. These include ferromagnetic nanoparticles and MNPs coated with organic polymers, as well as nanocomposites and magnetic nanostructures. We also review their properties, such as magnetic saturation, size, shape, surface functionalization, and stability, and their influence on removal efficiency. Next, we describe different methods of utilizing MNPs for the removal of MPs and NPs. We discuss their advantages, limitations, and potential for further development in detail. In the final part of the review, we provide an overview of the existing studies and results demonstrating the effectiveness of using MNPs for the removal of MPs and NPs from water. We also address the challenges that need to be overcome, such as nanoparticle optimization, process scalability, and the removal and recycling of nanoparticles after the completion of the process. This comprehensive scientific review offers extensive insights into the use of MNPs for the removal of MPs and NPs from water. With improved understanding and the development of advanced materials and methods, this technology can play a crucial role in addressing the issues of MPs and NPs and preserving a clean and healthy environment. The novelty of this review article is the emphasis on MNPs for the removal of MPs and NPs from water and a detailed review of the advantages and disadvantages of various MNPs for the mentioned application. Additionally, a review of a large number of publications in this field is provided.
Collapse
Affiliation(s)
| | | | - Janja Stergar
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, 2000 Maribor, Slovenia; (S.V.); (M.K.)
| |
Collapse
|
18
|
Ren F, Huang J, Yang Y. Unveiling the impact of microplastics and nanoplastics on vascular plants: A cellular metabolomic and transcriptomic review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 279:116490. [PMID: 38795417 DOI: 10.1016/j.ecoenv.2024.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/03/2024] [Accepted: 05/19/2024] [Indexed: 05/28/2024]
Abstract
With increasing plastic manufacture and consumption, microplastics/nanoplastics (MP/NP) pollution has become one of the world's pressing global environmental issues, which poses significant threats to ecosystems and human health. In recent years, sharp increasing researches have confirmed that MP/NP had direct or indirect effects on vegetative growth and sexual process of vascular plant. But the potential mechanisms remain ambiguous. MP/NP particles can be adsorbed and/or absorbed by plant roots or leaves and thus cause diverse effects on plant. This holistic review aims to discuss the direct effects of MP/NP on vascular plant, with special emphasis on the changes of metabolic and molecular levels. MP/NP can alter substance and energy metabolism, as well as shifts in gene expression patterns. Key aspects affected by MP/NP stress include carbon and nitrogen metabolism, amino acids biosynthesis and plant hormone signal transduction, expression of stress related genes, carbon and nitrogen metabolism related genes, as well as those involved in pathogen defense. Additionally, the review provides updated insights into the growth and physiological responses of plants exposed to MP/NP, encompassing phenomena such as seed/spore germination, photosynthesis, oxidative stress, cytotoxicity, and genotoxicity. By examining the direct impact of MP/NP from both physiological and molecular perspectives, this review sets the stage for future investigations into the complex interactions between plants and plastic pollutants.
Collapse
Affiliation(s)
- Fugang Ren
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China; College of Medical Technology, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Chongqing Key Laboratory of Sichuan-Chongqing Co-construction for Diagnosis and Treatment of Infectious Diseases Integrated Traditional Chinese and Western Medicine, China
| | - Jing Huang
- Department of Vocal Performance, Sichuan Conservatory of Music, Chengdu 610021, China
| | - Yongqing Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
19
|
Seo Y, Zhou Z, Lai Y, Chen G, Pembleton K, Wang S, He JZ, Song P. Micro- and nanoplastics in agricultural soils: Assessing impacts and navigating mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172951. [PMID: 38703838 DOI: 10.1016/j.scitotenv.2024.172951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Micro-/nanoplastic contamination in agricultural soils raises concerns on agroecosystems and poses potential health risks. Some of agricultural soils have received significant amounts of micro-/nanoplastics (MNPs) through plastic mulch film and biosolid applications. However, a comprehensive understanding of the MNP impacts on soils and plants remains elusive. The interaction between soil particles and MNPs is an extremely complex issue due to the different properties and heterogeneity of soils and the diverse characteristics of MNPs. Moreover, MNPs are a class of relatively new anthropogenic pollutants that may negatively affect plants and food. Herein, we presented a comprehensive review of the impacts of MNPs on the properties of soil and the growth of plants. We also discussed different strategies for mitigating or eliminating MNP contamination. Moreover, perspectives for future research on MNP contamination in the agricultural soils are also highlighted.
Collapse
Affiliation(s)
- Yoonjung Seo
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Zhezhe Zhou
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia
| | - Yunru Lai
- Centre for Sustainable Agricultural Systems, University of Southern Queensland, Springfield, Australia.
| | - Guangnan Chen
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia.
| | - Keith Pembleton
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Ji-Zheng He
- School of Agriculture, Food and Ecosystem Sciences, The University of Melbourne, Parkville, Victoria, Australia
| | - Pingan Song
- School of Agriculture and Environmental Science, University of Southern Queensland, Springfield, Australia; Centre for Future Materials, University of Southern Queensland, Springfield, Australia.
| |
Collapse
|
20
|
Li J, Zhang Y, Zhou Y, Liu W, Maryam B, Cui J, Liu M, Liu X. Polystyrene nanoplastics distinctly impact cadmium uptake and toxicity in Arabidopsis thaliana. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124373. [PMID: 38897273 DOI: 10.1016/j.envpol.2024.124373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/08/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The ubiquitous presence of micro- and nanoplastics (MNPs) in soil has raised concerns regarding their potential effects on terrestrial plants. The coexistence and interactions between MNPs and heavy metals altering their phytotoxicity deserves further investigation. In this study, we explored the impacts of various concentrations of polystyrene nanoplastics (PS-NPs) and cadmium (Cd) alone or in combination on the growth and development of Arabidopsis thaliana. Additionally, we examined the effects of combined stress on the uptake and translocation of Cd within Arabidopsis thaliana. Our findings revealed several key insights: PS-NPs exhibited the capability to internalize in the maturation zone of Arabidopsis roots; the presence of Cd changed the particle size and zeta potential of PS-NPs; the presence of PS-NPs heightened Cd accumulation in the underground parts of Arabidopsis seedlings, leading to a stronger oxidative stress response in these regions; the composite stress exerted a more pronounced effect on the growth and development of Arabidopsis compared to individual stresses. Interestingly, while higher PS-NPs concentrations hindered Cd migration from roots to leaves, they also acted as carriers for Cd uptake in Arabidopsis roots. These findings shed light on the combined impacts of MNPs and heavy metals on plant physiology, offering theoretical insights to guide risk assessment strategies for MNPs and heavy metals in terrestrial ecosystems.
Collapse
Affiliation(s)
- Jiaxuan Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yihao Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Yu Zhou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Wanxin Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Bushra Maryam
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Jinran Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Miao Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300354, PR China.
| |
Collapse
|
21
|
Jiang Y, Chen X, Cao X, Wang C, Yue L, Li X, Wang Z. Mechanistic insight into the intensification of arsenic toxicity to rice (Oryza sativa L.) by nanoplastic: Phytohormone and glutathione metabolism modulation. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134086. [PMID: 38521034 DOI: 10.1016/j.jhazmat.2024.134086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/08/2024] [Accepted: 03/18/2024] [Indexed: 03/25/2024]
Abstract
In this study, nanoplastic (NPs) at environmentally relevant concentration (0.001% w/w) had no effect on the growth of rice, while significantly elevated the phytotoxicity of As (III) by 9.4-22.8% based on the endpoints of biomass and photosynthesis. Mechanistically, NPs at 0.001% w/w enhanced As accumulation in the rice shoots and roots by 70.9% and 24.5%, respectively. Reasons of this finding can was that (1) the co-exposure with As and NPs significantly decreased abscisic acid content by 16.0% in rice, with subsequent increasing the expression of aquaporin related genes by 2.1- to 2.7-folds as compared with As alone treatment; (2) the presence of NPs significantly inhibited iron plaque formation on rice root surface by 22.5%. We firstly demonstrated that "Trojan horse effect" had no contribution to the enhancement of As accumulation by NPs exposure. Additionally, NPs disrupted the salicylic acid, jasmonic acid, and glutathione metabolism, which subsequently enhancing the oxidation (7.0%) and translocation (37.0%) of in planta As, and reducing arsenic detoxification pathways (e.g., antioxidative system (28.6-37.1%), As vacuolar sequestration (36.1%), and As efflux (18.7%)). Our findings reveal that the combined toxicity of NPs and traditional contaminations should be considered for realistic evaluations of NPs.
