1
|
Christudoss AC, Kundu R, Dimkpa CO, Mukherjee A. Aging of disposable face masks in landfill leachate poses cyto-genotoxic risks to Allium cepa: Perils of uncontrolled disposal of medical waste. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109472. [PMID: 39755099 DOI: 10.1016/j.plaphy.2024.109472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/10/2024] [Accepted: 12/31/2024] [Indexed: 01/06/2025]
Abstract
The accumulation of disposable face masks (DFMs) has become a significant threat to the environment due to extensive use during the COVID-19 pandemic. In this research, we investigated the degradation of DFMs after their disposal in landfills. We replicated the potential degradation process of DFMs, including exposure to sunlight before subjecting them to synthetic landfill leachate (LL). After exposure to UV radiation, all three layers of the DFMs displayed surface abrasions and fractures, becoming less stable with increased UV exposure duration, indicating an aging process. Changes in the surface morphology of the DFMs and carbonyl index after UV exposure confirmed this aging process. DFM aging in LL accelerated by 11% compared to deionized (DI) water after 28 days. Different analytical techniques, including microscopy, FT-IR, Raman spectroscopy, and ICP-MS were used to detect microplastics and metals in the leachates. The microfibers collected from the leachates were primarily made of polypropylene, and the abundance of smaller microfibers (<40 μm) increased with the aging time of DFMs in leachate. Additionally, this study examines the toxicity of UV-weathered DFM leachates collected at different periods on Allium cepa, a model terrestrial plant. Leachates from DFM aged in landfill caused 15% more harm to A. cepa root cells due to increased oxidative stress (66%) compared to leachates aged in DI water. Additionally, DFM leachates aged in landfills showed a 29% increase in heavy metal content over time compared to those aged in DI water, potentially leading to significant phytotoxicity. In summary, this report highlights the impact of disposing DFMs in landfills and their biological effects on a model plant.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT, 06511, United States
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
2
|
Xie L, Zhu K, Chen N, Deng Y, Jiang W, Jia H. A Critical Review of an Environmental Risk Substance Induced by Aging Microplastics: Insights into Environmentally Persistent Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22502-22518. [PMID: 39661042 DOI: 10.1021/acs.est.4c09107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Microplastics (MPs), as an emerging contaminants category, can undergo complex aging in a variety of environmental matrices in which the chemical bonds of polymer molecules can be broken to form free radicals. While the existence of free radicals in aged plastics has been known for over half a century, only recently has significant research on a new type of environmentally risky substance, namely environmentally persistent free radicals (EPFRs), present in aged MPs and their environmental effects, been started, but it is still in its infancy. To address these issues, this work examines EPFR generation on MPs and their environmental effect by reviewing publications from 2012 to 2023. The aging processes and mechanisms of MPs in the environment are first summarized. Then, the occurrence and formation mechanisms of EPFRs on aged MPs are specifically discussed. Additionally, the reactivity of EPFRs on aging MPs and their influencing factors are comprehensively considered, such as their physicochemical properties, oxygen content, and coexisting substances. Due to their reactivity, EPFRs can interact directly with some substances (e.g., p-nitrophenol and proteins, etc.) or induce the generation of reactive oxygen species, leading to diverse environmental effects, including pollutant transformation, biotoxicity, and health risks. Finally, research challenges and perspectives for EPFRs formation on aging MPs and related environmental implications are presented. Given the environmental fate and risk of MPs-EPFRs, our urgent call for a better understanding of the potential hazards of aged MPs is to help develop a sustainable path for plastics management.
Collapse
Affiliation(s)
- Linyang Xie
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Kecheng Zhu
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Na Chen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Yongxi Deng
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Wenjun Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling 712100, China
| |
Collapse
|
3
|
Wang L, Wei Y, Wang B, Hu J, Zhao C, Yu D, Wang J, Liu Z. Co-exposure of microplastics with heavy metals increases environmental pressure in the endangered and rare wildlife reserve: A case study of the zhalong wetland red-crowned crane nature reserve, northeast China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125287. [PMID: 39528136 DOI: 10.1016/j.envpol.2024.125287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 11/07/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Microplastics (MPs) exposure to remote areas, including endangered and rare wildlife reserves, has attracted increasing concern. Compared with previous research mostly draws attention to the single exposure of MPs to the environment, greater emphasis should be placed on understanding the complex environmental behaviors of MPs. Therefore, the potential risks of MPs to ecosystems need to be explored in combination with their coexistence with other contaminants, but this is not well-understood. The presented study, taking Zhalong National Nature Reserve (Zhalong wetland), the largest habitat and breeding site for migratory Red-crowned cranes (Grus japonensis) in China, as an example, reveals the possibility of the co-exposure of MPs with various heavy metals. The average abundance of MPs in surface water and sediments in Zhalong Wetland is 738 particles/L and 7332 particles/kg, respectively, which is at a high level of MP pollution worldwide. The obtained results figure out that MPs are also widely found in Red-crowned cranes' feces and feathers. Notably, this study confirms that MP co-exposes to the wetland with Cr, Cd, and As via common sources, exposure routes, and the vector effect of MP. Importantly, we develop the methods of the environmental pressure for individual contaminants and achieve a comprehensive risk assessment of MPs co-exposure with other contaminants in the wetland ecosystem for the first time. It is found that co-exposure to heavy metal can increase the ecological risks of MPs. This is conducive to making a more standardized and reliable framework to estimate the environmental impacts of MP pollution and to formulate prevention and control policies.
Collapse
Affiliation(s)
- Lei Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, China
| | - Yuchen Wei
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Bing Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jufang Hu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Chuntao Zhao
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Dongmei Yu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Jianping Wang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China
| | - Ze Liu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, China.
| |
Collapse
|
4
|
Kalamaras G, Antonopoulou M, Soto Beobide A, Triantafyllidis V, Dailianis S. Disposable face masks into aquatic media: Chemical and biological testing of the released compounds during the leaching process. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125290. [PMID: 39537088 DOI: 10.1016/j.envpol.2024.125290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/16/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
The present study investigated the fate, and the biological effects posed by the presence of Disposable Face Masks (DFMs) into fresh- and saltwater media, using both chemical and biological testing. To this end, slightly fragmented DFMs were maintained in tanks with artificial sea water (ASW) or dH2O (DFMASW and DFMdH2O, respectively) for a period of 20 days (under continuous agitation, oxygen supply, and light/dark ration 1:1) to simulate both fresh- and saltwater natural conditions. Thereafter, DFMs leaching substances were determined, before proceeding to biological testing with the use of the marine bacterium Aliivibrio fischeri (Bioluminescence Inhibition assay), the fresh- and saltwater algal species Chlorococcum sp. and Tetraselmis suecica (algal bioassays), as well as the fairy shrimp Thamnocephalus platyurus, the water flea Daphnia magna, and the rotifer Brachionus calyciflorus (acute toxicity screening tests, in terms of microbiotest). According to the results, once into aquatic media (DFMASW and DFMdH2O) DFMs are subjected to degradation, leading to the release of organic, inorganic, and polymeric compounds (PP microfibers). Considering that possible interactions of the leaching substances could differentially affect the aquatic biota, the present study showed that DFMs leaching substances could be harmful to the fairy shrimp T. platyurus, and the water flea D. magna, with slight to non-toxic effects to be observed in case of Chlorococcum sp. and Tetraselmis suecica, the marine bacterium Aliivibrio fischeri, and the rotifer B. calyciflorus. The present findings showed that the DFMs improper disposal into fresh- and/or saltwater media, followed by their degradation and leaching processes, could lead to the release of substances of great environmental concern, thus promoting awareness about their proper handling and management, as well as the long-term monitoring of their environmental risk.
