1
|
Bajard L, Adamovsky O, Audouze K, Baken K, Barouki R, Beltman JB, Beronius A, Bonefeld-Jørgensen EC, Cano-Sancho G, de Baat ML, Di Tillio F, Fernández MF, FitzGerald RE, Gundacker C, Hernández AF, Hilscherova K, Karakitsios S, Kuchovska E, Long M, Luijten M, Majid S, Marx-Stoelting P, Mustieles V, Negi CK, Sarigiannis D, Scholz S, Sovadinova I, Stierum R, Tanabe S, Tollefsen KE, van den Brand AD, Vogs C, Wielsøe M, Wittwehr C, Blaha L. Application of AOPs to assist regulatory assessment of chemical risks - Case studies, needs and recommendations. ENVIRONMENTAL RESEARCH 2023; 217:114650. [PMID: 36309218 PMCID: PMC9850416 DOI: 10.1016/j.envres.2022.114650] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 05/06/2023]
Abstract
While human regulatory risk assessment (RA) still largely relies on animal studies, new approach methodologies (NAMs) based on in vitro, in silico or non-mammalian alternative models are increasingly used to evaluate chemical hazards. Moreover, human epidemiological studies with biomarkers of effect (BoE) also play an invaluable role in identifying health effects associated with chemical exposures. To move towards the next generation risk assessment (NGRA), it is therefore crucial to establish bridges between NAMs and standard approaches, and to establish processes for increasing mechanistically-based biological plausibility in human studies. The Adverse Outcome Pathway (AOP) framework constitutes an important tool to address these needs but, despite a significant increase in knowledge and awareness, the use of AOPs in chemical RA remains limited. The objective of this paper is to address issues related to using AOPs in a regulatory context from various perspectives as it was discussed in a workshop organized within the European Union partnerships HBM4EU and PARC in spring 2022. The paper presents examples where the AOP framework has been proven useful for the human RA process, particularly in hazard prioritization and characterization, in integrated approaches to testing and assessment (IATA), and in the identification and validation of BoE in epidemiological studies. Nevertheless, several limitations were identified that hinder the optimal usability and acceptance of AOPs by the regulatory community including the lack of quantitative information on response-response relationships and of efficient ways to map chemical data (exposure and toxicity) onto AOPs. The paper summarizes suggestions, ongoing initiatives and third-party tools that may help to overcome these obstacles and thus assure better implementation of AOPs in the NGRA.
Collapse
Affiliation(s)
- Lola Bajard
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Ondrej Adamovsky
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Kirsten Baken
- Unit Health, Flemish Institute for Technological Research (VITO NV), Boeretang 200, 2400 Mol, Belgium
| | - Robert Barouki
- Université Paris Cité, T3S, Inserm UMR S-1124, F-75006 Paris, France
| | - Joost B Beltman
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Anna Beronius
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden
| | - Eva Cecilie Bonefeld-Jørgensen
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark; Greenland Centre for Health Research, University of Greenland, Manutooq 1, 3905 Nuussuaq, Greenland
| | | | - Milo L de Baat
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Filippo Di Tillio
- Division of Drug Discovery and Safety, Leiden Academic Centre for Drug Research, Leiden University, Leiden, Netherlands
| | - Mariana F Fernández
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Rex E FitzGerald
- Swiss Centre for Applied Human Toxicology SCAHT, University of Basel, Missionsstrasse 64, CH-4055 Basel, Switzerland
| | - Claudia Gundacker
- Institute of Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, 1090 Vienna, Austria
| | - Antonio F Hernández
- Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Avda. de la Investigación, 11, 18016, Granada, Spain; Consortium for Biomedical Research in Epidemiology & Public Health, CIBERESP, Madrid, Spain
| | - Klara Hilscherova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Spyros Karakitsios
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Eliska Kuchovska
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Duesseldorf, Germany
| | - Manhai Long
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Centre for Health Protection, Bilthoven, the Netherlands
| | - Sanah Majid
- KWR Water Research Institute, Groningenhaven 7, 3433 PE Nieuwegein, the Netherlands
| | - Philip Marx-Stoelting
- German Federal Institute for Risk Assessment, Dept. Pesticides Safety, Berlin, Germany
