1
|
Meng R, Du X, Ge K, Wu C, Zhang Z, Liang X, Yang J, Zhang H. Does climate change increase the risk of marine toxins? Insights from changing seawater conditions. Arch Toxicol 2024; 98:2743-2762. [PMID: 38795135 DOI: 10.1007/s00204-024-03784-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 05/08/2024] [Indexed: 05/27/2024]
Abstract
Marine toxins produced by marine organisms threaten human health and impose a heavy public health burden on coastal countries. Lately, there has been an emergence of marine toxins in regions that were previously unaffected, and it is believed that climate change may be a significant factor. This paper systematically summarizes the impact of climate change on the risk of marine toxins in terms of changes in seawater conditions. From our findings, climate change can cause ocean warming, acidification, stratification, and sea-level rise. These climatic events can alter the surface temperature, salinity, pH, and nutrient conditions of seawater, which may promote the growth of various algae and bacteria, facilitating the production of marine toxins. On the other hand, climate change may expand the living ranges of marine organisms (such as algae, bacteria, and fish), thereby exacerbating the production and spread of marine toxins. In addition, the sources, distribution, and toxicity of ciguatoxin, tetrodotoxin, cyclic imines, and microcystin were described to improve public awareness of these emerging marine toxins. Looking ahead, developing interdisciplinary cooperation, strengthening monitoring of emerging marine toxins, and exploring more novel approaches are essential to better address the risks of marine toxins posed by climate change. Altogether, the interrelationships between climate, marine ecology, and marine toxins were analyzed in this study, providing a theoretical basis for preventing and managing future health risks from marine toxins.
Collapse
Affiliation(s)
- Ruiyang Meng
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Kangfeng Ge
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Chunrui Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Zongxin Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao Liang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Jun Yang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Zhou CY, Pan CG, Peng FJ, Zhu RG, Hu JJ, Yu K. Simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in various environmental and biota matrices. MARINE POLLUTION BULLETIN 2024; 203:116444. [PMID: 38705002 DOI: 10.1016/j.marpolbul.2024.116444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/07/2024]
Abstract
An efficient and sensitivity approach, which combines solid-phase extraction or ultrasonic extraction for pretreatment, followed by ultra-performance liquid chromatography-tandem mass spectrometry, has been established to simultaneously determine eight lipophilic phycotoxins and one hydrophilic phycotoxin in seawater, sediment and biota samples. The recoveries and matrix effects of target analytes were in the range of 61.6-117.3 %, 55.7-121.3 %, 57.5-139.9 % and 82.6 %-95.0 %, 85.8-106.8 %, 80.7 %-103.3 % in seawater, sediment, and biota samples, respectively. This established method revealed that seven, six and six phycotoxins were respectively detected in the Beibu Gulf, with concentrations ranging from 0.14 ng/L (okadaic acid, OA) to 26.83 ng/L (domoic acid, DA) in seawater, 0.04 ng/g (gymnodimine-A, GYM-A) to 2.75 ng/g (DA) in sediment and 0.01 ng/g (GYM-A) to 2.64 ng/g (domoic acid) in biota samples. These results suggest that the presented method is applicable for the simultaneous determination of trace marine lipophilic and hydrophilic phycotoxins in real samples.
Collapse
Affiliation(s)
- Chao-Yang Zhou
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Chang-Gui Pan
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| | - Feng-Jiao Peng
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Rong-Gui Zhu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun-Jie Hu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
3
|
Barreiro-Crespo L, Fernández-Tejedor M, Diogène J, Rambla-Alegre M. The Temporal Distribution of Cyclic Imines in Shellfish in the Bays of Fangar and Alfacs, Northwestern Mediterranean Region. Toxins (Basel) 2023; 16:10. [PMID: 38251227 PMCID: PMC10819045 DOI: 10.3390/toxins16010010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
Spirolides (SPXs), gymnodimines (GYMs), and pinnatoxins (PnTXs) have been detected in shellfish from the northwestern Mediterranean coast of Spain. Several samples of bivalves were collected from Fangar Bay and Alfacs Bay in Catalonia over a period of over 7 years (from 2015 to 2021). Shellfish samples were analyzed for cyclic imines (CIs) on an LC1200 Agilent and 3200 QTrap triple-quadrupole mass spectrometer. In shellfish, SPX-1 was detected in two cases (of 26.5 µg/kg and 34 µg/kg), and GYM-A was only detected in trace levels in thirteen samples. Pinnatoxin G (PnTX-G) was detected in 44.6% of the samples, with its concentrations ranging from 2 µg/kg to 38.4 µg/kg. Statistical analyses revealed that seawater temperature influenced the presence or absence of these toxins. PnTX-G showed an extremely significant presence/temperature relationship in both bays in comparison to SPX-1 and GYM-A. The prevalence of these toxins in different bivalve mollusks was evaluated. A seasonal pattern was observed, in which the maximum concentrations were found in the winter months for SPX-1 and GYM-A but in the summer months for PnTX-G. The obtained results indicate that it is unlikely that CIs in the studied area pose a potential health risk through the consumption of a seafood diet. However, further toxicological information about CIs is necessary in order to perform a conclusive risk assessment.
Collapse
Affiliation(s)
- Lourdes Barreiro-Crespo
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
- Department of Analytical Chemistry and Organic Chemistry, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43002 Tarragona, Spain
| | - Margarita Fernández-Tejedor
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Jorge Diogène
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| | - Maria Rambla-Alegre
- Institute of Agrifood Research and Technology (IRTA), Ctra. Poble Nou km.5, 45350 La Ràpita, Spain; (L.B.-C.); (M.F.-T.); (J.D.)
| |
Collapse
|
4
|
Ahuja V, Singh A, Paul D, Dasgupta D, Urajová P, Ghosh S, Singh R, Sahoo G, Ewe D, Saurav K. Recent Advances in the Detection of Food Toxins Using Mass Spectrometry. Chem Res Toxicol 2023; 36:1834-1863. [PMID: 38059476 PMCID: PMC10731662 DOI: 10.1021/acs.chemrestox.3c00241] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 12/08/2023]
Abstract
Edibles are the only source of nutrients and energy for humans. However, ingredients of edibles have undergone many physicochemical changes during preparation and storage. Aging, hydrolysis, oxidation, and rancidity are some of the major changes that not only change the native flavor, texture, and taste of food but also destroy the nutritive value and jeopardize public health. The major reasons for the production of harmful metabolites, chemicals, and toxins are poor processing, inappropriate storage, and microbial spoilage, which are lethal to consumers. In addition, the emergence of new pollutants has intensified the need for advanced and rapid food analysis techniques to detect such toxins. The issue with the detection of toxins in food samples is the nonvolatile nature and absence of detectable chromophores; hence, normal conventional techniques need additional derivatization. Mass spectrometry (MS) offers high sensitivity, selectivity, and capability to handle complex mixtures, making it an ideal analytical technique for the identification and quantification of food toxins. Recent technological advancements, such as high-resolution MS and tandem mass spectrometry (MS/MS), have significantly improved sensitivity, enabling the detection of food toxins at ultralow levels. Moreover, the emergence of ambient ionization techniques has facilitated rapid in situ analysis of samples with lower time and resources. Despite numerous advantages, the widespread adoption of MS in routine food safety monitoring faces certain challenges such as instrument cost, complexity, data analysis, and standardization of methods. Nevertheless, the continuous advancements in MS-technology and its integration with complementary techniques hold promising prospects for revolutionizing food safety monitoring. This review discusses the application of MS in detecting various food toxins including mycotoxins, marine biotoxins, and plant-derived toxins. It also explores the implementation of untargeted approaches, such as metabolomics and proteomics, for the discovery of novel and emerging food toxins, enhancing our understanding of potential hazards in the food supply chain.