Collapse
Affiliation(s)
- Georgios Kalamaras
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | - Maria Antonopoulou
- School of Agricultural Sciences, Department of Sustainable Agriculture, University of Patras, GR-30131, Agrinio, Greece
| | - Amaia Soto Beobide
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences (FORTH/ICE-HT), GR-26504, Patras, Greece
| | - Vasilios Triantafyllidis
- School of Agricultural Sciences, Department of Food Science & Technology, University of Patras, GR-30131, Agrinio, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
5
|
Gou Z, Wu H, Li S, Liu Z, Zhang Y. Airborne micro- and nanoplastics: emerging causes of respiratory diseases. Part Fibre Toxicol 2024; 21:50. [PMID: 39633457 PMCID: PMC11616207 DOI: 10.1186/s12989-024-00613-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Airborne micro- and nanoplastics (AMNPs) are ubiquitously present in human living environments and pose significant threats to respiratory health. Currently, much research has been conducted on the relationship between micro- and nanoplastics (MNPs) and cardiovascular and gastrointestinal diseases, yet there is a clear lack of understanding regarding the link between AMNPs and respiratory diseases. Therefore, it is imperative to explore the relationship between the two. Recent extensive studies by numerous scholars on the characteristics of AMNPs and their relationship with respiratory diseases have robustly demonstrated that AMNPs from various sources significantly influence the onset and progression of respiratory conditions. Thus, investigating the intrinsic mechanisms involved and finding necessary preventive and therapeutic measures are crucial. In this review, we primarily describe the fundamental characteristics of AMNPs, their impact on the respiratory system, and the intrinsic toxic mechanisms that facilitate disease development. It is hoped that this article will provide new insights for further research and contribute to the advancement of human health.
Collapse
Affiliation(s)
- Zixuan Gou
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Haonan Wu
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Shanyu Li
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China
| | - Ziyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China.
| | - Ying Zhang
- Department of Pediateic Respiration, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.
- Clinical Research Center for Child Health, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Kang A, Luo Y, Luo Q, Li S, Tang Y, Yi F, Zhang H, Chen Y, Jia M, Xiong W, Yang Z, Xu H. An investigation into the aging mechanism of disposable face masks and the interaction between different influencing factors. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135308. [PMID: 39053070 DOI: 10.1016/j.jhazmat.2024.135308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
In the natural environment, a symphony of environmental factors including sunlight exposure, current fluctuations, sodium chloride concentrations, and sediment dynamics intertwine, potentially magnifying the impacts on the aging process of disposable face masks (DFMs), thus escalating environmental risks. Employing Regular Two-Level Factorial Design, the study scrutinized interactive impacts of ultraviolet radiation, sand abrasion, acetic acid exposure, sodium chloride levels, and mechanical agitation on mask aging. Aging mechanisms and environmental risks linked with DFMs were elucidated through two-dimensional correlation analyses and risk index method. Following a simulated aging duration of three months, a single mask exhibited the propensity to release a substantial quantity of microplastics, ranging from 38,800 ± 360 to 938,400 ± 529 particles, and heavy metals, with concentrations from 0.06 ± 0.02 μg/g (Pb) to 29.01 ± 1.83 μg/g (Zn). Besides, specific contaminants such as zinc ions (24.24 μg/g), chromium (VI) (4.20 μg/g), thallium (I) (0.92 μg/g), tetracycline (0.51 μg/g), and acenaphthene (1.73 μg/g) can be adsorbed significantly by aged masks. The study elucidates pivotal role of interactions between ultraviolet radiation and acetic acid exposure in exacerbating the environmental risks associated with masks, while emphasizing the pronounced influence of many other interactions. The research provides a comprehensive understanding of the intricate aging processes and ensuing environmental risks posed by DFMs, offering valuable insights essential for developing sustainable management strategies in aquatic ecosystems.
Collapse
Affiliation(s)
- Anqi Kang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yuanling Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Qiao Luo
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siyu Li
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Yi Tang
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fan Yi
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Honglin Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yalin Chen
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Meiying Jia
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Weiping Xiong
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Zhaohui Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Haiyin Xu
- College of Life and Environmental Sciences, Central South University of Forestry and Technology, Changsha 410004, China.
| |
Collapse
|
7
|
Jiang Y, Zhou C, Khan A, Zhang X, Mamtimin T, Fan J, Hou X, Liu P, Han H, Li X. Environmental risks of mask wastes binding pollutants: Phytotoxicity, microbial community, nitrogen and carbon cycles. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135058. [PMID: 38986403 DOI: 10.1016/j.jhazmat.2024.135058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/12/2024]
Abstract
The increasing contamination of mask wastes presents a significant global challenge to ecological health. However, there is a lack of comprehensive understanding regarding the environmental risks that mask wastes pose to soil. In this study, a total of 12 mask wastes were collected from landfills. Mask wastes exhibited negligible morphological changes, and bound eight metals and four types of organic pollutants. Masks combined with pollutants inhibited the growth of alfalfa and Elymus nutans, reducing underground biomass by 84.6 %. Mask wastes decreased the Chao1 index and the relative abundances (RAs) of functional bacteria (Micrococcales, Gemmatimonadales, and Sphingomonadales). Metagenomic analysis showed that mask wastes diminished the RAs of functional genes associated with nitrification (amoABC and HAO), denitrification (nirKS and nosZ), glycolysis (gap2), and TCA cycle (aclAB and mdh), thereby inhibiting the nitrogen transformation and ATP production. Furthermore, some pathogenic viruses (Herpesviridae and Tunggulvirus) were also found on the mask wastes. Structural equation models demonstrated that mask wastes restrained soil enzyme activities, ultimately affecting nitrogen and carbon cycles. Collectively, these evidences indicate that mask wastes contribute to soil health and metabolic function disturbances. This study offers a new perspective on the potential environmental risks associated with the improper disposal of masks.