| | - Vicente Mustieles
- Center for Biomedical Research (CIBM) & School of Medicine, University of Granada, 18016 Granada, Spain; Instituto de Investigación Biosanitaria (ibs. GRANADA), 18012, Granada, Spain; Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
| | - Chander K Negi
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Dimosthenis Sarigiannis
- Environmental Engineering Laboratory, Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece; HERACLES Research Centre on the Exposome and Health, Center for Interdisciplinary Research and Innovation, Thessaloniki, Greece
| | - Stefan Scholz
- UFZ Helmholtz Center for Environmental Research, Dept Bioanalyt Ecotoxicol, D-04318 Leipzig, Germany
| | - Iva Sovadinova
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic
| | - Rob Stierum
- Netherlands Organisation for Applied Scientific Research, Risk Analysis for Products in Development, Utrecht, the Netherlands
| | - Shihori Tanabe
- Division of Risk Assessment, Center for Biological Safety and Research, National Institute of Health Sciences, Kawasaki, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Section of Ecotoxicology and Risk Assessment, Gaustadalléen, Oslo, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management (MINA), Norway
| | - Annick D van den Brand
- Institute for Public Health and the Environment (RIVM), Centre for Nutrition, Prevention and Health Services, 3720 BA Bilthoven, the Netherlands
| | - Carolina Vogs
- Institute of Environmental Medicine, Karolinska Institutet, Nobels väg 13, Solna, Sweden; Department of Biomedical Sciences and Veterinary Public Health, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Maria Wielsøe
- Centre for Arctic Health & Molecular Epidemiology, Department of Public Health, Aarhus University, Bartholins Allé 2, 8000 Aarhus, Denmark
| | | | - Ludek Blaha
- RECETOX, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno, Czech Republic.
| |
Collapse
|
2
|
Gothié JD, Demeneix B, Remaud S. Comparative approaches to understanding thyroid hormone regulation of neurogenesis. Mol Cell Endocrinol 2017; 459:104-115. [PMID: 28545819 DOI: 10.1016/j.mce.2017.05.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 05/11/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Thyroid hormone (TH) signalling, an evolutionary conserved pathway, is crucial for brain function and cognition throughout life, from early development to ageing. In humans, TH deficiency during pregnancy alters offspring brain development, increasing the risk of cognitive disorders. How TH regulates neurogenesis and subsequent behaviour and cognitive functions remains a major research challenge. Cellular and molecular mechanisms underlying TH signalling on proliferation, survival, determination, migration, differentiation and maturation have been studied in mammalian animal models for over a century. However, recent data show that THs also influence embryonic and adult neurogenesis throughout vertebrates (from mammals to teleosts). These latest observations raise the question of how TH availability is controlled during neurogenesis and particularly in specific neural stem cell populations. This review deals with the role of TH in regulating neurogenesis in the developing and the adult brain across different vertebrate species. Such evo-devo approaches can shed new light on (i) the evolution of the nervous system and (ii) the evolutionary control of neurogenesis by TH across animal phyla. We also discuss the role of thyroid disruptors on brain development in an evolutionary context.
Collapse
Affiliation(s)
- Jean-David Gothié
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France
| | - Barbara Demeneix
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| | - Sylvie Remaud
- CNRS, UMR 7221, Muséum National d'Histoire Naturelle, F-75005 Paris France.
| |
Collapse
|
3
|
Abstract
Strong evidence now supports the notion that organophosphate pesticides damage the fetal brain and produce cognitive and behavioral dysfunction through multiple mechanisms, including thyroid disruption. A regulatory ban was proposed, but actions to end the use of one such pesticide, chlorpyrifos, in agriculture were recently stopped by the Environmental Protection Agency under false scientific pretenses. This manuscript describes the costs and consequences of this policy failure and notes how this case study is emblematic of a broader dismissal of scientific evidence and attacks on scientific norms. Scientists have a responsibility to rebut and decry these serious challenges to human health and scientific integrity.
