1
|
Lee SJ, Pak SW, Kim WI, Park SH, Cho YK, Ko JW, Kim TW, Kim JS, Kim JC, Lim JO, Shin IS. Silibinin Suppresses Inflammatory Responses Induced by Exposure to Asian Sand Dust. Antioxidants (Basel) 2024; 13:1187. [PMID: 39456441 PMCID: PMC11505622 DOI: 10.3390/antiox13101187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Asian sand dust (ASD), generated from the deserts of China and Mongolia, affects Korea and Japan during spring and autumn, causing harmful effects on various bio-organs, including the respiratory system, due to its irritants such as fine dust, chemicals, and toxic materials. Here, we investigated the therapeutic effects of silibinin against ASD-induced airway inflammation using mouse macrophage-like cell line RAW264.7 and a murine model. ASD was intranasally administered to mice three times a week and silibinin was administered for 6 days by oral gavage. In ASD-stimulated RAW264.7 cells, silibinin treatment decreased tumor necrosis factor-α production and reduced the expression of p-p65NF-κB, p-p38, and cyclooxygenase (COX)-2, while increasing heme oxygenase (HO)-1 expression. In ASD-exposed mice, silibinin administration reduced inflammatory cell count and cytokines in bronchoalveolar lavage fluid and decreased inflammatory cell infiltration in lung tissue. Additionally, silibinin lowered oxidative stress, as evidenced by decreased 8-hydroxy-2'-deoxyguanosin (8-OHdG) expression and increased HO-1 expression. The expression of inflammatory-related proteins, including p-p65NF-κB, COX-2, and p-p38, was markedly reduced by silibinin administration. Overall, silibinin treatment reduced the expression of p-p65NF-κB, COX-2, and p-p38 in response to ASD exposure, while increasing HO-1 expression both in vitro and in vivo. These findings suggest that silibinin mitigates pulmonary inflammation caused by ASD exposure by reducing inflammatory signaling and oxidative stress, indicating its potential as a therapeutic agent for ASD-induced pulmonary inflammation.
Collapse
Affiliation(s)
- Se-Jin Lee
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - So-Won Pak
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Woong-Il Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Sin-Hyang Park
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Young-Kwon Cho
- College of Health Sciences, Cheongju University, 298 Daesung-ro, Sangdang-gu, Cheongju-si 28503, Republic of Korea;
| | - Je-Won Ko
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Tae-Won Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chungnam National University, 99 Daehak-ro, Daejeon 34134, Republic of Korea; (J.-W.K.); (T.-W.K.)
| | - Joong-Sun Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Jong-Choon Kim
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| | - Je-Oh Lim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, 177 Geonjae-ro, Naju-si 58245, Republic of Korea
| | - In-Sik Shin
- BK21 FOUR Program, College of Veterinary Medicine, Chonnam National University, 77 Yong-bong-ro, Buk-gu, Gwangju 61186, Republic of Korea; (S.-J.L.); (S.-W.P.); (W.-I.K.); (S.-H.P.); (J.-S.K.); (J.-C.K.)
| |
Collapse
|
2
|
Chen C, Chen CS, Liu TC. Exploring the association between knee osteoarthritis outpatient visits and Asian dust storms: a time-series analysis. Sci Rep 2024; 14:22544. [PMID: 39343805 PMCID: PMC11439931 DOI: 10.1038/s41598-024-73170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Osteoarthritis (OA) is one of the most prevalent musculoskeletal diseases in Taiwan, posing a significant public health challenge. In recent years, outdoor air pollution has become an increasingly critical global health issue. Asian Dust Storms (ADS) are known to exacerbate various health conditions due to elevated levels of particulate matter and other pollutants. However, the relationship between ADS and knee OA remains insufficiently explored. This study investigates the association between ADS occurrences and knee OA outpatient visits from January 2006 to December 2012, aiming to understand the potential health impacts of dust storms on OA patients. Using data from the National Health Insurance Research Database (NHIRD), the Taiwan Environmental Protection Agency (TEPA), and the Taiwan Central Weather Bureau, we conducted a time-series analysis employing the autoregressive moving average with exogenous variables (ARMAX) model. This approach accounted for daily outpatient visits related to knee OA, ADS events, and various environmental and meteorological factors. The results revealed a significant increase in knee OA outpatient visits on days immediately following ADS events, with peaks observed one to two days after the event. This increase was most pronounced among females, individuals aged 61 and above, and residents in the western regions. The study demonstrates an association between ADS and increased knee OA outpatient visits, highlighting the need for public health strategies to mitigate the health impacts of dust storms.
Collapse
Affiliation(s)
- Conmin Chen
- Department of Medical Education, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, 289, Jianguo Rd., Xindian, New Taipei City, 23142, Taiwan
| | - Chin-Shyan Chen
- Department of Economics, National Taipei University, 151, University Rd., San Shia, New Taipei City, 23741, Taiwan
| | - Tsai-Ching Liu
- Department of Public Finance, National Taipei University, 151, University Rd., San Shia, New Taipei City, 23741, Taiwan.
| |
Collapse
|
3
|
Pouri N, Karimi B, Kolivand A, Mirhoseini SH. Ambient dust pollution with all-cause, cardiovascular and respiratory mortality: A systematic review and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168945. [PMID: 38042201 DOI: 10.1016/j.scitotenv.2023.168945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/12/2023] [Accepted: 11/25/2023] [Indexed: 12/04/2023]
Abstract
A severe health crisis has been well-documented regarding dust particle exposure. We aimed to present the risk of all-cause, cardiovascular, and respiratory mortality due to particulate matter (PM) exposure during non-dust and dust storm events by performing a meta-analysis. A systematic review of the literature was conducted by an online search of the databases (Google Scholar, Web of Science, Scopus, and PubMed) with no restrictions according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines until December 2022. We performed a random-effects model to compute the pooled rate ratio (RR) of mortality with 95 % confidence intervals (CI). The Office of Health Assessment and Translation (OHAT) risk of bias rating tool was prepared to assess the quality of the individual study. The registration number in PROSPERO was CRD42023423212. We found a 16 % (95 % CI: 0.7 %, 24 %) increase in all-cause, 25 % (95 % CI: 14 %, 37 %) increase in cardiovascular, and 18 % (95 % CI: 13 %, 22 %) increase in respiratory mortality per 10 μg/m3 increment in dust exposure. Furthermore, the RRs per 10 μg/m3 increment in PM10-2.5 were 1.046 (95 % CI: 1.019, 1.072)¸ 1.085 (95 % CI: 1.045, 1.0124), and 1.089 (95 % CI: 0.939, 1.24) for all-cause, cardiovascular, and respiratory mortality, respectively. PM10 during dust days significantly increased the all-cause (1.013, 95 % CI: 1.007, 1.018) cardiovascular mortality risk (1.014, 95 % CI: 1.009, 1.02). We also found significant evidence for all-cause, cardiovascular, and respiratory mortality among females and the elderly age group due to dust particle (PM10-2.5 and PM10) exposure. Our results provided significant evidence about high concentrations of PM10-2.5 and PM10 during dust storm events related to mortality risk.
Collapse
Affiliation(s)
- Nasrin Pouri
- Students Research Committee, Arak University of Medical Sciences, Arak, Iran
| | - Behrooz Karimi
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran.
| | - Ali Kolivand
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran
| | - Seyed Hamed Mirhoseini
- Department of Environmental Health Engineering, Arak University of Medical Sciences, Arak, Iran
| |
Collapse
|
4
|
Labban AH, Butt MJ. Evaluation of MERRA-2 data for aerosols patterns over the Kingdom of Saudi Arabia. Heliyon 2023; 9:e17047. [PMID: 37484343 PMCID: PMC10361094 DOI: 10.1016/j.heliyon.2023.e17047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 07/25/2023] Open
Abstract
Aerosol is one of the major climate-forcing parameters which affect the Kingdom of Saudi Arabia in particular. The most relevant consideration that characterizes the aerosol properties and distribution is the Aerosol Optical Depth (AOD). In this study Modern Era Retrospective Analysis for Research and Applications (MERRA-2) AOD product from the year 1980-2021 is used to investigate aerosols pattern over the Kingdom of Saudi Arabia. The validation of the MERRA-2 AOD product is made by using AOD data retrieved from Aerosol Robotic Network (AERONET) stations located at Solar Village (SV) and at King Abdullah University of Science and Technology (KAUST). Various statistical analyses are performed to test the reliability of MERRA-2 data in the study region. The results of the statistical analysis indicate that MERRA-2 is highly correlated with both AERONET stations data. Thus, annual and seasonal aerosol climatology maps based on 41 years of MERRA-2 data are prepared and analyzed over the study region. The annual and seasonal aerosol climatology analysis of MERRA-2 data shows high density of AOD at southern and eastern regions while the low density emerges over the western and northern regions of the country during the study period. The results of the study are very encouraging, which increases our confidence level to use historical MERRA-2 AOD product to improve the knowledge on aerosols distribution over the region in future.
Collapse
Affiliation(s)
- Abdulhaleem H. Labban
- Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Center of Excellence for Climate Change Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohsin Jamil Butt
- Department of Meteorology, Faculty of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
5
|
Biddle TA, Yisrael K, Drover R, Li Q, Maltz MR, Topacio TM, Yu J, Del Castillo D, Gonzales D, Freund HL, Swenson MP, Shapiro ML, Botthoff JK, Aronson E, Cocker DR, Lo DD. Aerosolized aqueous dust extracts collected near a drying lake trigger acute neutrophilic pulmonary inflammation reminiscent of microbial innate immune ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159882. [PMID: 36334668 DOI: 10.1016/j.scitotenv.2022.159882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND A high incidence of asthma is prevalent among residents near the Salton Sea, a large inland terminal lake in southern California. This arid region has high levels of ambient particulate matter (PM); yet while high PM levels are often associated with asthma in many environments, it is possible that the rapidly retreating lake, and exposed playa or lakebed, may contribute components with a specific role in promoting asthma symptoms. OBJECTIVES Our hypothesis is that asthma may be higher in residents closest to the Salton Sea due to chronic exposures to playa dust. Playa emissions may be concentrating dissolved material from the lake, with microbial components capable of inducing pulmonary innate immune responses. To test this hypothesis, we used a mouse model of aerosol exposures to assess the effects of playa dust. METHODS From dust collected around the Salton Sea region, aqueous extracts were used to generate aerosols, which were injected into an environmental chamber for mouse exposure studies. We compared the effects of exposure to Salton Sea aerosols, as well as to known immunostimulatory reference materials. Acute 48-h and chronic 7-day exposures were compared, with lungs analyzed for inflammatory cell recruitment and gene expression. RESULTS Dust from sites nearest to the Salton Sea triggered lung neutrophil inflammation that was stronger at 48-h but reduced at 7-days. This acute inflammatory profile and kinetics resembled the response to innate immune ligands LTA and LPS while distinct from the classic allergic response to Alternaria. CONCLUSION Lung inflammatory responses to Salton Sea dusts are similar to acute innate immune responses, raising the possibility that microbial components are entrained in the dust, promoting inflammation. This effect highlights the health risks at drying terminal lakes from inflammatory components in dust emissions from exposed lakebed.
Collapse
Affiliation(s)
- Trevor A Biddle
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Keziyah Yisrael
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Ryan Drover
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Qi Li
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Mia R Maltz
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Talyssa M Topacio
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Jasmine Yu
- School of Medicine, University of California, Riverside, Riverside, CA, USA
| | - Diana Del Castillo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Daniel Gonzales
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - Hannah L Freund
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Mark P Swenson
- Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - Malia L Shapiro
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA
| | - Jon K Botthoff
- Center for Conservation Biology, University of California, Riverside, Riverside, CA, USA
| | - Emma Aronson
- Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA; Department of Microbiology, University of California, Riverside, Riverside, CA, USA
| | - David R Cocker
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA; College of Engineering-Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, Riverside, CA, USA
| | - David D Lo
- Division of Biomedical Sciences, University of California, Riverside School of Medicine, Riverside, CA, USA; BREATHE Center, University of California, Riverside, Riverside, CA, USA; Center for Health Disparities Research, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
6
|
Li R, Zhang M, Du Y, Wang G, Shang C, Liu Y, Zhang M, Meng Q, Cui M, Yan C. Impacts of dust events on chemical characterization and associated source contributions of atmospheric particulate matter in northern China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120597. [PMID: 36343856 DOI: 10.1016/j.envpol.2022.120597] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/31/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Sand and dust have significant impacts on air quality, climate, and human health. To investigate the influences of dust storms on chemical characterization and source contributions of fine particulate matter (PM2.5) in areas with different distances from dust source regions, PM2.5 and associated chemical composition were measured in two industrial cities with one near sand sources (i.e., Wuhai) and the other far from sand sources (i.e., Jinan) in northern China in March 2021. Results showed that PM mass concentrations significantly increased and exceeded the Chinese National Ambient Air Quality standard during the dust events, with absolute concentrations and fractional contributions of PM2.5-bound crustal and trace elements increased while secondary inorganic ions decreased at both sites. Crustal materials dominated the increased PM2.5 mass from non-dust period to dust period in both cities. These were further evidenced by PM2.5 source apportionment results from positive matrix factorization model. During the dust events, dust sources contributed up to 88% of PM2.5 mass in Wuhai and ∼38% of PM2.5 mass in Jinan, a city about thousands of kilometers away from the sand source. Besides, the measurement data indicated that dust from northwest China may also bring along with high abundance of organic matter and vanadium. Secondary and traffic sources were two of the most important source contributors to PM2.5 in both cities during the non-dust periods. However, the near sand source city was more susceptible to the aggravating effects of dust and minerals, with much higher contributions by crustal materials (∼47%, from the aspect of chemical components) and dust-related sources (∼26%, from the aspect of sources) to PM2.5 mass even during non-dust periods. This study highlighted the urgent need for more action and effective control of sand sources to reduce the impact on air quality in downstream regions.