Collapse
Affiliation(s)
- Yuchao Jiang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China; Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Chunxiu Zhou
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China
| | - Aman Khan
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Xueyao Zhang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Tursunay Mamtimin
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jingwen Fan
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiaoxiao Hou
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Pu Liu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Huawen Han
- Centre for Grassland Microbiome, State Key Laboratory of Grassland Agro-ecosystems, College of Pastoral Agricultural Science and Technology, Lanzhou University, Lanzhou, Gansu Province 730000, China.
| | - Xiangkai Li
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu 730000, China.
| |
Collapse
|
8
|
Lu S, Wang J, Wang B, Xin M, Lin C, Gu X, Lian M, Li Y. Spatiotemporal variations and risk assessment of estrogens in the water of the southern Bohai Sea: A comprehensive investigation spanning three years. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134754. [PMID: 38820750 DOI: 10.1016/j.jhazmat.2024.134754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
The ubiquitous and adverse effects of estrogens have aroused global concerns. Natural and synthetic estrogens in 255 water samples from the southern Bohai Sea were analyzed over three years. Total estrogen concentrations were 11.0-268 ng/L in river water and 1.98-99.7 ng/L in seawater, with bisphenol A (BPA) and 17α-ethynylestradiol (EE2) being the predominant estrogens, respectively. Estrogen showed the highest concentrations in summer 2018, followed by spring 2021 and spring 2019, which was consistent with the higher estrogen flux from rivers during summer. Higher estrogen concentrations in 2021 than in 2019 were driven by the higher level of BPA, an additive used in personal protective equipment. Estrogen exhibited higher concentrations in the southern coast of the Yellow River Delta and the northeastern coast of Laizhou bay due to the riverine input and aquaculture. Estrogens could disturb the normal endocrine activities of organisms and edict high ecological risks (90th simulated RQT > 1.0) to aquatic organisms, especially to fish. EE2 was the main contributor of estrogenic potency and ecological risk, which requires special concern. This is the first comprehensive study of estrogen spatiotemporal variations and risks in the Bohai Sea, providing insights into the environmental behavior of estrogens in coastal regions.
Collapse
Affiliation(s)
- Shuang Lu
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China; Beijing Normal University, Beijing 100875, China
| | - Jing Wang
- Beijing Normal University, Beijing 100875, China.
| | - Baodong Wang
- First Institute of Oceanography, Ministry in of Natural Resources, Qingdao 266061, China
| | - Ming Xin
- First Institute of Oceanography, Ministry in of Natural Resources, Qingdao 266061, China
| | - Chunye Lin
- Beijing Normal University, Beijing 100875, China
| | - Xiang Gu
- Beijing Normal University, Beijing 100875, China
| | - Maoshan Lian
- Beijing Normal University, Beijing 100875, China
| | - Yun Li
- Beijing Normal University, Beijing 100875, China
| |
Collapse
|
9
|
Christudoss AC, Kundu R, Dimkpa CO, Mukherjee A. Time dependent release of microplastics from disposable face masks poses cyto-genotoxic risks in Allium cepa. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116542. [PMID: 38850698 DOI: 10.1016/j.ecoenv.2024.116542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/20/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
The use of disposable face masks (DFMs) increased during the COVID-19 pandemic and has become a threat to the environment due to the release of microplastics (MPs). Although many reports have characterized and explored the release of MPs from DFMs and their effects in aquatic ecosystems, there is a lack of investigation into the effects in terrestrial plants. This report aims to fill this research gap by characterizing whole mask leachates (WMLs) collected at different time points and examining their toxicity on Allium cepa, a terrestrial model plant. Various analytical techniques including FE-SEM, FT-IR, and Raman spectroscopy were used to identify MPs in WMLs. The MPs are composed of polypropylene mostly and the concentration of smaller-sized MPs increased with leachate release time. The WMLs showed a MP concentration-dependent cytogenotoxic effect (72 %, 50 %, and 31 %, on 1, 5, and 11-day WMLs, respectively) on A. cepa root cells due to elevated oxidative stress (19 %, 45 %, and 70 %, on 1, 5, and 11-day WMLs, respectively). Heavy metal content of the WMLs was negligible and, thus, not a significant contributor to toxicity in the plant. Overall, this report highlights the fate of DFMs in the environment and their biological impacts in a model plant.
Collapse
Affiliation(s)
| | - Rita Kundu
- Department of Botany, Centre of Advanced Studies, University of Calcutta, Kolkata, India
| | - Christian O Dimkpa
- Department of Analytical Chemistry, The Connecticut Agricultural Experiment Station, 123 Huntington Street, New Haven, CT 06511, United States
| | - Amitava Mukherjee
- Centre for Nanobiotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
10
|
Zhu Z, Cao X, Wang K, Guan Y, Ma Y, Li Z, Guan J. The environmental effects of microplastics and microplastic derived dissolved organic matter in aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173163. [PMID: 38735318 DOI: 10.1016/j.scitotenv.2024.173163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Currently, microplastics (MPs) have ubiquitously distributed in different aquatic environments. Due to the unique physicochemical properties, MPs exhibit a variety of environmental effects with the coexisted contaminants. MPs can not only alter the migration of contaminants via vector effect, but also affect the transformation process and fate of contaminants via environmental persistent free radicals (EPFRs). The aging processes may enhance the interaction between MPs and co-existed contaminants. Thus, it is of great significance to review the aging mechanism of MPs and the influence of coexisted substances, the formation mechanism of EPFRs, environmental effects of MPs and relevant mechanism. Moreover, microplastic-derived dissolved organic matter (MP-DOM) may also influence the elemental biogeochemical cycles and the relevant environmental processes. However, the environmental implications of MP-DOM are rarely outlined. Finally, the knowledge gaps on environmental effects of MPs were proposed.
Collapse
Affiliation(s)
- Zhichao Zhu
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Xu Cao
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Kezhi Wang
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yujie Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Yuqi Ma
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Zhuoyu Li
- School of Environment, Northeast Normal University, Changchun 130117, PR China
| | - Jiunian Guan
- School of Environment, Northeast Normal University, Changchun 130117, PR China.
| |
Collapse
|
11
|
Bogush AA, Kourtchev I. Disposable surgical/medical face masks and filtering face pieces: Source of microplastics and chemical additives in the environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123792. [PMID: 38518974 DOI: 10.1016/j.envpol.2024.123792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/24/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
The production and consumption of disposable face masks (DFMs) increased intensely during the COVID-19 pandemic, leading to a high amount of them being found in the terrestrial and aquatic environment. The main goal of this research study is to conduct a comparative evaluation of the water-leachability of microplastics (MPs) and chemical additives from various types of disposable surgical/medical face masks (MM DFMs) and filtering face pieces (FFPs). Fourier-Transform Infrared Spectroscopy was used for MPs analysis. Liquid Chromatography/High Resolution Mass Spectrometry was used to analyse analytes presented in the water-leachates of DFMs. FFPs released 3-4 times more microplastic particles compared to MM DFMs. The release of MPs into water from all tested DFMs without mechanical stress suggests potential MP contamination originating from the DFM production process. Our study for the first time identified bisphenol B (0.25-0.42 μg/L) and 1,4-bis(2-ethylhexyl) sulfosuccinate (163.9-115.0 μg/L) as leachables from MM DFMs. MPs in the water-leachates vary in size, with predominant particles <100 μm, and the release order from DFMs is MMIIR > MMII > FFP3>FFP2>MMI. The main type of microplastics identified in the water leachates of the investigated face masks was polypropylene, accounting for 93-97% for MM DFMs and 82-83% for FFPs. Other polymers such as polyethylene, polycarbonate, polyester/polyethylene terephthalate, polyamide/Nylon, polyvinylchloride, and ethylene-propylene copolymer were also identified, but in smaller amounts. FFPs released a wider variety and a higher percentage (17-18%) of other polymers compared to MM DFMs (3-7%). Fragments and fibres were identified in all water-leachate samples, and fragments, particularly debris of polypropylene fibres, were the most common MP morphotype. The findings in this study are important in contributing additional data to develop science-based policy recommendations on the health and environmental impacts of MPs and associated chemical additives originated from DFMs.