Collapse
Affiliation(s)
- Vishal Ahuja
- University
Institute of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
- University
Centre for Research & Development, Chandigarh
University, Mohali, Punjab 140413, India
| | - Amanpreet Singh
- Department
of Chemistry, University Institute of Science, Chandigarh University, Mohali, Punjab 140413, India
| | - Debarati Paul
- Amity
Institute of Biotechnology, AUUP, Noida, Uttar Pradesh 201313, India
| | - Diptarka Dasgupta
- Material
Resource Efficiency Division, CSIR-Indian
Institute of Petroleum, Dehradun 248005, India
| | - Petra Urajová
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Sounak Ghosh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Roshani Singh
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Gobardhan Sahoo
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Daniela Ewe
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| | - Kumar Saurav
- Laboratory
of Algal Biotechnology-Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň 379
01, Czech Republic
| |
Collapse
|
5
|
Bouquet A, Thébault A, Arnich N, Foucault E, Caillard E, Gianaroli C, Bellamy E, Rolland JL, Laabir M, Abadie E. Modelling spatiotemporal distributions of Vulcanodinium rugosum and pinnatoxin G in French Mediterranean lagoons: Application to human health risk characterisation. HARMFUL ALGAE 2023; 129:102500. [PMID: 37951616 DOI: 10.1016/j.hal.2023.102500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Consumption of seafood contaminated by phycotoxins produced by harmful algae is a major issue in human public health. Harmful algal blooms are driven by a multitude of environmental variables; therefore predicting human dietary exposure to phycotoxins based on these variables is a promising approach in health risk management. In this study, we attempted to predict the human health risks associated with Vulcanodinium rugosum and its neurotoxins, pinnatoxins (PnTXs), which have been regularly found in Mediterranean lagoons since their identification in 2011. Based on environmental variables collected over 1 year in four Mediterranean lagoons, we developed linear mixed models to predict the presence of V. rugosum and PnTX G contamination of mussels. We found that the occurrence of V. rugosum was significantly associated with seawater temperature. PnTX G contamination of mussels was highest in summer but persisted throughout the year. This contamination was significantly associated with seawater temperature and the presence of V. rugosum with a time lag, but not with dissolved PnTX G in seawater. By using the contamination model predictions and their potential variability/uncertainty, we calculated the human acute dietary exposures throughout the year and predicted that 25% of people who consume mussels could exceed the provisional acute benchmark value during the warmest periods. We suggest specific recommendations to monitor V. rugosum and PnTX G.
Collapse
Affiliation(s)
- Aurélien Bouquet
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France.
| | - Anne Thébault
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Nathalie Arnich
- ANSES (French Agency for Food, Environmental and Occupational Health and Safety), Risk Assessment Directorate, Maisons-Alfort, France
| | - Elodie Foucault
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Caillard
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Camille Gianaroli
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Elise Bellamy
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Jean Luc Rolland
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France
| | - Mohamed Laabir
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, Place Eugène Bataillon, 34095 Montpellier, France
| | - Eric Abadie
- MARBEC, Univ Montpellier, CNRS, Ifremer, IRD, 87 Avenue Jean Monnet, 34200 Sète, France; IFREMER, Biodivenv, 79 Route de Pointe Fort, 97231 Martinique, France
| |
Collapse
|
6
|
Rossignoli AE, Ben-Gigirey B, Cid M, Mariño C, Martín H, Garrido S, Rodríguez F, Blanco J. Lipophilic Shellfish Poisoning Toxins in Marine Invertebrates from the Galician Coast. Toxins (Basel) 2023; 15:631. [PMID: 37999494 PMCID: PMC10675701 DOI: 10.3390/toxins15110631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/11/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
For the purpose of assessing human health exposure, it is necessary to characterize the toxins present in a given area and their potential impact on commercial species. The goal of this research study was: (1) to screen the prevalence and concentrations of lipophilic toxins in nine groups of marine invertebrates in the northwest Iberian Peninsula; (2) to evaluate the validity of wild mussels (Mytilus galloprovincialis) as sentinel organisms for the toxicity in non-bivalve invertebrates from the same area. The screening of multiple lipophilic toxins in 1150 samples has allowed reporting for the first time the presence of 13-desmethyl spirolide C, pinnatoxin G, okadaic acid, and dinophysistoxins 2 in a variety of non-traditional vectors. In general, these two emerging toxins showed the highest prevalence (12.5-75%) in most of the groups studied. Maximum levels for 13-desmethyl spirolide C and pinnatoxin G were found in the bivalves Magallana gigas (21 µg kg-1) and Tellina donacina (63 µg kg-1), respectively. However, mean concentrations for the bivalve group were shallow (2-6 µg kg-1). Okadaic acid and dinophysistoxin 2 with lower prevalence (1.6-44.4%) showed, on the contrary, very high concentration values in specific species of crustaceans and polychaetes (334 and 235 µg kg--1, respectively), to which special attention should be paid. Statistical data analyses showed that mussels could be considered good biological indicators for the toxicities of certain groups in a particular area, with correlations between 0.710 (for echinoderms) and 0.838 (for crustaceans). Polychaetes could be an exception, but further extensive surveys would be needed to draw definitive conclusions.
Collapse
Affiliation(s)
- Araceli E. Rossignoli
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
- Xefatura Territorial de Vigo, Consellería do Mar, Xunta de Galicia, Concepción Areal nº8, 4, 36201 Vigo, Spain
| | - Begoña Ben-Gigirey
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
| | - Mónica Cid
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
| | - Carmen Mariño
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| | - Helena Martín
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| | - Soledad Garrido
- Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain; (S.G.)
| | - Francisco Rodríguez
- European Union Reference Laboratory for Monitoring of Marine Biotoxins, Citexvi, Fonte das Abelleiras 4, 36310 Vigo, Spain; (B.B.-G.); (M.C.); (F.R.)
- Centro Nacional Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida a Radio Faro 50, 36390 Vigo, Spain; (S.G.)
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Xunta de Galicia, Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain (J.B.)
| |
Collapse
|
7
|
Seo N, Jo HY, Lee SG, Kim HJ, Oh MJ, Kim YS, Ro S, Jeon YJ, An HJ. An enhanced LC-MRM-MS platform for sensitive and simultaneous quantification of cyclic imines in shellfish. J Chromatogr B Analyt Technol Biomed Life Sci 2023; 1229:123883. [PMID: 37716343 DOI: 10.1016/j.jchromb.2023.123883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/23/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023]
Abstract
Cyclic imines (CIs) produced by microalgae species and accumulating in the food chain of marine organisms are novel biotoxins that do not belong to the classical group of marine biotoxins. In the past, CIs were found only in limited areas, but in recent years, rapid changes in marine ecosystems have led to widespread CIs, increasing exposure to toxic risks. Monitoring of CIs is therefore required, but still analytically challenging due to the presence of high levels of analogues and interference from other lipophilic substances. Herein, we developed the LC/MRM-MS-based quantitative platform that can selectively enrich for marine-derived CIs and monitor seven CIs simultaneously: pinnatoxin (PnTX E, PnTX F, PnTX G), gymnodimine (GYM A), and spirolide (13-desMe SPX C, 13,19-didesMe SPX C, 20-Me SPX G). In particular, the combination of chromatographic separation by the hydrophobic nature of intrinsic residues of CIs with monitoring of CI structure-specific product ions generated by CID-MS/MS significantly improves the selectivity and sensitivity for quantitative analysis. Indeed, three CIs corresponding to PnTX G, GYM A, and 13-desMe SPX C could be successfully determined at the level of part-per-trillion (ppt) in three species of shellfish collected around the Korean Peninsula. Our analysis revealed that the expression of CIs in the Korean Peninsula was more influenced by the season rather than the species. This analytical platform with high sensitivity can be applied not only to marine biology but also to various other fields requiring CI analysis. Key Contribution: A highly sensitive analytical method for the simultaneous quantitation of cyclic imines based on LC/MRM-MS has been developed.
Collapse
Affiliation(s)
- Nari Seo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Hee Young Jo
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Sang Gil Lee
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Hong Ju Kim
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Myung Jin Oh
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea
| | - Young Sang Kim
- Department of Marine Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea; Marine Science Institute, Jeju National University, Jeju Special Self-Governing Province, 63333, Republic of Korea
| | - Sunil Ro
- Department of Life Science, Merck Ltd. Korea, Seoul, 06178, Republic of Korea
| | - You Jin Jeon
- Department of Marine Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, Republic of Korea.