Collapse
Affiliation(s)
- Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, United States of America
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, United States of America
- Department of Population Health, New York University School of Medicine, New York, New York, United States of America
- NYU Wagner School of Public Service, New York University, New York, New York, United States of America
- NYU College of Global Public Health, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
4
|
Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME. Neurodevelopment and Thyroid Hormone Synthesis Inhibition in the Rat: Quantitative Understanding Within the Adverse Outcome Pathway Framework. Toxicol Sci 2017; 160:57-73. [PMID: 28973696 PMCID: PMC10623382 DOI: 10.1093/toxsci/kfx163] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2023] Open
Abstract
Adequate levels of thyroid hormone (TH) are needed for proper brain development, deficiencies may lead to adverse neurologic outcomes in humans and animal models. Environmental chemicals have been linked to TH disruption, yet the relationship between developmental exposures and decline in serum TH resulting in neurodevelopmental impairment is poorly understood. The present study developed a quantitative adverse outcome pathway where serum thyroxin (T4) reduction following inhibition of thyroperoxidase in the thyroid gland are described and related to deficits in fetal brain TH and the development of a brain malformation, cortical heterotopia. Pregnant rats were exposed to 6-propylthiouracil (PTU 0, 0.1, 0.5, 1, 2, or 3 parts per million [ppm]) from gestational days 6-20, sequentially increasing PTU concentrations in maternal thyroid gland and serum as well as in fetal serum. Dams exposed to 0.5 ppm PTU and higher exhibited dose-dependent decreases in thyroidal T4. Serum T4 levels in the dam were significantly decreased with exposure to 2 and 3 ppm PTU. In the fetus, T4 decrements were first observed at a lower dose of 0.5 ppm PTU. Based on these data, fetal brain T4 levels were estimated from published literature sources, and quantitatively linked to increases in the size of the heterotopia present in the brains of offspring. These data show the potential of in vivo assessments and computational descriptions of biologic responses to predict the development of this structural brain malformation and use of quantitative adverse outcome pathway approach to evaluate brain deficits that may result from exposure to other TH disruptors.
Collapse
Affiliation(s)
| | - Hisham El-Masri
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Patricia A Kosian
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Jermaine Ford
- Analytical Chemistry Research Core/Research Cores Unit, National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, North Carolina 27709
| | - Sigmund J Degitz
- Mid-Continent Ecology Division, National Health and Environmental Effects Research Lab, US Environmental Protection Agency, Duluth, Minnesota 55804
| | | |
Collapse
|
5
|
Halden RU, Lindeman AE, Aiello AE, Andrews D, Arnold WA, Fair P, Fuoco RE, Geer LA, Johnson PI, Lohmann R, McNeill K, Sacks VP, Schettler T, Weber R, Zoeller RT, Blum A. The Florence Statement on Triclosan and Triclocarban. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:064501. [PMID: 28632490 PMCID: PMC5644973 DOI: 10.1289/ehp1788] [Citation(s) in RCA: 131] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/06/2017] [Accepted: 04/08/2017] [Indexed: 05/20/2023]
Abstract
The Florence Statement on Triclosan and Triclocarban documents a consensus of more than 200 scientists and medical professionals on the hazards of and lack of demonstrated benefit from common uses of triclosan and triclocarban. These chemicals may be used in thousands of personal care and consumer products as well as in building materials. Based on extensive peer-reviewed research, this statement concludes that triclosan and triclocarban are environmentally persistent endocrine disruptors that bioaccumulate in and are toxic to aquatic and other organisms. Evidence of other hazards to humans and ecosystems from triclosan and triclocarban is presented along with recommendations intended to prevent future harm from triclosan, triclocarban, and antimicrobial substances with similar properties and effects. Because antimicrobials can have unintended adverse health and environmental impacts, they should only be used when they provide an evidence-based health benefit. Greater transparency is needed in product formulations, and before an antimicrobial is incorporated into a product, the long-term health and ecological impacts should be evaluated. https://doi.org/10.1289/EHP1788.