Collapse
Affiliation(s)
- Ruiyu Li
- Environment Research Institute, Shandong University, Qingdao 266237, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Miao Zhang
- Shandong Provincial Eco-Environment Monitoring Center, Jinan, 250101, China
| | - Yuming Du
- Inner Mongolia Autonomous Region Environmental Monitoring Center, Wuhai Branch, Wuhai, 016000, China
| | - Guixia Wang
- Shandong Provincial Eco-Environment Monitoring Center, Jinan, 250101, China
| | - Chunlin Shang
- Inner Mongolia Autonomous Region Environmental Monitoring Center, Wuhai Branch, Wuhai, 016000, China
| | - Yao Liu
- Inner Mongolia Autonomous Region Environmental Monitoring Center, Wuhai Branch, Wuhai, 016000, China
| | - Min Zhang
- Inner Mongolia Autonomous Region Environmental Monitoring Center, Wuhai Branch, Wuhai, 016000, China
| | - Qingpeng Meng
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Min Cui
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Caiqing Yan
- Environment Research Institute, Shandong University, Qingdao 266237, China; Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| |
Collapse
|
7
|
Jung J, Lee EM, Myung W, Kim H, Kim H, Lee H. Burden of dust storms on years of life lost in Seoul, South Korea: A distributed lag analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118710. [PMID: 34958849 DOI: 10.1016/j.envpol.2021.118710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Although dust storms have been associated with adverse health outcomes, studies on the burden of dust storms on deaths are limited. As global warming has induced significant climate changes in recent decades, which have accelerated desertification worldwide, it is necessary to evaluate the burden of dust storm-induced premature mortality using a critical measure of disease burden, such as the years of life lost (YLL). The YLL attributable to dust storms have not been examined to date. This study investigated the association between Asian dust storms (ADS) and the YLL in Seoul, South Korea, during 2002-2013. We conducted a time-series study using a generalized additive model assuming a Gaussian distribution and applied a distributed lag model with a maximum lag of 5 days to investigate the delayed and cumulative effects of ADS on the YLL. We also conducted stratified analyses using the cause of death (respiratory and cardiovascular diseases) and sociodemographic status (sex, age, education level, occupation, and marital status). During the study period, 108 ADS events occurred, and the average daily YLL was 1511 years due to non-accidental causes. The cumulative ADS exposure over the 6-day lag period was associated with a significant increase of 104.7 (95% CI, 31.0-178.5 years) and 34.4 years (4.0-64.7 years) in the YLL due to non-accidental causes and cardiovascular mortality, respectively. Sociodemographic analyses revealed associations between ADS exposure and the YLL in males, both <65 and ≥ 65 years old, those with middle-level education, and the unemployed, unmarried, and widowed (26.5-83.8 years). This study provides new evidence suggesting that exposure to dust storms significantly increases the YLL. Our findings suggest that dust storms are a critical environmental risk affecting premature mortality. These results could contribute to the establishment of public health policies aimed at managing dust storm exposure and reducing premature deaths.
Collapse
Affiliation(s)
- Jiyun Jung
- Data Management and Statistics Institute, Dongguk University Ilsan Hospital, 27 Dongguk-ro, Ilsandong-gu, Goyang-si, Gyeonggido, 10326, South Korea
| | - Eun-Mi Lee
- Department of Health Administration, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon-do, 26493, South Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, 82, Gumi-ro 173 Beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do 13620, South Korea; Department of Psychiatry, College of Medicine, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, South Korea
| | - Hyekyeong Kim
- Department of Health Convergence, College of Science and Industry Convergence, Ewha Womans University, Seoul, 03760, South Korea
| | - Ho Kim
- Department of Public Health Science, School of Public Health, Seoul National University, 1 Kwanak-ro, Kwanak-gu, Seoul, 08826, South Korea
| | - Hyewon Lee
- Department of Health Administration and Management, College of Medical Sciences, Soonchunhyang University, 22 Soonchunhyang-ro, Asan, 31538, South Korea; Department of Software Convergence, Soonchunhyang University Graduate School, 22 Soonchunhyang-ro, Asan, 31538, South Korea.
| |
Collapse
|
8
|
Nagahawatta DP, Kim HS, Jee YH, Jayawardena TU, Ahn G, Namgung J, Yeo IK, Sanjeewa KKA, Jeon YJ. Sargachromenol Isolated from Sargassum horneri Inhibits Particulate Matter-Induced Inflammation in Macrophages through Toll-like Receptor-Mediated Cell Signaling Pathways. Mar Drugs 2021; 20:28. [PMID: 35049883 PMCID: PMC8779987 DOI: 10.3390/md20010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 11/28/2022] Open
Abstract
Sargassum horneri is an invasive brown seaweed that grows along the shallow coastal areas of the Korean peninsula, which are potentially harmful to fisheries and natural habitats in the areas where it is accumulated. Therefore, the author attempted to evaluate the anti-inflammatory mechanism of Sargachromenol isolated from S. horneri against particulate matter (PM)-stimulated RAW 264.7 macrophages. PM is a potent inducer of respiratory diseases such as lung dysfunctions and cancers. In the present study, the anti-inflammatory properties of Sargachromenol were validated using enzyme-linked immunosorbent assay (ELISA), Western blots, and RT-qPCR experiments. According to the results, Sargachromenol significantly downregulated the PM-induced proinflammatory cytokines, Prostaglandin E2 (PGE2), and Nitric Oxide (NO) secretion via blocking downstream activation of Toll-like receptor (TLR)-mediated nuclear factor kappa B (NF-κB) and MAPKs phosphorylation. Thus, Sargachromenol is a potential candidate for innovation in various fields including pharmaceuticals, cosmeceuticals, and functional food.
Collapse
Affiliation(s)
- D. P. Nagahawatta
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - Hyun-Soo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, 75, Jangsan-ro 101-gil, Janghang-eup, Seocheon 33662, Korea;
| | - Young-Heun Jee
- Department of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 690-756, Korea;
| | - Thilina U. Jayawardena
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - Ginnae Ahn
- Department of Food Technology and Nutrition, Chonnam National University, Yeosu 59626, Korea;
| | - Jin Namgung
- Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan;
| | - In-Kyu Yeo
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
| | - K. K. Asanka Sanjeewa
- Department of Biosystems Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Homagama 10206, Sri Lanka
| | - You-Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju 690-756, Korea; (D.P.N.); (T.U.J.); (I.-K.Y.)
- Marine Science Institute, Jeju National University, Jeju 63333, Korea
| |
Collapse
|
9
|
Evaluation of Nine Operational Models in Forecasting Different Types of Synoptic Dust Events in the Middle East. GEOSCIENCES 2021. [DOI: 10.3390/geosciences11110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This study investigates four types of synoptic dust events in the Middle East region, including cyclonic, pre-frontal, post-frontal and Shamal dust storms. For each of these types, three intense and pervasive dust events are analyzed from a synoptic meteorological and numerical simulation perspective. The performance of 9 operational dust models in forecasting these dust events in the Middle East is qualitatively and quantitatively evaluated against Terra-MODIS observations and AERONET measurements during the dust events. The comparison of model AOD outputs with Terra-MODIS retrievals reveals that despite the significant discrepancies, all models have a relatively acceptable performance in forecasting the AOD patterns in the Middle East. The models enable to represent the high AODs along the dust plumes, although they underestimate them, especially for cyclonic dust storms. In general, the outputs of the NASA-GEOS and DREAM8-MACC models present greater similarity with the satellite and AERONET observations in most of the cases, also exhibiting the highest correlation coefficient, although it is difficult to introduce a single model as the best for all cases. Model AOD predictions over the AERONET stations showed that DREAM8-MACC exhibited the highest R2 of 0.78, followed by NASA_GEOS model (R2 = 0.74), which both initially use MODIS data assimilation. Although the outputs of all models correspond to valid time more than 24 h after the initial time, the effect of data assimilation on increasing the accuracy is important. The different dust emission schemes, soil and vegetation mapping, initial and boundary meteorological conditions and spatial resolution between the models, are the main factors influencing the differences in forecasting the dust AODs in the Middle East.
Collapse
|
10
|
Jung HJ, Ko YK, Shim WS, Kim HJ, Kim DY, Rhee CS, Park MK, Han DH. Diesel exhaust particles increase nasal symptoms and IL-17A in house dust mite-induced allergic mice. Sci Rep 2021; 11:16300. [PMID: 34381060 PMCID: PMC8357916 DOI: 10.1038/s41598-021-94673-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/16/2021] [Indexed: 12/15/2022] Open
Abstract
Diesel exhaust particles (DEPs), traffic-related air pollutants, are considered environmental factors adversely affecting allergic diseases. However, the immunological basis for the adjuvant effects of DEP in allergic rhinitis (AR) remains unclear. Therefore, this study aimed to investigate the effect of DEP exposure on AR using a mouse model. BALB/c mice sensitized to house dust mite (HDM) were intranasally challenged with HDM in the presence and absence of DEP. Allergic symptom scores, serum total and HDM-specific immunoglobulins (Igs), eosinophil infiltration in the nasal mucosa, cytological profiles in bronchoalveolar lavage fluid (BALF), and cytokine levels in the nasal mucosa and spleen cell culture were analyzed. Mice co-exposed to HDM and DEP showed increased allergic symptom scores compared with mice exposed to HDM alone. Reduced total IgE and HDM-specific IgE and IgG1 levels, decreased eosinophil infiltration in the nasal mucosa, and increased proportion of neutrophils in BALF were found in mice co-exposed to HDM and DEP. Interleukin (IL)-17A level was found to be increased in the nasal mucosa of the co-exposure group compared with that in the HDM-exposed group. The levels of IL-4, IL-13, interferon-γ, IL-25, IL-33, and TSLP expression showed no difference between the groups with and without DEP treatment. Increased expression of IL-17A in the nasal mucosa may contribute to DEP-mediated exacerbation of AR in HDM-sensitized murine AR model.
Collapse
Affiliation(s)
- Hahn Jin Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Young-Kyung Ko
- Graduate School of Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Sub Shim
- Department of Otorhinolaryngology-Head and Neck Surgery, Chungbuk National University College of Medicine, Chungbuk National University Hospital, Cheongju, Korea
| | - Hyun Jik Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Dong-Young Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Chae-Seo Rhee
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.,Sensory Organ Research Institute, Seoul National University Medical Research Center, Seoul, Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea
| | - Doo Hee Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| |
Collapse
|
11
|
Causes and Effects of Sand and Dust Storms: What Has Past Research Taught Us? A Survey. JOURNAL OF RISK AND FINANCIAL MANAGEMENT 2021. [DOI: 10.3390/jrfm14070326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Barren ground and sites with low coverage by vegetation (e.g., dunes, soil surfaces, dry lakes, and riverbeds) are the main source areas of sand and dust storms (SDS). The understanding of causes, processes (abrasion, deflation, transport, deposition), and influencing factors of sandy and dusty particles moving by wind both in the boundary layer and in the atmosphere are basic prerequisites to distinguish between SDS. Dust transport in the atmosphere modulates radiation, ocean surface temperature, climate, as well as snow and ice cover. The effects of airborne particles on land are varied and can cause advantages and disadvantages, both in source areas and in sink or deposition areas, with disturbances of natural environments and anthropogenic infrastructure. Particulate matter in general and SDS specifically can cause severe health problems in human respiratory and other organs, especially in children. Economic impacts can be equally devastating, but the costs related to SDS are not thoroughly studied. The available data show huge economic damages caused by SDS and by the mitigation of their effects. Management of SDS-related hazards utilizes remote sensing techniques, on-site observations, and protective measures. Integrated strategies are necessary during both the planning and monitoring of these measures. Such integrated strategies can be successful when they are developed and implemented in close cooperation with the local and regional population and stakeholders.