Collapse
Affiliation(s)
- Yi Jiang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaofei Chen
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaona Li
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environment and Ecology, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, and Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
22
|
Binjawhar DN, Alshegaihi RM, Alatawi A, Alenezi MA, Parveen A, Adnan M, Ali B, Khan KA, Fahad S, Fayad E. Exploring Bacillus mycoides PM35 efficacy in enhancing rice (Oryza sativa L.) response to different types of microplastics through gene regulation and cellular fractionation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:31395-31413. [PMID: 38632193 DOI: 10.1007/s11356-024-33229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024]
Abstract
Soil contamination with microplastics (MPs) is a persistent threat to crop production worldwide. With a wide range of MP types, including polystyrene (PS), polyvinyl chloride (PVC) and polyethylene (PE), contaminating our environment, it is important to understand their impact on agricultural productivity. The present study was conducted to investigate the effects of different types of MPs (PS, PVC and PE) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and non-enzymatic), gene expression, proline metabolism, the AsA-GSH cycle and cellular fractionation and nutritional status, in different parts of rice (Oryza sativa L.) seedlings, which were also exposed to plant growth promoting rhizobacteria (PGPR), i.e. Bacillus mycoides PM35, i.e. 20 μL. The research outcomes indicated that the different types of MPs in the soil notably reduced plant growth and biomass, photosynthetic pigments and gas exchange attributes. However, MP stress also induced oxidative stress in the roots and shoots of the plants by increasing malondialdehyde (MDA), hydrogen peroxide (H2O2) and electrolyte leakage (EL) which also induced increased compounds of various enzymatic and non-enzymatic antioxidants and also the gene expression. Furthermore, a significant increase in proline metabolism, the AsA-GSH cycle, and the fractionations of cellular components was observed. Although the application of B. mycoides PM35 showed a significant increase in plant growth and biomass, gas exchange characteristics, enzymatic and non-enzymatic compounds and their gene expression and also decreased oxidative stress. In addition, the application of B. mycoides PM35 enhanced cellular fractionation and decreased the proline metabolism and AsA-GSH cycle in O. sativa plants. These results open new insights for sustainable agriculture practices and hold immense promise in addressing the pressing challenges of MP contamination in agricultural soils.
Collapse
Affiliation(s)
- Dalal Nasser Binjawhar
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia
| | - Rana M Alshegaihi
- Department of Biology, College of Science, University of Jeddah, 21493, Jeddah, Saudi Arabia
| | - Aishah Alatawi
- Department of Biology, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | | | - Abida Parveen
- Department of Botany, Government College University, Faisalabad, 38000, Pakistan
| | - Muhammad Adnan
- College of Food, Agricultural, and Environmental Sciences, The Ohio State University, 2120 Fyffe Rd, Columbus, OH, 43210, USA
- Department of Agriculture, University of Swabi, Swabi, Pakistan
| | - Baber Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Khalid Ali Khan
- Applied College, Center of Bee Research and Its Products, Unit of Bee Research and Honey Production, and Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Shah Fahad
- Department of Agronomy, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| |
Collapse
|
23
|
Fu X, Han H, Yang H, Xu B, Dai W, Liu L, He T, DU X, Pei X. Nrf2-mediated ferroptosis of spermatogenic cells involved in male reproductive toxicity induced by polystyrene nanoplastics in mice. J Zhejiang Univ Sci B 2024; 25:307-323. [PMID: 38584093 PMCID: PMC11009441 DOI: 10.1631/jzus.b2300138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 07/29/2023] [Indexed: 04/09/2024]
Abstract
Microplastics (MPs) and nanoplastics (NPs) have become hazardous materials due to the massive amount of plastic waste and disposable masks, but their specific health effects remain uncertain. In this study, fluorescence-labeled polystyrene NPs (PS-NPs) were injected into the circulatory systems of mice to determine the distribution and potential toxic effects of NPs in vivo. Interestingly, whole-body imaging found that PS-NPs accumulated in the testes of mice. Therefore, the toxic effects of PS-NPs on the reproduction systems and the spermatocytes cell line of male mice, and their mechanisms, were investigated. After oral exposure to PS-NPs, their spermatogenesis was affected and the spermatogenic cells were damaged. The spermatocyte cell line GC-2 was exposed to PS-NPs and analyzed using RNA sequencing (RNA-seq) to determine the toxic mechanisms; a ferroptosis pathway was found after PS-NP exposure. The phenomena and indicators of ferroptosis were then determined and verified by ferroptosis inhibitor ferrostatin-1 (Fer-1), and it was also found that nuclear factor erythroid 2-related factor 2 (Nrf2) played an important role in spermatogenic cell ferroptosis induced by PS-NPs. Finally, it was confirmed in vivo that this mechanism of Nrf2 played a protective role in PS-NPs-induced male reproductive toxicity. This study demonstrated that PS-NPs induce male reproductive dysfunction in mice by causing spermatogenic cell ferroptosis dependent on Nrf2.
Collapse
Affiliation(s)
- Xufeng Fu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China
| | - Hang Han
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Hong Yang
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Bo Xu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Wenjie Dai
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Ling Liu
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Tiantian He
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Xing DU
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuying Pei
- Key Laboratory of Fertility Preservation and Maintenance of Ministry of Education, School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China. ,
- Key Laboratory of Reproduction and Genetics in Ningxia, Ningxia Medical University, Yinchuan 750004, China. ,
| |
Collapse
|
24
|
Pan W, Zhou Y, Xie H, Liang L, Zou G, Du L, Guo X. Plant and microbial response in constructed wetland treating tetracycline antibiotic polluted water: Evaluating the effects of microplastic size and concentration. CHEMOSPHERE 2024; 353:141553. [PMID: 38412891 DOI: 10.1016/j.chemosphere.2024.141553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 01/29/2024] [Accepted: 02/24/2024] [Indexed: 02/29/2024]
Abstract
Microplastics (MPs) and antibiotics are novel water pollutants that have attracted increasing attention. Constructed wetlands (CWs) are widely applied treating various types of polluted water. How these two new pollutants affect plants and microorganisms in CWs, especially deciphering the unknown roles of MPs size and concentration, is of great essential. Here, five CW treatments with submerged macrophyte Myriophyllum aquaticum were established to treat oxytetracycline (OTC) antibiotic-polluted water. The effects of polystyrene (PS) nanoplastics (NPs) (700 nm) and MPs (90-110 μm) on plant and microbial communities at 10 μg/L and 1 mg/L, respectively, were systematically evaluated. PS reduced the nitrogen and phosphorus removal efficiencies and inhibited OTC removal. Low doses (10 μg/L) of NPs and high doses (1 mg/L) of MPs had the greatest effects on plant and microbial responses. The overall effect of MPs was greater than that of NPs. Compared with high NPs concentration (1 mg/L), low concentrations (10 μg/L) had higher catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) content. However, the activity and content of MPs at low concentrations (10 μg/L) were lower than those at high concentrations (1 mg/L). The coexistence of OTC and MPs/NPs decreased the microbial diversity and abundance. Low doses of NPs and high doses of MPs decreased the relative abundance of Abditibacteriota, Deinococccota, and Zixibacteria. Redundancy and network analyses revealed a strong correlation between pollutant removal and plant and microbial responses. NH4+-N and OTC removal was positively and negatively correlated with CAT, SOD, and MDA content, respectively. MDA positively correlated to chlorophyll content, whereas SOD showed a negative correlation with Chloroflexi. This study highlighted the scale effect of MPs in wastewater treatment via CWs. It enhances our understanding of the response of plants and microorganisms to the remediation of water co-polluted with MPs and antibiotics.
Collapse
Affiliation(s)
- Weiliang Pan
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China.
| | - Yi Zhou
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Huimin Xie
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lin Liang
- School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing, 400074, China; Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Lianfeng Du
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xuan Guo
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; China-New Zealand Joint Laboratory of Water Environment Research, Beijing, 100097, China.