Collapse
Affiliation(s)
- Rolf U Halden
- Biodesign Center for Environmental Security, Arizona State University , Tempe, Arizona, USA
| | | | - Allison E Aiello
- Department of Epidemiology, UNC Gillings School of Global Public Health, University of North Carolina , Chapel Hill, North Carolina, USA
| | - David Andrews
- Environmental Working Group, Washington, District of Columbia, USA
| | - William A Arnold
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota , Minneapolis, Minnesota, USA
| | - Patricia Fair
- Medical University of South Carolina , Department of Public Health Sciences, Charleston, South Carolina, USA
| | - Rebecca E Fuoco
- Health Research Communication Strategies , Los Angeles, California, USA
| | - Laura A Geer
- Department of Environmental and Occupational Health Sciences, State University of New York, Downstate School of Public Health , Brooklyn, New York, USA
| | - Paula I Johnson
- California Safe Cosmetics Program, California Department of Public Health , Richmond, California, USA
| | - Rainer Lohmann
- University of Rhode Island Graduate School of Oceanography , Narragansett, Rhode Island, USA
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics , ETH Zurich, Zurich, Switzerland
| | | | - Ted Schettler
- Science and Environmental Health Network, Ames, Iowa, USA
| | - Roland Weber
- POPs Environmental Consulting, Schwäbisch Gmünd, Germany
| | - R Thomas Zoeller
- University of Massachusetts Amherst , Amherst, Massachusetts, USA
| | - Arlene Blum
- Department of Chemistry, University of California at Berkeley , Berkeley, California, USA
| |
Collapse
|
6
|
Wittwehr C, Aladjov H, Ankley G, Byrne HJ, de Knecht J, Heinzle E, Klambauer G, Landesmann B, Luijten M, MacKay C, Maxwell G, Meek MEB, Paini A, Perkins E, Sobanski T, Villeneuve D, Waters KM, Whelan M. How Adverse Outcome Pathways Can Aid the Development and Use of Computational Prediction Models for Regulatory Toxicology. Toxicol Sci 2017; 155:326-336. [PMID: 27994170 PMCID: PMC5340205 DOI: 10.1093/toxsci/kfw207] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efforts are underway to transform regulatory toxicology and chemical safety assessment from a largely empirical science based on direct observation of apical toxicity outcomes in whole organism toxicity tests to a predictive one in which outcomes and risk are inferred from accumulated mechanistic understanding. The adverse outcome pathway (AOP) framework provides a systematic approach for organizing knowledge that may support such inference. Likewise, computational models of biological systems at various scales provide another means and platform to integrate current biological understanding to facilitate inference and extrapolation. We argue that the systematic organization of knowledge into AOP frameworks can inform and help direct the design and development of computational prediction models that can further enhance the utility of mechanistic and in silico data for chemical safety assessment. This concept was explored as part of a workshop on AOP-Informed Predictive Modeling Approaches for Regulatory Toxicology held September 24-25, 2015. Examples of AOP-informed model development and its application to the assessment of chemicals for skin sensitization and multiple modes of endocrine disruption are provided. The role of problem formulation, not only as a critical phase of risk assessment, but also as guide for both AOP and complementary model development is described. Finally, a proposal for actively engaging the modeling community in AOP-informed computational model development is made. The contents serve as a vision for how AOPs can be leveraged to facilitate development of computational prediction models needed to support the next generation of chemical safety assessment.
