1
|
Nseke JM, Baloyi NP. Ecofriendly synthesized Zeolite 4A for the treatment of a multi-cationic contaminant-based effluent: Central composite design (CCD) statistical approach. Heliyon 2024; 10:e35176. [PMID: 39170319 PMCID: PMC11336470 DOI: 10.1016/j.heliyon.2024.e35176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/23/2024] Open
Abstract
One of the key aspects of futureproofing the sustainability of life on earth lies in the protection of the hydrosphere, particularly from soluble heavy metal ion pollutants. In the current study, the central composite design and optimization of the ion-exchange process have been carried out for the simultaneous removal of selected cations; Cd2+, Cu2+, and Zn2+ cations using synthesized zeolite 4A. X-ray diffraction analysis confirmed the formation of zeolite 4A. The Brunauer-Emmett-Teller (BET) surface area of the synthesized zeolite was 32 m2/g. Results mainly indicate that there is a strong relationship between the experimental data and central composite design-based models of ion removal efficiency with R2 > 0.9 and the lack of fit less than 0.1 %. All the selected ion exchange parameters (time, dosage, pH, and temperature) were found to be statistically significant, with a p-value less than 0.05. For the complete simultaneous removal of selected cations, the optimal zeolite dosage, pH, and contact time are 1.2 g/100 cm3, 6, and 3 h. The optimal temperature ranges from 25 to 27 °C. The initial concentration of each selected cation is 450 mg/L. The ion exchange is in good agreement with the Freundlich and Langmuir isotherm models. Based on the Langmuir isotherm model, the maximum Cd2+, Cu2+, and Zn2+ uptake capacity values of zeolite are 103, 99.89, and 82.08 mg/g, respectively. In this study, it has been mainly inferred that CCD can be considered a useful tool for the modeling and optimization of zeolite ion exchange applications.
Collapse
Affiliation(s)
- Joseph M. Nseke
- Mineral Processing and Technology Research Centre, Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| | - Nomsa P. Baloyi
- Mineral Processing and Technology Research Centre, Department of Metallurgy, School of Mining, Metallurgy and Chemical Engineering, Faculty of Engineering and the Built Environment, University of Johannesburg, P.O. Box 524, Auckland Park 2006, Johannesburg, South Africa
| |
Collapse
|
2
|
Li B, Zuo Q, Deng J, Deng Z, Li P, Wu J. Enhanced inactivation of Escherichia coli through hydrogen peroxide decomposition assisted by nanoscale cupric oxide-decorated activated carbon. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121327. [PMID: 38824892 DOI: 10.1016/j.jenvman.2024.121327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/29/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
In this study, nanoscale cupric oxide-decorated activated carbon (nCuO@AC) was synthesized by impregnation-calcination and employed to assist the decomposition of H2O2 for effective sterilization with Escherichia coli as target bacteria. Characteristic technologies demonstrated that copper oxide particles of 50-100 nm were uniformly distributed on AC surface. Owing to electron transfer from hydroxyl and aldehyde to CuO on AC, surface-bonded Cu(II) was partially reduced to Cu(I) in the nCuO matrix. The resultant Cu(I) expedited the decomposition of H2O2 and converted it into ·OH radicals which were identified by quenching experiment and electron paramagnetic resonance test. Due to oxidation attack of generated ·OH, the nCuO@AC-H2O2 system achieved a much higher inactivation rate of 6.0 log within 30 min as compared to those of 2.1 and 1.3 log in the nCuO@AC and nCuO-H2O2 systems. It also exhibited excellent pH adaptability and high inactivation efficiency under neutral conditions. After four cycles, the nCuO@AC-H2O2 system could still inactivate 5.5 log bacteria, indicating excellent stability and reusability of nCuO@AC. Spent nCuO@AC could be regenerated by eluting surficial copper oxides with hydrochloric acid, and re-coating nCuO particles through impregnation-calcination with a regeneration rate of 96.6%. Our results demonstrated that nCuO@AC was an efficient and prospective catalyst to assist the decomposition of H2O2 for effective inactivation of bacteria in water.