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea; Asia Glycomics Reference Site, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
8
|
Qiu J, Zhang J, Li A. Cytotoxicity and intestinal permeability of phycotoxins assessed by the human Caco-2 cell model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 249:114447. [PMID: 38321666 DOI: 10.1016/j.ecoenv.2022.114447] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 02/08/2024]
Abstract
Phycotoxins are a class of multiple natural metabolites produced by microalgae in marine and freshwater ecosystems that bioaccumulate in food webs, particularly in shellfish, having a great impact on human health. Phycotoxins are mainly leached and absorbed in the small intestine when human consumers accidentally ingest toxic aquatic products contaminated by them. To assess the intestinal uptake and damage of phycotoxins, a typical in vitro model was developed and widely applied using the human colorectal adenocarcinoma Caco-2 cell line. In this review, the application cases were summarized for multiple phycotoxins, including microcystins (MCs), cylindrospermopsins (CYNs), domoic acids (DAs), saxitoxins (STXs), palytoxins (PLTXs), okadaic acids (OAs), pectenotoxins (PTXs) and azaspiracids (AZAs). The results of the previous studies showed that each group of phycotoxins presented different cytotoxicity and mechanisms to Caco-2 cells, and significant discrepancies in the transport of phycotoxin across the Caco-2 cell monolayers. Therefore, this review describes the evaluation assays of the Caco-2 cell monolayer model, illustrates the principles of several primary cytotoxicity evaluation assays, and summarizes the cytotoxicity of each group of phycotoxins to Caco-2 cells line and their cellular transport, and finally proposes the development of multicellular intestinal models for future comprehensive studies on the toxicity and absorption of phycotoxins in the intestine. It will improve the understanding of Caco-2 cell monolayer models in the toxicology studies on phycotoxins and the potentially detrimental effects of microalgal toxins on the human intestine.
Collapse
Affiliation(s)
- Jiangbing Qiu
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China
| | - Jingrui Zhang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Aifeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ocean University of China, Ministry of Education, Qingdao 266100, China.
| |
Collapse
|
9
|
Blanco J, Arévalo F, Moroño Á, Correa J, Rossignoli AE, Lamas JP. Spirolides in Bivalve Mollusk of the Galician (NW Spain) Coast: Interspecific, Spatial, Temporal Variation and Presence of an Isomer of 13-Desmethyl Spirolide C. Toxins (Basel) 2022; 15:13. [PMID: 36668833 PMCID: PMC9861247 DOI: 10.3390/toxins15010013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/10/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Spirolides are cyclic imines whose risks to human health have not been sufficiently evaluated. To determine the possible impact of these compounds in Galicia (NW Spain), their presence and concentration in bivalve mollusk were studied from 2014 to 2021. Only 13-desmethyl spirolide C (13desmSPXC) and an isomer have been detected, and always at low concentrations. Mussel, Mytilus galloprovincialis, was the species which accumulated more spirolides, but the presence of its isomer was nearly restricted to cockle, Cerastoderma edule, and two clam species, Venerupis corrugata and Polititapes rhomboides. On average, the highest 13desmSPXC levels were found in autumn-winter, while those of its isomer were recorded in spring-summer. Both compounds showed decreasing trends during the study period. Geographically, the concentration tends to decrease from the southern to the north-eastern locations, but temporal variability predominates over spatial variability.
Collapse
Affiliation(s)
- Juan Blanco
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón, 36620 Vilanova de Arousa, Spain
| | - Fabiola Arévalo
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Ángeles Moroño
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Jorge Correa
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| | - Araceli E. Rossignoli
- Centro de Investigacións Mariñas, Xunta de Galicia, Pedras de Corón, 36620 Vilanova de Arousa, Spain
| | - Juan Pablo Lamas
- Instituto Tecnolóxico para o Control de Medio Mariño de Galicia (INTECMAR), Xunta de Galicia, Peirao de Vilaxoán s/n, 36611 Vilagarcía de Arousa, Spain
| |
Collapse
|
10
|
Otero P, Silva M. Emerging Marine Biotoxins in European Waters: Potential Risks and Analytical Challenges. Mar Drugs 2022; 20:199. [PMID: 35323498 PMCID: PMC8955394 DOI: 10.3390/md20030199] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/15/2022] [Accepted: 03/05/2022] [Indexed: 01/21/2023] Open
Abstract
Harmful algal blooms pose a challenge regarding food safety due to their erratic nature and forming circumstances which are yet to be disclosed. The best strategy to protect human consumers is through legislation and monitoring strategies. Global warming and anthropological intervention aided the migration and establishment of emerging toxin producers into Europe's temperate waters, creating a new threat to human public health. The lack of information, standards, and reference materials delay effective solutions, being a matter of urgent resolution. In this work, the recent findings of the presence of emerging azaspiracids, spirolildes, pinnatoxins, gymnodimines, palitoxins, ciguatoxins, brevetoxins, and tetrodotoxins on European Coasts are addressed. The information concerning emerging toxins such as new matrices, locations, and toxicity assays is paramount to set the risk assessment guidelines, regulatory levels, and analytical methodology that would protect the consumers.
Collapse
Affiliation(s)
- Paz Otero
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Veterinary Science, Universidade de Santiago de Compostela, 27002 Lugo, Spain
| | - Marisa Silva
- MARE—Marine and Environmental Sciences Centre, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
- Department of Plant Biology, Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
11
|
Rossignoli AE, Mariño C, Martín H, Blanco J. Development of a Fast Liquid Chromatography Coupled to Mass Spectrometry Method (LC-MS/MS) to Determine Fourteen Lipophilic Shellfish Toxins Based on Fused-Core Technology: In-House Validation. Mar Drugs 2021; 19:md19110603. [PMID: 34822474 PMCID: PMC8622501 DOI: 10.3390/md19110603] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/28/2022] Open
Abstract
Prevalence and incidence of the marine toxins (paralytic, amnesic, and lipophilic toxins) including the so-called emerging toxins (these are, gymnodimines, pinnatoxins, or spirolides among others) have increased in recent years all over the world. Climate change, which is affecting the distribution of their producing phytoplankton species, is probably one of the main causes. Early detection of the toxins present in a particular area, and linking the toxins to their causative phytoplankton species are key tools to minimize the risk they pose for human consumers. The development of both types of studies requires fast and highly sensitive analytical methods. In the present work, we have developed a highly sensitive liquid chromatography-mass spectrometry methodology (LC-MS/MS), using a column with fused-core particle technology, for the determination of fourteen lipophilic toxins in a single run of 3.6 min. The performance of the method was evaluated for specificity, linearity, precision (repeatability and reproducibility) and accuracy by analysing spiked and naturally contaminated samples. The in-house validation was successful, and the limit of detection (LOD) and quantification (LOQ) for all the toxins were far below their regulatory action limits. The method is suitable to be considered in monitoring systems of bivalves for food control.
Collapse
|
12
|
Servent D, Malgorn C, Bernes M, Gil S, Simasotchi C, Hérard AS, Delzescaux T, Thai R, Barbe P, Keck M, Beau F, Zakarian A, Dive V, Molgó J. First evidence that emerging pinnatoxin-G, a contaminant of shellfish, reaches the brain and crosses the placental barrier. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148125. [PMID: 34380275 DOI: 10.1016/j.scitotenv.2021.148125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/27/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Massive proliferation of some toxic marine dinoflagellates is responsible for the occurrence of harmful algal blooms and the contamination of fish and shellfish worldwide. Pinnatoxins (PnTx) (A-H) comprise an emerging phycotoxin family belonging to the cyclic imine toxin group. Interest has been focused on these lipophilic, fast-acting and highly potent toxins because they are widely found in contaminated shellfish, and can represent a risk for seafood consumers. PnTx display a potent antagonist effect on nicotinic acetylcholine receptors (nAChR), and in this study we assessed in vivo the ability of PnTx-G to cross physiological barriers to reach its molecular target. Radiolabeled [3H]-PnTx-G synthesized with good radiochemical purity and yield retained the high affinity of the natural toxin. Oral gavage or intravenous administration to adult rats and digital autoradiographic analyses revealed the biodistribution and toxicokinetics of [3H]-PnTx-G, which is rapidly cleared from blood, and accumulates in the liver and small intestine. The labeling of peripheral and brain adult/embryo rat tissues highlights its ability to cross the intestinal, blood-brain and placental barriers. High-resolution 3D-imaging and in vitro competition studies on rat embryo sections revealed the specificity of [3H]-PnTx-G binding and its selectivity for muscle and neuronal nAChR subtypes (such as α7 subtype). The use of a human perfused cotyledon model and mass spectrometry analyses disclosed that PnTx-G crosses the human placental barrier. The increasing worldwide occurrence of both the dinoflagellate Vulcanodinium rugosum and PnTx-contaminated shellfish, due to climate warming, raises concerns about the potential adverse impact that exposure to pinnatoxins may have for human health.