Collapse
Affiliation(s)
| | | | - Gerald Ankley
- US Environmental Protection Agency, Duluth, Minnesota 55804
| | | | - Joop de Knecht
- National Institute for Public Health and the Environment (RIVM), Bilthoven, MA 3721, The Netherlands
| | - Elmar Heinzle
- Universität des Saarlandes, 66123 Saarbrücken, Germany
| | | | | | - Mirjam Luijten
- National Institute for Public Health and the Environment (RIVM), Bilthoven, MA 3721, The Netherlands
| | - Cameron MacKay
- Unilever Safety and Environmenta Assurance Centre, Sharnbrook, MK44 1LQ, UK
| | - Gavin Maxwell
- Unilever Safety and Environmenta Assurance Centre, Sharnbrook, MK44 1LQ, UK
| | | | - Alicia Paini
- European Commission, Joint Research Centre, Ispra 21027, Italy
| | - Edward Perkins
- US Army Engineer Research and Development Center, Vicksburg, Mississippi 39180
| | | | - Dan Villeneuve
- US Environmental Protection Agency, Duluth, Minnesota 55804
| | - Katrina M Waters
- Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Maurice Whelan
- European Commission, Joint Research Centre, Ispra 21027, Italy
| |
Collapse
|
7
|
Heyer DB, Meredith RM. Environmental toxicology: Sensitive periods of development and neurodevelopmental disorders. Neurotoxicology 2017; 58:23-41. [DOI: 10.1016/j.neuro.2016.10.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 10/25/2016] [Accepted: 10/31/2016] [Indexed: 11/16/2022]
|
8
|
Johnson PI, Koustas E, Vesterinen HM, Sutton P, Atchley DS, Kim AN, Campbell M, Donald JM, Sen S, Bero L, Zeise L, Woodruff TJ. Application of the Navigation Guide systematic review methodology to the evidence for developmental and reproductive toxicity of triclosan. ENVIRONMENT INTERNATIONAL 2016; 92-93:716-28. [PMID: 27156197 PMCID: PMC4951161 DOI: 10.1016/j.envint.2016.03.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND There are reports of developmental and reproductive health effects associated with the widely used biocide triclosan. OBJECTIVE Apply the Navigation Guide systematic review methodology to answer the question: Does exposure to triclosan have adverse effects on human development or reproduction? METHODS We applied the first 3 steps of the Navigation Guide methodology: 1) Specify a study question, 2) Select the evidence, and 3) Rate quality and strength of the evidence. We developed a protocol, conducted a comprehensive search of the literature, and identified relevant studies using pre-specified criteria. We assessed the number and type of all relevant studies. We evaluated each included study for risk of bias and rated the quality and strength of the evidence for the selected outcomes. We conducted a meta-analysis on a subset of suitable data. RESULTS We found 4282 potentially relevant records, and 81 records met our inclusion criteria. Of the more than 100 endpoints identified by our search, we focused our evaluation on hormone concentration outcomes, which had the largest human and non-human mammalian data set. Three human studies and 8 studies conducted in rats reported thyroxine levels as outcomes. The rat data were amenable to meta-analysis. Because only one of the human thyroxine studies quantified exposure, we did not conduct a meta-analysis of the human data. Through meta-analysis of the data for rats, we estimated for prenatal exposure a 0.09% (95% CI: -0.20, 0.02) reduction in thyroxine concentration per mg triclosan/kg-bw in fetal and young rats compared to control. For postnatal exposure we estimated a 0.31% (95% CI: -0.38, -0.23) reduction in thyroxine per mg triclosan/kg-bw, also compared to control. Overall, we found low to moderate risk of bias across the human studies and moderate to high risk of bias across the non-human studies, and assigned a "moderate/low" quality rating to the body of evidence for human thyroid hormone alterations and a "moderate" quality rating to the body of evidence for non-human thyroid hormone alterations. CONCLUSION Based on this application of the Navigation Guide systematic review methodology, we concluded that there was "sufficient" non-human evidence and "inadequate" human evidence of an association between triclosan exposure and thyroxine concentrations, and consequently, triclosan is "possibly toxic" to reproductive and developmental health. Thyroid hormone disruption is an upstream indicator of developmental toxicity. Additional endpoints may be identified as being of equal or greater concern as other data are developed or evaluated.