| |
Collapse
|
25
|
Yang L, Liang H, Wu Q, Shen P. Biochar alleviated the toxic effects of microplastics-contaminated geocarposphere soil on peanut (Arachis hypogaea L.) pod development: roles of pod nutrient metabolism and geocarposphere microbial modulation. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2990-3001. [PMID: 38050830 DOI: 10.1002/jsfa.13191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND The accumulation of microplastics in agricultural soil poses a threat to the sustainability of agriculture, impacting crop growth and soil health. Due to the geocarpy feature of peanut, geocarposphere soil environment is critical to pod development and its nutritional quality. While the effects of microplastics in the rhizosphere have been studied, their impact on peanut pod in the geocarposphere remains unknown. Biochar has emerged as a potential soil agent with the ability to remediate soil contamination. However, the mechanisms of biochar in mitigating the toxic effects of microplastics-contaminated geocarposphere soil on peanut pod development remain largely unexplored. RESULTS We evaluated the peanut pod performance and microbiome when facing microplastics contamination and biochar amendment in geocarposphere soil. The results showed that microplastics present in geocarposphere soil could directly enter the peanut pod, cause pod developmental disorder and exert adverse effects on nutritional quality. Aberrant expression of key genes associated with amino acid metabolism, lipid synthesis, and auxin and ethylene signaling pathways were the underlying molecular mechanisms of microplastics-induced peanut pod developmental inhibition. However, these expression abnormalities could be reversed by biochar application. In addition, peanut geocarposphere microbiome results showed that biochar application could restore the diversity of microbial communities inhibited by microplastics contamination and promote the relative abundance of bacteria correlated with pathogen resistance and nitrogen cycle of geocarposphere soil, further promoting peanut pod development. CONCLUSION This study demonstrated that biochar application is an effective strategy to mitigate the toxic effects of microplastics-contaminated geocarposphere soil on pod development and nutritional quality. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Liyu Yang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Haiyan Liang
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Qi Wu
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| | - Pu Shen
- National Engineering Research Center for Peanut, Shandong Peanut Research Institute, Shandong Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
26
|
Kataria N, Yadav S, Garg VK, Rene ER, Jiang JJ, Rose PK, Kumar M, Khoo KS. Occurrence, transport, and toxicity of microplastics in tropical food chains: perspectives view and way forward. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:98. [PMID: 38393462 DOI: 10.1007/s10653-024-01862-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/06/2024] [Indexed: 02/25/2024]
Abstract
Microplastics, which have a diameter of less than 5 mm, are becoming an increasingly prevalent contaminant in terrestrial and aquatic ecosystems due to the dramatic increase in plastic production to 390.7 million tonnes in 2021. Among all the plastics produced since 1950, nearly 80% ended up in the environment or landfills and eventually reached the oceans. Currently, 82-358 trillion plastic particles, equivalent to 1.1-4.9 million tonnes by weight, are floating on the ocean's surface. The interactions between microorganisms and microplastics have led to the transportation of other associated pollutants to higher trophic levels of the food chain, where microplastics eventually reach plants, animals, and top predators. This review paper focuses on the interactions and origins of microplastics in diverse environmental compartments that involve terrestrial and aquatic food chains. The present review study also critically discusses the toxicity potential of microplastics in the food chain. This systematic review critically identified 206 publications from 2010 to 2022, specifically reported on microplastic transport and ecotoxicological impact in aquatic and terrestrial food chains. Based on the ScienceDirect database, the total number of studies with "microplastic" as the keyword in their title increased from 75 to 4813 between 2010 and 2022. Furthermore, various contaminants are discussed, including how microplastics act as a vector to reach organisms after ingestion. This review paper would provide useful perspectives in comprehending the possible effects of microplastics and associated contaminants from primary producers to the highest trophic level (i.e. human health).
Collapse
Affiliation(s)
- Navish Kataria
- Department of Environmental Sciences, J.C. Bose University of Science and Technology, YMCA, Faridabad, Haryana, 121006, India
| | - Sangita Yadav
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Vinod Kumar Garg
- Department of Environmental Sciences and Technology, Central University of Punjab, Bathinda, Punjab, 151001, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601 DA, Delft, The Netherlands
| | - Jheng-Jie Jiang
- Advanced Environmental Ultra Research Laboratory (ADVENTURE), Department of Environmental Engineering, Chung Yuan Christian University, Taoyuan, Taiwan
- Center for Environmental Risk Management (CERM), Chung Yuan Christian University, Taoyuan, Taiwan
| | - Pawan Kumar Rose
- Department of Energy and Environmental Sciences, Chaudhary Devi Lal University, Sirsa, Haryana, 125055, India
| | - Mukesh Kumar
- Department of Environmental Science and Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan.
- Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamil Nadu, 603103, India.
| |
Collapse
|
27
|
Hao B, Wu H, Zhang S, He B. Response strategies of stem/leaves endophyte communities to nano-plastics regulate growth performance of submerged macrophytes. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132883. [PMID: 37952333 DOI: 10.1016/j.jhazmat.2023.132883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/14/2023]
Abstract
Research on the toxicity effects of nano-plastics on submerged macrophytes has been increasing over the past several years. However, how the endophytic bacteria of submerged macrophytes respond to nano-plastics remains unknown, although they have been widely shown to help terrestrial plants cope with various environmental stressors. Here, a microcosm experiment was performed to unravel the effects of high concentration of nano-plastics (20 mg/L) on three submerged macrophyte (Vallisneria natans, Potamogeton maackianus, Myriophyllum spicatum) and their endophytic bacterial communities. Results indicated that nano-plastics induced antioxidative stress in plants, but significantly reduction in relative growth rate (RGR) only occurred in V. natans (from 0.0034 to -0.0029 day-1), accompanied by change in the stem/leaves endophyte community composition. Further analysis suggested nano-plastics caused a reduction in environmental nutrient availability and the proportion of positive interactions between endophyte communities (43%), resulting in the lowest RGR of V. natans. In contrast, endophytes may help P. maackianus and M. spicatum cope with nano-plastic stress by increasing the proportion of positive correlations among communities (70% and 75%), leaving their RGR unaffected. Collectively, our study elucidates the species-specific response strategies of submerged macrophyte-endophyte to nano-plastics, which helps to reveal the different phytoremediation potential of submerged macrophytes against nano-plastic pollution.
Collapse
Affiliation(s)
- Beibei Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Haoping Wu
- Guangdong Key Laboratory of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China.
| | - Siyi Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Bin He
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
28
|
Yu H, Jia H, Shen N, Gang D, Yuan W, Yang Y, Hu C, Qu J. Can "Risk-Sharing" Mechanisms Help Clonal Aquatic Plants Mitigate the Stress of Nanoplastics? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2984-2997. [PMID: 38306608 DOI: 10.1021/acs.est.3c09436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Most aquatic plants applied to ecological restoration have demonstrated a clonal growth pattern. The risk-spreading strategy plays a crucial role in facilitating clonal plant growth under external environmental stresses via clonal integration. However, the effects of different concentrations of nanoplastics (NPs) on the growth traits of clonal aquatic plants are not well understood. Therefore, this study aimed to investigate the impact of NPs exposure on seedlings of parent plants and connected offspring ramets. A dose response experiment (0.1, 1, and 10 mg L-1) showed that the growth of Eichhornia crassipes (water hyacinth) was affected by 100 nm polystyrene nanoplastics after 28 days of exposure. Tracer analysis revealed that NPs are accumulated by parent plants and transferred to offspring ramets through stolon. Quantification analysis showed that when the parent plant was exposed to 10 mg L-1 NPs alone for 28 days, the offspring ramets contained approximately 13 ± 2 μg/g NPs. In the case of connected offspring ramets, leaf and root biomass decreased by 24%-51% and 32%-51%, respectively, when exposed to NP concentrations ranging from 0.1 to 10 mg L-1. Excessive enrichment of NPs had a detrimental effect on the photosynthetic system, decreasing the chlorophyll content and nonphotochemical quenching. An imbalance in the antioxidant defense systems, which were unable to cope with the oxidative stress caused by NP concentrations, further damaged various organs. The root system can take up NPs and then transfer them to the offspring through the stolon. Interference effects of NPs were observed in terms of root activity, metabolism, biofilm composition, and the plant's ability to purify water. However, the risk-spreading strategy employed by parent plants (interconnected offspring ramets) offered some relief from NP-induced stress, as it increased their relative growth rate by 1 to 1.38 times compared to individual plants. These findings provide substantial evidence of the high NP enrichment capacity of E. crassipes for ecological remediation. Nevertheless, we must also remain aware of the environmental risk associated with the spread of NPs within the clonal system of E. crassipes, and contaminated cloned individuals need to be precisely removed in a timely manner to maintain normal functions.
Collapse
Affiliation(s)
- Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huawei Jia
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Shen
- State Environmental Protection Key Laboratory of Estuarine and Coastal Environment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
| | - Diga Gang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenke Yuan
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Chengzhi Hu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiuhui Qu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Dainelli M, Castellani MB, Pignattelli S, Falsini S, Ristori S, Papini A, Colzi I, Coppi A, Gonnelli C. Growth, physiological parameters and DNA methylation in Spirodela polyrhiza (L.) Schleid exposed to PET micro-nanoplastic contaminated waters. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108403. [PMID: 38290343 DOI: 10.1016/j.plaphy.2024.108403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size ∼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.