Collapse
Affiliation(s)
- Bing Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Qian Zuo
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jianping Deng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang, 330096, China
| | - Zhiyi Deng
- School of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Ping Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - Jinhua Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, China; The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, Guangzhou, 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Qi J, Wang X, Zhang H, Liu X, Wang W, He Q, Guo F. Biopolymer Meets Nanoclay: Rational Fabrication of Superb Adsorption Beads from Green Precursors for Efficient Capture of Pb(II) and Dyes. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:766. [PMID: 38727360 PMCID: PMC11085593 DOI: 10.3390/nano14090766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/12/2024]
Abstract
Renewable, green, and safe natural biopolymer-derived materials are highly desired for the purification of pollutants, but significantly improving their performance without the introduction of additional harmful chemicals remains a huge challenge. Based on the concept of "structure optimization design", environment-friendly composite beads (named SA/PASP/RE) with excellent adsorption performance and recyclability were rationally constructed through a green ionic crosslinking route, using the completely green biopolymer sodium alginate (SA), sodium salt of polyaspartic acid (PASP), and the natural nanoclay rectorite (RE) as starting materials. The nano-layered RE was embedded in the polymer matrix to prevent the polymer chain from becoming over-entangled so that more adsorption sites inside the polymer network were exposed, which effectively improved the mass transfer efficiency of the adsorbent and the removal rate of contaminants. The composite beads embedded with 0.6% RE showed high adsorption capacities of 211.78, 197.13, and 195.69 mg/g for Pb(II) and 643.00, 577.80, and 567.10 mg/g for methylene blue (MB) in Yellow River water, Yangtze River water, and tap water, respectively. And the beads embedded with 43% RE could efficiently adsorb Pb(II) and MB with high capacities of 187.78 mg/g and 586.46 mg/g, respectively. This study provides a new route to design and develop a green, cost-effective, and efficient adsorbent for the decontamination of wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (J.Q.); (X.W.); (H.Z.); (X.L.); (W.W.); (Q.H.)
| |
Collapse
|
4
|
Tran GT, Nguyen TTT, Nguyen DTC, Tran TV. Tecoma stans floral extract-mediated synthesis of MgFe 2O 4/ZnO nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:26806-26823. [PMID: 38453761 DOI: 10.1007/s11356-024-32780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Toxic organic dyes-containing wastewater treatment by adsorption and photocatalytic techniques is widely applied, but adsorbents and photocatalysts are often synthesized through chemical methods, leading to secondary pollution by released chemicals. Here, we report a benign method using Tecoma stans floral extract to produce MgFe2O4/ZnO (MGFOZ) nanoparticles for adsorption and photocatalytic degradation of coomassie brilliant blue (CBB) dye. Green MGFOZ owned a surface area of 9.65 m2/g and an average grain size of 54 nm. This bio-based nanomaterial showed higher removal percentage and better recyclability (up to five cycles) than green MgFe2O4 and ZnO nanoparticles. CBB adsorption by MGFOZ was examined by kinetic and isotherm models with better fittings of Bangham and Langmuir or Temkin. RSM-based optimization was conducted to reach an actual adsorption capacity of 147.68 mg/g. Moreover, MGFOZ/visible light system showed a degradation efficiency of 89% CBB dye after 120 min. CBB adsorption can be controlled by both physisorption and chemisorption while •O2- and •OH radicals are responsible for photo-degradation of CBB dye. This study suggested that MGFOZ can be a promising adsorbent and catalyst for removal of organic dyes in water.
Collapse
Affiliation(s)
- Giang Thanh Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City, 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam.
| |
Collapse
|
5
|
Latif A, Mohsin M, Bhatti IA, Tahir AA, Hussain MT, Iqbal J. Experimental and ab initio studies of Co-doped ZnO nanophotocatalyst thin films for dye mineralization. RSC Adv 2023; 13:35003-35016. [PMID: 38046633 PMCID: PMC10690497 DOI: 10.1039/d3ra04491b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/04/2023] [Indexed: 12/05/2023] Open
Abstract
Pristine ZnO and Co-doped ZnO photocatalyst thin films were fabricated on a ceramic substrate by spray pyrolysis. The optical, morphological and structural properties of the fabricated nanophotocatalyst thin films were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) spectroscopy and Fourier transform infrared (FTIR) spectroscopy. Operational parameters, including dye concentration, oxidant concentration, irradiation time and pH for dye degradation, were optimized by response surface methodology (RSM). The maximum degradation obtained was 93% under ideal conditions, such as pH 7, 3 h of direct sunlight irradiation, 30 mM concentration of oxidant and 10 ppm concentration of dye (MB). The evaluation of the extent of degradation was done using the UV/visible spectrophotometry technique. The reusability of the fabricated thin film was examined under optimized conditions. Density functional theory (DFT) with the B3LYP/LanL2DZ method was used for the theoretical modelling of the fabricated nanomaterials. The optimized structure, theoretical band gaps, IR spectra and Raman spectra of the fabricated pristine ZnO and Co:ZnO nanophotocatalysts were determined.