Collapse
Affiliation(s)
- Paula I Johnson
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA.
| | - Erica Koustas
- ORISE Post-doctoral Fellowship, U.S. Environmental Protection Agency, Office of Policy, National Center for Environmental Economics, Washington, D.C., USA
| | - Hanna M Vesterinen
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Patrice Sutton
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Dylan S Atchley
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| | - Allegra N Kim
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Marlissa Campbell
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - James M Donald
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Saunak Sen
- University of California San Francisco, Department of Epidemiology and Biostatistics, San Francisco, CA, USA
| | - Lisa Bero
- University of California San Francisco, Department of Clinical Pharmacy, San Francisco, CA, USA
| | - Lauren Zeise
- Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, CA, USA
| | - Tracey J Woodruff
- University of California San Francisco, Program on Reproductive Health and the Environment, Oakland, CA, USA
| |
Collapse
|
9
|
Bellanger M, Demeneix B, Grandjean P, Zoeller RT, Trasande L. Neurobehavioral deficits, diseases, and associated costs of exposure to endocrine-disrupting chemicals in the European Union. J Clin Endocrinol Metab 2015; 100:1256-66. [PMID: 25742515 PMCID: PMC4399309 DOI: 10.1210/jc.2014-4323] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT Epidemiological studies and animal models demonstrate that endocrine-disrupting chemicals (EDCs) contribute to cognitive deficits and neurodevelopmental disabilities. OBJECTIVE The objective was to estimate neurodevelopmental disability and associated costs that can be reasonably attributed to EDC exposure in the European Union. DESIGN An expert panel applied a weight-of-evidence characterization adapted from the Intergovernmental Panel on Climate Change. Exposure-response relationships and reference levels were evaluated for relevant EDCs, and biomarker data were organized from peer-reviewed studies to represent European exposure and approximate burden of disease. Cost estimation as of 2010 utilized lifetime economic productivity estimates, lifetime cost estimates for autism spectrum disorder, and annual costs for attention-deficit hyperactivity disorder. Setting, Patients and Participants, and Intervention: Cost estimation was carried out from a societal perspective, ie, including direct costs (eg, treatment costs) and indirect costs such as productivity loss. RESULTS The panel identified a 70-100% probability that polybrominated diphenyl ether and organophosphate exposures contribute to IQ loss in the European population. Polybrominated diphenyl ether exposures were associated with 873,000 (sensitivity analysis, 148,000 to 2.02 million) lost IQ points and 3290 (sensitivity analysis, 3290 to 8080) cases of intellectual disability, at costs of €9.59 billion (sensitivity analysis, €1.58 billion to €22.4 billion). Organophosphate exposures were associated with 13.0 million (sensitivity analysis, 4.24 million to 17.1 million) lost IQ points and 59 300 (sensitivity analysis, 16,500 to 84,400) cases of intellectual disability, at costs of €146 billion (sensitivity analysis, €46.8 billion to €194 billion). Autism spectrum disorder causation by multiple EDCs was assigned a 20-39% probability, with 316 (sensitivity analysis, 126-631) attributable cases at a cost of €199 million (sensitivity analysis, €79.7 million to €399 million). Attention-deficit hyperactivity disorder causation by multiple EDCs was assigned a 20-69% probability, with 19 300 to 31 200 attributable cases at a cost of €1.21 billion to €2.86 billion. CONCLUSIONS EDC exposures in Europe contribute substantially to neurobehavioral deficits and disease, with a high probability of >€150 billion costs/year. These results emphasize the advantages of controlling EDC exposure.