Collapse
Affiliation(s)
- Denis Servent
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| | - Carole Malgorn
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mylène Bernes
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Sophie Gil
- Université de Paris, UMR-S1139, Faculté de Pharmacie de Paris, France
| | | | - Anne-Sophie Hérard
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Thierry Delzescaux
- Université Paris-Saclay, UMR9199, CNRS, CEA, MIRCen, Fontenay-aux-Roses, France
| | - Robert Thai
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Peggy Barbe
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Mathilde Keck
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Fabrice Beau
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Armen Zakarian
- University of California, Santa Barbara, Department of Chemistry and Biochemistry, CA 93106-9510, USA
| | - Vincent Dive
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France
| | - Jordi Molgó
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, ERL CNRS 9004, F-91191 Gif sur Yvette, France.
| |
Collapse
|
13
|
Lamas JP, Arévalo F, Moroño Á, Correa J, Rossignoli AE, Blanco J. Gymnodimine A in mollusks from the north Atlantic Coast of Spain: Prevalence, concentration, and relationship with spirolides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 279:116919. [PMID: 33744630 DOI: 10.1016/j.envpol.2021.116919] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/28/2021] [Accepted: 03/06/2021] [Indexed: 06/12/2023]
Abstract
Gymnodimine A has been found in mollusks obtained along the whole northern coast of Spain from April 2017 to December 2019. This is the first time that this toxin is detected in mollusks from the Atlantic coast of Europe. The prevalence of the toxin was, in general, low, being detected on average in approximately 6% of the obtained samples (122 out of 1900). The concentrations recorded were also, in general, low, with a median of 1.3 μg kg-1, and a maximum value of 23.93 μg kg-1. The maxima of prevalence and concentration were not geographically coincident, taking place the first at the easternmost part of the sampled area and the second at the westernmost part. In most cases (>94%), gymnodimine A and 13-desmethyl spirolide C were concurrently detected, suggesting that Alexandrium ostenfeldii could be the responsible producer species. The existence of cases in which gymnodimine A was detected alone suggests also that a Karenia species could also be involved. The geographical heterogeneity of the distribution suggests that blooms of the producer species are mostly local. Not all bivalves are equally affected, clams being less affected than mussels, oysters, and razor clams. Due to their relatively low toxicity, and their low prevalence and concentration, it seems that these toxins do not pose an important risk for the mollusk consumers in the area.
Collapse
Affiliation(s)
- J Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain
| | - Fabiola Arévalo
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Ángeles Moroño
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Jorge Correa
- Intecmar (Instituto Tecnolóxico para o Control Do Medio Mariño de Galicia), Peirao de Vilaxoán S/n, Vilagarcía de Arousa, 36611, Pontevedra, Spain.
| | - Araceli E Rossignoli
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón S/n, 36620, Vilanova de Arousa, Spain.
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón S/n, 36620, Vilanova de Arousa, Spain.
| |
Collapse
|
14
|
Mukherjee M, Sistla S, Veerabhadraiah SR, Bettadaiah BK, Thakur MS, Bhatt P. DNA aptamer selection and detection of marine biotoxin 20 Methyl Spirolide G. Food Chem 2021; 363:130332. [PMID: 34144421 DOI: 10.1016/j.foodchem.2021.130332] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 05/13/2021] [Accepted: 06/07/2021] [Indexed: 01/19/2023]
Abstract
This study reports the selection of DNA aptamer for the detection of 20 Methyl Spirolide G (SPXG). After 10 rounds of selection, theenriched pool of aptamers specific to SPXGwas cloned, sequenced and clustered into seven families based onsimilarity. Three sequences SPX1, SPX2 and SPX7, each belonging to different clades were further evaluated for their binding affinity. Surface plasmonresonancestudies determined the highest affinity KDof 0.0345x10-8 M for aptamer SPX7. A label-free microscale thermophoresis-based aptasensing using SPX7 with highest affinity, indicated a linear detection range from 1.9 to 125000 pg/mL (LOD = 0.39 pg/mL; LOQ = 1.17 pg/mL). Spiking studies in simulated contaminated samples of mussel and scallop indicated recoveries in the range of 86 to 108%. Results of this study indicate the successful development of an aptamer for detection of SPXG at picogram levels. It also opens up avenues to develop other sensing platforms for detection of SPXG using the reported aptamer.
Collapse
Affiliation(s)
- Monali Mukherjee
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Srinivas Sistla
- Institute for Structural Biology, Drug Discovery and Development, School of Pharmacy - Dept of Medicinal Chemistry, Virginia Commonwealth University, Richmond, VA 23298, United States
| | - Shivakumar R Veerabhadraiah
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - B K Bettadaiah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India; Spices and Flavour Sciences Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India
| | - M S Thakur
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India
| | - Praveena Bhatt
- Microbiology & Fermentation Technology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, UP-201002, India.
| |
Collapse
|
15
|
Moreira-González AR, Comas-González A, Valle-Pombrol A, Seisdedo-Losa M, Hernández-Leyva O, Fernandes LF, Chomérat N, Bilien G, Hervé F, Rovillon GA, Hess P, Alonso-Hernández CM, Mafra LL. Summer bloom of Vulcanodinium rugosum in Cienfuegos Bay (Cuba) associated to dermatitis in swimmers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143782. [PMID: 33229082 DOI: 10.1016/j.scitotenv.2020.143782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/22/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The marine dinoflagellate Vulcanodinium rugosum produces powerful paralyzing and cytotoxic compounds named pinnatoxins (PnTX) and portimines. Even though, no related human intoxication episodes following direct exposure in seawater or the ingestion of contaminated seafood have been documented so far. This study aimed at investigating a dinoflagellate bloom linked to acute dermatitis cases in two recreational beaches in Cienfuegos Bay, Cuba. We used epidemiological and clinical data from 60 dermatitis cases consisting of individuals in close contact with the bloom. Seawater physical-chemical properties were described, and the microorganism causing the bloom was identified by means of light and scanning electron microscopy. Morphological identification was confirmed genetically by sequencing the internal transcribed spacers ITS1 and ITS2, and the 5.8S rDNA region. Toxic compounds were identified from a bloom extract using liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS), and their concentrations were estimated based on low-resolution tandem mass spectrometry (LC-MS/MS). Sixty people who had prolonged contact with the dinoflagellate bloom suffered acute dermal irritation. Most patients (79.2%) were children and had to be treated with antibiotics; some required >5-day hospitalization. Combined morphological and genetic characters indicated V. rugosum as the causative agent of the bloom. rDNA sequences of the V. rugosum genotype found in the bloom aligned with others from Asia, including material found in the ballast tank of a ship in Florida. The predominant toxins in the bloom were portimine, PnTX-F and PnTX-E, similar to strains originating from the Pacific Ocean. This bloom was associated with unusual weather conditions such as frequent and prolonged droughts. Our findings indicate a close link between the V. rugosum bloom and a dermatitis outbreak among swimmers in Cienfuegos Bay. Phylogenetic evidence suggests a recent introduction of V. rugosum from the Pacific Ocean into Caribbean waters, possibly via ballast water.
Collapse
Affiliation(s)
- Angel R Moreira-González
- Centro de Estudios Ambientales de Cienfuegos (CEAC), AP. 5, Ciudad Nuclear, CP 59350, Cienfuegos, Cuba; Centro de Estudos do Mar, Universidade Federal do Paraná, P.O. Box 61, Av. Beira Mar, s/n, Pontal do Paraná, Paraná 83255-976, Brazil.
| | - Augusto Comas-González
- Centro de Estudios Ambientales de Cienfuegos (CEAC), AP. 5, Ciudad Nuclear, CP 59350, Cienfuegos, Cuba.
| | - Aimee Valle-Pombrol
- Centro de Estudios Ambientales de Cienfuegos (CEAC), AP. 5, Ciudad Nuclear, CP 59350, Cienfuegos, Cuba.
| | - Mabel Seisdedo-Losa
- Centro de Estudios Ambientales de Cienfuegos (CEAC), AP. 5, Ciudad Nuclear, CP 59350, Cienfuegos, Cuba.
| | - Olidia Hernández-Leyva
- Centro Provincial de Higiene, Epidemiología y Microbiología de Cienfuegos, 13 Calzada de Máximo Gómez, Cienfuegos 55100, Cuba.
| | - Luciano F Fernandes
- Departamento de Botânica, Universidade Federal do Paraná, Centro Politécnico, R. Elétrica, 540, Curitiba, Paraná 82590-300, Brazil.