Collapse
Affiliation(s)
- Marco Dainelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Maria Beatrice Castellani
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Pignattelli
- Institute of Bioscience and Bioresources (IBBR), National Research Council (CNR), Via Madonna del Piano 10, 50019, Sesto Fiorentino, Italy
| | - Sara Falsini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Sandra Ristori
- Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, 50019, Firenze, Italy
| | - Alessio Papini
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Ilaria Colzi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy.
| | - Andrea Coppi
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| | - Cristina Gonnelli
- Department of Biology, Università degli Studi di Firenze, via Micheli 1, 50121, Florence, Italy
| |
Collapse
|
30
|
Long Y, Zhang Y, Zhou Z, Liu R, Qiu Z, Qiu Y, Li J, Wang W, Li X, Yin L, Wen X. Are microplastics in livestock and poultry manure an emerging threat to agricultural soil safety? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11543-11558. [PMID: 38212564 DOI: 10.1007/s11356-024-31857-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/13/2024]
Abstract
Microplastics (MPs) have attracted much attention in recent years, due to the difficulty of degradation and threats to ecological systems and humans. Based on the analysis of 1429 articles on MPs in soil, we found that we know little about the behavior and fate of manure-born MPs from the livestock and poultry production systems to agriculture soils. This review summarizes the analytical methods for sampling, separation, and identification and the occurrence of MPs in livestock and poultry manure, mainly based on 7 surveys related to manure-born MPs. Then, the sources, fate, and environmental risks of MPs in livestock and poultry manure are discussed. MPs, heavy metals, pathogens, antibiotic resistance genes, and persistent organic pollutants are common pollutants in livestock and poultry manure. Worse, manure-born MPs will become smaller, rougher, and more numerous and could easily form more toxic compound pollution after complicated processes of manure treatment, which seriously threatens agricultural soil safety. Finally, an outlook is offered for future research. We hope this article to attract attention to the risks of MPs in livestock and poultry manure and provide a reference for future research.
Collapse
Affiliation(s)
- Yuannan Long
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - You Zhang
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Zhenyu Zhou
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ruyi Liu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Ziyi Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Yiming Qiu
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Juan Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
| | - Wenming Wang
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Xiwei Li
- Hunan Pilot Yanghu Reclaimed Water Co. Ltd, Changsha, 410006, China
| | - Lingshi Yin
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China
- College of Water Resources & Civil Engineering, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Xiaofeng Wen
- School of Hydraulic and Environmental Engineering, Changsha University of Science &Technology, Changsha, 410114, China.
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China.
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, Changsha, 410114, China.
| |
Collapse
|
31
|
Gupta N, Parsai T, Kulkarni HV. A review on the fate of micro and nano plastics (MNPs) and their implication in regulating nutrient cycling in constructed wetland systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 350:119559. [PMID: 38016236 DOI: 10.1016/j.jenvman.2023.119559] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/06/2023] [Accepted: 11/04/2023] [Indexed: 11/30/2023]
Abstract
This review discusses the micro-nano plastics (MNPs) and their interaction with physical, chemical and biological processes in a constructed wetland (CW) system that is typically used as a nature-based tertiary wastewater treatment for municipal as well as industrial applications. Individual components of the CW system such as substrate, microorganisms and plants were considered to assess how MNPs influence the CW processes. One of the main functions of a CW system is removal of nutrients like nitrogen (N) and phosphorus (P) and here we highlight the pathways through which the MNPs influence CW's efficacy of nutrient removal. The presence of morphologically (size and shape) and chemically different MNPs influence the growth rate of microorganisms important in N and P cycling, invertebrates, decomposers, and the plants which affect the overall efficiency of a CW treatment system. Certain plant species take up the MNPs, and some toxicity has been observed. This review focuses on two significant aspects: (1) the presence of MNPs in a significant concentration affects the efficiency of N and P removal, and (2) the removal of MNPs. Because MNPs reduce the enzyme activities in abundance and overproduction of ROS oxidizes the enzyme active sites, resulting in the depletion of proteins, ultimately inhibiting nitrogen and phosphorus removal within the substrate layer. The review found that the majority of the studies used sand-activated carbon (SAC), granular-activated carbon (GAC), rice straw, granular limestone, and calcium carbonate, as a substrate for CW treatment systems. Common plant species used in the CW include Phragmites, Arabidopsis thaliana, Lepidium sativum, Thalia dealbata, and Canna indica, which were also found to be dominant in the uptake of the MNPs in the CWs. The MNPs were found to affect earthworms such as Eisenia fetida, Caenorhabditis elegans, and, Enchytraeus crypticus, whereas Metaphire vulgaris were found unaffected. Though various mechanisms take place during the removal process, adsorption and uptake mechanism effectively emphasize the removal of MNPs and nitrogen and phosphorus in CW. The MNPs characteristics (type, size, and concentration) play a crucial role in the removal efficiency of nano-plastics (NPs) and micro-plastics (MPs). The enhanced removal efficiency of NPs compared to MPs can be attributed to their smaller size, resulting in a faster reaction rate. However, NPs dose variation showed fluctuating removal efficiency, whereas MPs dose increment reduces removal efficiency. MP and NPs dose variation also affected toxicity to plants and earthworms as observed from data. Understanding the fate and removal of microplastics in wetland systems will help determine the reuse potential of wastewater and restrict the release of microplastics. This study provides information on various aspects and highlights future gaps and needs for MNP fate study in CW systems.
Collapse
Affiliation(s)
- Nikita Gupta
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| | - Tanushree Parsai
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, 600036, India.
| | - Harshad Vijay Kulkarni
- School of Civil and Environmental Engineering, Indian Institute of Technology (IIT) Mandi, Kamand, Himachal Pradesh, 175005, India.
| |
Collapse
|
32
|
Yu Z, Xu X, Guo L, Jin R, Lu Y. Uptake and transport of micro/nanoplastics in terrestrial plants: Detection, mechanisms, and influencing factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:168155. [PMID: 37898208 DOI: 10.1016/j.scitotenv.2023.168155] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
The pervasive dispersion of micro/nanoplastics in various environmental matrices has raised concerns regarding their potential intrusion into terrestrial ecosystems and, notably, plants. In this comprehensive review, we focus on the interaction between these minute plastic particles and plants. We delve into the current methodologies available for detecting micro/nanoplastics in plant tissues, assess the accumulation and distribution of these particles within roots, stems, and leaves, and elucidate the specific uptake and transport mechanisms, including endocytosis, apoplastic transport, crack-entry mode, and stomatal entry. Moreover, uptake and transport of micro/nanoplastics are complex processes influenced by multiple factors, including particle size, surface charge, mechanical properties, and physiological characteristics of plants, as well as external environmental conditions. In conclusion, this review paper provided valuable insights into the current understanding of these mechanisms, highlighting the complexity of the processes and the multitude of factors that can influence them. Further research in this area is warranted to fully comprehend the fate of micro/nanoplastics in plants and their implications for environmental sustainability.
Collapse
Affiliation(s)
- Zhefu Yu
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China; College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Xiaolu Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Liang Guo
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yin Lu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
33
|
Li Y, Zhao L, An Y, Qin L, Qiao Z, Chen D, Li Y, Geng H, Yang Y. Bibliometric analysis and systematic review of the adherence, uptake, translocation, and reduction of micro/nanoplastics in terrestrial plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167786. [PMID: 37848143 DOI: 10.1016/j.scitotenv.2023.167786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/26/2023] [Accepted: 10/10/2023] [Indexed: 10/19/2023]
Abstract
Micro/nanoplastics are emerging agricultural pollutants globally. Micro/nanoplastics can adhere to terrestrial plant surfaces, be absorbed and transported by plants, and accumulate in the edible parts of plants, leading to the possibility of enrichment and transmission through the food chain and threatening human health. However, the underlying mechanism remains unclear. With increased studies on the internalization of micro/nanoplastics in terrestrial plants, a comprehensive and systematic review summarizing the current research trends and progress is warranted to provide a reference for further relevant research. Based on bibliometric analysis, this study focused on the mechanisms, study methods, and reduction techniques of micro/nanoplastics adherence, uptake, and translocation by terrestrial plants. The results showed that micro/nanoplastics can adhere to the surfaces of plant tissues such as seeds, roots, and leaves. Root uptake (root-to-leaf translocation) and foliar uptake (leaf-to-root translocation) are the two simultaneous internalization pathways of MNPs in plants. The observation methods included scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), and inductively coupled plasma-mass spectrometry (ICP-MS). We highlighted the necessity and urgency of reducing the uptake and translocation of MNPs by plants and found that the application of silicon may be a promising approach for reducing internalization. This study identifies current knowledge gaps and proposes possible future needs.