Collapse
Affiliation(s)
- Martine Bellanger
- EHESP School of Public Health (M.B.), Paris, France; Unité Mixte de Recherche 7221 Centre National de la Recherche Scientifique/MNHN (B.D.), Muséum National d'Histoire Naturelle, 75005 Paris, France; Harvard School of Public Health (P.G.), Boston, Massachusetts 02115; University of Southern Denmark (P.G.), 5230 Odense, Denmark; University of Massachusetts (R.T.Z.), Amherst, Massachusetts 01003; New York University (NYU) School of Medicine (L.T.), New York, New York 10016; NYU Wagner School of Public Service (L.T.), New York, New York 10012; NYU Steinhardt School of Culture, Education, and Human Development (L.T.), Department of Nutrition, Food & Public Health, New York, New York 10003; and NYU Global Institute of Public Health (L.T.), New York, New York 10003
| | | | | | | | | |
Collapse
|
10
|
Abstract
Industrial chemical contaminants have a variable impact on the hypothalamic-pituitary-thyroid axis, this depending both on their class and on confounding factors. Today, mounting evidence is pointing to the role of environmental factors, and specifically EDCs, in the current distressing upsurge in the incidence of thyroid disease. The unease is warranted. These substances, which are nowadays rife in our environments (including in foodstuffs), have been shown to interfere with thyroid hormone action, biosynthesis, and metabolism, resulting in disruption of tissue homeostasis and/or thyroid function. Importantly, based on the concept of the "nonmonotonic dose-response curve", the relationship between dose and effect has often been found to be nonlinear. Thus, small doses can induce unpredictable, adverse effects, one case being polychlorinated biphenyls (PCBs), of which congener(s) may centrally inhibit the hypothalamic-pituitary-thyroid axis, or dissociate thyroid receptor and selectively affect thyroid hormone signaling and action. This means that PCBs can act as agonists or antagonists at the receptor level, underlining the complexity of the interaction. This review highlights the multifold activity of chemicals demonstrated to cause thyroid disruption. It also represents a call to action among clinicians to undertake systematic monitoring of thyroid function and registering of the classes of EDs and additionally urges broader scientific collaborations to clarify these chemicals' molecular mechanisms of action, substances whose prevalence in our environments is disrupting not only the thyroid but all life on earth.
Collapse
Affiliation(s)
- Leonidas H Duntas
- Unit of Endocrinology, Metabolism and Diabetes, Evgenidion Hospital, University of Athens, Papadiamantopoulou 20, 11520, Athens, Greece,
| |
Collapse
|
11
|
McPartland J, Dantzker HC, Portier CJ. Building a robust 21st century chemical testing program at the U.S. Environmental Protection Agency: recommendations for strengthening scientific engagement. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:1-5. [PMID: 25343778 PMCID: PMC4286280 DOI: 10.1289/ehp.1408601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/15/2014] [Indexed: 05/06/2023]
Abstract
BACKGROUND Biological pathway-based chemical testing approaches are central to the National Research Council's vision for 21st century toxicity testing. Approaches such as high-throughput in vitro screening offer the potential to evaluate thousands of chemicals faster and cheaper than ever before and to reduce testing on laboratory animals. Collaborative scientific engagement is important in addressing scientific issues arising in new federal chemical testing programs and for achieving stakeholder support of their use. OBJECTIVES We present two recommendations specifically focused on increasing scientific engagement in the U.S. Environmental Protection Agency (EPA) ToxCast™ initiative. Through these recommendations we seek to bolster the scientific foundation of federal chemical testing efforts such as ToxCast™ and the public health decisions that rely upon them. DISCUSSION Environmental Defense Fund works across disciplines and with diverse groups to improve the science underlying environmental health decisions. We propose that the U.S. EPA can strengthen the scientific foundation of its new chemical testing efforts and increase support for them in the scientific research community by a) expanding and diversifying scientific input into the development and application of new chemical testing methods through collaborative workshops, and b) seeking out mutually beneficial research partnerships. CONCLUSIONS Our recommendations provide concrete actions for the U.S. EPA to increase and diversify engagement with the scientific research community in its ToxCast™ initiative. We believe that such engagement will help ensure that new chemical testing data are scientifically robust and that the U.S. EPA gains the support and acceptance needed to sustain new testing efforts to protect public health.