Collapse
Affiliation(s)
- Anna A Bogush
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom.
| | - Ivan Kourtchev
- Research Centre for Agroecology, Water and Resilience, Coventry University, Ryton-on Dunsmore, CV8 3LG, United Kingdom
| |
Collapse
|
12
|
Kisielinski K, Hockertz S, Hirsch O, Korupp S, Klosterhalfen B, Schnepf A, Dyker G. Wearing face masks as a potential source for inhalation and oral uptake of inanimate toxins - A scoping review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:115858. [PMID: 38537476 DOI: 10.1016/j.ecoenv.2023.115858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 04/12/2024]
Abstract
BACKGROUND From 2020 to 2023 many people around the world were forced to wear masks for large proportions of the day based on mandates and laws. We aimed to study the potential of face masks for the content and release of inanimate toxins. METHODS A scoping review of 1003 studies was performed (database search in PubMed/MEDLINE, qualitative and quantitative evaluation). RESULTS 24 studies were included (experimental time 17 min to 15 days) evaluating content and/or release in 631 masks (273 surgical, 228 textile and 130 N95 masks). Most studies (63%) showed alarming results with high micro- and nanoplastics (MPs and NPs) release and exceedances could also be evidenced for volatile organic compounds (VOCs), xylene, acrolein, per-/polyfluoroalkyl substances (PFAS), phthalates (including di(2-ethylhexyl)-phthalate, DEHP) and for Pb, Cd, Co, Cu, Sb and TiO2. DISCUSSION Of course, masks filter larger dirt and plastic particles and fibers from the air we breathe and have specific indications, but according to our data they also carry risks. Depending on the application, a risk-benefit analysis is necessary. CONCLUSION Undoubtedly, mask mandates during the SARS-CoV-2 pandemic have been generating an additional source of potentially harmful exposition to toxins with health threatening and carcinogenic properties at population level with almost zero distance to the airways.
Collapse
Affiliation(s)
- Kai Kisielinski
- Social Medicine, Emergency Medicine and Clinical Medicine (Surgery), Private Practice, 40212 Düsseldorf, Germany.
| | - Stefan Hockertz
- Toxicology, Pharmacology, Immunology, tpi consult AG, Haldenstr. 1, CH 6340 Baar, Switzerland
| | - Oliver Hirsch
- Department of Psychology, FOM University of Applied Sciences, 57078 Siegen, Germany
| | - Stephan Korupp
- Surgeon, Emergency Medicine, Private Practice, 52070 Aachen, Germany
| | - Bernd Klosterhalfen
- Institute of Pathology, Dueren Hospital, Roonstrasse 30, 52351 Dueren, Germany
| | - Andreas Schnepf
- Institute of Inorganic Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Gerald Dyker
- Faculty of Chemistry and Biochemistry, Ruhr University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| |
Collapse
|
13
|
Zhang J, Liang X, Chen H, Guo W, Martyniuk CJ. Exposure to environmental levels of 2,4-di-tert-butylphenol affects digestive glands and induces inflammation in Asian Clam (Corbicula fluminea). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 915:170054. [PMID: 38224884 DOI: 10.1016/j.scitotenv.2024.170054] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/03/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024]
Abstract
2,4-Di-tert-butylphenol (2,4-DTBP) is used as an antioxidant added to plastics. Due to its potential toxicity and relatively high concentrations in environments and presence in human tissue, concern has been raised for 2,4-DTBP as a contaminant associated with adverse health outcomes. However, studies on the toxicity of 2,4-DTBP are relatively limited, especially for benthic aquatic organisms. In this study, Asian clams (Corbicula fluminea) were exposed to environmentally relevant concentrations of 2,4-DTBP (0.01-1 μM, corresponding to 2.06-206.32 μg/L) for 21 days. Accumulation of 2,4-DTBP was noted in both gills and digestive glands, with the latter presenting as the primary target tissue. Increased damage rate of digestive tube and cellular DNA damage were observed in the digestive glands of 2,4-DTBP exposed clams. The injury was attributed to the imbalance of the antioxidant system, characterized by elevated oxidative stress and inflammation (upregulation of ROS, MDA, NO, and pro-inflammatory factors). In contrast, upon 2,4-DTBP exposure, antioxidant system in gills was activated, while ROS and NO were not promoted. Moreover, NF-κB and IL-1 were significantly decreased. These results suggested that biochemical mechanisms were activated in gills to maintain homeostasis. Internal exposure in the digestive gland was significantly correlated with the biochemical biomarkers tested, underscoring the potential risk associated with the bioaccumulation of 2,4-DTBP from contaminated environments. These findings provide novel insights into toxicity of 2,4-DTBP in bivalves, contributing valuable knowledge to risk assessment and chemical management.
Collapse
Affiliation(s)
- Jiye Zhang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xuefang Liang
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Huihui Chen
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Wei Guo
- Inner Mongolia Key Laboratory of Environmental Pollution Control & Waste Resource Reuse, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Christopher J Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Cao H, Ding P, Li X, Huang C, Li X, Chen X, Zhang L, Qi J. Environmentally persistent free radicals on photoaged microplastics from disposable plastic cups induce the oxidative stress-associated toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132990. [PMID: 37976855 DOI: 10.1016/j.jhazmat.2023.132990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/26/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Microplastics (MPs) are ubiquitous environmental contaminants that exerting multiple toxicological effects. Most studies have focused primarily on the models of unaged MPs and lack environmental relevance. The generation and toxicity of environmentally persistent free radicals (EPFRs) on photoaging MPs from disposable plastic cups (DPC-MPs) have not been well studied. Here, the formation of EPFRs on photoaged DPC-MPs and their toxic effects in nematodes were investigated. UV irradiation generated EPFRs, which influenced the characterization of DPC-MPs. Exposure to photoaged DPC-MPs at environmentally relevant concentrations (100-1000 μg/L) reduced the locomotion behavior, body length, and brood size. The Reactive oxygen species (ROS) production, lipofuscin accumulation, malondialdehyde (MDA), and 8-hydroxy-2'-deoxyguanosine (8-OHdG) levels were increased along with the downregulation of the expression levels of associated genes, such as clk-1, clt-1, and gst-4,in nematodes. Moreover, the toxicity and oxidative stress response of nematodes were significantly inhibited due to N-acetyl-l-cysteine (NAC). Pearson's correlation analysis revealed that the oxidative stress was significantly associated with adverse physiological effects. Therefore, EPFRs on photoaged DPC-MPs cause toxicity in nematodes, and oxidative stress is important for regulating toxicity. This study offers novel insights into the potential risks of DPC-MPs under UV irradiation, highlighting the need to consider the role of EPFRs in toxicity assessments of DPC-MPs.