| | - Nicolas Chomérat
- IFREMER, Laboratory of Environment and Resources Western Brittany, Coastal Research Unit, Quai de la Croix, 29900 Concarneau Cedex, France.
| | - Gwenaël Bilien
- IFREMER, Laboratory of Environment and Resources Western Brittany, Coastal Research Unit, Quai de la Croix, 29900 Concarneau Cedex, France.
| | - Fabienne Hervé
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Île d'Yeu, 44311 Nantes Cedex 03, France.
| | | | - Philipp Hess
- IFREMER, DYNECO, Laboratoire Phycotoxines, Rue de l'Île d'Yeu, 44311 Nantes Cedex 03, France.
| | - Carlos M Alonso-Hernández
- Centro de Estudios Ambientales de Cienfuegos (CEAC), AP. 5, Ciudad Nuclear, CP 59350, Cienfuegos, Cuba.
| | - Luiz L Mafra
- Centro de Estudos do Mar, Universidade Federal do Paraná, P.O. Box 61, Av. Beira Mar, s/n, Pontal do Paraná, Paraná 83255-976, Brazil.
| |
Collapse
|
16
|
Hassoun AER, Ujević I, Mahfouz C, Fakhri M, Roje-Busatto R, Jemaa S, Nazlić N. Occurrence of domoic acid and cyclic imines in marine biota from Lebanon-Eastern Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142542. [PMID: 33035983 DOI: 10.1016/j.scitotenv.2020.142542] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/07/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Marine biotoxins are naturally existing chemicals produced by toxic algae and can accumulate in marine biota. When consumed with seafood, these phycotoxins can cause human intoxication with symptoms varying from barely-noticed illness to death depending on the type of toxin and its concentration. Recently, the occurrence of marine biotoxins has been given special attention in the Mediterranean as it increased in frequency and severity due to anthropogenic pressures and climate change. Up to our knowledge, no previous study reported the presence of lipophilic toxins (LTs) and cyclic imines (CIs) in marine biota in Lebanon. Hence, this study reports LTs and CIs in marine organisms: one gastropod (Phorcus turbinatus), two bivalves (Spondylus spinosus and Patella rustica complex) and one fish species (Siganus rivulatus), collected from various Lebanese coastal areas. The results show values below the limit of detection (LOD) for okadaic acid, dinophysistoxin-1 and 2, pectenotoxin-1 and 2, yessotoxins, azaspiracids and saxitoxins. The spiny oyster (S. spinosus) showed the highest levels of domoic acid (DA; 3.88 mg kg-1), gymnodimine (GYM-B) and spirolide (SPX) (102.9 and 15.07 μg kg-1, respectively) in congruence with the occurrence of high abundance of Pseudo-nitzchia spp., Gymnodinium spp., and Alexandrium spp. DA levels were below the European Union (EU) regulatory limit, but higher than the Lowest Observed Adverse Effect Level (0.9 μg g-1) for neurotoxicity in humans and lower than the Acute Reference Dose (30 μg kg-1 bw) both set by the European Food Safety Authority (EFSA, 2009). Based on these findings, it is unlikely that a health risk exists due to the exposure to these toxins through seafood consumption in Lebanon. Despite this fact, the chronic toxicity of DA, GYMs and SPXs remains unclear and the effect of the repetitive consumption of contaminated seafood needs to be more investigated.
Collapse
Affiliation(s)
- Abed El Rahman Hassoun
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon.
| | - Ivana Ujević
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Céline Mahfouz
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Milad Fakhri
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Romana Roje-Busatto
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| | - Sharif Jemaa
- National Council for Scientific Research, National Center for Marine Sciences, P.O. Box, 534, Batroun, Lebanon
| | - Nikša Nazlić
- Laboratory of Plankton and Shellfish Toxicity, Institute of Oceanography and Fisheries, Šetalište Ivana Meštrovića 63, 21000 Split, Croatia
| |
Collapse
|
17
|
Kvrgić K, Lešić T, Aysal AI, Džafić N, Pleadin J. Cyclic imines in shellfish and ascidians in the northern Adriatic Sea. FOOD ADDITIVES & CONTAMINANTS PART B-SURVEILLANCE 2020; 14:12-22. [PMID: 33280535 DOI: 10.1080/19393210.2020.1851778] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The aim of this study was to determine the occurrence of the most representative cyclic imines (CIs) gymnodimine (GYM), pinnatoxin G (PnTX-G), and 13-desmethyl SPX C (SPX1) in Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) (n = 416), European oysters (Ostrea edulis Linnaeus, 1758) (n = 104), Queen scallops (Aequipecten opercularis Linnaeus, 1758) (n = 52) and edible ascidians of the Microcosmus spp. (n = 104) originating from nine harvesting and breeding areas in the northern part of the Adriatic Sea using ultra-performance liquid chromatography-tandem mass spectrometry (LC-MS/MS). All CI concentrations were far below the guidance level of 400 μg SPXs/kg proposed by the EU Reference Laboratory for Marine Toxins. In contrast to Queen scallops and ascidians, in Mediterranean mussels and European oysters CIs were found throughout the year. Our data reveal the differences between species predisposed for CIs accumulation, as well as seasonal and locational variations in CIs occurrence.
Collapse
Affiliation(s)
- Kristina Kvrgić
- Croatian Veterinary Institute, Veterinary Center Rijeka, Laboratory for Analytical Chemistry and Residues , Rijeka, Croatia
| | - Tina Lešić
- Department for Veterinary Public Health, Croatian Veterinary Institute Zagreb, Laboratory for Analytical Chemistry , Zagreb, Croatia
| | - Ayhan Ibrahim Aysal
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Gazi University , Ankara, Turkey
| | - Natalija Džafić
- Croatian Veterinary Institute, Veterinary Center Rijeka, Laboratory for Analytical Chemistry and Residues , Rijeka, Croatia
| | - Jelka Pleadin
- Department for Veterinary Public Health, Croatian Veterinary Institute Zagreb, Laboratory for Analytical Chemistry , Zagreb, Croatia
| |
Collapse
|
18
|
Varriale F, Tartaglione L, Cinti S, Milandri A, Dall'Ara S, Calfapietra A, Dell'Aversano C. Development of a data dependent acquisition-based approach for the identification of unknown fast-acting toxins and their ester metabolites. Talanta 2020; 224:121842. [PMID: 33379060 DOI: 10.1016/j.talanta.2020.121842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 10/27/2020] [Accepted: 10/29/2020] [Indexed: 11/30/2022]
Abstract
Phycotoxins in the marine food-web represent a serious threat to human health. Consumption of contaminated shellfish and/or finfish poses risk to consumer safety: several cases of toxins-related seafood poisoning have been recorded so far worldwide. Cyclic imines are emerging lipophilic toxins, which have been detected in shellfish from different European countries. Currently, they are not regulated due to the lack of toxicological comprehensive data and hence the European Food Safety Authority has required more scientific efforts before establishing a maximum permitted level in seafood. In this work, a novel data dependent liquid chromatography - high resolution mass spectrometry (LC-HRMS) approach has been successfully applied and combined with targeted studies for an in-depth investigation of the metabolic profile of shellfish samples. The proposed analytical methodology has allowed: i) to discover a plethora of unknown fatty acid esters of gymnodimines and ii) to conceive a brand new MS-based strategy, termed as backward analysis, for discovery and identification of new analogues. In particular, the implemented analytical workflow has broadened the structural diversity of cyclic imine family through the inclusion of five new congeners, namely gymnodimine -F, -G, -H, -I and -J. In addition, gymnodimine A (376.5 μg/kg), 13-desmethyl spirolide C (11.0-29.0 μg/kg) and pinnatoxin G (3.1-7.7 μg/kg) have been detected in shellfish from different sites of the Mediterranean basin (Tunisia and Italy) and the Atlantic coast of Spain, with the confirmation of the first finding of pinnatoxin G in mussels harvested in Sardinia (Tyrrhenian Sea, Italy).