Collapse
|
12
|
Association with Ambient Air Pollutants and School Absence Due to Sickness in Schoolchildren: A Case-Crossover Study in a Provincial Town of Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18126631. [PMID: 34203021 PMCID: PMC8296492 DOI: 10.3390/ijerph18126631] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/17/2021] [Accepted: 06/19/2021] [Indexed: 11/16/2022]
Abstract
The effect of ambient air pollutants and Asian dust (AD) on absence from school due to sickness has not been well researched. By conducting a case-crossover study, this study investigated the influence of ambient air pollutants and desert sand dust particles from East Asia on absence from school due to sickness. From November 2016 to July 2018, the daily cases of absence due to sickness were recorded in five elementary schools in Matsue, Japan. During the study period, a total of 16,915 absence cases were recorded, which included 4865 fever cases and 2458 cough cases. The relative risk of overall absence in a 10-μg/m3 increment of PM2.5 and a 0.1-km-1 of desert sand dust particles from East Asia were found with 1.28 (95%CI: 1.15-1.42) and 2.15 (1.04-4.45) at lag0, respectively. The significant influence of PM2.5 persisted at lag5 and that of desert sand dust particles at lag2. NO2 had statistically significant effects at lag2, lag3, and lag4. However, there was no evidence of a positive association of Ox and SO2 with absence from school. These results suggested that PM2.5, NO2, and AD increased the risk of absence due to sickness in schoolchildren.
Collapse
|
13
|
Aghababaeian H, Ostadtaghizadeh A, Ardalan A, Asgary A, Akbary M, Yekaninejad MS, Stephens C. Global Health Impacts of Dust Storms: A Systematic Review. ENVIRONMENTAL HEALTH INSIGHTS 2021; 15:11786302211018390. [PMID: 34103932 PMCID: PMC8150667 DOI: 10.1177/11786302211018390] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/27/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Dust storms and their impacts on health are becoming a major public health issue. The current study examines the health impacts of dust storms around the world to provide an overview of this issue. METHOD In this systematic review, 140 relevant and authoritative English articles on the impacts of dust storms on health (up to September 2019) were identified and extracted from 28 968 articles using valid keywords from various databases (PubMed, WOS, EMBASE, and Scopus) and multiple screening steps. Selected papers were then qualitatively examined and evaluated. Evaluation results were summarized using an Extraction Table. RESULTS The results of the study are divided into two parts: short and long-term impacts of dust storms. Short-term impacts include mortality, visitation, emergency medical dispatch, hospitalization, increased symptoms, and decreased pulmonary function. Long-term impacts include pregnancy, cognitive difficulties, and birth problems. Additionally, this study shows that dust storms have devastating impacts on health, affecting cardiovascular and respiratory health in particular. CONCLUSION The findings of this study show that dust storms have significant public health impacts. More attention should be paid to these natural hazards to prepare for, respond to, and mitigate these hazardous events to reduce their negative health impacts.Registration: PROSPERO registration number CRD42018093325.
Collapse
Affiliation(s)
- Hamidreza Aghababaeian
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
- Department of Nursing and Emergency, Dezful University of Medical Sciences, Dezful, Iran
| | - Abbas Ostadtaghizadeh
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Air Pollution Research (CAPR), Institute for Environmental Research (IER), Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Ardalan
- Department of Health in Emergencies and Disasters, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali Asgary
- Disaster and Emergency Management, School of Administrative Studies, York University, Toronto, Canada
| | - Mehry Akbary
- Department of Climatology, Faculty of Geographical Sciences, Kharazmi University, Tehran, Iran
| | - Mir Saeed Yekaninejad
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Carolyn Stephens
- UCL Bartlett Development Planning Unit, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
14
|
Effect of Korean Red Ginseng and Rg3 on Asian Sand Dust-Induced MUC5AC, MUC5B, and MUC8 Expression in Bronchial Epithelial Cells. Molecules 2021; 26:molecules26072002. [PMID: 33916022 PMCID: PMC8037637 DOI: 10.3390/molecules26072002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/14/2021] [Accepted: 03/25/2021] [Indexed: 11/24/2022] Open
Abstract
Korean Red ginseng (KRG), commonly used in traditional medicine, has anti-inflammatory, anti- oxidative, and anti-tumorigenic properties. Asian sand dust (ASD) is known to aggravate upper and lower airway inflammatory responses. BEAS-2B cells were exposed to ASD with or without KRG or ginsenoside Rg3. Mucin 5AC (MUC5AC), MUC5B, and MUC8 mRNA and protein expression levels were determined using quantitative RT-PCR and enzyme-linked immunosorbent assay. Nuclear factor kappa B (NF-κB), activator protein 1, and mitogen-activated protein kinase expression and activity were determined using western blot analysis. ASD induced MUC5AC, MUC5B, and MUC8 mRNA and protein expression in BEAS-2B cells, which was significantly inhibited by KRG and Rg3. Although ASD-induced mucin expression was associated with NF-κB and p38 mitogen-activated protein kinase (MAPK) activity, KRG and Rg3 significantly suppressed only ASD-induced NF-κB expression and activity. KRG and Rg3 inhibited ASD-induced mucin gene expression and protein production from bronchial epithelial cells. These results suggest that KRG and Rg3 have potential for treating mucus-producing airway inflammatory diseases.
Collapse
|
15
|
Shen M, Song Y, Ichinose T, Morita K, Wang D, Arashidani K, Yoshida Y. In vivo immune activation of splenocytes following exposure to tar from Asian sand dust. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:649-658. [PMID: 32819208 DOI: 10.1080/15287394.2020.1806160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Air pollution, especially that initiated by particulate matter (PM), has been implicated as a risk factor for several inflammatory diseases. Previously, it was reported that PM enhances immune responses. PM includes the tar fraction that contains polycyclic aromatic hydrocarbons (PAHs), which produce adverse health effects in exposed individuals. However, the influence of the tar fraction (as a component of PM) on splenocytes is not fully understood. The aim of this study was to determine the effects of the tar fraction extracted from PM collected from the atmosphere in Fukuoka, Japan, on mouse splenocytes. ICR mice were administered tar (1 or 5 μg/mouse) intratracheally 4 times at 2-week intervals, and splenocytes from the tar-treated mice were extracted and examined. The parameters determined were proliferation, cytokine concentrations and transcription factors activation. Following tar treatment, splenocyte proliferation increased relative to controls. Concanavalin A (ConA)-induced interleukin (IL)-2 formation and ConA- or lipopolysaccharide (LPS)-induced interferon-γ production were elevated in splenocytes from tar-exposed mice. However, the production of tumor necrosis factor-α and IL-6 induced by LPS was not markedly changed following tar treatment. Further, nuclear factor of activated T cells, but not nuclear factor-κB, was enhanced in splenocytes of tar-exposed mice. Data indicate that tar-activated splenocytes and PM-bound PAHs might contribute to T cell activation in the spleen.
Collapse
Affiliation(s)
- Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
- Department of Clinical Laboratory, The Fourth Hospital of Hebei Medical University , Shijiazhuang, China
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences , Oita, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Duo Wang
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Keiichi Arashidani
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health , Kitakyushu, Japan
| |
Collapse
|
16
|
Abstract
The relationships between monthly recorded ground deposition rates (GDRs) and the spatiotemporal characteristics of dust concentrations in southwest Iran were investigated. A simulation by the Weather Research and Forecasting Model coupled with the Chemistry modeling system (WRF-Chem) was conducted for dust deposition during 2014–2015. The monthly dust deposition values observed at 10 different gauge sites (G01–G10) were mapped to show the seasonal and spatial variations in dust episodes at each location. An analysis of the dust deposition samples, however, confirmed that the region along the deposition sites is exposed to the highest monthly dust load, which has a mean value of 2.4 mg cm−2. In addition, the study area is subjected to seasonally varying deposition, which follows the trend: spring > summer > winter > fall. The modeling results further demonstrate that the increase in dust emissions is followed by a windward convergence over the region (particularly in the spring and summer). Based on the maximum likelihood classification of land use land cover, the modeling results are consistent with observation data at gauge sites for three scenarios [S.I, S.II, and S.III]. The WRF model, in contrast with the corresponding observation data, reveals that the rate factor decreases from the southern [S.III—G08, G09, and G10] through [S.II—G04, G05, G06, and G07] to the northern points [S.I—G01, G02, and G03]. A narrower gap between the modeling results and GDRs is indicated if there is an increase in the number of dust particles moving to lower altitudes or an increase in the dust resident time at high altitudes. The quality of the model forecast is altered by the deposition rate and is sensitive to land surface properties and interactions among land and climate patterns.
Collapse
|
17
|
Spatial-Temporal Variation Characteristics of Vertical Dust Flux Simulated by WRF-Chem Model with GOCART and AFWA Dust Emission Schemes (Case Study: Central Plateau of Iran). APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10134536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dust and sand storms are among the major threats to central Iran. These phenomena pose irreparable risks to natural ecosystems and human societies, including effects on health. In this study, the spatial and temporal pattern of vertical dust flux (VDF) was used to identify dust sources as well as areas with high potential for dust generation. To simulate VDF, two intense dust storms, from 21 February 2015 and 14 February 2018, were selected using synoptic data and Moderate Resolution Imaging Spectroradiometer (MODIS) images. These dust storms were identified as responsible for a reduction of horizontal visibility to less than 1000 m, using remote sensing tools and Ackerman Dust Index. MODIS images show that these two storms covered most of Central Plateau of Iran. The Weather Research and Forecasting model with chemistry (WRF-Chem) was used to simulate the storms, with either the Global Ozone Chemistry Aerosol Radiation and Transport (GOCART) or Air Force Weather Agency (AFWA) scheme to calculate VDF. Modeled vertical dust fluxes in both events indicate that the Arabian deserts in Saudi Arabia and in southwestern Iran can be identified as main sources of the dust in the central Iranian plateau. The other source of dust is the Hirmand Basin, located in the country of Afghanistan and in the southeast of Iran. The results of VDF simulations indicate that central southeast Iran could be the main dust source of internal origin. Additionally, over seasonal wetlands in Iran, the amount of VDF was simulated to be sometimes over 4000 μg/(m2s), an indication that these areas are sensitive to wind erosion in dry conditions and can be a source of dust. The WRF-Chem results were compared with the horizontal visibility measured in synoptic stations in the area. The results showed that the coefficients of determination of GOCART results with the measured horizontal visibility on 21 February 2015 and 14 February 2018 were 0.72 and 0.76, respectively, while the coefficient values from the simulations with AFWA scheme on 21 February 2015 and 14 February 2018 with the measured horizontal visibility were lower, 0.44 and 0.50, respectively. Modern-Era Retrospective analysis for Research and Applications, version 2 (MERRA2) re-analysis data also showed timing of peak dust levels consistent with the GOCART scheme.
Collapse
|
18
|
Hashizume M, Kim Y, Ng CFS, Chung Y, Madaniyazi L, Bell ML, Guo YL, Kan H, Honda Y, Yi SM, Kim H, Nishiwaki Y. Health Effects of Asian Dust: A Systematic Review and Meta-Analysis. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:66001. [PMID: 32589456 PMCID: PMC7319773 DOI: 10.1289/ehp5312] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Potential adverse health effects of Asian dust exposure have been reported, but systematic reviews and quantitative syntheses are lacking. OBJECTIVE We reviewed epidemiologic studies that assessed the risk of mortality, hospital admissions, and symptoms/dysfunction associated with exposure to Asian dust. METHODS We performed a systematic search of PubMed and Web of Science to identify studies that reported the association between Asian dust exposure and human health outcomes. We conducted separate meta-analyses using a random-effects model for mortality and hospital admissions for a specific health outcome and assessed pooled estimates for each lag when at least three studies were available for a specific lag. RESULTS We identified 89 studies that met our inclusion criteria for the systematic review, and 21 studies were included in the meta-analysis. The pooled estimates (percentage changes) of mortality from circulatory and respiratory causes for Asian dust days vs. non-Asian dust days were 2.33% [95% confidence interval (CI): 0.76, 3.93] increase at lag 0 and 3.99% (95% CI: 0.08, 8.06) increase at lag 3, respectively. The increased risk for hospital admissions for respiratory disease, asthma, and pneumonia peaked at lag 3 by 8.85% (95% CI: 0.80, 17.55), 14.55% (95% CI: 6.74, 22.94), and 8.51% (95% CI: 2.89, 14.44), respectively. Seven of 12 studies reported reduced peak expiratory flow, and 16 of 21 studies reported increased respiratory symptoms associated with Asian dust exposure. There were substantial variations between the studies in definitions of Asian dust, study designs, model specifications, and confounder controls. DISCUSSION We found evidence of increased mortality and hospital admissions for circulatory and respiratory events. However, the number of studies included in the meta-analysis was not large and further evidences are merited to strengthen our conclusions. Standardized protocols for epidemiological studies would facilitate interstudy comparisons. https://doi.org/10.1289/EHP5312.