Collapse
Affiliation(s)
- Hanling Cao
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing 100012, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xintong Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chushan Huang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xin Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lijuan Zhang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jianying Qi
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
15
|
Xu Y, Ou Q, van der Hoek JP, Liu G, Lompe KM. Photo-oxidation of Micro- and Nanoplastics: Physical, Chemical, and Biological Effects in Environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:991-1009. [PMID: 38166393 PMCID: PMC10795193 DOI: 10.1021/acs.est.3c07035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/04/2024]
Abstract
Micro- and nanoplastics (MNPs) are attracting increasing attention due to their persistence and potential ecological risks. This review critically summarizes the effects of photo-oxidation on the physical, chemical, and biological behaviors of MNPs in aquatic and terrestrial environments. The core of this paper explores how photo-oxidation-induced surface property changes in MNPs affect their adsorption toward contaminants, the stability and mobility of MNPs in water and porous media, as well as the transport of pollutants such as organic pollutants (OPs) and heavy metals (HMs). It then reviews the photochemical processes of MNPs with coexisting constituents, highlighting critical factors affecting the photo-oxidation of MNPs, and the contribution of MNPs to the phototransformation of other contaminants. The distinct biological effects and mechanism of aged MNPs are pointed out, in terms of the toxicity to aquatic organisms, biofilm formation, planktonic microbial growth, and soil and sediment microbial community and function. Furthermore, the research gaps and perspectives are put forward, regarding the underlying interaction mechanisms of MNPs with coexisting natural constituents and pollutants under photo-oxidation conditions, the combined effects of photo-oxidation and natural constituents on the fate of MNPs, and the microbiological effect of photoaged MNPs, especially the biotransformation of pollutants.
Collapse
Affiliation(s)
- Yanghui Xu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Qin Ou
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| | - Jan Peter van der Hoek
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- Waternet,
Department Research & Innovation,
P.O. Box 94370, 1090 GJ Amsterdam, The Netherlands
| | - Gang Liu
- Key
Laboratory of Drinking Water Science and Technology, Research Centre
for Eco-Environmental Sciences, Chinese
Academy of Sciences, Beijing 100085, P. R. China
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
- University
of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kim Maren Lompe
- Section
of Sanitary Engineering, Department of Water Management, Faculty of
Civil Engineering and Geosciences, Delft
University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
16
|
Li XP, Huang GY, Qiu SQ, Lei DQ, Wang CS, Xie L, Ying GG. Identification of Additives in Disposable Face Masks and Evaluation of Their Toxicity Using Marine Medaka ( Oryzias melastigma). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:121-131. [PMID: 38118121 DOI: 10.1021/acs.est.3c06216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
The COVID-19 pandemic has resulted in huge amounts of face masks worldwide. However, there is a lack of awareness on the additives and their potential risk to aquatic ecosystems of face masks. To address this issue, the additives and their toxicity in 13 face masks (e.g., polypropylene, polyethylene, and polylactic acid) were determined using nontarget analysis and bioassays. A total of 826 organic additives including intermediates (14.8%), surfactants (9.3%), plasticizers (8.2%), and antioxidants (6.1%) were tentatively identified, with 213 compounds being assigned confidence levels of 1 and 2. Interestingly, polylactic acid masks contained more additives than most polypropylene or polyethylene masks. Among these additives, the concentration of tris(2-ethylhexyl) phosphate in masks was 9.4-978.2 ng/g with a 100% detection frequency. Furthermore, 13 metals such as zinc (up to 202.0 μg/g), copper (32.5 μg/g), and chromium (up to 5.7 μg/g) were detected in the face masks. The methanol extracts of the masks showed the developmental toxicity, swimming behavior, and/or endocrine disruption in embryos/larvae of Oryzias melastigma. The findings demonstrate that face masks contain various toxic additives to marine medaka, which deserves close attention to pollution by face masks.
Collapse
Affiliation(s)
- Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
- School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
17
|
Li H, Gu Y, Jiang Y, Ding P, Chen X, Chen C, Pan R, Shi C, Wang S, Chen H. Environmentally persistent free radicals on photoaged nanopolystyrene induce neurotoxicity by affecting dopamine, glutamate, serotonin and GABA in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167684. [PMID: 37820818 DOI: 10.1016/j.scitotenv.2023.167684] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Microplastics are widely detected in the environment and induce toxic effects in various organisms. However, the properties and toxicity associated with environmentally persistent free radicals (EPFRs) in photoaged nanopolystyrene (NPS) remain largely unknown. We investigated the generation of EPFRs on photoaged NPS and their neurotoxicity and underlying mechanism in Caenorhabditis elegans. The results suggested that photoaging induces the generation of EPFRs and reactive oxygen species (O2•-, •OH, and 1O2), which altered the physicochemical properties (morphology, crystallinity, and functional groups) of NPS. Acute exposure to 1 μg/L of NPS-60 (NPS with light irradiation time of 60 d) significantly decreased locomotion behaviors and neurotransmitter contents (e.g., glutamate, serotonin, dopamine, and γ-aminobutyric acid). Treatment with N-acetyl-L-cysteine (NAC) by radical quenching test significantly reduced EPFRs levels on the aged NPS, and the toxicity of NAC-quenching NPS was decreased in nematodes compared to those in photoaged NPS. EPFRs also caused dysfunction of neurotransmission-related gene expression in C. elegans. Thus, EPFRs generated on photoaged NPS contributed to neurotoxicity by affecting dopamine, glutamate, serotonin, and γ-aminobutyric acid neurotransmission. The study highlights the potential risks of photoaged NPS and the contributions of EPFRs to toxicity.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susu Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
18
|
Tan Y, Dai J, Xiao S, Tang Z, Zhang J, Wu S, Wu X, Deng Y. Occurrence of microplastic pollution in rivers globally: Driving factors of distribution and ecological risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:165979. [PMID: 37543313 DOI: 10.1016/j.scitotenv.2023.165979] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 07/30/2023] [Indexed: 08/07/2023]
Abstract
Microplastics, as global emerging pollutants, have received significant attention worldwide due to their ubiquitous presence in the rivers. However, there is still a lack of clarity on the occurrence, driving factors, and ecological risks of microplastics in rivers worldwide. In this study, a global microplastic dataset based on 862 water samples and 445 sediment samples obtained from 63 articles was constructed, which revealed the temporal and spatial distribution of abundance and morphological characteristics of microplastics in rivers across the globe. In global rivers, the abundance of MPs in both water and sediment spans across 10 and 4 orders of magnitude, respectively. The MP comprehensive diversity index based on the physical morphological characteristics of MPs indicated a significant positive correlation between the pollution sources of MPs in different environmental media. Based on the data was aligned to the full-scale MPs, a novel framework was provided to evaluate the ecological risk of MPs and the interaction effects between the influencing factors driving the distribution characteristics of MPs in rivers around the world. The results obtained demonstrated a wide variation in the key driving factors affecting the distribution of microplastics in different environmental media (water and sediment) in rivers globally. The diversity indices of the morphological characteristics of MPs in densely populated areas of lower-middle income countries in Asia were significantly higher, implying that the sources of microplastics in these regions are more complex and extensive. More than half of the rivers are exposed to potential ecological risks of MPs; however, microplastics may pose only immediate risks to aquatic species in Burigang River, Bangladesh. This can provide valuable insights for formulating more effective scientific strategies for the management of MP pollution in rivers.