Collapse
Affiliation(s)
- Yang Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Lin Zhao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yi An
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Li Qin
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhi Qiao
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Daying Chen
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yihan Li
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Hongzhi Geng
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin Engineering Center for technology of Protection and Function Construction of Ecological Critical Zone, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
34
|
Jiao M, Wang Y, Yang F, Zhao Z, Wei Y, Li R, Wang Y. Dynamic fluctuations in plant leaf interception of airborne microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167877. [PMID: 37852496 DOI: 10.1016/j.scitotenv.2023.167877] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/14/2023] [Indexed: 10/20/2023]
Abstract
Plant leaves have been demonstrated to be a crucial sink of airborne microplastics (MPs). However, because of the particular shape of MPs and their relatively weak forces with leaves, the traditional accumulation model used for the adsorption of particulate matter and persistent organic pollutants may not be appropriate for describing the interception of MPs by leaves. Here, we performed a 7-day exploration of the interception of MPs by leaves in downtown Nanning. The abundances and characteristics of leaf-intercepted MPs showed dramatic diurnal fluctuations and interspecies differences (conifers > arbors > shrubs). The fluctuation (Coefficient of Variation (CV) = 0.459; abundances 0.003 ± 0.002 to 0.047 ± 0.005 n·cm-2) was even more drastic than that measured across species (CV = 0.353; 0.06 ± 0.01 to 0.40 ± 0.04 n·cm-2). Further analysis using partial least-squares path modeling demonstrated that stomatal variation and divergence largely dominated diurnal fluctuations and interspecies differences in microplastic interception by leaves, respectively. Our results highlight that the leaf-intercepted MPs is characterized by dynamic fluctuations rather than static equilibrium and reveal the important regulatory roles played by leaf micromorphological structures in intercepting MPs, thus enhancing our understanding of the interactions between terrestrial plants and airborne pollution.
Collapse
Affiliation(s)
- Meng Jiao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yijin Wang
- School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Fei Yang
- State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research of Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen Zhao
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yihua Wei
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ruilong Li
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China.
| | - Yinghui Wang
- Institute of Green and Low Carbon Technology, Guangxi Institute of Industrial Technology, Nanning 530004, China
| |
Collapse
|
35
|
Peller JR, Tabor G, Davis C, Iceman C, Nwachukwu O, Doudrick K, Wilson A, Suprenant A, Dabertin D, McCool JP. Distribution and Fate of Polyethylene Microplastics Released by a Portable Toilet Manufacturer into a Freshwater Wetland and Lake. WATER 2024; 16:11. [PMID: 39219624 PMCID: PMC11361013 DOI: 10.3390/w16010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A portable toilet manufacturer in northwest Indiana (USA) released polyethylene microplastic (MP) pollution into a protected wetland for at least three years. To assess the loads, movement, and fate of the MPs in the wetland from this point source, water and sediment samples were collected in the fall and spring of 2021-2023. Additional samples, including sediment cores and atmospheric particulates, were collected during the summer of 2023 from select areas of the wetland. The MPs were isolated from the field samples using density separation, filtration, and chemical oxidation. Infrared and Raman spectroscopy analyses identified the MPs as polyethylene, which were quantified visually using a stereomicroscope. The numbers of MPs in 100 mL of the marsh water closest to the source ranged from several hundred to over 400,000, while the open water samples contained few microplastics. Marsh surface sediments were highly contaminated with MPs, up to 18,800 per 30.0 g dry mass (dm), compared to core samples in the lower depths (>15 cm) that contained only smaller MPs (<200 µm), numbering 0-480 per 30.0 g (dm). The wide variations in loads of MP contaminants indicate the influence of numerous factors, such as proximity to the point source pollution, weather conditions, natural matter, and pollution sinks, namely sediment deposition. As proof of concept, we demonstrated a novel remediation method using these real-world samples to effectively agglomerate and remove MPs from contaminated waters.
Collapse
Affiliation(s)
- Julie R. Peller
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Gavin Tabor
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Christina Davis
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Chris Iceman
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Ozioma Nwachukwu
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kyle Doudrick
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Antigone Wilson
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - Alyssa Suprenant
- Department of Chemistry, Valparaiso University, 1710 Chapel Drive, Valparaiso, IN 46383, USA
| | - David Dabertin
- Dabertin Law Offices, 5246 Hohman Avenue Suite 302, Hammond, IN 46320, USA
| | - Jon-Paul McCool
- Department of Geography and Meteorology, Valparaiso University, 1809 Chapel Drive, Valparaiso, IN 46383, USA
| |
Collapse
|
36
|
Tarring EC, Durance I, Harbottle MJ, Lucas R, Read DS, Ward BD. Water-soluble polymers: Emerging contaminants detected, separated and quantified by a novel GPC/MALDI-TOF method. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122888. [PMID: 37940017 DOI: 10.1016/j.envpol.2023.122888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 09/04/2023] [Accepted: 11/05/2023] [Indexed: 11/10/2023]
Abstract
Water-soluble polymers (WSPs) are additives used as thickeners, stabilisers and flocculants in industry and in household products, including personal care products. Given their widespread use, it is likely WSPs enter the environment, particularly through wastewaters. This is of concern as there is little ecotoxicological research on their fate and behaviour once in the environment, which means their risk to aquatic life is not understood. The lack of suitable analytical techniques to detect, characterise and quantify WSPs hinders research on the potential impact of these polymers. A novel method has been developed that identifies polymers within a sample and separates them using gel-permeation chromatography (GPC). This is coupled with matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS), to quantify the polymer fractions using molecular weight information. This process has been carried out on a range of aqueous media. Polyethylene glycol (PEG) ingredients were successfully separated from non-polymeric material in a commercial shaving gel personal care product (PCP), before being quantified at 1.62 wt%. This method was applied to a spiked wastewater influent sample to demonstrate the extraction and separation of PEG from organic constituents such as dissolved organic matter (DOM). This highlighted the additional challenges of analysing WSPs in the environment, as factors such as sorption and biodegradation affected the total recovery of PEG, with an extraction efficiency of 53%. Overall, this method was applied for the extraction of PEG from a PCP with accurate quantification, before a proof-of-concept extraction from wastewater demonstrated the difficulties associated with WSP analysis in environmental samples. This method provides opportunities to use tandem GPC/MALDI-TOF MS to quantify WSPs in a broad array of environmental samples. Additional studies could include its application to wastewater or freshwater monitoring.
Collapse
Affiliation(s)
- Eve C Tarring
- School of Chemistry, Cardiff University, Cardiff, United Kingdom
| | - Isabelle Durance
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | | | | | - Daniel S Read
- UK Centre for Ecology and Hydrology, Wallingford, United Kingdom
| | - Benjamin D Ward
- School of Chemistry, Cardiff University, Cardiff, United Kingdom.
| |
Collapse
|
37
|
Shi J, Yang B, Wang H, Wu Y, He F, Dong J, Qin G. The combined contamination of nano-polystyrene and nanoAg: Uptake, translocation and ecotoxicity effects on willow saplings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167291. [PMID: 37742955 DOI: 10.1016/j.scitotenv.2023.167291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Nanoplastics (NPLs) and nanoAg (AgNPs) are emerging contaminants commonly detected in aquatic and terrestrial environments due to their widespread use in various domains. However, their uptake, translocation, and toxic effects on plants in cooccurrence environments remain largely unexplored. Therefore, a hydroponic experiment was conducted using 100 nm NPLs (1 mg/L and 10 mg/L), AgNPs (100 μg/L and 1000 μg/L) and saplings of willow (Salix matsudana 'J172') to investigate absorption, translocation and the physio-biochemical responses of the plants. The results indicated that NPLs and AgNPs were agglomerated with each other in solutions. NPLs not only penetrated the roots of the saplings but also translocated to the branches and leaves through xylem ducts. However, AgNPs was only detected in the roots, suggesting that the internalization of nanoparticles in plants depends on the properties and types of particles themselves. The combined exposure to NPLs and AgNPs selectively affected the absorption and distribution of K, Ca, Mg and Fe, resulting in inhibited saplings growth and photosynthesis. Furthermore, the presence of NPLs and AgNPs induced oxidative damage and stimulated the antioxidant stress system in the plants. This study provides novel insights into the internalization and ecotoxicological mechanisms of NPLs and AgNPs in woody vascular plants.