Collapse
Affiliation(s)
- Masahiro Hashizume
- Department of Global Health Policy, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yoonhee Kim
- Department of Global Environmental Health, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Chris Fook Sheng Ng
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Lina Madaniyazi
- School of Tropical Medicine and Global Health, Nagasaki University, Nagasaki, Japan
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Michelle L Bell
- School of Forestry and Environmental Studies, Yale University, New Haven, Connecticut, USA
| | - Yue Leon Guo
- Environmental and Occupational Medicine, National Taiwan University (NTU) and NTU Hospital, Taipei, Taiwan
| | - Haidong Kan
- Department of Environmental Health, School of Public Health, Fudan University, Shanghai, China
| | - Yasushi Honda
- Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Seung-Muk Yi
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Ho Kim
- Graduate School of Public Health, Seoul National University, Seoul, Republic of Korea
| | - Yuji Nishiwaki
- Department of Environmental and Occupational Health, School of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
19
|
Itazawa T, Kanatani KT, Hamazaki K, Inadera H, Tsuchida A, Tanaka T, Nakayama T, Go T, Onishi K, Kurozawa Y, Adachi Y, Konishi I, Heike T, Konishi Y, Sato K, Egawa M, Takahashi Y, Watanabe M, Yasumi R, Hirabayashi K, Morita M, Konishi K, Hirooka Y, Fukumoto S, Teshima R, Inoue T, Harada T, Kanzaki S, Maegaki Y, Ohno K, Koeda T, Amano H, Masumoto T. The impact of exposure to desert dust on infants' symptoms and countermeasures to reduce the effects. Allergy 2020; 75:1435-1445. [PMID: 31886894 DOI: 10.1111/all.14166] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 09/24/2019] [Accepted: 10/08/2019] [Indexed: 01/26/2023]
Abstract
BACKGROUND The association between particulate matter (PM), including desert dust, and allergic symptoms has not been well studied. We examined whether PM exacerbated nose/eye/respiratory symptoms in infants, with a focus on the desert dust element, and assessed possible countermeasures. METHODS We conducted a panel study of 1492 infants from October 2014 to July 2016 in 3 regions in Japan as an adjunct study of the Japan Environment and Children's Study. Infants' daily symptom scores and behaviors were acquired by web-based questionnaires sent to mothers, who answered within a day using mobile phones. Odds ratios (OR) for symptom development per increased fine PM or desert dust exposure were estimated. Regular use of medications and behaviors on the day of exposure were investigated as possible effect modifiers. RESULTS Infants developed nose/eye/respiratory symptoms significantly more often in accordance with fine particulate levels (adjusted OR per 10 µg/m3 increase: 1.04, 95% confidence interval [CI]: 1.01-1.07). A model including both fine particulates and desert dust showed reduced OR for fine particulates and robust OR for desert dust (adjusted OR per 0.1/km increase: 1.16, 95% CI: 1.09-1.23). An increased OR was observed both in infants who had previously wheezed and in those who had never wheezed. Receiving information on the particulate forecast, reducing time outdoors, closing windows, and regular use of leukotriene receptor antagonists were significant effect modifiers. CONCLUSIONS Transborder desert dust arrival increased the risk of nose/eye/respiratory symptoms development in infants. Regular use of leukotriene receptor antagonists and other countermeasures reduced the risk.
Collapse
Affiliation(s)
- Toshiko Itazawa
- Department of Pediatrics Faculty of Medicine University of Toyama Toyama Japan
| | - Kumiko T. Kanatani
- Japan Environment and Children's Study Kyoto Regional Center Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kei Hamazaki
- Department of Public Health Faculty of Medicine University of Toyama Toyama Japan
| | - Hidekuni Inadera
- Department of Public Health Faculty of Medicine University of Toyama Toyama Japan
| | - Akiko Tsuchida
- Department of Public Health Faculty of Medicine University of Toyama Toyama Japan
| | - Tomomi Tanaka
- Department of Pediatrics Faculty of Medicine University of Toyama Toyama Japan
| | - Takeo Nakayama
- Department of Health Informatics Kyoto University School of Public Health Kyoto Japan
| | - Tohshin Go
- Japan Environment and Children's Study Kyoto Regional Center Kyoto University Graduate School of Medicine Kyoto Japan
| | - Kazunari Onishi
- Division of Environmental Health Graduate School of Public Health St.Luke's International University Tokyo Japan
- Division of Health Administration and Promotion Faculty of Medicine Tottori University Tottori Japan
| | - Yoichi Kurozawa
- Division of Health Administration and Promotion Faculty of Medicine Tottori University Tottori Japan
| | - Yuichi Adachi
- Department of Pediatrics Faculty of Medicine University of Toyama Toyama Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mohammed MA, Bulama K, Usman AA, Modu MA, Bukar AM, Lawan AK, Habib GA. Psychosocial perception of the effects of harmattan dust on the environment and health of building occupants in Maiduguri, Nigeria. FACILITIES 2020. [DOI: 10.1108/f-05-2019-0060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purpose
The purpose of this paper is to investigate the psychosocial perception of harmattan dust on building openings, health and housekeeping to determine the influence of the dust on building occupants.
Design/methodology/approach
Population-representative survey data were collected from Maiduguri, Northeastern Nigeria, through physical administration of questionnaires by assessing several variables. Statistical package SPSS 16.0 was used for the data analysis, which is mainly descriptive analysis in frequencies, percentages and means together with a repeated Pearson’s chi-square analysis to identify the relationship between the factors and the significance testing.
Findings
The results show that majority (94.3%) experienced dust problem in harmattan season, and a larger part (76.6%) confirmed that the dust penetrates through doors and windows. Higher percentage (91.2%) noticed that the dust particles on their floor/furniture surfaces, and on an average, people clean their houses three times daily in harmattan season. Majority (80.5%) of the respondents smell dust in the harmattan season, and greater part (77.9%) experienced health challenges in this season, of which 12.8% confirmed harmattan dust aggravates their asthma, 13.6% confirmed it causes headache, 3.1% confirmed it exacerbated pneumonia, 58.5% confirmed it causes coughing, 3.5% confirmed catarrh, 2.3% confirmed nasal/respiratory congestion, sneezing and bronchitis and 6.2% experienced eye problems. Moreover, the results indicate that number/types of openings in a building are significantly associated with factors including smelling dust in the harmattan season and health problem experienced because of dust indoors. The number of times people clean their homes/workplaces is significantly related to important variables such as experiencing dust problem in harmattan season and number/type of openings in a building. The results further established that the health problem experienced by people is significantly related to important variables including dust problem experienced in the harmattan season and type of openings in a room.
Originality/value
Harmattan dust is a serious challenge to health and well-being of building occupants in the study area. The built environment professionals need to optimize building openings for effective dust control indoors.
Collapse
|
21
|
Yadav MK, Go YY, Chae SW, Park MK, Song JJ. Asian Sand Dust Particles Increased Pneumococcal Biofilm Formation in vitro and Colonization in Human Middle Ear Epithelial Cells and Rat Middle Ear Mucosa. Front Genet 2020; 11:323. [PMID: 32391052 PMCID: PMC7193691 DOI: 10.3389/fgene.2020.00323] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 03/18/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Air pollutants such as Asian sand dust (ASD) and Streptococcus pneumoniae are risk factors for otitis media (OM). In this study, we evaluate the role of ASD in pneumococcal in vitro biofilm growth and colonization on human middle ear epithelium cells (HMEECs) and rat middle ear using the rat OM model. METHODS S. pneumoniae D39 in vitro biofilm growth in the presence of ASD (50-300 μg/ml) was evaluated in metal ion-free BHI medium using CV-microplate assay, colony-forming unit (cfu) counts, resazurin staining, scanning electron microscopy (SEM), and confocal microscopy (CF). Biofilm gene expression analysis was performed using real-time RT-PCR. The effects of ASD or S. pneumoniae individually or on co-treatment on HMEECs were evaluated by detecting HMEEC viability, apoptosis, and reactive oxygen species (ROS) production. In vivo colonization of S. pneumoniae in the presence of ASD was evaluated using the rat OM model, and RNA-Seq was used to evaluate the alterations in gene expression in rat middle ear mucosa. RESULTS S. pneumoniae biofilm growth was significantly (P < 0.05) elevated in the presence of ASD. SEM and CF analysis revealed thick and organized pneumococcal biofilms in the presence of ASD (300 μg/ml). However, in the absence of ASD, bacteria were unable to form organized biofilms, the cell size was smaller than normal, and long chain-like structures were formed. Biofilms grown in the presence of ASD showed elevated expression levels of genes involved in biofilm formation (luxS), competence (comA, comB, ciaR), and toxin production (lytA and ply). Prior exposure of HMEECs to ASD, followed by treatment for pneumococci, significantly (P < 0.05) decreased cell viability and increased apoptosis, and ROS production. In vivo experiment results showed significantly (P < 0.05) more than 65% increased bacteria colonization in rat middle ear mucosa in the presence of ASD. The apoptosis, cell death, DNA repair, inflammation and immune response were differentially regulated in three treatments; however, number of genes expressed in co-treatments was higher than single treatment. In co-treatment, antimicrobial protein/peptide-related genes (S100A family, Np4, DEFB family, and RATNP-3B) and OM-related genes (CYLD, SMAD, FBXO11, and CD14) were down regulated, and inflammatory cytokines and interleukins, such as IL1β, and TNF-related gene expression were elevated. CONCLUSION ASD presence increased the generation of pneumococcal biofilms and colonization.
Collapse
Affiliation(s)
- Mukesh Kumar Yadav
- Institute for Medical Device Clinical Trials, Korea University College of Medicine, Seoul, South Korea
- Department of Biotechnology, Pachhunga University College, Mizoram Central University, Aizawl, India
| | - Yoon Young Go
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Sung-Won Chae
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| | - Moo Kyun Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul National University College of Medicine, Seoul, South Korea
| | - Jae-Jun Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|
22
|
Ren Y, Ichinose T, He M, Youshida S, Nishikawa M, Sun G. Co-exposure to lipopolysaccharide and desert dust causes exacerbation of ovalbumin-induced allergic lung inflammation in mice via TLR4/MyD88-dependent and -independent pathways. Allergy Asthma Clin Immunol 2019; 15:82. [PMID: 31889961 PMCID: PMC6921588 DOI: 10.1186/s13223-019-0396-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 12/10/2019] [Indexed: 01/13/2023] Open
Abstract
Background Lipopolysaccharide (LPS) often presents in high concentrations in particulate matter (PM), few studies have reported the enhancing effects of both LPS and PM on airway inflammation in mice and the role of toll-like receptors (TLRs) in this process. Asian sand dust (ASD) is observed most frequently during the spring. This study aimed to clarify the role of TLRs in murine lung eosinophilia exacerbated by ASD and LPS. Methods The effects of LPS and ASD co-treatment on ovalbumin (OVA)-induced lung eosinophilia were investigated using wild-type (WT), TLR2−/−, TLR4−/−, and adaptor protein myeloid differentiation factor 88 (MyD88)−/− BALB/c mice. ASD was heated (H-ASD) to remove the toxic organic substances. WT, TLR2−/−, TLR4−/− and MyD88−/− BALB/c mice were intratracheally instilled with four different combinations of LPS, H-ASD and OVA treatment. Subsequently, the pathological changes in lungs, immune cell profiles in bronchoalveolar lavage fluid (BALF), inflammatory cytokines/chemokines levels in BALF and OVA-specific immunoglobulin (Ig) in serum were analyzed. Results In WT mice, H-ASD + LPS exacerbated OVA-induced lung eosinophilia. This combination of treatments increased the proportion of eosinophils and the levels of IL-5, IL-13, eotaxin in BALF, as well as the production of OVA-specific IgE and IgG1 in serum compared to OVA treatment alone. Although these effects were stronger in TLR2−/− mice than in TLR4−/− mice, the expression levels of IL-5, IL-13, eotaxin were somewhat increased in TLR4−/− mice treated with OVA + H-ASD + LPS. In MyD88−/− mice, this pro-inflammatory mediator-induced airway inflammation was considerably weak and the pathological changes in lungs were negligible. Conclusions These results suggest that LPS and H-ASD activate OVA-induced Th2 response in mice, and exacerbate lung eosinophilia via TLR4/MyD88, TLR4/TRIF and other TLR4-independent pathways.
Collapse
Affiliation(s)
- Yahao Ren
- 1Department of Nutritional and Food Hygiene, School of Public Health, China Medical University, Shenyang, 110122 China
| | - Takamichi Ichinose
- 2Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Miao He
- 3Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 China
| | - Seiichi Youshida
- 2Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Masataka Nishikawa
- 4Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki, 305-8506 Japan
| | - Guifan Sun
- 3Department of Environmental Health, School of Public Health, China Medical University, Shenyang, 110122 China
| |
Collapse
|
23
|
Aghababaeian H, Dastoorpoor M, Ghasemi A, Kiarsi M, Khanjani N, Araghi Ahvazi L. Cardiovascular and respiratory emergency dispatch due to short-term exposure to ambient PM10 in Dezful, Iran. J Cardiovasc Thorac Res 2019; 11:264-271. [PMID: 31824607 PMCID: PMC6891034 DOI: 10.15171/jcvtr.2019.44] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 09/15/2019] [Indexed: 11/15/2022] Open
Abstract
Introduction: This study was conducted to determine the relation between exposure to particulate matter less than 10 microns (PM10) caused by dust storms and the risk of cardiovascular, respiratory and traffic accident missions carried out by Emergency Medical Services (EMS).
Methods: This was a time-series study conducted in Dezful city, Iran. Daily information on the number of missions by the EMS due to cardiovascular, respiratory and crash problems and data on PM10 were inquired from March 2013 until March 2016. A generalized linear model (GLM) with distributed lag models (DLMs) was used to evaluate the relation between the number of EMS missions and the average daily PM10. The latent effects of PM10 were estimated in single and cumulative lags, up to 14 days.