Collapse
Affiliation(s)
- Yanping Tan
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China; State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Jiangyu Dai
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China.
| | - Shuwen Xiao
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Zhiqiang Tang
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China
| | - Jianmin Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610065, China
| | - Shiqiang Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Xiufeng Wu
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing 210029, China
| | - Yu Deng
- College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Ya'an 625000, China.
| |
Collapse
|
19
|
Rathinamoorthy R, Raja Balasaraswathi S, Madhubashini S, Prakalya A, Rakshana JB, Shathvika S. Investigation on microfiber release from elastane blended fabrics and its environmental significance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166553. [PMID: 37633399 DOI: 10.1016/j.scitotenv.2023.166553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Elastane blended apparel is one of the most preferred items by consumers with fashion interest due to its enhanced comfort and fit. The environmental impact and microfiber release due to elastane usage is often ignored due to its lower percentage in apparel. To address such a gap, this study aimed to quantify and characterize the microfiber release behavior of cotton/elastane knitted fabric. Cotton/Elastane blended knitted fabrics with three different proportions of Cotton/Elastane (98/2, 95/5, and 92/8) were considered for this analysis. Upon laundry and quantification, the results of the study showed that 98/2 Cotton/Elastane fabric released 21.04 ± 12.46 microfibers/sq.cm, whereas, 92/8 Cotton/Elastane fabric released 46.56 ± 6.21 microfibers/sq.cm. An increase in elastane proportion increased the overall emission of microfibers per unit area of fabric. The results also showed a higher contribution of elastane fibers in the total microfibers released. 13.40% of the total fibers released were elastane microfibers in the case of 98/2 Cotton/Elastane fabric, whereas, 92/8 Cotton/Elastane fabric released 19.60% of elastane microfibers. The elastane percentage of the fabric showed a significant positive correlation with total microfiber emission (r = 63%) and elastane microfiber emission (r = 62%). Repeated laundering results showed an overall reduction in microfiber emissions in subsequent washes. However, interestingly, an increase in the wash cycle increased the proportion of elastane microfibers in the total microfibers released. 92/8 Cotton/Elastane fabric released 20% of elastane microfibers in the first wash and the proportion increased to 36% in the 4th wash. In contrast to that, the release of cotton microfibers is noted to decrease with the number of laundry cycles. As far as the length of microfiber is considered, elastane microfibers are shorter than cotton microfibers. The length of elastane microfibers was higher in the initial wash (98/2 Cotton/Elastane fabric - 352.5 μm; 95/5 Cotton/Elastane fabric - 920 μm; 92/8 Cotton/Elastane fabric - 695 μm) and it is reduced with increment in the number of washes with a strong negative correlation of -0.88. A higher proportion of emissions and lower fiber length are the alarming negative impacts of elastane fibers in apparel. Based on this analysis, it is estimated that one square meter of fabric with a lower elastane percentage (2%) can release up to 2.81 × 104 microfibers into the environment at the first wash. The threatening issues of microfibers on aquatic life, particularly in terms of bioaccumulation and biomagnification, are alarming. Elastane blended fabrics should be given special attention because they can make the problem more serious by posing a risk of chemical leachates, such as bisphenols.
Collapse
Affiliation(s)
- R Rathinamoorthy
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India.
| | - S Raja Balasaraswathi
- Department of Fashion Technology, National Institute of Fashion Technology, Bengaluru 560102, India
| | - S Madhubashini
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India
| | - A Prakalya
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India
| | - J B Rakshana
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India
| | - S Shathvika
- Department of Fashion Technology, PSG College of Technology, Coimbatore 641004, India
| |
Collapse
|
20
|
Yi JF, Lin ZZ, Li X, Zhou YQ, Guo Y. A short review on environmental distribution and toxicity of the environmentally persistent free radicals. CHEMOSPHERE 2023; 340:139922. [PMID: 37611755 DOI: 10.1016/j.chemosphere.2023.139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/09/2023] [Accepted: 08/21/2023] [Indexed: 08/25/2023]
Abstract
Environmentally Persistent Free Radicals (EPFRs) are usually generated by the electron transfer of a certain radical precursor on the surface of a carrier. They are characterized with high activity, wide migration range, and relatively long half-life period. In this review, we summarized the literature on EPFRs published since 2010, including their environmental occurrence and potential cytotoxicity and biotoxicity. The EPFRs in the atmosphere are the most abundant in the environment, mainly generated from the combustion of raw materials or biochar, and the C-center types (quinones, semiquinones radicals, etc.) may exist for a relatively long time. These EPFRs can transform into other substances (such as reactive oxygen species, ROS) under the influence of environmental factors, and partly enter soil and water by wet and dry deposition of particulate matter, which may promote the generation of EPFRs in those media. The wide distribution of EPFRs in the environment may lead to their exposure to biota including humans, resulting in cytotoxicity and biotoxicity. The EPFRs can influence the normal redox process of the biota, and generate a large number of free radicals like ROS. Exposure to EPFRs may change the expression of gene and activity of metabolic enzymes, and damage the cells, as well as some organs such as the lung, trachea, and heart. However, due to the difficulty in sample extraction, identification, and quantification of the specific EPFR individuals, the toxicity and exposure evaluation of biota are still limited which merits study in the future.
Collapse
Affiliation(s)
- Jing-Feng Yi
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Ze-Zhao Lin
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Xing Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yue-Qiao Zhou
- Department of Department of Medical Oncology, Qionghai People's Hospital, Qionghai, 571499, China.