Collapse
|
12
|
Passatore L, Rossetti S, Juwarkar AA, Massacci A. Phytoremediation and bioremediation of polychlorinated biphenyls (PCBs): state of knowledge and research perspectives. JOURNAL OF HAZARDOUS MATERIALS 2014; 278:189-202. [PMID: 24976127 DOI: 10.1016/j.jhazmat.2014.05.051] [Citation(s) in RCA: 151] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 05/20/2023]
Abstract
This review summarizes the bioremediation and phytoremediation technologies proposed so far to detoxify PCB-contaminated sites. A critical analysis about the potential and limits of the PCB pollution treatment strategies by means of plants, fungi and bacteria are elucidated, including the new insights emerged from recent studies on the rhizosphere potential and on the implementation of simultaneous aerobic and anaerobic biodegradation processes. The review describes the biodegradation and phytoremediation processes and elaborates on the environmental variables affecting contaminant degradation rates, summarizing the amendments recommended to enhance PCB degradation. Additionally, issues connected with PCB toxicology, actual field remediation strategies and economical evaluation are discussed.
Collapse
Affiliation(s)
- Laura Passatore
- Institute of Agro-environment and Forest Biology (IBAF), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy; Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Via S. Camillo de Lellis snc, 01100 Viterbo, Italy
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy
| | - Asha A Juwarkar
- Environmental Biotechnology Division, National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Angelo Massacci
- Institute of Agro-environment and Forest Biology (IBAF), National Research Council (CNR), Via Salaria Km 29.300, 00015 Monterotondo (Rome), Italy.
| |
Collapse
|
13
|
Lewis AJ, Galbally M, Gannon T, Symeonides C. Early life programming as a target for prevention of child and adolescent mental disorders. BMC Med 2014; 12:33. [PMID: 24559477 PMCID: PMC3932730 DOI: 10.1186/1741-7015-12-33] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/21/2014] [Indexed: 12/15/2022] Open
Abstract
This paper concerns future policy development and programs of research for the prevention of mental disorders based on research emerging from fetal and early life programming. The current review offers an overview of findings on pregnancy exposures such as maternal mental health, lifestyle factors, and potential teratogenic and neurotoxic exposures on child outcomes. Outcomes of interest are common child and adolescent mental disorders including hyperactive, behavioral and emotional disorders. This literature suggests that the preconception and perinatal periods offer important opportunities for the prevention of deleterious fetal exposures. As such, the perinatal period is a critical period where future mental health prevention efforts should be focused and prevention models developed. Interventions grounded in evidence-based recommendations for the perinatal period could take the form of public health, universal and more targeted interventions. If successful, such interventions are likely to have lifelong effects on (mental) health.
Collapse
Affiliation(s)
- Andrew James Lewis
- School of Psychology, Faculty of Health, Deakin University, Melbourne, Australia.
| | | | | | | |
Collapse
|
14
|
Gilbert ME, Hedge JM, Valentín-Blasini L, Blount BC, Kannan K, Tietge J, Zoeller RT, Crofton KM, Jarrett JM, Fisher JW. An Animal Model of Marginal Iodine Deficiency During Development: The Thyroid Axis and Neurodevelopmental Outcome*. Toxicol Sci 2013; 132:177-95. [DOI: 10.1093/toxsci/kfs335] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|