Results: In the adjusted model, for each IQR increase in the average daily PM10 concentration, the risk of EMS missions in the total population in single lags of 2 to 7 days, and the cumulative lags of 0-7 and 0-14 days after exposure had a 0.8, 0.8, 0.8, 0.8, 0.7, 0.6, 6.7 and 1.4% significant increase. Also, for each IQR increase in the daily mean concentration of PM10 in single 1 to 7, and cumulative lags of 0-2, 0-7, and 0-14 days after exposure, respectively, a 2.4, 2.7, 2.8, 2.9, 2.9, 2.7, 2.5, 7.4, 23.5 and 33. 3 % increase was observed in the risk of EMS cardiovascular missions.
Conclusion: Increase in daily PM10 concentrations in Dezful is associated with an increase in the risk of EMS missions in lags up to two weeks after exposure.
Collapse
Affiliation(s)
- Hamidreza Aghababaeian
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran.,Department of Health in Emergencies and Disaster, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Dastoorpoor
- Department of Biostatistics and Epidemiology, Menopause Andropause Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Air Pollution and Respiratory Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Afsaneh Ghasemi
- Department of Public Health, School of Public Health, Fasa University of Medical Sciences, Fasa, Iran
| | - Maryam Kiarsi
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran
| | - Narges Khanjani
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ladan Araghi Ahvazi
- Nursing and Emergency Department, Dezful University of Medical Sciences, Dezful, Iran
| |
Collapse
|
24
|
Lee YH, Kim DY, Jeong SH, Hwang YJ. Effect of exposure to Asian sand dust-Particulate matter on liver Tenascin-C expression in human cancer cell and mouse hepatic tissue. J Toxicol Sci 2019; 44:633-641. [PMID: 31474744 DOI: 10.2131/jts.44.633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Asian Sand Dust-Particulate Matter (ASD-PM) aerosol brings large amounts of wind-eroded soil particles containing high concentrations of metallic components caused by industrialization and vehicles. Proinflammatory and cytotoxic cytokines trigger local inflammatory responses and cause a systematically high incidence of cardiovascular and other diseases. Tenascin C (Tn-C) is known to be expressed in damaged tissue or in a developmental stage of tissue. In this study, we examined the expression of Tn-C and Fibronectin in human cancer-cell lines and in liver tissue of mice treated with ASD-PM to investigate the inflammatory and cell-damage effects of ASD-PM. In our in vivo study, mice were intratracheally instilled with saline suspensions of ASD-PM particles. Instillation of these particles was repeated twice a week for 12 weeks and the liver tissues were stained with hematoxylin, eosin, and Masson's trichrome, and we carried out an IF. Tn-C expression in liver tissues was detected by RT-PCR and western blot analysis. In the results, the expression of Tn-C increased in a dose-dependent manner in both RNA and Immunofluorescence assay (IF). In our in vitro study, A549 and Hep3B cell lines were incubated in culture media with Transforming Growth Factor-Beta1(TGF-β1) and ASD-PM. Immunofluorescence microscopy images showed a two times stronger expression of fluorescence in the ASD-treated group than in that treated with TGF-β1. They also showed a stronger expression of Tn-C in proportion to the concentration of ASD-PM. We confirmed that ASD-PM when inhaled formally migrated to other organs and induced Tn-C expression. ASD-PM containing metals causes expression of Tn-C in liver tissue in proportion to the concentration of ASD-PM.
Collapse
Affiliation(s)
- Yong Hyun Lee
- Department of Health Sciences and Technology, GAIHST, Gachon University, Korea
| | - Dae Young Kim
- Department of Life Science, College of BIONANO, Gachon University, Korea
| | - Sung Hwan Jeong
- Department of Internal Medicine, Gil hospital, College of Medicine, Gachon University, Korea
| | - You Jin Hwang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Korea.,Department of Bio-Medical Engineering, College of Health Science, Gachon University, Korea
| |
Collapse
|
25
|
Guan Q, Luo H, Pan N, Zhao R, Yang L, Yang Y, Tian J. Contribution of dust in northern China to PM 10 concentrations over the Hexi corridor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:947-958. [PMID: 30743979 DOI: 10.1016/j.scitotenv.2018.12.412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
Four main dust sources and dust events that affected the Hexi Corridor were defined, and the HYSPLIT model was used to trace the dust that originated during the dust episodes of 2015-2017 and to quantify the contributions of dust sources to PM10. On this basis, an algorithm that quantified the contribution of dust sources to PM10 was proposed in this study. The results showed that the main dust sources affecting the Hexi Corridor are generally located in the northern part of Xinjiang, which is mainly dominated by the Gurbantunggut Desert (source A); the Taklimakan and Kumtag Deserts and their surrounding areas (source B); both Qaidam Basins (source C); and the Badain Jaran Desert, Tengger Desert, Hobq Desert, Ulan Buh Desert, and Mu Us Sandy Land and their surrounding areas (source D). The occurrence time of dust and the frequency of PM10 exceeded the daily concentration standards and showed significant characteristics of being high in the spring and low in the autumn. The higher concentration of PM10 in the winter was mainly due to anthropogenic sources from heating process. The contribution of source area D to PM10 concentration was the greatest (42%). Source area B was one of the main dust sources (with a contribution rate of 23%); however, approximately 63% of the dust in this area originates from the Kumtag Desert. The contribution of source area A is lower than that of the study area due to greater precipitation and higher vegetation coverage (22% contribution rate). Source area C has the lowest contribution to the research area due to obstruction by the Qilian Mountain (13% contribution rate).
Collapse
Affiliation(s)
- Qingyu Guan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
| | - Haiping Luo
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Ninghui Pan
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Rui Zhao
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Liqin Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yanyan Yang
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| | - Jing Tian
- Key Laboratory of Western China's Environmental Systems (Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China; Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Characteristics of Aerosol Chemical Compositions and Size Distributions during a Long-Range Dust Transport Episode in an Urban City in the Yangtze River Delta. ATMOSPHERE 2019. [DOI: 10.3390/atmos10020068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A long- and large-range heavy dust episode occurred from 3 to 8 May 2017 in China. To explore the impacts of this long-range dust transport episode on the chemical compositions and size distributions of urban aerosols, such instruments as an online analyzer for monitoring aerosols and gases (MARGA) and a wide-range particle spectrometer (WPS) were mainly used to monitor chemical components, such as PM2.5 and aerosol size distributions in the range of 10 nm to 10 μm, in Nanjing in this study. During the dust episode, the average concentrations of PM2.5 and PM10 and ions of Ca2+, Mg2+, Cl-, SO42−, NO3−, and NH4+ were 66.2, 233.9, and 1.1, 1.5, 1.1, 11.4, 7.8 and 4.4 μg·m−3, which were 4.4, 5.8, 3.7, 15, 1.38, 1.84, 1.66 and 1.83 times higher than the values observed before the episode and 2.2, 3.3, 5.5, 5.0, 1.57, 1.97, 1.39 and 1.69 times the levels after the episode. The dusts were demonstrated to have differential impacts on the water-soluble gases in the air. During the dust episode, the concentrations of HCl, SO2 and NH3 were comparably low, while the HNO2 and HNO3 concentrations were high. The diurnal variations in pollutants, including SO2, HNO3, Cl−, Ca2+, Mg2+, PM2.5 and PM10, were strongly impacted by the dust episode. However, those variations in NH3, NO3−, SO42− and NH4+ were only slightly influenced. Pollutants were distinctively featured in the various dust stages. The concentration of HNO2 was relatively high in the earliest stage but was substituted by those of SO2, PM10, PM2.5, Ca2+, Mg2+ HNO3 and Cl- in the explosion stage. The aerosol number concentrations exhibited unimodal distributions in the earliest and explosion stages but showed bimodal distributions in the duration and dissipation stages. Additionally, the aerosol size distributions were observed to shift to larger particle segments in different dust stages. The surface area concentrations exhibited four peaks in different dust stages and exhibited trimodal distributions in the non-dust episode. The surface area concentration of fine particles first increased during the earliest stage, while that of coarse particles first decreased during the dissipation stage.
Collapse
|
27
|
Ho KF, Wu KC, Niu X, Wu Y, Zhu CS, Wu F, Cao JJ, Shen ZX, Hsiao TC, Chuang KJ, Chuang HC. Contributions of local pollution emissions to particle bioreactivity in downwind cities in China during Asian dust periods. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:675-683. [PMID: 30497001 DOI: 10.1016/j.envpol.2018.11.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 11/12/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
This study investigated the effects of pollution emissions on the bioreactivity of PM2.5 during Asian dust periods. PM2.5 during the sampling period were 104.2 and 85.7 μg m-3 in Xi'an and Beijing, respectively, whereas PM2.5 which originated from the Tengger Desert was collected (dust background). Pollution conditions were classified as non-dust days, pollution episode (PE), dust storm (DS)-1, and DS-2 periods. We observed a significant decrease in cell viability and an increase in LDH that occurred in A549 cells after exposure to PM2.5 during a PE and DS-1 in Xi'an and Beijing compared to Tengger Desert PM2.5. Positive matrix factorization was used to identify pollution emission sources. PM2.5 from biomass and industrial sources contributed to alterations in cell viability and LDH in Xi'an, whereas vehicle emissions contributed to LDH in Beijing. OC, EC, Cl-, K+, Mg2+, Ca, Ti, Mn, Fe, Zn, and Pb were correlated with cell viability and LDH for industrial emissions in Xi'an during DS. OC, EC, SO42-, S, Ti, Mn, and Fe were correlated with LDH for vehicle emissions in Beijing during DS. In conclusion, the dust may carry pollutants on its surface to downwind areas, leading to increased risks of particle toxicity.
Collapse
Affiliation(s)
- Kin-Fai Ho
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Kuan-Che Wu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Xinyi Niu
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yunfei Wu
- CAS Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Chong-Shu Zhu
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Feng Wu
- Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China; SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Jun-Ji Cao
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, China
| | - Zhen-Xing Shen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, China
| | - Ta-Chih Hsiao
- Graduate Institute of Environmental Engineering, National Taiwan University, Taipei, Taiwan
| | - Kai-Jen Chuang
- Department of Public Health, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan
| | - Hsiao-Chi Chuang
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan; School of Public Health, College of Public Health, Taipei Medical University, Taipei, Taiwan; Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan.
| |
Collapse
|
28
|
Sadakane K, Ichinose T, Nishikawa M. Effects of co-exposure of lipopolysaccharide and β-glucan (Zymosan A) in exacerbating murine allergic asthma associated with Asian sand dust. J Appl Toxicol 2018; 39:672-684. [PMID: 30548448 DOI: 10.1002/jat.3759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/30/2018] [Accepted: 11/02/2018] [Indexed: 12/11/2022]
Abstract
During the 2000s, Asian sand dust (ASD) was implicated in the increasing prevalence of respiratory disorders, including asthma. We previously demonstrated that a fungus from ASD aerosol exacerbated ovalbumin (OVA)-induced airways inflammation. Exposure to heat-inactivated ASD (H-ASD) and either Zymosan A (ZymA, containing β-glucan) or lipopolysaccharide (LPS) exacerbated allergic airways inflammation in a mouse model, but the effects of co-exposure of LPS and β-glucan are unclear. We investigated the effects of co-exposure of LPS and ZymA in OVA-induced allergic airways inflammation with ASD using BALB/c mice. Exposure to OVA + LPS enhanced the recruitment of inflammatory cells to the lungs, particularly neutrophils; exposure to OVA + LPS + H-ASD potentiated this effect. Exposure to OVA + ZymA + H-ASD stimulated the recruitment of inflammatory cells to the lungs, particularly eosinophils, and serum levels of OVA-specific IgE and IgG1 antibodies, whereas exposure to OVA + ZymA did not affect most indicators of lung inflammation. Although exposure to OVA + LPS + ZymA + H-ASD affected a few allergic parameters additively or synergistically, most allergic parameters in this group indicated the same level of exposure to OVA + LPS + H-ASD or OVA + ZymA + H-ASD. These results suggest that LPS and ZymA play different roles in allergic airways inflammation with ASD; LPS mainly enhances neutrophil recruitment through H-ASD, and ZymA enhances eosinophil recruitment through H-ASD.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201, Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Ibaraki, 305-8506, Japan
| |
Collapse
|
29
|
Costello S, Attfield MD, Lubin JH, Neophytou AM, Blair A, Brown DM, Stewart PA, Vermeulen R, Eisen EA, Silverman DT. Ischemic Heart Disease Mortality and Diesel Exhaust and Respirable Dust Exposure in the Diesel Exhaust in Miners Study. Am J Epidemiol 2018; 187:2623-2632. [PMID: 30137203 DOI: 10.1093/aje/kwy182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Diesel exhaust is a suggested risk factor for ischemic heart disease (IHD), but evidence from cohorts using quantitative exposure metrics is limited. We examined the impact of respirable elemental carbon (REC), a key surrogate for diesel exhaust, and respirable dust (RD) on IHD mortality, using data from the Diesel Exhaust in Miners Study in the United States. Using data from a cohort of male workers followed from 1948-1968 until 1997, we fitted Cox proportional hazards models to estimate hazard ratios for IHD mortality for cumulative and average intensity of exposure to REC and RD. Segmented linear regression models allowed for nonmonotonicity. Hazard ratios for cumulative and average REC exposure declined relative to the lowest exposure category before increasing to 0.79 and 1.25, respectively, in the highest category. Relative to the category containing the segmented regression change points, hazard ratios for the highest category were 1.69 and 1.54 for cumulative and average REC exposure, respectively. Hazard ratios for RD exposure increased across the full exposure range to 1.33 and 2.69 for cumulative and average RD exposure, respectively. Tests for trend were statistically significant for cumulative REC exposure (above the change point) and for average RD exposure. Our findings suggest excess risk of IHD mortality in relation to increased exposure to REC and RD.