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
21
|
Qiu Y, Zhang T, Zhang P. Fate and environmental behaviors of microplastics through the lens of free radical. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131401. [PMID: 37086675 DOI: 10.1016/j.jhazmat.2023.131401] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Microplastics (MPs), as plastics with a size of less than 5 mm, are ubiquitously present in the environment and become an increasing environmental concern. The fate and environmental behavior of MPs are significantly influenced by the presence of free radicals. Free radicals can cause surface breakage, chemical release, change in crystallinity and hydrophilicity, and aggregation of MPs. On the other hand, the generation of free radicals with a high concentration and oxidation potential can effectively degrade MPs. There is a limited review article to bridge the fate and environmental behaviors of MP with free radicals and their reactions. This paper reviews the sources, types, detection methods, generation mechanisms, and influencing factors of free radicals affecting the environmental processes of MPs, the environmental effects of MPs controlled by free radicals, and the degradation strategies of MPs based on free radical-associated technologies. Moreover, this review elaborates on the limitations of the current research and provides ideas for future research on the interactions between MPs and free radicals to better explain their environmental impacts and control their risks. This article aims to keep the reader abreast of the latest development in the fate and environmental behaviors of MP with free radicals and their reactions and to bridge free radical chemistry with MP control methodology.
Collapse
Affiliation(s)
- Ye Qiu
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China; Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China
| | - Tong Zhang
- College of Environmental Science and Engineering, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, 38 Tongyan Rd., Tianjin 300350, China.
| | - Ping Zhang
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Taipa, Macao Special Administrative Region of China.
| |
Collapse
|
22
|
Chen H, Jiang Y, Gu Y, Ding P, Wang C, Pan R, Shi C, Zeng L, Chen X, Li H. The generation of environmentally persistent free radicals on photoaged microbeads from cosmetics enhances the toxicity via oxidative stress. ENVIRONMENT INTERNATIONAL 2023; 174:107875. [PMID: 36933305 DOI: 10.1016/j.envint.2023.107875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/13/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Microbeads used in personal care products have been one of the important sources of microplastics (MPs), and little has been reported on their environmental behaviors and health risks. The characteristics of environmentally persistent free radicals (EPFRs) and the toxicity assessment of MPs (environmentally relevant concentrations) from cosmetics during photoaging remains largely unknown. In this study, the formation of EPFRs on polyethylene (PE) microbeads from facial scrubs under light irradiation and their toxicity were investigated using C. elegans as a model organism. The results suggested that light irradiation induced the generation of EPFRs, which accelerates the aging process and alters the physicochemical properties of PE microbeads. Acute exposure to PE (1 mg/L) at photoaged times of 45-60 d significantly decreased the physiological indicators (e.g., head thrashes, body bends, and brood size). The oxidative stress response and stress-related gene expression were also enhanced in nematodes. The addition of N-acetyl-l-cysteine induced significant inhibition of toxicity and oxidative stress in nematodes exposed to 45-60 d of photoaged PE. The Pearson correlation results showed that the concentration of EPFRs was significantly correlated with physiological indicators, oxidative stress, and related-genes expression in nematodes. The data confirmed that the generation of EPFRs combined with heavy metals and organics contributed to toxicity induced by photoaged PE, and oxidative stress might be involved in regulating adverse effects in C. elegans. The study provides new insight into the potential risks of microbeads released into the environment during photoaging. The findings also highlight the necessity for considering the role of EPFRs formation in evaluating the impacts of microbeads.
Collapse
Affiliation(s)
- Haibo Chen
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingjun Zeng
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaoxia Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
23
|
Oliveira AM, Patrício Silva AL, Soares AMVM, Barceló D, Duarte AC, Rocha-Santos T. Current knowledge on the presence, biodegradation, and toxicity of discarded face masks in the environment. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109308. [PMID: 36643396 PMCID: PMC9832688 DOI: 10.1016/j.jece.2023.109308] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
During the first year of the COVID-19 pandemic, facemasks became mandatory, with a great preference for disposable ones. However, the benefits of face masks for health safety are counteracted by the environmental burden related to their improper disposal. An unprecedented influx of disposable face masks entering the environment has been reported in the last two years of the pandemic, along with their implications in natural environments in terms of their biodegradability, released contaminants and ecotoxicological effects. This critical review addresses several aspects of the current literature regarding the (bio)degradation and (eco)toxicity of face masks related contaminants, identifying uncertainties and research needs that should be addressed in future studies. While it is indisputable that face mask contamination contributes to the already alarming plastic pollution, we are still far from determining its real environmental and ecotoxicological contribution to the issue. The paucity of studies on biodegradation and ecotoxicity of face masks and related contaminants, and the uncertainties and uncontrolled variables involved during experimental procedures, are compromising eventual comparison with conventional plastic debris. Studies on the abundance and composition of face mask-released contaminants (microplastics/fibres/ chemical compounds) under pre- and post-pandemic conditions should, therefore, be encouraged, along with (bio)degradation and ecotoxicity tests considering environmentally relevant settings. To achieve this, methodological strategies should be developed to overcome technical difficulties to quantify and characterise the smallest MPs and fibres, adsorbents, and leachates to increase the environmental relevancy of the experimental conditions.
Collapse
Affiliation(s)
- Ana M Oliveira
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ana L Patrício Silva
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Damià Barceló
- Catalan Institute for Water research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101,17003 Girona, Spain
- Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Armando C Duarte
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- Centre for Environmental and Marine Studies (CESAM) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
24
|
An investigation into the aging of disposable face masks in landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130671. [PMCID: PMC9789546 DOI: 10.1016/j.jhazmat.2022.130671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/14/2022] [Accepted: 12/23/2022] [Indexed: 09/26/2023]
Abstract
Due to the excessive use of disposable face masks during the COVID-19 pandemic, their accumulation has posed a great threat to the environment. In this study, we explored the fate of masks after being disposed in landfill. We simulated the possible process that masks would experience, including the exposure to sunlight before being covered and the contact with landfill leachate. After exposure to UV radiation, all three mask layers exhibited abrasions and fractures on the surface and became unstable with the increased UV radiation duration showed aging process. The alterations in chemical groups of masks as well as the lower mechanical strength of masks after UV weathering were detected to prove the happened aging process. Then it was found that the aging of masks in landfill leachate was further accelerated compared to these processes occurring in deionized water. Furthermore, the carbonyl index and isotacticity of the mask samples after aging for 30 days in leachate were higher than those of pristine materials, especially for those endured longer UV radiation. Similarly, the weight and tensile strength of the aged masks were also found lower than the original samples. Masks were likely to release more microparticles and high concentration of metal elements into leachate than deionized water after UV radiation and aging. After being exposed to UV radiation for 48 h, the concentration of released particles in leachate was 39.45 μL/L after 1 day and then grew to 309.45 μL/L after 30 days of aging. Seven elements (Al, Cr, Cu, Zn, Cd, Sb and Pb) were detected in leachate and the concentration of this metal elements increased with the longer aging time. The findings of this study can advance our understanding of the fate of disposable masks in the landfill and develop the strategy to address this challenge in waste management.