Collapse
Affiliation(s)
- Jiaxing Shi
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Baoshan Yang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China
| | - Hui Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China; Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization, Jinan 250022, China.
| | - Yaxin Wu
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Fei He
- Jinan Environmental Research Academy, Jinan 250098, China
| | - Jinhao Dong
- School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Guanghua Qin
- Shandong Academy of Forestry, Jinan 250014, China
| |
Collapse
|
38
|
Zhang Z, Yu H, Tao M, Lv T, Li D, Yu D, Liu C. Shifting enzyme activity and microbial composition in sediment coregulate the structure of an aquatic plant community under polyethylene microplastic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:166497. [PMID: 37611699 DOI: 10.1016/j.scitotenv.2023.166497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/20/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
It has been shown that microplastics (MPs) interfere with critical biological processes (including development, growth and fitness); however, there is no information about the impact of MPs on plant productivity and community structure in freshwater ecosystems. Here, we investigated the effects of two sizes (MIC: 20-300 μm, MAC: 2-3 mm) and three concentrations (0.03 %, 0.3 %, and 0.6 %) of low-density polyethylene MPs on submerged plant communities. The results showed that plant responses to MPs were species specific, which can affect plant community structure. For canopy-forming species (Hydrilla verticillata), total biomass increased by 4 %-46 % and relative abundance increased by 23 %-34 % under MP exposure, while rosette-forming species (Vallisneria natans) decreased by 44 %-67 % in total biomass and relative abundance decreased by 54 %-71 %. Myriophyllum spicatum growth was largely unaffected by MPs. Community diversity was negatively correlated with MAC treatments, and the community root to shoot ratio decreased by 40 %, while community productivity increased by 41 % at a 0.6 % MAC concentration. Although MPs did not change the microbial community composition, alpha diversity was reduced at the 0.6 % concentration. It is worth noting that 0.6 % is a higher concentration than most field sediment investigations. During the experiment, the activity of functional enzymes related to carbon and nitrogen increased under most MP treatments. Structural equation modelling showed that MIC changed the community structure mainly by driving sediment enzyme activity, while MAC changed the community structure mainly by driving plant growth. The results implied that MPs may affect sediment enzymatic activities, microbial alpha diversity and aquatic plant growth, potentially altering the diversity and stability of aquatic ecosystems.
Collapse
Affiliation(s)
- Zhiqiang Zhang
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Hongwei Yu
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Min Tao
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Tian Lv
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dexiang Li
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Dan Yu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China
| | - Chunhua Liu
- The National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Science, Wuhan University, Wuhan, PR China.
| |
Collapse
|
39
|
Verma KK, Song XP, Xu L, Huang HR, Liang Q, Seth CS, Li YR. Nano-microplastic and agro-ecosystems: a mini-review. FRONTIERS IN PLANT SCIENCE 2023; 14:1283852. [PMID: 38053770 PMCID: PMC10694274 DOI: 10.3389/fpls.2023.1283852] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023]
Abstract
Plastics' unavoidable and rampant usage causes their trash to be extensively dispersed in the atmosphere and land due to its numerous characteristics. Because of extensive plastic usage and increased manufacturing, there is insufficient recycling and a large accumulation of microplastics (MPs) in the environment. In addition to their wide availability in the soil and atmosphere, micro- and nanoplastics are becoming contaminants worldwide. Agro-ecosystem functioning and plant development are being negatively impacted in several ways by the contamination of the environment and farmland soils with MPs (<5 mm) and nanoplastics (<1 µm). The contributions of some recyclable organic waste and plastic film mulching and plastic particle deposition in agroecosystems may be substantial; therefore, it is crucial to understand any potentially hazardous or undesirable impacts of these pollutants on agroecosystems. The dissolution of bioplastics into micro- and nano-particles (MBPs and NBPs) has not been considered in recent studies, which focus primarily on agro-ecosystems. It is essential to properly understand the distribution, concentration, fate, and main source of MPs, NPS, MBPs, and NBPs in agroecosystems. Based on the limited findings, understanding the knowledge gap of environmental impact from micro and nanoplastic in farming systems does not equate to the absence of such evidence. It reveals the considerations for addressing the gaps to effectively protect global food safety and security in the near future.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Hai-Rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| | | | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, Guangxi, China
| |
Collapse
|
40
|
Wang C, Luo Q, Zhang J, Zhang X, Yang N, Feng L. Toxic effects of microplastics and nanoplastics on plants: A global meta-analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122593. [PMID: 37742855 DOI: 10.1016/j.envpol.2023.122593] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/20/2023] [Accepted: 09/19/2023] [Indexed: 09/26/2023]
Abstract
Microplastics (MPs) and nanoplastics (NPs) pervade and accumulate within the soil, exerting influences not only on plant growth and development but also on human health through the food chain. However, recent studies on the effects of MPs/NPs on plants yield diverse results. Thus, this study conducts a meta-analysis of 101 recent publications to summarize the influence of type, size, and concentration of MPs/NPs on physiological responses, photosynthetic pigments, and biochemical reactions in various plant species. The findings indicate that the effects of MPs/NPs on plants vary depending on the specific plant species. The impact of different polymer types of MPs/NPs on plants does not show a clear trend, possibly due to variations in polymer functional groups. However, it is noteworthy that polyethylene terephthalate with phenyl groups exhibits the most significant effect on plant fresh weight, chlorophyll a and b, and H2O2 content among all microplastic types. Moreover, MPs exhibit stronger inhibition on most physiological, photosynthetic pigments, and biochemical indicators of plants compared to NPs, although root length, chlorophyll, and H2O2 demonstrate opposite effects. The concentration of MPs/NPs elicits different responses on plant indicators, each with specific trends. Notably, exposure to MPs/NPs stimulates an increase in plant biochemical enzyme indicators. Finally, this study identifies current knowledge gaps and offers insights for future research directions.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Qing Luo
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang, 110034, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, Shenyang, 110034, China; Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China.
| | - Jieliu Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Xinyu Zhang
- Key Laboratory of Eco-restoration of Regional Contaminated Environment, Ministry of Education, Shenyang University, Shenyang, 110044, China
| | - Ning Yang
- Plant Protection College, Shenyang Agricultural University, Shenyang, 110866, China; Key Laboratory of Water-saving Agricultural of Northeast (Shenyang), Ministry of Agricultural and Rural Affairs, Shenyang, 110161, China
| | - Liangshan Feng
- Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| |
Collapse
|
41
|
Dhevagi P, Keerthi Sahasa RG, Poornima R, Ramya A. Unveiling the effect of microplastics on agricultural crops - a review. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:793-815. [PMID: 37941363 DOI: 10.1080/15226514.2023.2275152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Microplastics (MPs), ever since they were identified as a potential and widely distributed persistent contaminant, the number of studies highlighting their impacts on various terrestrial ecosystems have been increasing. Recently, the effect of MPs on the agricultural ecosystem has gained momentum. Hence, the present review examines the impact of microplastics on agricultural crop systems and the mechanism underlying its toxicity. The current review revealed that most of the studies were conducted at a laboratory scale and under controlled conditions. Additionally, it was observed that polystyrene (PS) followed by polyethylene (PE) are the most studied polymer type, while the most studied plants are wheat and maize. Hitherto, literature studies suggest that the microplastics' influence on plant growth can be negative or sometimes neutral; while in some cases it exerts a hormetic effect which depends on other factors determining plant growth. Notably, the main mechanisms through which microplastics influence plant growth are mechanical damage, alteration of soil properties, or by leaching of additives. Overall, with burgeoning research interest in this aspect, the current review has significant implications for the toxicity of MPs on plants and throws light on the need to develop novel guidelines toward the sustainable use of plastics in agricultural sector. However, realistic field-level studies and estimating the MPs concentration at various region are essential to develop remediation approaches. Future studies should also focus on translocation and accumulation of micron sized MPs in edible portion of crops and their effect on food safety.
Collapse
Affiliation(s)
- Periyasamy Dhevagi
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | | | - Ramesh Poornima
- Department of Environmental Sciences, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Ambikapathi Ramya
- Research Centre for Environmental Changes, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
42
|
Wu H, He B, Chen B, Liu A. Toxicity of polyvinyl chloride microplastics on Brassica rapa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 336:122435. [PMID: 37625773 DOI: 10.1016/j.envpol.2023.122435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Microplastics (MPs) can pose high risk to living organisms due to their very small sizes. This study selected polyvinyl chloride MPs (PVC-MPs) which experienced up to 1000 h UV light radiation to investigate the influence of PVC-MPs on Brassica rapa growth. The outcomes showed the presence of PVC-MPs inhibited the plants' growth. The stem length, root length, fresh weight and dry weight of plants exposed to PVC-MPs after 30 days reduced by 45.9%, 35.2%, 26.1% and 5.2%, respectively. The chlorophyll, soluble sugar, malondialdehyde (MDA) and catalase (CAT) concentrations for plants exposed to PVC-MPs after 30 days increased by 25.9%, 135.7%, 88.7% and 47.1% respectively. It was also observed that PVC-MPs blocked the plants' leaf stomata and even entered plants' bodies. This might lead to PVC-MPs movement within the plants and influence plants' growth. The transcriptomic analysis results indicated that exposure to PVC-MPs up-regulated metabolic pathway of plant hormone signal transduction of the plants and down-regulated pathway network of ribosome. However, the research outcomes also showed that the PVC-MPs' locations in soil (located at the upper layers or at lower layers) and the UV light radiation time did not exert significantly different influences on inhibiting plants' growth. This can be attributed to PVC-MPs' small sizes and not much decomposition under light radiation. These imply that longer light radiation time and different particle sizes should be included into future research in order to further explore photodegraded MPs' toxicity effects on plants.