Collapse
Affiliation(s)
- Sadie Costello
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Michael D Attfield
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Jay H Lubin
- Biostatistics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Andreas M Neophytou
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Aaron Blair
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| | - Daniel M Brown
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | | | - Roel Vermeulen
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Ellen A Eisen
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, California
| | - Debra T Silverman
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Rockville, Maryland
| |
Collapse
|
30
|
Song Y, Ichinose T, Morita K, Yoshida Y. The toll like receptor 4-myeloid differentiation factor 88 pathway is essential for particulate matter-induced activation of CD4-positive cells. J Appl Toxicol 2018; 39:354-364. [PMID: 30289175 DOI: 10.1002/jat.3726] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 01/23/2023]
Abstract
Asian sand dust (ASD), a type of particulate matter (PM) found in Asia, can be transported to East Asia. We recently found that acute splenic inflammation is induced by ASD in mouse models. In this study, we examined the effect of sub-chronic ASD exposure on mouse immune cells. Mice were intratracheally administered ASD once every 2 weeks for 8 weeks and killed 24 hours after the final administration. Wild-type (WT) mice showed increased cell viability after ASD administration. In contrast, ASD administration induced splenocyte activation in toll-like receptor (TLR)2-/- , but not TLR4-/- mice. Furthermore, concanavalin A-induced interleukin-2 production increased after ASD administration in WT and TLR2-/- mice, but not in TLR4-/- or myeloid differentiation factor (MyD)88-/- mice. Immunoblotting demonstrated that nuclear factor κB (NF-κB) was activated in WT mice, but not in TLR4-/- or MyD88-/- mice. The NF-κB-dependent gene products CDK2 and intercellular cell adhesion molecule-1 were upregulated upon ASD administration in WT mice, but not in TLR4-/- or MyD88-/- mice. Furthermore, the particles themselves, rather than particle constituents, activated NF-κB in CD4-positive cells through the TLR4 or MyD88 pathway. Taken together, these results indicate that particle-induced splenic inflammation occurs via TLR4-MyD88 signaling.
Collapse
Affiliation(s)
- Yuan Song
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
- Department of Clinical Laboratory, the Fourth Hospital of Hebei Medical University, Shijiazhuang, 050035, China
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Notsuharu, Oita, 870-1201, Japan
| | - Kentaro Morita
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu-shi, Fukuoka, 807-8555, Japan
| |
Collapse
|
31
|
Onishi K, Sekiyama TT, Nojima M, Kurosaki Y, Fujitani Y, Otani S, Maki T, Shinoda M, Kurozawa Y, Yamagata Z. Prediction of health effects of cross-border atmospheric pollutants using an aerosol forecast model. ENVIRONMENT INTERNATIONAL 2018; 117:48-56. [PMID: 29727752 DOI: 10.1016/j.envint.2018.04.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 03/31/2018] [Accepted: 04/20/2018] [Indexed: 05/21/2023]
Abstract
Health effects of cross-border air pollutants and Asian dust are of significant concern in Japan. Currently, models predicting the arrival of aerosols have not investigated the association between arrival predictions and health effects. We investigated the association between subjective health symptoms and unreleased aerosol data from the Model of Aerosol Species in the Global Atmosphere (MASINGAR) acquired from the Japan Meteorological Agency, with the objective of ascertaining if these data could be applied to predicting health effects. Subjective symptom scores were collected via self-administered questionnaires and, along with modeled surface aerosol concentration data, were used to conduct a risk evaluation using generalized estimating equations between October and November 2011. Altogether, 29 individuals provided 1670 responses. Spearman's correlation coefficients were determined for the relationship between the proportion of the participants reporting the maximum score of two or more for each symptom and the surface concentrations for each considered aerosol species calculated using MASINGAR; the coefficients showed significant intermediate correlations between surface sulfate aerosol concentration and respiratory, throat, and fever symptoms (R = 0.557, 0.454, and 0.470, respectively; p < 0.01). In the general estimation equation (logit link) analyses, a significant linear association of surface sulfate aerosol concentration, with an endpoint determined by reported respiratory symptom scores of two or more, was observed (P trend = 0.001, odds ratio [OR] of the highest quartile [Q4] vs. the lowest [Q1] = 5.31, 95% CI = 2.18 to 12.96), with adjustment for potential confounding. The surface sulfate aerosol concentration was also associated with throat and fever symptoms. In conclusion, our findings suggest that modeled data are potentially useful for predicting health risks of cross-border aerosol arrivals.
Collapse
Affiliation(s)
- Kazunari Onishi
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Tsuyoshi Thomas Sekiyama
- Meteorological Research Institute, 1-1 Nagamine, Tsukuba 305-0052, Japan; Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Masanori Nojima
- Center for Translational Research, The Institute of Medical Science Hospital, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku 108-8639, Japan
| | - Yasunori Kurosaki
- Arid Land Research Center, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Yusuke Fujitani
- Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Shinji Otani
- International Platform for Dryland Research and Education, Tottori University, 1390 Hamasaka, Tottori 680-0001, Japan
| | - Takashi Maki
- Meteorological Research Institute, 1-1 Nagamine, Tsukuba 305-0052, Japan
| | - Masato Shinoda
- Graduate School of Environmental Studies, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Youichi Kurozawa
- Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago 683-8503, Japan
| | - Zentaro Yamagata
- Center for Birth Cohort Studies, Interdisciplinary Graduate School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan; Department of Health Sciences, School of Medicine, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan
| |
Collapse
|
32
|
Effects of Dust Storms and Climatological Factors on Mortality and Morbidity of Cardiovascular Diseases Admitted to ED. Emerg Med Int 2018; 2018:3758506. [PMID: 30057816 PMCID: PMC6051083 DOI: 10.1155/2018/3758506] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 05/27/2018] [Accepted: 06/03/2018] [Indexed: 11/17/2022] Open
Abstract
Objective This study was designed to investigate the effects of Desert Dust Storms and Climatological Factors on Mortality and Morbidity of Cardiovascular Diseases admitted to emergency department in Gaziantep. Method Hospital records, obtained between September 01, 2009 and January 31, 2014, from four state hospitals in Gaziantep, Turkey, were compared to meteorological and climatological data. Statistical analysis was performed by Statistical Package for the Social Science (SPSS) for windows version 24.0. Results 168,467 patients were included in this study. 83% of the patients had chest pain and 17% of patients had cardiac failure (CF). An increase in inpatient hospitalization due to CF was observed and corresponded to the duration of dust storms measured by number of days. However, there was no significant increase in emergency department (ED) presentations. There was no significant association of cardiac related mortality and coinciding presence of a dust storm or higher recorded temperature. The association of increases in temperature levels and the presence of dust storms with “acute coronary syndrome- (ACS-) related emergency service presentations, inpatient hospitalization, and mortality” were statistically significant. The relationship between the increase in PM10 levels due to causes unrelated to dust storms and the outpatient application, admission, and mortality due to heart failure was not significant. The increase in particle matter 10 (PM) levels due to causes outside the dust storm caused a significant increase in outpatient application, hospitalization, and mortality originated from ACS. Conclusion Increased number of dust storms resulted in a higher prevalence of mortality due to ACS while mortality due to heart failure remained unchanged. Admission, hospitalization, and mortality due to chest pain both dependent and independent of ACS were increased by the presence of dust storms, PM10 elevation, and maximum temperature.
Collapse
|
33
|
Hime NJ, Marks GB, Cowie CT. A Comparison of the Health Effects of Ambient Particulate Matter Air Pollution from Five Emission Sources. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1206. [PMID: 29890638 PMCID: PMC6024892 DOI: 10.3390/ijerph15061206] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 05/27/2018] [Accepted: 06/05/2018] [Indexed: 12/11/2022]
Abstract
This article briefly reviews evidence of health effects associated with exposure to particulate matter (PM) air pollution from five common outdoor emission sources: traffic, coal-fired power stations, diesel exhaust, domestic wood combustion heaters, and crustal dust. The principal purpose of this review is to compare the evidence of health effects associated with these different sources with a view to answering the question: Is exposure to PM from some emission sources associated with worse health outcomes than exposure to PM from other sources? Answering this question will help inform development of air pollution regulations and environmental policy that maximises health benefits. Understanding the health effects of exposure to components of PM and source-specific PM are active fields of investigation. However, the different methods that have been used in epidemiological studies, along with the differences in populations, emission sources, and ambient air pollution mixtures between studies, make the comparison of results between studies problematic. While there is some evidence that PM from traffic and coal-fired power station emissions may elicit greater health effects compared to PM from other sources, overall the evidence to date does not indicate a clear ‘hierarchy’ of harmfulness for PM from different emission sources. Further investigations of the health effects of source-specific PM with more advanced approaches to exposure modeling, measurement, and statistics, are required before changing the current public health protection approach of minimising exposure to total PM mass.
Collapse
Affiliation(s)
- Neil J Hime
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- The Sydney School of Public Health, University of Sydney Medical School, Sydney, NSW 2006, Australia.
| | - Guy B Marks
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| | - Christine T Cowie
- Woolcock Institute of Medical Research, University of Sydney, 431 Glebe Point Road, Glebe, Sydney, NSW 2037, Australia.
- South West Sydney Clinical School, University of New South Wales, Goulburn Street, Liverpool, Sydney, NSW 2170, Australia.
- Ingham Institute of Applied Medical Research, 1 Campbell Street, Liverpool, Sydney, NSW 2170, Australia.
| |
Collapse
|
34
|
Ababneh ZQ, Ababneh AM, Alsagabi S, Almasoud FI. A STUDY OF THE RADIOACTIVITY IN THE DUST STORM EVENT OF APRIL 2015 IN ARABIAN PENINSULA. RADIATION PROTECTION DOSIMETRY 2018; 179:108-118. [PMID: 29053862 DOI: 10.1093/rpd/ncx221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Gulf countries are often affected by dust storms which have a significant influence on the environment and public health. The present work examines the radioactivity content in the intense dust storm occurred over Gulf countries on 1 April 2015. The results showed that the average value of 137Cs in dust samples (±SD) is 14.4 ± 1.6 Bq/kg, which is almost two orders of magnitude larger than those in soil samples. 7Be was detected with a considerable amount only in dust samples. The activity concentrations of the natural radionuclides (234,238U, 228,230,232Th, 226,228Ra and 40K) in dust samples were found to be approximately two to three times higher than the corresponding values in soil samples, which is attributed to the abundance of the finest particle size in the dust samples. Also, the activity ratios and the correlations between the detected radionuclides were investigated to assess the origin and activities associated with any variation of the radionuclides in the environment. Moreover, the total annual effective dose due to ingestion of dust was estimated to be 89.7 and 34.9 nSv for infants and adults, respectively, which is well below the world average internal dose of 290 μSv. The main contributor to the annual effective dose was 228Ra, which contributes ~69.6 and 43.3% for infants and adults, respectively, followed by: 226Ra » 232,230,228Th > 234,238U > 40k, 137Cs » 7Be.
Collapse
Affiliation(s)
- Zaid Q Ababneh
- Physics Department, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
- College of Science and Health Professions, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Anas M Ababneh
- Physics Department, Faculty of Science, Yarmouk University, Irbid 211-63, Jordan
| | - Sultan Alsagabi
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Fahad I Almasoud
- Nuclear Science Research Institute (NSRI), King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| |
Collapse
|
35
|
Ho HC, Wong MS, Yang L, Chan TC, Bilal M. Influences of socioeconomic vulnerability and intra-urban air pollution exposure on short-term mortality during extreme dust events. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 235:155-162. [PMID: 29288928 DOI: 10.1016/j.envpol.2017.12.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/27/2017] [Accepted: 12/12/2017] [Indexed: 05/22/2023]
Abstract
Air pollution has been shown to be significantly associated with morbidity and mortality in urban areas, but there is lack of studies focused on extreme pollution events such as extreme dust episodes in high-density Asian cities. However, such cities have had extreme climate episodes that could have adverse health implications for downwind areas. More importantly, few studies have comprehensively investigated the mortality risks of extreme dust events for socioeconomically vulnerable populations. This paper examined the association between air pollutants and mortality risk in Hong Kong from 2006 to 2010, with a case-crossover analysis, to determine the elevated risk after an extreme dust event in a high-density city. The results indicate that PM10-2.5 dominated the all-cause mortality effect at the lag 0 day (OR: 1.074 [1.051, 1.098]). This study also found that people who were aged ≥ 65, economically inactive, or non-married had higher risks of all-cause mortality and cardiorespiratory mortality during days with extreme dust events. In addition, people who were in areas with higher air pollution had significantly higher risks of all-cause mortality and cardiorespiratory mortality. In conclusion, the results of this study can be used to target the vulnerable among a population or an area and the day(s) at risk to assist in health protocol development and emergency planning, as well as to develop early warnings for the general public in order to mitigate potential mortality risk for vulnerable population groups caused by extreme dust events.