Collapse
|
25
|
Al-Tohamy R, Ali SS, Zhang M, Elsamahy T, Abdelkarim EA, Jiao H, Sun S, Sun J. Environmental and Human Health Impact of Disposable Face Masks During the COVID-19 Pandemic: Wood-Feeding Termites as a Model for Plastic Biodegradation. Appl Biochem Biotechnol 2023; 195:2093-2113. [PMID: 36370247 PMCID: PMC9652579 DOI: 10.1007/s12010-022-04216-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/14/2022]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). On the eve of the COVID-19 pandemic, there is a tremendous increase in the production of plastic-based PPE. To control the spread of the virus, face masks (FMs) are used as primary PPE. Thus, the production and usage of FM significantly increased as the COVID-19 pandemic was still escalating. The primary raw materials for the manufacturing of FMs are non-biodegradable synthetic polymers derived from petrochemicals. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. Furthermore, most of these masks contain plastic or other derivatives of plastic. The extensive usage of FM generates millions of tons of plastic waste for the environment in a short span of time. However, their degradation in the environment and consequences are poorly understood. Therefore, the potential impacts of disposable FM on the environment and human health during the COVID-19 pandemic are clarified in the present study. Despite structural and recalcitrance variations, lignocellulose and plastic polymers have physicochemical features, including carbon skeletons with comparable chemical bonds as well as hydrophobic properties in amorphous and crystalline regions. In this review, we argue that there is much to be learned from termites by transferring knowledge from research on lignocellulose degradation by termites to that on plastic waste.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Meng Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sarina Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
26
|
Ma M, Xu D, Zhao J, Gao B. Disposable face masks release micro particles to the aqueous environment after simulating sunlight aging: Microplastics or non-microplastics? JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130146. [PMID: 36244106 DOI: 10.1016/j.jhazmat.2022.130146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
This study focuses on characterizing microplastics and non-microplastics released from surgical masks (SMs), N95 masks (N95), KN95 masks (KN95), and children's masks (CMs) after simulating sunlight aging. Based on micro-Raman spectrum analysis, it was found that the dominant particles released from masks were non-microplastics (66.76-98.85%). Unfortunately, CMs released the most microplastics, which is 8.92 times more than SMs. The predominant size range of microplastics was 30-500 µm, and the main polymer types were PP and PET. Compared with the whole SMs, the microplastic particles released from the cutting-SMs increased conspicuously, which is 12.15 times that of the whole SMs. The main components of non-microplastics include β-carotene, microcrystalline cellulose 102, and eight types of minerals. Furthermore, non-microplastics were mainly fibrous and fragmented in appearance, similar to the morphology of microplastics. After 15 days of UVA-aging, the fibers of the face layers had cracks to varying degrees. It was estimated that these four types of masks can release at least 31.5 trillion microplastics annually in China. Overall, this study demonstrated that the masks could release a large quantity of microplastics and non-microplastics to the environment after sunlight aging, deserving urgent attention in the future study.
Collapse
Affiliation(s)
- Minglu Ma
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China
| | - Dongyu Xu
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao 266100, China
| | - Bo Gao
- State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China.
| |
Collapse
|
27
|
Huang Q, Liu M, Cao X, Liu Z. Occurrence of microplastics pollution in the Yangtze River: Distinct characteristics of spatial distribution and basin-wide ecological risk assessment. WATER RESEARCH 2023; 229:119431. [PMID: 36527870 DOI: 10.1016/j.watres.2022.119431] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/23/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
The widespread presence of microplastics (MPs) in the Yangtze River, the third longest river in the world, has drawn increasing attention. Although numerous studies have been conducted recently to investigate and analyze the MPs exposure to the surface water of the river, most merely focus on a certain part of the Yangtze River, and knowledge of MPs based on the basin-wide is still scattered. This article reveals the spatial distribution characteristics of MPs in the Yangtze River from the whole watershed scale. Among the five areas in the basin, the upstream and the midstream were demonstrated to contain more MPs (3598.6 particles/m3 and 3226.8 particles/m3). The obtained results suggested the MP presented in the entire watersheds was uneven and the 'hotspots' occurred, where the MPs concentrations were relatively higher than the surrounding. The discharging of the wastewater treatment plants along the river, the locations of dams, and the stability and fragment of MPs, were demonstrated to be the important driving factors in the spatial distribution of MPs and leading to the appearance of the MP 'hotspots' in the Yangtze River, but were previously overlooked. It is the first study to evaluate the ecological risk of MPs exposure to the surface water of the Yangtze River with multiple assessment methods, taking not only abundance but also morphological characteristics, polymer composition and toxic effect into account. More importantly, based on the multiple individual MPs risk assessment methods, we developed the BetaMP method which achieves a comprehensive assessment of MP risk in basin-wide by taking multiple MP characteristics into account for the first time. This is conducive to better understanding the environmental impacts of MPs pollution in the different regions of the river.
Collapse
Affiliation(s)
- Qian'en Huang
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3, Yangling, Shannxi 712100, China
| | - Mengge Liu
- School of Design, Shanghai Jiaotong University, 800 Dongchuan RD.Minhang District, Shanghai 200240, China
| | - Xuewen Cao
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Ze Liu
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3, Yangling, Shannxi 712100, China.
| |
Collapse
|
28
|
Chen Y, Chen Q, Zhang Q, Zuo C, Shi H. An Overview of Chemical Additives on (Micro)Plastic Fibers: Occurrence, Release, and Health Risks. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 260:22. [PMCID: PMC9748405 DOI: 10.1007/s44169-022-00023-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/02/2022] [Indexed: 07/21/2023]
Abstract
Plastic fibers are ubiquitous in daily life with additives incorporated to improve their performance. Only a few restrictions exist for a paucity of common additives, while most of the additives used in textile industry have not been clearly regulated with threshold limits. The production of synthetic fibers, which can shed fibrous microplastics easily (< 5 mm) through mechanical abrasion and weathering, is increasing annually. These fibrous microplastics have become the main composition of microplastics in the environment. This review focuses on additives on synthetic fibers; we summarized the detection methods of additives, compared concentrations of different additive types (plasticizers, flame retardants, antioxidants, and surfactants) on (micro)plastic fibers, and analyzed their release and exposure pathways to environment and human beings. Our prediction shows that the amounts of predominant additives (phthalates, organophosphate esters, bisphenols, per- and polyfluoroalkyl substances, and nonylphenol ethoxylates) released from clothing microplastic fibers (MFs) are estimated to reach 35, 10, 553, 0.4, and 568 ton/year to water worldwide, respectively; and 119, 35, 1911, 1.4, and 1965 ton/year to air, respectively. Human exposure to MF additives via inhalation is estimated to be up to 4.5–6440 µg/person annually for the above five additives, and via ingestion 0.1–204 µg/person. Notably, the release of additives from face masks is nonnegligible that annual human exposure to phthalates, organophosphate esters, per- and polyfluoroalkyl substances from masks via inhalation is approximately 491–1820 µg/person. This review helps understand the environmental fate and potential risks of released additives from (micro)plastic fibers, with a view to providing a basis for future research and policy designation of textile additives.
Collapse
Affiliation(s)
- Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
- Yangtze Delta Estuarine Wetland Ecosystem Observation and Research Station, Ministry of Education & Shanghai Science and Technology Committee, Shanghai, China
| | - Qun Zhang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Chencheng Zuo
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241 China
| |
Collapse
|