Collapse
Affiliation(s)
- Hao Wu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Beibei He
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Bocheng Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
43
|
Sun C, Yang X, Gu Q, Jiang G, Shen L, Zhou J, Li L, Chen H, Zhang G, Zhang Y. Comprehensive analysis of nanoplastic effects on growth phenotype, nanoplastic accumulation, oxidative stress response, gene expression, and metabolite accumulation in multiple strawberry cultivars. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165432. [PMID: 37437629 DOI: 10.1016/j.scitotenv.2023.165432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/14/2023]
Abstract
Nanoplastics (NPs) have emerged as a novel environmental threat due to their potential impacts on both animals and plants. Currently, research on the ecotoxicity of NPs has mainly focused on marine aquatic organisms and freshwater algae, with very limited investigations conducted on horticultural plants. This study examined the effects of varying concentrations (0, 1, 10, 50 mg·L-1) of polystyrene NPs (PS-NPs) on strawberry growth. The findings revealed that low concentrations of PS-NPs stimulated strawberry growth, whereas high concentrations impeded it. Notably, diverse strawberry cultivars displayed considerable differences in their sensitivity to PS-NP exposure. Laser scanning confocal microscopy confirmed the absorption of PS-NPs by strawberry roots, with variations in PS-NP accumulation observed across different cultivars. Comparative transcriptomics analysis suggested that the differential expression of genes responsible for calcium ion transport played a significant role in the observed intervarietal differences in PS-NP accumulation among strawberry cultivars. Furthermore, distinct variations in endogenous oxidative responses were observed in different strawberry cultivars under PS-NP treatment. Further analysis indicated that the down-regulation of peroxidase (POD) gene expression and terpenoid compounds accumulation were responsible for heightened endogenous oxidative stress observed in certain strawberry cultivars under PS-NP treatment. Transcriptomic and metabolomic analyses were performed on six strawberry cultivars to investigate their response to PS-NPs in terms of endogenous gene expression and metabolite accumulation. The results identified one commonly up-regulated gene (wall-associated receptor kinase-like) and sixteen commonly down-regulated genes associated with lipid metabolism and carbohydrate metabolism. In addition, a significant reduction in fatty acid metabolite accumulation was observed in the six strawberry cultivars under PS-NP treatment. These findings have significant implications for understanding the effects of NPs on strawberry growth, metabolism, and antioxidant responses, as well as identifying marker genes for monitoring and evaluating the impact of NP pollution on strawberry.
Collapse
Affiliation(s)
- Chendong Sun
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| | - Xiaofang Yang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qijuan Gu
- Key Laboratory of Microbiol Technology and Bioinformatics of Zhejiang Province, Zhejiang Institute of Microbiology, Hangzhou, China
| | - Guihua Jiang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Lan Shen
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jiayan Zhou
- Agricultural Technology Extension Center of Zhejiang Province, China
| | - Long Li
- Agricultural Technology Extension Center of Jiande, Hangzhou, China
| | - Hexiu Chen
- Agricultural Technology Extension Center of Jiande, Hangzhou, China
| | - Guofang Zhang
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Yuchao Zhang
- Institute of Horticulture, Zhejiang Academy of Agricultural Sciences, Hangzhou, China.
| |
Collapse
|
44
|
Santini G, Castiglia D, Perrotta MM, Landi S, Maisto G, Esposito S. Plastic in the Environment: A Modern Type of Abiotic Stress for Plant Physiology. PLANTS (BASEL, SWITZERLAND) 2023; 12:3717. [PMID: 37960073 PMCID: PMC10648480 DOI: 10.3390/plants12213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023]
Abstract
In recent years, plastic pollution has become a growing environmental concern: more than 350 million tons of plastic material are produced annually. Although many efforts have been made to recycle waste, a significant proportion of these plastics contaminate and accumulate in the environment. A central point in plastic pollution is demonstrated by the evidence that plastic objects gradually and continuously split up into smaller pieces, thus producing subtle and invisible pollution caused by microplastics (MP) and nanoplastics (NP). The small dimensions of these particles allow for the diffusion of these contaminants in farmlands, forest, freshwater, and oceans worldwide, posing serious menaces to human, animal, and plant health. The uptake of MPs and NPs into plant cells seriously affects plant growth, development, and photosynthesis, finally limiting crop yields and endangering natural environmental biodiversity. Furthermore, nano- and microplastics-once adsorbed by plants-can easily enter the food chain, being highly toxic to animals and humans. This review addresses the impacts of MP and NP particles on plants in the terrestrial environment. In particular, we provide an overview here of the detrimental effects of photosynthetic injuries, oxidative stress, ROS production, and protein damage triggered by MN and NP in higher plants and, more specifically, in crops. The possible damage at the physiological and environmental levels is discussed.
Collapse
Affiliation(s)
- Giorgia Santini
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Daniela Castiglia
- Bio-Organic Chemistry Unit, Institute of Biomolecular Chemistry CNR, Via Campi Flegrei 34, Pozzuoli, 80078 Naples, Italy
| | - Maryanna Martina Perrotta
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Simone Landi
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Giulia Maisto
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| | - Sergio Esposito
- Department of Biology, University of Naples “Federico II”, Via Cinthia, I-80126 Napoli, Italy; (G.S.); (M.M.P.); (G.M.); (S.E.)
| |
Collapse
|
45
|
Wang YX, Fu SF, Xu MX, Tang P, Liang JG, Jiang YF, Qiang T. Integrated Passive Sensing Chip for Highly Sensitive and Reusable Detection of Differential-Charged Nanoplastics Concentration. ACS Sens 2023; 8:3862-3872. [PMID: 37752695 DOI: 10.1021/acssensors.3c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
In this work, a new type, highly sensitive, and reusable nanoplastics (NPs) microwave detection method is proposed, which can be used to rapidly analyze NPs with different surface charges and sizes. The effective dielectric constant of NPs varies according to the different concentrations, particle sizes, and surface charges of NPs in aqueous solution. The feasibility of the microwave method for differential-charged NPs detection is verified using a complementary split ring resonator sensor manufactured on a cost-effective printed circuit board, which shows a high sensitivity only for positively charged NPs (PS-NH2) detection. To achieve microwave detection of both positively and negatively charged NPs (PS-SO3H), a microscale spiral-coupled resonator sensing chip is manufactured through integrated passive technology, which demonstrates extremely low detection limits and high sensitivity for both PS-NH2 and PS-SO3H, with different concentrations, particle sizes, and charges. In addition, for NPs solution doped with methyl orange, the device can still perform stable measurements, overcoming the inability of traditional NPs molecular element determination and optical detection methods to detect NPs aqueous solution with organic matter doping and color presence. The proposed microwave detection method could also be extended to sensing detection for detecting other hazardous environmental substances.
Collapse
Affiliation(s)
- Yan-Xiong Wang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Shan-Fei Fu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng-Xin Xu
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Pan Tang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Jun-Ge Liang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Yan-Feng Jiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
| | - Tian Qiang
- School of Internet of Things Engineering, Institute of Advanced Technology, Jiangnan University, Wuxi, Jiangsu Province 214122, PR China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu Province 215123, PR China
| |
Collapse
|
46
|
Ali I, Tan X, Xie Y, Peng C, Li J, Naz I, Duan Z, Wan P, Huang J, Liang J, Rui Z, Ruan Y. Recent innovations in microplastics and nanoplastics removal by coagulation technique: Implementations, knowledge gaps and prospects. WATER RESEARCH 2023; 245:120617. [PMID: 37738942 DOI: 10.1016/j.watres.2023.120617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 08/03/2023] [Accepted: 09/09/2023] [Indexed: 09/24/2023]
Abstract
Recently, microplastics (MPs) and nanoplastics (NPs) contamination is a worldwide problem owing to the immense usage of plastic commodities. Thus, the environmental risks by MPs and NPs demand the application of innovative, efficient, and sustainable technologies to control the pollution of plastic particles. Regarding this, numerous technologies, including adsorption, coagulation, filtration, bioremediation, chemical precipitation, and photocatalysis, have been engaged to eradicate MPs and NPs from contaminated waters. However, the coagulation technique is getting much attention owing to its simplicity, higher removal performance, low carbon footprint, and low operational and maintenance cost. Therefore, this paper has been designed to critically summarize the recent innovations on the application of coagulation process to eradicate MPs and NPs from both synthetic and real sewage. More importantly, the effect of pertinent factors, including characteristics of coagulants, MPs/NPs, and environmental medium on the elimination performances and mechanisms of MPs/NPs have been critically investigated. Further, the potential of coagulation technology in eliminating MPs and NPs from real sewage has been critically elucidated for the first time, for better execution of this technique at commercial levels. Finally, this critical review also presents current research gaps and future outlooks for the improvement of coagulation process for eradicating MPs and NPs from water and real sewage. Overall, the current review will offer valuable knowledge to scientists in selecting a suitable technique for controlling plastic pollution.