Collapse
Affiliation(s)
- Hung Chak Ho
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong
| | - Man Sing Wong
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong.
| | - Lin Yang
- School of Nursing, The Hong Kong Polytechnic University, Hong Kong
| | - Ta-Chien Chan
- Research Center for Humanities and Social Sciences, Academia Sinica, Taiwan
| | - Muhammad Bilal
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong; Research Institute for Sustainable Urban Development, The Hong Kong Polytechnic University, Hong Kong; School of Marine Sciences, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
36
|
Health Impact Assessment Associated with Exposure to PM10 and Dust Storms in Kuwait. ATMOSPHERE 2018. [DOI: 10.3390/atmos9010006] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Kurai J, Watanabe M, Noma H, Iwata K, Taniguchi J, Sano H, Tohda Y, Shimizu E. Estimation of the effects of heavy Asian dust on respiratory function by definition type. Genes Environ 2017; 39:25. [PMID: 29118866 PMCID: PMC5664575 DOI: 10.1186/s41021-017-0085-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 09/06/2017] [Indexed: 11/10/2022] Open
Abstract
Background The adverse effects of Asian dust (AD) on health have been demonstrated in earlier studies, but there is no standardized definition for heavy–AD. This study aimed to examine which definition of heavy–AD has the most adverse effect on respiratory function. Methods One–hundred–and–thirty–seven adults with asthma, and 384 school children self-measured their morning peak expiratory flow (PEF). The four definitions of heavy–AD are: (1) the definition provided by the Japan Meteorological Agency (JMA), (2) daily median AD particle level ≥ 0.07 km−1, obtained through light detection and ranging (LIDAR) (3) hourly AD particle level ≥ 0.1 km−1, and (4) hourly level ≥ 0.07 km−1. Linear mixed models were used to estimate the effects of heavy–AD, by definition type, on daily PEF values. Results In adults with asthma, as per the JMA’s definition, significantly reduced PEF were observed on heavy–AD days (lag 0), lag 0–1, and lag 0–3. In school children, after a heavy–AD event, as defined by the JMA, PEF significantly decreased on lag 0–1, lag 0–2, and lag 0–3. However, as per the other definitions, there was no significant decrease in the PEF in the adults and children. Conclusion The associations between heavy–AD and respiratory function differed between these definitions.
Collapse
Affiliation(s)
- Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504 Japan
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504 Japan
| | - Hisashi Noma
- Department of Data Science, The Institute of Statistical Mathematics, 10-3 Midori-cho, Tachikawa, Tokyo, 190-8562 Japan
| | - Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504 Japan.,Mio Fertility Clinic, Reproductive Centre, Tottori, Japan
| | - Jumpei Taniguchi
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504 Japan
| | - Hiroyuki Sano
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-0014 Japan
| | - Yuji Tohda
- Department of Respiratory Medicine and Allergology, Kinki University Faculty of Medicine, 377-2 Ohnohigashi, Osakasayama, 589-0014 Japan
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, 36-1 Nishi-cho, Yonago, Tottori 683-8504 Japan
| |
Collapse
|
38
|
Wong MS, Ho HC, Yang L, Shi W, Yang J, Chan TC. Spatial variability of excess mortality during prolonged dust events in a high-density city: a time-stratified spatial regression approach. Int J Health Geogr 2017; 16:26. [PMID: 28738805 PMCID: PMC5525373 DOI: 10.1186/s12942-017-0099-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/10/2017] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Dust events have long been recognized to be associated with a higher mortality risk. However, no study has investigated how prolonged dust events affect the spatial variability of mortality across districts in a downwind city. METHODS In this study, we applied a spatial regression approach to estimate the district-level mortality during two extreme dust events in Hong Kong. We compared spatial and non-spatial models to evaluate the ability of each regression to estimate mortality. We also compared prolonged dust events with non-dust events to determine the influences of community factors on mortality across the city. RESULTS The density of a built environment (estimated by the sky view factor) had positive association with excess mortality in each district, while socioeconomic deprivation contributed by lower income and lower education induced higher mortality impact in each territory planning unit during a prolonged dust event. Based on the model comparison, spatial error modelling with the 1st order of queen contiguity consistently outperformed other models. The high-risk areas with higher increase in mortality were located in an urban high-density environment with higher socioeconomic deprivation. CONCLUSION Our model design shows the ability to predict spatial variability of mortality risk during an extreme weather event that is not able to be estimated based on traditional time-series analysis or ecological studies. Our spatial protocol can be used for public health surveillance, sustainable planning and disaster preparation when relevant data are available.
Collapse
Affiliation(s)
- Man Sing Wong
- Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Hung Chak Ho
- Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Lin Yang
- School of Nursing, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Wenzhong Shi
- Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Jinxin Yang
- Department of Land Surveying and Geo-informatics, Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Ta-Chien Chan
- Research Center for Humanity and Social Sciences, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
39
|
Iwata K, Watanabe M, Kurai J, Burioka N, Nakamoto S, Hantan D, Shimizu E. Association between transported Asian dust and outdoor fungal concentration during winter in a rural area of western Japan. Genes Environ 2017; 39:19. [PMID: 28680509 PMCID: PMC5493889 DOI: 10.1186/s41021-017-0079-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/11/2017] [Indexed: 11/25/2022] Open
Abstract
Background Recently, Asian dust (AD) has become a serious health problem and several studies have clearly proven that AD can aggravate asthma. However, it remains unclear as to which components of AD have a strong effect on the asthma exacerbation caused by AD exposure. Outdoor fungi can increase emergency department visits and hospitalization for asthma exacerbation and can aggravate asthma symptoms. Therefore, this study was aimed at investigating the relationship between AD and outdoor fungi and determining the potential of fungi to cause airborne particulate matter (PM)-related inflammatory responses. Methods Airborne PM was collected each day from January 26, 2015 to February 27, 2015. Daily levels of outdoor fungi-associated PM were calculated using a culture-based method. Production of cytokines such as interleukin (IL)-6, IL-8, and tumor necrosis factor (TNF)-α was assessed in THP1 cells stimulated by the collected airborne PM each day. Results Daily levels of AD particles were assessed using Light Detection and Ranging and did not correlate with outdoor fungi (r = −0.17, P = 0.94). There was also no association between outdoor fungi and the daily production of IL-6 (r = 0.16, P = 0.37), IL-8 (r = 0.19, P = 0.30), or TNF-α induced by collected PM (r = 0.07, P = 0.70). However, the daily levels of AD particles were significantly associated with IL-6 (r = 0.91, P < 0.0001), IL-8 (r = 0.64, P = 0.0004), and TNF-α (r = 0.72, P < 0.0001) production. Conclusion AD did not increase the acute levels of outdoor fungi and outdoor fungi did not affect the cytokine production induced by airborne PM. These results suggest that outdoor fungi do not have any detectable effect on the asthma exacerbation caused by AD exposure.
Collapse
Affiliation(s)
- Kyoko Iwata
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan.,Mio Fertility Clinic, Reproductive Centre, Tottori, Japan
| | - Masanari Watanabe
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Jun Kurai
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Naoto Burioka
- Division of School of Health Science, Department of Pathobiological Science and Technology, Tottori University Faculty of Medicine, Tottori, Japan
| | - Sachiko Nakamoto
- Division of School of Health Science, Department of Pathobiological Science and Technology, Tottori University Faculty of Medicine, Tottori, Japan
| | - Degejirihu Hantan
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| | - Eiji Shimizu
- Department of Respiratory Medicine and Rheumatology, Faculty of Medicine, Tottori University, Tottori, Japan
| |
Collapse
|
40
|
Tong DQ, Wang JXL, Gill TE, Lei H, Wang B. Intensified dust storm activity and Valley fever infection in the southwestern United States. GEOPHYSICAL RESEARCH LETTERS 2017; 44:4304-4312. [PMID: 30166741 PMCID: PMC6108409 DOI: 10.1002/2017gl073524] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 04/10/2017] [Accepted: 04/13/2017] [Indexed: 05/02/2023]
Abstract
Climate models have consistently projected a drying trend in the southwestern United States, aiding speculation of increasing dust storms in this region. Long-term climatology is essential to documenting the dust trend and its response to climate variability. We have reconstructed long-term dust climatology in the western United States, based on a comprehensive dust identification method and continuous aerosol observations from the Interagency Monitoring of Protected Visual Environments (IMPROVE) network. We report here direct evidence of rapid intensification of dust storm activity over American deserts in the past decades (1988-2011), in contrast to reported decreasing trends in Asia and Africa. The frequency of windblown dust storms has increased 240% from 1990s to 2000s. This dust trend is associated with large-scale variations of sea surface temperature in the Pacific Ocean, with the strongest correlation with the Pacific Decadal Oscillation. We further investigate the relationship between dust and Valley fever, a fast-rising infectious disease caused by inhaling soil-dwelling fungus (Coccidioides immitis and C. posadasii) in the southwestern United States. The frequency of dust storms is found to be correlated with Valley fever incidences, with a coefficient (r) comparable to or stronger than that with other factors believed to control the disease in two endemic centers (Maricopa and Pima County, Arizona).
Collapse
Affiliation(s)
- Daniel Q. Tong
- Center for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVirginiaUSA
- Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
- Cooperative Institute of Climate and SatelliteUniversity of MarylandCollege ParkMarylandUSA
| | - Julian X. L. Wang
- Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Thomas E. Gill
- Department of Geological SciencesUniversity of Texas at El PasoEl PasoTexasUSA
| | - Hang Lei
- Center for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVirginiaUSA
- Air Resources LaboratoryNational Oceanic and Atmospheric AdministrationCollege ParkMarylandUSA
| | - Binyu Wang
- Center for Spatial Information Science and SystemsGeorge Mason UniversityFairfaxVirginiaUSA
| |
Collapse
|
41
|
The Effects of PM 2.5 from Asian Dust Storms on Emergency Room Visits for Cardiovascular and Respiratory Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14040428. [PMID: 28420157 PMCID: PMC5409629 DOI: 10.3390/ijerph14040428] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/27/2017] [Accepted: 04/13/2017] [Indexed: 12/19/2022]
Abstract
A case-crossover study examined how PM2.5 from Asian Dust Storms (ADS) affects the number of emergency room (ER) admissions for cardiovascular diseases (CVDs) and respiratory diseases (RDs). Our data indicated that PM2.5 concentration from ADS was highly correlated with ER visits for CVDs and RDs. The odds ratios (OR) increased by 2.92 (95% CI: 1.22–5.08) and 1.86 (95% CI: 1.30–2.91) per 10 µg/m3 increase in PM2.5 levels, for CVDs and RDs, respectively. A 10 µg/m3 increase in PM2.5 from ADSs was significantly associated with an increase in ER visits for CVDs among those 65 years of age and older (an increase of 2.77 in OR) and for females (an increase of 3.09 in OR). In contrast, PM2.5 levels had a significant impact on RD ER visits among those under 65 years of age (OR = 1.77). The risk of ER visits for CVDs increased on the day when the ADS occurred in Taiwan and the day after (lag 0 and lag 1); the corresponding risk increase for RDs only increased on the fifth day after the ADS (lag 5). In Taiwan’s late winter and spring, the severity of ER visits for CVDs and RDs increases. Environmental protection agencies should employ an early warning system for ADS to reduce high-risk groups’ exposure to PM2.5.
Collapse
|
42
|
Kim IS, Sohn J, Lee SJ, Park JK, Uhm JS, Pak HN, Lee MH, Kim C, Joung B. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution. Int J Cardiol 2017; 240:214-220. [PMID: 28392078 DOI: 10.1016/j.ijcard.2017.03.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/07/2017] [Accepted: 03/24/2017] [Indexed: 01/14/2023]
Abstract
BACKGROUND This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. METHODS The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. RESULTS During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, p<0.001), NO2 (lag 24h; OR 1.25, 95%CI 1.19-1.31, p<0.001) and CO (lag 24h; OR 1.05, 95%CI 1.02-1.08, p=0.003). Sustained ventricular tachycardia or VF was also independently associated with SO2, PM10, NO2 and CO (all p<0.01). Exposures to SO2, PM10, NO2, and CO (all p<0.01) were significantly related to overall VTAs, especially in patients with structural heart disease (SHD). CONCLUSIONS Associations between air pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO2, PM10, NO2, and CO were significantly associated with VTAs in ICD patients with SHD.