Collapse
Affiliation(s)
- Fabio Varriale
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy
| | - Luciana Tartaglione
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa, Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy.
| | - Stefano Cinti
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy
| | - Anna Milandri
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Sonia Dall'Ara
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Anna Calfapietra
- Fondazione Centro Ricerche Marine, National Reference Laboratory for Marine Biotoxins, V.le A. Vespucci 2, 47042, Cesenatico (FC), Italy
| | - Carmela Dell'Aversano
- University of Napoli Federico II, Department of Pharmacy, School of Medicine and Surgery, Via D. Montesano 49, 80131, Napoli, Italy; CoNISMa, Italian Interuniversity Consortium on Marine Sciences, Piazzale Flaminio 9, 00196, Rome, Italy
| |
Collapse
|
19
|
Otero P, Vale C, Boente-Juncal A, Costas C, Louzao MC, Botana LM. Detection of Cyclic Imine Toxins in Dietary Supplements of Green Lipped Mussels ( Perna canaliculus) and in Shellfish Mytilus chilensis. Toxins (Basel) 2020; 12:E613. [PMID: 32987858 PMCID: PMC7601114 DOI: 10.3390/toxins12100613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/18/2020] [Accepted: 09/21/2020] [Indexed: 12/29/2022] Open
Abstract
Seafood represents a significant part of the human staple diet. In the recent years, the identification of emerging lipophilic marine toxins has increased, leading to the potential for consumers to be intoxicated by these toxins. In the present work, we investigate the presence of lipophilic marine toxins (both regulated and emerging) in commercial seafood products from non-European locations, including mussels Mytilus chilensis from Chile, clams Tawerea gayi and Metetrix lyrate from the Southeast Pacific and Vietnam, and food supplements based on mussels formulations of Perna canaliculus from New Zealand. All these products were purchased from European Union markets and they were analyzed by UPLC-MS/MS. Results showed the presence of the emerging pinnatoxin-G in mussels Mytilus chilensis at levels up to 5.2 µg/kg and azaspiracid-2 and pectenotoxin-2 in clams Tawera gayi up to 4.33 µg/kg and 10.88 µg/kg, respectively. This study confirms the presence of pinnatoxins in Chile, one of the major mussel producers worldwide. Chromatograms showed the presence of 13-desmethyl spirolide C in dietary supplements in the range of 33.2-97.9 µg/kg after an extraction with water and methanol from 0.39 g of the green lipped mussels powder. As far as we know, this constitutes the first time that an emerging cyclic imine toxin in dietary supplements is reported. Identifying new matrix, locations, and understanding emerging toxin distribution area are important for preventing the risks of spreading and contamination linked to these compounds.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain; (C.V.); (A.B.-J.); (C.C.); (M.C.L.); (L.M.B.)
| | | | | | | | | | | |
Collapse
|
20
|
Aráoz R, Barnes P, Séchet V, Delepierre M, Zinn-Justin S, Molgó J, Zakarian A, Hess P, Servent D. Cyclic imine toxins survey in coastal european shellfish samples: Bioaccumulation and mode of action of 28-O-palmitoyl ester of pinnatoxin-G. first report of portimine-A bioaccumulation. HARMFUL ALGAE 2020; 98:101887. [PMID: 33129465 PMCID: PMC7657664 DOI: 10.1016/j.hal.2020.101887] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 07/24/2020] [Indexed: 05/12/2023]
Abstract
Cyclic imine toxins exhibit fast acting neurotoxicity and lethality by respiratory arrest in mice explained by their potent antagonistic activity against muscular nicotinic acetylcholine receptors. We performed a survey of gymnodimine-A, 13-desmethyl spirolide-C, 13,19-didesmethyl spirolide-C, 20-methyl spirolide-G, pinnatoxin-A, pinnatoxin-G, portimine-A and 28-O-palmitoyl ester of pinnatoxin-G in 36 shellfish samples collected in coastal areas of 8 European countries using a microplate receptor binding assay and UPLC-MS/MS for toxin identification and quantification. The major toxins found in these samples were pinnatoxin-G, 20-methyl spirolide-G, 13-desmethyl spirolide-C, gymnodimine-A and portimine-A. Traces of 13,19-didesmethyl spirolide-C, pinnatoxin-A and 28-O-palmitoyl ester of pinnatoxin-G were also detected. The rapid death of mice was correlated with higher pinnatoxin-G concentrations in mussel digestive gland extracts injected intraperitoneally. Our survey included nontoxic control samples that were found to contain moderate to trace amounts of several cyclic imine toxins. Shellfish may bioaccumulate not only cyclic imine toxins but also a large number of acyl derivatives as a product of metabolic transformation of these neurotoxins. This is the first report in which portimine-A and 28-O-palmitoyl ester of pinnatoxin-G were detected in shellfish extracts from digestive glands of mussels collected in Ingril lagoon. The bioaccumulation of portimine-A is particularly of concern because it is cytotoxic and is able to induce apotosis. The mode of action of 28-O-palmitoyl ester of pinnatoxin-G was studied by receptor binding-assay and by two-electrode voltage clamp electrophysiology. The antagonistic behavior of the acylated pinnatoxin-G towards nicotinic acetylcholine receptor of muscle type is shown here for the first time. Since cyclic imine toxins are not regulated further monitoring of these emerging toxins is needed to improve evidence gathering of their occurrence in shellfish commercialized for human consumption in Europe given their potent antagonism against muscle and neuronal nicotinic acetylcholine receptors.
Collapse
Affiliation(s)
- Rómulo Aráoz
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France.
| | - Paul Barnes
- Agri-food and Biosciences Institute, Veterinary Science Division, Stoney Road, Belfast BT4 3SD, Northern Ireland, United Kingdom
| | - Véronique Séchet
- Ifremer, Centre Atlantique, Laboratoire Phycotoxines, 44311 Nantes Cedex, France
| | - Muriel Delepierre
- Institut Pasteur, Department of Structural Biology and Chemistry CNRS, UMR3528, Paris France
| | - Sophie Zinn-Justin
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Univ Paris-Sud, Université Paris-Saclay, Gif- sur -Yvette Cedex, France
| | - Jordi Molgó
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France
| | - Armen Zakarian
- University California Santa Barbara, Dept Chem & Biochem, Santa Barbara, CA 93106 United States
| | - Philipp Hess
- Ifremer, Centre Atlantique, Laboratoire Phycotoxines, 44311 Nantes Cedex, France
| | - Denis Servent
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SIMoS, 91191 Gif-sur-Yvette, France; CNRS, ERL9004, 91191, Gif-sur-Yvette, France
| |
Collapse
|
21
|
Multi-Toxin Quantitative Analysis of Paralytic Shellfish Toxins and Tetrodotoxins in Bivalve Mollusks with Ultra-Performance Hydrophilic Interaction LC-MS/MS-An In-House Validation Study. Toxins (Basel) 2020; 12:toxins12070452. [PMID: 32668707 PMCID: PMC7404990 DOI: 10.3390/toxins12070452] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 11/17/2022] Open
Abstract
Ultra-performance hydrophilic interaction liquid chromatography tandem mass spectrometry system (UP-HILIC–MS/MS) was used in multi-toxin analysis of paralytic shellfish toxins (PSTs) and tetrodotoxins (TTXs) in sample matrices from bivalve molluscan species commercially produced for human consumption in Sweden. The method validation includes 17 toxins of which GTX6 and two TTX analogues, TTX and 4,9-anhydroTTX, were previously not analyzed together with hydrophilic PSTs. 11-deoxyTTX was monitored qualitatively with a non-certified reference standard. The performance of the method was evaluated for selectivity, repeatability, and linearity by analyzing spiked samples which generated linear calibration curves across the concentration ranges used (R2 > 0.99). The in-house reproducibility (RSD) was satisfactory including the LOD and LOQ for both PST and TTX toxins being far below their regulatory action limits. The major advantage of the method is that it allows direct confirmation of the toxin identity and specific toxin quantification using a derivatization-free approach. Unlike the PST-chemical methods used in routine regulatory monitoring until now for food control, the UP-HILIC-MS/MS approach enables the calibration set-up for each of the toxin analogs separately, thereby providing the essential flexibility and specificity in analysis of this challenging group of toxins. The method is suitable to implement in food monitoring for PSTs and TTXs in bivalves, and can serve as a fast and cost-efficient screening method. However, positive samples would, for regulatory reasons still need to be confirmed using the AOAC official method (2005.06).