Collapse
Affiliation(s)
- Imran Ali
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xiao Tan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China.
| | - Yue Xie
- Anhui Province Agricultural Waste Fertilizer Utilization and Cultivated Land Quality Improvement Engineering Research Center, Chuzhou 233100, China
| | - Changsheng Peng
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; School of Environment and Chemical Engineering, Zhaoqing University, Zhaoqing 526061, China
| | - Juying Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Iffat Naz
- Department of Biology, Deanship of Educational Services, Qassim University, Buraidah 51452, Saudi Arabia
| | - Zhipeng Duan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Wan
- Shenzhen Water Planning & Design Institute Co., Ltd., Shenzhen 518001, China; Guangdong Provincial Engineering and Technology Research Center for Water Affairs Big Data and Water Ecology, Shenzhen 518001, China
| | - Jiang Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jia Liang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhu Rui
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Yinlan Ruan
- Institute for Photonics and Advanced Sensing, The University of Adelaide, SA 5005, Australia
| |
Collapse
|
47
|
Zhou W, Huang D, Chen S, Du L, Wang G, Li R, Xu W. Modified nano zero-valent iron reduce toxicity of polystyrene microplastics to ryegrass (Lolium Perenne L.). CHEMOSPHERE 2023; 337:139152. [PMID: 37290504 DOI: 10.1016/j.chemosphere.2023.139152] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
Microplastics pollution in environments has become a major concern and it has been proven to have adverse impacts on plants, so there is an urgent to find approaches to alleviate the detrimental effects of microplastics. In our study, we investigated the influence of polystyrene microplastics (PSMPs) on the growth, photosynthesis, and oxidative defense system changes of ryegrass, as well as the behavior of MPs at roots. Then three types of nanomaterials were applied to alleviate the adverse impact of PSMPs on ryegrass, which were nano zero-valent iron (nZVI), carboxymethylcellulose-modified-nZVI (C-nZVI) and sulfidated nZVI (S-nZVI), respectively. Our results suggested that PSMPs had significant toxicity to ryegrass, leading to decrease of shoot weight, shoot length and root length. Three nanomaterials regained the weight of ryegrass to a varying extent and made more PSMPs aggregate near roots. In addition, C-nZVI and S-nZVI facilitated the entrance of PSMPs into the root and promoted the chlorophyll a and chlorophyll b contents in leaves. Analysis of antioxidant enzymes and malondialdehyde content indicated that ryegrass coped well with the internalization of PSMPs, and all three types of nZVI could alleviate PSMPs-stress in ryegrass. This study elaborates the toxicity of MPs on plants and provides a novel insight into the fixing of MPs by plants and nanomaterials in environments, which needs to be further explored in future research.
Collapse
Affiliation(s)
- Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China.
| | - Sha Chen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, PR China
| | - Li Du
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, 410082, PR China
| |
Collapse
|
48
|
Ivy N, Bhattacharya S, Dey S, Gupta K, Dey A, Sharma P. Effects of microplastics and arsenic on plants: Interactions, toxicity and environmental implications. CHEMOSPHERE 2023; 338:139542. [PMID: 37474031 DOI: 10.1016/j.chemosphere.2023.139542] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 07/22/2023]
Abstract
Microplastics are emerging pollutants that are ubiquitously present in environment. Occurrence and dispersion of microplastics in the soil can pose a considerable risk to soil health and biodiversity, including the plants grown in the soil. Uptake and bioaccumulation of microplastics can have detrimental effects on different plant species. Additionally, the co-presence of microplastics and arsenic can cause synergistic, antagonistic, or potentiating toxic impacts on plants. However, limited studies are available on the combined effects of microplastics and arsenic on plants. This paper elucidates both the individual and synergistic effects of microplastics and arsenic on plants. At the outset, the paper highlighted the presence and degradation of microplastics in soil. Subsequently, the interactions between microplastics and plants, accumulation, and influences of microplastics on plant growth and metabolism were explained with underlying mechanisms. Combined effects of microplastics and arsenic on plant growth, metabolism, and toxicity were discussed thereafter. Combined toxic effects of microplastics and arsenic on plants can have detrimental implications on environment, ecosystems and biodiversity. Further investigations on food chain and human health are needed in the context of microplastic-arsenic interactions.
Collapse
Affiliation(s)
- Nishita Ivy
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India
| | - Sayan Bhattacharya
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Bihar, India.
| | - Satarupa Dey
- Department of Botany, Shyampur Siddheswari Mahavidyalaya, Howrah, West Bengal, India
| | - Kaushik Gupta
- Belur High School (H.S.), Howrah, West Bengal, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, India
| | | |
Collapse
|
49
|
Mészáros E, Bodor A, Kovács E, Papp S, Kovács K, Perei K, Feigl G. Impacts of Plastics on Plant Development: Recent Advances and Future Research Directions. PLANTS (BASEL, SWITZERLAND) 2023; 12:3282. [PMID: 37765446 PMCID: PMC10538034 DOI: 10.3390/plants12183282] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Plastics have inundated the world, with microplastics (MPs) being small particles, less than 5 mm in size, originating from various sources. They pervade ecosystems such as freshwater and marine environments, soils, and the atmosphere. MPs, due to their small size and strong adsorption capacity, pose a threat to plants by inhibiting seed germination, root elongation, and nutrient absorption. The accumulation of MPs induces oxidative stress, cytotoxicity, and genotoxicity in plants, which also impacts plant development, mineral nutrition, photosynthesis, toxic accumulation, and metabolite production in plant tissues. Furthermore, roots can absorb nanoplastics (NPs), which are then distributed to stems, leaves, and fruits. As MPs and NPs harm organisms and ecosystems, they raise concerns about physical damage and toxic effects on animals, and the potential impact on human health via food webs. Understanding the environmental fate and effects of MPs is essential, along with strategies to reduce their release and mitigate consequences. However, a full understanding of the effects of different plastics, whether traditional or biodegradable, on plant development is yet to be achieved. This review offers an up-to-date overview of the latest known effects of plastics on plants.
Collapse
Affiliation(s)
- Enikő Mészáros
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Attila Bodor
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
- Institute of Biophysics, Biological Research Centre, Temesvári krt. 62, H6726 Szeged, Hungary
| | - Etelka Kovács
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Sarolta Papp
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Kamilla Kovács
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| | - Katalin Perei
- Department of Biotechnology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary; (A.B.); (K.P.)
| | - Gábor Feigl
- Department of Plant Biology, University of Szeged, Közép fasor 52, H6726 Szeged, Hungary
| |
Collapse
|
50
|
Anagha PL, Viji NV, Devika D, Ramasamy EV. Distribution and abundance of microplastics in the water column of Vembanad Lake-A Ramsar site in Kerala, India. MARINE POLLUTION BULLETIN 2023; 194:115433. [PMID: 37643529 DOI: 10.1016/j.marpolbul.2023.115433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/15/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
The study focuses on the occurrence, abundance and characteristics of microplastics (MPs) in the subsurface and bottom waters of Vembanad Lake, a Ramsar site in the state of Kerala. Even though several studies elucidate the prevalence of microplastic pollution in the surface waters of aquatic ecosystems, a little is known about the vertical distribution of MPs in the water column. Vembanad Lake water is greatly affected by microplastic pollution compared to other Indian lakes as it receive discharges from six rivers; a number of sewage canals and run-off. Ubiquitous distribution of MPs was found in the lake with a mean abundance of 26.79 ± 3.74 items L-1 and 52.70 ± 5.43 items L-1 in subsurface and bottom waters respectively. Fibers, constitute more than half of the total MPs in both subsurface and bottom waters. The dominance of polyamide and polypropylene with most of the MPs being fibers indicate that they originate probably from fishing activities and laundry wastewater. The particles with in the size range 100-500 μm were in excess in the water samples. Further fragmentation, increasing the number of MPs in the lake water was envisaged from the SEM images of MPs showing cracks and crevices. These MPs along with adsorbed contaminants upon ingestion by the aquatic organisms become a threat to the food web of the lake. The local population which depends mainly on the fishes and mussels of the lake for their dietary needs would be greatly affected by the contamination of the lake with MPs. Further research on MPs contamination in edible biota would give more insights on the extent and risks of MPs pollution in the lake.
Collapse
Affiliation(s)
| | | | - Das Devika
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | | |
Collapse
|