Collapse
Affiliation(s)
- In-Soo Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jungwoo Sohn
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung-Jun Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jin-Kyu Park
- Division of Cardiology, Department of Internal Medicine, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Jae-Sun Uhm
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hui-Nam Pak
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Moon-Hyoung Lee
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Changsoo Kim
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Boyoung Joung
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
43
|
Association of Short-Term Exposure to Ambient Fine Particulate Matter with Skin Symptoms in Schoolchildren: A Panel Study in a Rural Area of Western Japan. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030299. [PMID: 28335405 PMCID: PMC5369135 DOI: 10.3390/ijerph14030299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 02/23/2017] [Accepted: 03/11/2017] [Indexed: 01/19/2023]
Abstract
Numerous studies have unmasked the deleterious effects of particulate matter less than 2.5 μm (PM2.5) on health. However, epidemiologic evidence focusing on the effects of PM2.5 on skin health remains limited. An important aspect of Asian dust (AD) in relationship to health is the amount of PM2.5 contained therein. Several studies have demonstrated that AD can aggravate skin symptoms. The current study aimed to investigate the effects of short-term exposure to PM2.5 and AD particles on skin symptoms in schoolchildren. A total of 339 children recorded daily skin symptom scores during February 2015. Light detection and ranging were used to calculate AD particle size. Generalized estimating equation logistic regression analyses were used to estimate the associations among skin symptoms and the daily levels of PM2.5 and AD particles. Increases in the levels of PM2.5 and AD particles were not related to an increased risk of skin symptom events, with increases of 10.1 μg/m³ in PM2.5 and 0.01 km-1 in AD particles changing odds ratios by 1.03 and 0.99, respectively. These results suggest that short-term exposure to PM2.5 and AD does not impact skin symptoms in schoolchildren.
Collapse
|
44
|
Dust Climatology of the NASA Dryden Flight Research Center (DFRC) in Lancaster, California, USA. CLIMATE 2017. [DOI: 10.3390/cli5010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
45
|
A Systematic Review of Global Desert Dust and Associated Human Health Effects. ATMOSPHERE 2016. [DOI: 10.3390/atmos7120158] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
46
|
Kim YH, Ko KP, Kang IG, Jung JH, Oh DK, Jang TY, Kim ST. Low Concentration PM 10 Had No Effect on Nasal Symptoms and Flow in Allergic Rhinitis Patients. Clin Exp Otorhinolaryngol 2016; 10:164-167. [PMID: 27903069 PMCID: PMC5426392 DOI: 10.21053/ceo.2016.01116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/24/2016] [Accepted: 10/10/2016] [Indexed: 11/22/2022] Open
Abstract
Objectives Since Korea is geographically close to China (the origin site for Asian sand dust [ASD]) the health influence of ASD event will be still greater in Korea. We aimed to evaluate the effect of PM10 (particulate matter with aerodynamic diameter <10 μm, below 150 μg/m3) on the clinical course of allergic rhinitis (AR). Methods We enrolled 47 healthy volunteers (group A) and 108 AR patients sensitized to house dust mites (group B). For 120 consecutive days (from February 1st to May 30th, 2012), all subjects reported their daily nasal symptoms and performed 2 peak flowmeter readings to measure peak nasal inspiratory flow (PNIF). We evaluated the correlation between the daily concentration of PM10, symptoms, and PNIF of patients. We also investigated changes in symptoms and PNIF 2 days before and after ‘dusty’ days (daily concentration of PM10 >100 μg/m3) Results There was no significant difference between group A and B in nasal symptoms and PNIF during the 120-day period. Changes in nasal symptoms and PNIF were not statistically significant before or after a PM10 concentration rise above 100 μg/m3. Conclusion Low concentration PM10 does not have significant effect on nasal symptoms and PNIF in AR patients.
Collapse
Affiliation(s)
- Young Hyo Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Korea
| | - Kwang Pil Ko
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Il Gyu Kang
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Joo Hyun Jung
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Dae Kyu Oh
- Department of Preventive Medicine, Gachon University College of Medicine, Incheon, Korea
| | - Tae Young Jang
- Department of Otorhinolaryngology-Head and Neck Surgery, Inha University School of Medicine, Incheon, Korea
| | - Seon Tae Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| |
Collapse
|
47
|
Lai LW. Public health risks of prolonged fine particle events associated with stagnation and air quality index based on fine particle matter with a diameter <2.5 μm in the Kaoping region of Taiwan. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2016; 60:1907-1917. [PMID: 27121467 DOI: 10.1007/s00484-016-1177-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 03/25/2016] [Accepted: 04/17/2016] [Indexed: 06/05/2023]
Abstract
The increasing frequency of droughts in tropical and sub-tropical areas since 1970 due to climate change requires a better understanding of the relationship between public health and long-duration fine particle events (FPE; defined as a day with an average PM2.5 ≥ 35.5 μg/m3) associated with rainfall and wind speed. In the Kaoping region of Taiwan, 94.46 % of the daily average PM2.5 in winter exceeds the limit established by 2005 World Health Organization (WHO) guidelines. This study investigated the differences in winter weather characteristics and health effects between non-FPE and FPE days, and the performance of air quality indexes on FPE days. Z-statistics for one-tailed tests, multiplicative decomposition models, logarithmic regression, and product-moment correlations were used for the analysis. The results indicate that mean wind speeds, rainfall hours, and air temperature were significantly decreased on FPE days. Daily mean PM2.5 concentrations were positively correlated to the duration of FPE days. The duration of FPE days was positively related to the length of drought (r = 0.97, P < 0.05). The number of respiratory admissions was positively correlated with the FPE duration (r 2 = 0.60). The age groups >15 years experienced the largest average reduction in asthma admissions on lag-days. Compared to the pollutant standard index (PSI) and revised air quality index (RAQI), the PM2.5 index is more representative and sensitive to changes in PM2.5 concentrations.
Collapse
Affiliation(s)
- Li-Wei Lai
- Centre for General Education, National Taipei University of Business, No. 321, Sec 1, Chi-Nan Rd, Taipei, 10051, Taiwan, Republic of China.
| |
Collapse
|
48
|
Yoshida S, Ichinose T, Arashidani K, He M, Takano H, Shibamoto T. Effects of Fetal Exposure to Asian Sand Dust on Development and Reproduction in Male Offspring. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2016; 13:ijerph13111173. [PMID: 27886111 PMCID: PMC5129382 DOI: 10.3390/ijerph13111173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 01/26/2023]
Abstract
In recent experimental studies, we reported the aggravating effects of Asian sand dust (ASD) on male reproduction in mice. However, the effects of fetal ASD exposure on male reproduction have not been investigated. The present study investigated the effects of fetal ASD exposure on reproduction in male offspring. Using pregnant CD-1 mice, ASD was administered intratracheally on days 7 and 14 of gestation, and the reproduction of male offspring was determined at 5, 10, and 15 weeks after birth. The secondary sex ratio was significantly lower in the fetal ASD-exposed mice than in the controls. Histologic examination showed partial vacuolation of seminiferous tubules in immature mice. Moreover, daily sperm production (DSP) was significantly less in the fetal ASD-exposed mice than in the controls. DSP in the fetal ASD-exposed mice was approximately 10% less than the controls at both 5 and 10 weeks. However, both the histologic changes and the DSP decrease were reversed as the mice matured. These findings suggest that ASD exposure affects both the fetal development and the reproduction of male offspring. In the future, it will be necessary to clarify the onset mechanisms of ASD-induced male fetus death and male reproductive disorders.
Collapse
Affiliation(s)
- Seiichi Yoshida
- Department of Health and Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan.
| | - Takamichi Ichinose
- Department of Health and Sciences, Oita University of Nursing and Health Sciences, Oita 870-1201, Japan.
| | - Keiichi Arashidani
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Fukuoka 807-8555, Japan.
| | - Miao He
- Environment and Non-Communicable Disease Research Center, School of Public Health, China Medical University, Shenyang 110122, China.
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto 615-8540, Japan.
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA 95616, USA.
| |
Collapse
|
49
|
Crooks JL, Cascio WE, Percy MS, Reyes J, Neas LM, Hilborn ED. The Association between Dust Storms and Daily Non-Accidental Mortality in the United States, 1993-2005. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1735-1743. [PMID: 27128449 PMCID: PMC5089887 DOI: 10.1289/ehp216] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 11/16/2015] [Accepted: 04/18/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The impact of dust storms on human health has been studied in the context of Asian, Saharan, Arabian, and Australian storms, but there has been no recent population-level epidemiological research on the dust storms in North America. The relevance of dust storms to public health is likely to increase as extreme weather events are predicted to become more frequent with anticipated changes in climate through the 21st century. OBJECTIVES We examined the association between dust storms and county-level non-accidental mortality in the United States from 1993 through 2005. METHODS Dust storm incidence data, including date and approximate location, are taken from the U.S. National Weather Service storm database. County-level mortality data for the years 1993-2005 were acquired from the National Center for Health Statistics. Distributed lag conditional logistic regression models under a time-stratified case-crossover design were used to study the relationship between dust storms and daily mortality counts over the whole United States and in Arizona and California specifically. End points included total non-accidental mortality and three mortality subgroups (cardiovascular, respiratory, and other non-accidental). RESULTS We estimated that for the United States as a whole, total non-accidental mortality increased by 7.4% (95% CI: 1.6, 13.5; p = 0.011) and 6.7% (95% CI: 1.1, 12.6; p = 0.018) at 2- and 3-day lags, respectively, and by an average of 2.7% (95% CI: 0.4, 5.1; p = 0.023) over lags 0-5 compared with referent days. Significant associations with non-accidental mortality were estimated for California (lag 2 and 0-5 day) and Arizona (lag 3), for cardiovascular mortality in the United States (lag 2) and Arizona (lag 3), and for other non-accidental mortality in California (lags 1-3 and 0-5). CONCLUSIONS Dust storms are associated with increases in lagged non-accidental and cardiovascular mortality. Citation: Crooks JL, Cascio WE, Percy MS, Reyes J, Neas LM, Hilborn ED. 2016. The association between dust storms and daily non-accidental mortality in the United States, 1993-2005. Environ Health Perspect 124:1735-1743; http://dx.doi.org/10.1289/EHP216.
Collapse
Affiliation(s)
- James Lewis Crooks
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
- Division of Biostatistics and Bioinformatics, National Jewish Health, Denver, Colorado, USA
- Address correspondence to J.L. Crooks, Division of Biostatistics and Bioinformatics, National Jewish Health, 1400 Jackson St., Denver, CO 80206-2761 USA. Telephone: (303) 398-1543. E-mail:
| | - Wayne E. Cascio
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | | | - Jeanette Reyes
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Lucas M. Neas
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| | - Elizabeth D. Hilborn
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA
| |
Collapse
|
50
|
Sadakane K, Ichinose T, Nishikawa M, Takano H, Shibamoto T. Co-exposure to zymosan A and heat-inactivated Asian sand dust exacerbates ovalbumin-induced murine lung eosinophilia. Allergy Asthma Clin Immunol 2016; 12:48. [PMID: 27766108 PMCID: PMC5057426 DOI: 10.1186/s13223-016-0153-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 09/20/2016] [Indexed: 01/19/2023] Open
Abstract
Background Epidemiological studies have implicated Asian sand dust (ASD) in the increased prevalence of respiratory disorders, including asthma. It has been observed that fungal elements such as β-glucan can be adsorbed onto ASD. In the present study, the exacerbating effect of the combined exposure to zymosan A (ZymA) containing yeast β-glucan and heat-inactivated ASD on ovalbumin (OVA)-induced murine lung eosinophilia was investigated. Methods BALB/c mice were repeatedly instilled intratracheally with one of eight immunogenic formulations consisting of various combinations of (1) ZymA, (2) ASD that was briefly heated to remove organic substances (H-ASD), and (3) OVA in normal saline, or each of the above alone. Pathologic changes, cytological alterations in bronchoalveolar lavage fluid (BALF), changes in inflammatory cytokines and chemokines in BALF, and OVA-specific IgE and IgG1 antibodies in serum were investigated. Results Exposure to ZymA with or without OVA had no effect on most indicators of lung inflammation. Exposure to H-ASD with OVA increased the recruitment of inflammatory cells to the lungs and the serum levels of OVA-specific IgE and IgG1. The combination OVA + ZymA + H-ASD induced a marked recruitment of eosinophils and upregulation of T helper 2 (Th2) cytokines (interleukin [IL]-4 and IL-13), IL-6, eotaxin/CCL11, and monocyte chemotactic protein (MCP)-3/CCL7 in BALF and OVA-specific IgE in serum. This treatment also induced the most severe pathological changes in the lungs of mice. ZymA was found to boost the effects of H-ASD, thereby exacerbating the OVA-induced allergic inflammation, even though ZymA alone did not have such effect. Conclusions The results suggest that fungal elements such as β-1,3-glucan aggravate the allergic inflammation caused by ASD. Our findings may facilitate prophylaxis of some allergic diseases in Asia.
Collapse
Affiliation(s)
- Kaori Sadakane
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Takamichi Ichinose
- Department of Health Sciences, Oita University of Nursing and Health Sciences, Oita, 870-1201 Japan
| | - Masataka Nishikawa
- Environmental Chemistry Division, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506 Japan
| | - Hirohisa Takano
- Environmental Health Division, Department of Environmental Engineering, Graduate School of Engineering, Kyoto University, Kyoto, 615-8530 Japan
| | - Takayuki Shibamoto
- Department of Environmental Toxicology, University of California, Davis, CA 95616 USA
| |
Collapse
|