Collapse
|
22
|
Arnich N, Abadie E, Delcourt N, Fessard V, Fremy JM, Hort V, Lagrange E, Maignien T, Molgó J, Peyrat MB, Vernoux JP, Mattei C. Health risk assessment related to pinnatoxins in French shellfish. Toxicon 2020; 180:1-10. [DOI: 10.1016/j.toxicon.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 03/16/2020] [Accepted: 03/25/2020] [Indexed: 02/02/2023]
|
23
|
Genome Sequencing and Analysis of Bacillus pumilus ICVB403 Isolated from Acartia tonsa Copepod Eggs Revealed Surfactin and Bacteriocin Production: Insights on Anti-Staphylococcus Activity. Probiotics Antimicrob Proteins 2020; 11:990-998. [PMID: 30229513 DOI: 10.1007/s12602-018-9461-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Here we show that Bacillus pumilus ICVB403 recently isolated from copepod eggs is able to produce, after 48-72 h of growth in Landy medium, extracellular inhibitory compounds, which are active against Staphylococcus aureus ATCC 25923, methicillin-resistant S. aureus (MRSA) ATCC 43300, MRSA-S1, Staphylococcus epidermidis 11EMB, Staphylococcus warneri 27EMB, and Staphylococcus hominis 13EMB. Moreover, these extracellular inhibitory compound(s) were able to potentiate erythromycin against the aforementioned staphylococci. The minimum inhibitory concentration (MIC) of erythromycin was reduced from 32 μg/mL to 8 μg/mL for MRSA ATCC 43300 and MRSA SA-1 strains, and from 32-64 μg/mL to 4 μg/mL for S. epidermidis 11EMB and S. hominis 13EMB strains.The genome sequencing and analysis of B. pumilus ICVB403 unveiled 3.666.195 nucleotides contained in 22 contigs with a G + C ratio of 42.0%, 3.826 coding sequences, and 73 RNAs. In silico analysis guided identification of two putative genes coding for synthesis of surfactin A, a lipopeptide with 7 amino acids, and for a circular bacteriocin belonging to the circularin A/uberolysin family, respectively.
Collapse
|
24
|
Sosa S, Pelin M, Cavion F, Hervé F, Hess P, Tubaro A. Acute Oral Toxicity of Pinnatoxin G in Mice. Toxins (Basel) 2020; 12:toxins12020087. [PMID: 32012834 PMCID: PMC7076786 DOI: 10.3390/toxins12020087] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/21/2020] [Accepted: 01/23/2020] [Indexed: 01/18/2023] Open
Abstract
Pinnatoxin G (PnTx-G) is a marine cyclic imine toxin produced by the dinoflagellate Vulcanodinium rugosum, frequently detected in edible shellfish from Ingril Lagoon (France). As other pinnatoxins, to date, no human poisonings ascribed to consumption of PnTx-G contaminated seafood have been reported, despite its potent antagonism at nicotinic acetylcholine receptors and its high and fast-acting toxicity after intraperitoneal or oral administration in mice. The hazard characterization of PnTx-G by oral exposure is limited to a single acute toxicity study recording lethality and clinical signs in non-fasted mice treated by gavage or through voluntary food ingestion, which showed differences in PnTx-G toxic potency. Thus, an acute toxicity study was carried out using 3 h-fasted CD-1 female mice, administered by gavage with PnTx-G (8–450 µg kg−1). At the dose of 220 µg kg−1 and above, the toxin induced a rapid onset of clinical signs (piloerection, prostration, hypothermia, abdominal breathing, paralysis of the hind limbs, and cyanosis), leading to the death of mice within 30 min. Except for moderate mucosal degeneration in the small intestine recorded at doses of 300 µg kg−1, the toxin did not induce significant morphological changes in the other main organs and tissues, or alterations in blood chemistry parameters. This acute oral toxicity study allowed to calculate an oral LD50 for PnTx-G equal to 208 μg kg−1 (95% confidence limits: 155–281 µg kg−1) and to estimate a provisional NOEL of 120 µg kg−1.
Collapse
Affiliation(s)
- Silvio Sosa
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
- Correspondence: ; Tel.: +39-040-558-8836
| | - Marco Pelin
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Federica Cavion
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| | - Fabienne Hervé
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Philipp Hess
- Ifremer, Laboratoire Phycotoxines, Centre Atlantique, 44311 Nantes CEDEX, France; (F.H.); (P.H.)
| | - Aurelia Tubaro
- Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy; (M.P.); (F.C.); (A.T.)
| |
Collapse
|
25
|
Analysis of Cyclic Imines in Mussels ( Mytilus galloprovincialis) from Galicia (NW Spain) by LC-MS/MS. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 17:ijerph17010281. [PMID: 31906079 PMCID: PMC6981759 DOI: 10.3390/ijerph17010281] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/17/2022]
Abstract
Cyclic imines (CIs) are being considered as emerging toxins in the European Union, and a scientific opinion has been published by the European Food Safety Authority (EFSA) in which an assessment of the risks to human health related to their consumption has been carried out. Recommendations on the EFSA opinion include the search for data occurrence of CIs in shellfish and using confirmatory methods by liquid chromatography-tandem mass spectrometry (LC-MS/MS), which need to be developed and optimized. The aim of this work is the application of LC-MS/MS to the analysis of gymnodimines (GYMs), spirolides (SPXs), pinnatoxins (PnTXs), and pteriatoxins (PtTXs) in mussels from Galician Rias, northwest Spain, the main production area in Europe, and therefore a representative emplacement for their evaluation. Conditions were adjusted using commercially available certified reference standards of GYM-A, SPX-1, and PnTX-G and evaluated through quality control studies. The EU-Harmonised Standard Operating Procedure for determination of lipophilic marine biotoxins in molluscs by LC-MS/MS was followed, and the results obtained from the analysis of eighteen samples from three different locations that showed the presence of PnTXs and SPXs are presented and discussed. Concentrations of PnTX-G and SPX-1 ranged from 1.8 to 3.1 µg/kg and 1.2 to 6.9 µg/kg, respectively, and PnTX-A was detected in the group of samples with higher levels of PnTX-G after a solid phase extraction (SPE) step used for the concentration of extracts.
Collapse
|
26
|
Otero P, Miguéns N, Rodríguez I, Botana LM. LC-MS/MS Analysis of the Emerging Toxin Pinnatoxin-G and High Levels of Esterified OA Group Toxins in Galician Commercial Mussels. Toxins (Basel) 2019; 11:toxins11070394. [PMID: 31284457 PMCID: PMC6669594 DOI: 10.3390/toxins11070394] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/21/2019] [Accepted: 07/01/2019] [Indexed: 11/16/2022] Open
Abstract
The occurrence of marine harmful algae is increasing worldwide and, therefore, the accumulation of lipophilic marine toxins from harmful phytoplankton represents a food safety threat in the shellfish industry. Galicia, which is a commercially important EU producer of edible bivalve mollusk have been subjected to recurring cases of mussel farm closures, in the last decades. This work aimed to study the toxic profile of commercial mussels (Mytilus galloprovincialis) in order to establish a potential risk when ingested. For this, a total of 41 samples of mussels farmed in 3 Rías (Ares-Sada, Arousa, and Pontevedra) and purchased in 5 local markets were analyzed by liquid chromatography tandem mass spectrometry (LC–MS/MS). Chromatograms showed the presence of okadaic acid (OA), dinophysistoxin-2 (DTX-2), pectenotoxin-2 (PTX-2), azaspiracid-2 (AZA-2), and the emerging toxins 13-desmethyl spirolide C (SPX-13), and pinnatoxin-G (PnTX-G). Quantification of each toxin was determined using their own standard calibration in the range 0.1%–50 ng/mL (R2 > 0.99) and by considering the toxin recovery (62–110%) and the matrix correction (33–211%). Data showed that OA and DTX-2 (especially in the form of esters) are the main risk in Galician mollusks, which was detected in 38 samples (93%) and 3 of them exceeded the legal limit (160 µg/kg), followed by SPX-13 that was detected in 19 samples (46%) in quantities of up to 28.9 µg/kg. Analysis from PTX-2, AZA-2, and PnTX-G showed smaller amounts. Fifteen samples (37%) were positive for PTX-2 (0.7–2.9 µg/kg), 12 samples (29%) for AZA-2 (0.1–1.8 µg/kg), and PnTX-G was detected in 5 mussel samples (12%) (0.4 µg/kg–0.9 µg/kg). This is the first time Galician mollusk was contaminated with PnTX-G. Despite results indicating that this toxin was not a potential risk through the mussel ingestion, it should be considered in the shellfish safety monitoring programs through the LC–MS/MS methods.
Collapse
Affiliation(s)
- Paz Otero
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| | - Natalia Miguéns
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Inés Rodríguez
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain
| | - Luis M Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidad de Santiago de Compostela, 27002 Lugo, Spain.
| |
Collapse
|
27
|
Lamas JP, Arévalo F, Moroño Á, Correa J, Muñíz S, Blanco J. Detection and Spatio-Temporal Distribution of Pinnatoxins in Shellfish from the Atlantic and Cantabrian Coasts of Spain. Toxins (Basel) 2019; 11:toxins11060340. [PMID: 31207981 PMCID: PMC6628396 DOI: 10.3390/toxins11060340] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 01/02/2023] Open
Abstract
For the first time, pinnatoxins have been detected in shellfish from the Atlantic and Cantabrian coasts of Spain. High sensitivity LC-MS/MS systems were used to monitor all the currently known pinnatoxins (A–H). Pinnatoxin G (PnTX G) was the most prevalent toxin of the group, but its metabolite PnTX A has also been found at much lower levels. No trend in PnTX G concentration was found in the area, but a hotspot in the Ría de Camariñas has been identified. The maximum concentrations found did not exceed 15 µg·kg−1, being, in most cases, below 3 µg·kg−1. The highest concentrations were found in wild (intertidal) populations of mussels which attained much higher levels than raft-cultured ones, suggesting that the toxin-producer organisms preferentially develop in shallow areas. Other bivalve species had, in general, lower concentrations. The incidence of PnTX G followed a seasonal pattern in which the maximum concentrations took place in winter months. PnTX G was found to be partially esterified but the esterification percentage was not high (lower than 30%).
Collapse
Affiliation(s)
- J Pablo Lamas
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Fabiola Arévalo
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Ángeles Moroño
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Jorge Correa
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Susana Muñíz
- Intecmar (Instituto Tecnolóxico para o Control do Medio Mariño de Galicia), Peirao de Vilaxoán s/n, Vilagarcía de Arousa, 36611 Pontevedra, Spain.
| | - Juan Blanco
- Centro de Investigacións Mariñas (CIMA), Pedras de Corón s/n, 36620 Vilanova de Arousa, Spain.
| |
Collapse
|
28
|
Benoit E, Couesnon A, Lindovsky J, Iorga BI, Aráoz R, Servent D, Zakarian A, Molgó J. Synthetic Pinnatoxins A and G Reversibly Block Mouse Skeletal Neuromuscular Transmission In Vivo and In Vitro. Mar Drugs 2019; 17:md17050306. [PMID: 31137661 PMCID: PMC6562580 DOI: 10.3390/md17050306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 05/17/2019] [Accepted: 05/21/2019] [Indexed: 12/14/2022] Open
Abstract
Pinnatoxins (PnTXs) A-H constitute an emerging family belonging to the cyclic imine group of phycotoxins. Interest has been focused on these fast-acting and highly-potent toxins because they are widely found in contaminated shellfish. Despite their highly complex molecular structure, PnTXs have been chemically synthetized and demonstrated to act on various nicotinic acetylcholine receptor (nAChR) subtypes. In the present work, PnTX-A, PnTX-G and analogue, obtained by chemical synthesis with a high degree of purity (>98%), have been studied in vivo and in vitro on adult mouse and isolated nerve-muscle preparations expressing the mature muscle-type (α1)2β1δε nAChR. The results show that PnTX-A and G acted on the neuromuscular system of anesthetized mice and blocked the compound muscle action potential (CMAP) in a dose- and time-dependent manner, using a minimally invasive electrophysiological method. The CMAP block produced by both toxins in vivo was reversible within 6–8 h. PnTX-A and G, applied to isolated extensor digitorum longus nerve-muscle preparations, blocked reversibly isometric twitches evoked by nerve stimulation. The action of PnTX-A was reversed by 3,4-diaminopyridine. Both toxins exerted no direct action on muscle fibers, as revealed by direct muscle stimulation. PnTX-A and G blocked synaptic transmission at mouse neuromuscular junctions and PnTX-A amino ketone analogue (containing an open form of the imine ring) had no effect on neuromuscular transmission. These results indicate the importance of the cyclic imine for interacting with the adult mammalian muscle-type nAChR. Modeling and docking studies revealed molecular determinants responsible for the interaction of PnTXs with the muscle-type nAChR.
Collapse
Affiliation(s)
- Evelyne Benoit
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Aurélie Couesnon
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Jiri Lindovsky
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Bogdan I Iorga
- Centre National de la Recherche Scientifique (CNRS), Institut de Chimie des Substances Naturelles, UPR 2301, Labex LERMIT, F-91198 Gif-sur-Yvette, France.
| | - Rómulo Aráoz
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| | - Denis Servent
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
| | - Armen Zakarian
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106, USA.
| | - Jordi Molgó
- Commissariat à l'Energie Atomique et aux énergies Alternatives (CEA), Institut des Sciences du Vivant Frédéric Joliot, Service d'Ingénierie Moléculaire des Protéines (SIMOPRO), CEA de Saclay, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France.
- Centre National de la Recherche Scientifique (CNRS), Institut des Neurosciences Paris-Saclay (Neuro-PSI), UMR 9197 CNRS/Université Paris-Sud, F-91198 Gif-sur-Yvette, France.
| |
Collapse
|
29
|
Estevez P, Castro D, Pequeño-Valtierra A, Giraldez J, Gago-Martinez A. Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges. Foods 2019; 8:E149. [PMID: 31052406 PMCID: PMC6560407 DOI: 10.3390/foods8050149] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/25/2019] [Indexed: 11/30/2022] Open
Abstract
The presence of emerging contaminants in food and the sources of the contamination are relevant issues in food safety. The impact of climate change on these contaminations is a topic widely debated; however, the consequences of climate change for the food system is not as deeply studied as other human and animal health and welfare issues. Projections of climate change in Europe have been evaluated through the EU Commission, and the impact on the marine environment is considered a priority issue. Marine biotoxins are produced by toxic microalgae and are natural contaminants of the marine environment. They are considered to be an important contaminant that needs to be evaluated. Their source is affected by oceanographic and environmental conditions; water temperature, sunlight, salinity, competing microorganisms, nutrients, and wind and current directions affect the growth and proliferation of microalgae. Although climate change should not be the only reason for this increase and other factors such as eutrophication, tourism, fishery activities, etc. could be considered, the influence of climate change has been observed through increased growth of dinoflagellates in areas where they have not been previously detected. An example of this is the recent emergence of ciguatera fish poisoning toxins, typically found in tropical or subtropical areas from the Pacific and Caribbean and in certain areas of the Atlantic Sea such as the Canary Islands (Spain) and Madeira (Portugal). In addition, the recent findings of the presence of tetrodotoxins, typically found in certain areas of the Pacific, are emerging in the EU and contaminating not only the fish species where these toxins had been found before but also bivalve mollusks. The emergence of these marine biotoxins in the EU is a reason for concern in the EU, and for this reason, the risk evaluation and characterization of these toxins are considered a priority for the European Food Safety Authorities (EFSA), which also emphasize the search for occurrence data using reliable and efficient analytical methods.
Collapse
Affiliation(s)
- Pablo Estevez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - David Castro
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Pequeño-Valtierra
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Jorge Giraldez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
| | - Ana Gago-Martinez
- Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain.
- EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain.
| |
Collapse
|
30
|
Mattarozzi M, Cavazza A, Calfapietra A, Cangini M, Pigozzi S, Bianchi F, Careri M. Analytical screening of marine algal toxins for seafood safety assessment in a protected Mediterranean shallow water environment. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:612-624. [DOI: 10.1080/19440049.2019.1581380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Monica Mattarozzi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
- Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA), Università di Parma, Parma, Italy
| | - Antonella Cavazza
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Anna Calfapietra
- Fondazione Centro Ricerche Marine, Laboratorio Nazionale di Riferimento per le Biotossine Marine, Cesenatico, Italy
| | - Monica Cangini
- Fondazione Centro Ricerche Marine, Laboratorio Nazionale di Riferimento per le Biotossine Marine, Cesenatico, Italy
| | - Silvia Pigozzi
- Fondazione Centro Ricerche Marine, Laboratorio Nazionale di Riferimento per le Biotossine Marine, Cesenatico, Italy
| | - Federica Bianchi
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
- Centro Interdipartimentale per l’Energia e l’Ambiente (CIDEA), Università di Parma, Parma, Italy
| | - Maria Careri
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
- Centro Interdipartimentale sulla Sicurezza, Tecnologie e Innovazione Agroalimentare (SITEIA.PARMA), Università di Parma, Parma, Italy
| |
Collapse
|