Collapse
Affiliation(s)
- Ansa Latif
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| | - Muhammad Mohsin
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| | - Ijaz Ahmad Bhatti
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| | - Asif Ali Tahir
- Solar Energy Research Group, Environment and Sustainability Institute, Department of Engineering, Faculty of Environment, Science and Economy, University of Exeter Penryn Campus Cornwall TR10 9FE UK
| | | | - Javed Iqbal
- Department of Chemistry, University of Agriculture Faisalabad Pakistan
| |
Collapse
|
6
|
Asadinamin M, Živkovic A, Ullrich S, Meyer H, Zhao Y. Charge Dynamics of a CuO Thin Film on Picosecond to Microsecond Timescales Revealed by Transient Absorption Spectroscopy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18414-18426. [PMID: 36995362 PMCID: PMC10103062 DOI: 10.1021/acsami.2c22595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Understanding the mechanism of charge dynamics in photocatalysts is the key to design and optimize more efficient materials for renewable energy applications. In this study, the charge dynamics of a CuO thin film are unraveled via transient absorption spectroscopy (TAS) on the picosecond to microsecond timescale for three different excitation energies, i.e., above, near, and below the band gap, to explore the role of incoherent broadband light sources. The shape of the ps-TAS spectra changes with the delay time, while that of the ns-TAS spectra is invariant for all the excitation energies. Regardless of the excitations, three time constants, τ1 ∼ 0.34-0.59 ps, τ2 ∼ 162-175 ns, and τ3 ∼ 2.5-3.3 μs, are resolved, indicating the dominating charge dynamics at very different timescales. Based on these observations, the UV-vis absorption spectrum, and previous findings in the literature, a compelling transition energy diagram is proposed. Two conduction bands and two defect (deep and shallow) states dominate the initial photo-induced electron transitions, and a sub-valence band energy state is involved in the subsequent transient absorption. By solving the rate equations for the pump-induced population dynamics and implementing the assumed Lorentzian absorption spectral shape between two energy states, the TAS spectra are modeled which capture the main spectral and time-dependent features for t > 1 ps. By further considering the contributions from free-electron absorption during very early delay times, the modeled spectra reproduce the experimental spectra very well over the entire time range and under different excitation conditions.
Collapse
Affiliation(s)
- Mona Asadinamin
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Aleksandar Živkovic
- Department
of Earth Sciences, Utrecht University, Princetonlaan 8a, 3548 CB Utrecht, The Netherlands
| | - Susanne Ullrich
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Henning Meyer
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| | - Yiping Zhao
- Department
of Physics and Astronomy, University of
Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
7
|
Ye P, Chen K, Liu X, Zhu Z, Li C, Cheng Y, Yin Y, Xiao K. In situ fabrication of recyclable CuO@MoS2 nanosheet arrays-coated copper mesh for enhanced visible light photocatalytic degradation of tetracycline and microbial inactivation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
8
|
Chen H, Zhao X, Cui B, Cui H, Zhao M, Shi J, Li J, Zhou Z. Peroxidase-like MoS 2/Ag nanosheets with synergistically enhanced NIR-responsive antibacterial activities. Front Chem 2023; 11:1148354. [PMID: 36970408 PMCID: PMC10033522 DOI: 10.3389/fchem.2023.1148354] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/17/2023] [Indexed: 03/29/2023] Open
Abstract
Pathogenic microbial infections have been threatening public health all over the world, which makes it highly desirable to develop an antibiotics-free material for bacterial infection. In this paper, molybdenum disulfide (MoS2) nanosheets loaded with silver nanoparticles (Ag NPs) were constructed to inactive bacteria rapidly and efficiently in a short period under a near infrared (NIR) laser (660 nm) in the presence of H2O2. The designed material presented favorable features of peroxidase-like ability and photodynamic property, which endowed it with fascinating antimicrobial capacity. Compared with free MoS2 nanosheets, the MoS2/Ag nanosheets (denoted as MoS2/Ag NSs) exhibited better antibacterial performance against Staphylococcus aureus by the generated reactive oxygen species (ROS) from both peroxidase-like catalysis and photodynamic, and the antibacterial efficiency of MoS2/Ag NSs could be further improved by increasing the amount of Ag. Results from cell culture tests proved that MoS2/Ag3 nanosheets had a negligible impact on cell growth. This work provided new insight into a promising method for eliminating bacteria without using antibiotics, and could serve as a candidate strategy for efficient disinfection to treat other bacterial infections.
Collapse
Affiliation(s)
- Huiying Chen
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Xinshuo Zhao
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
| | - Bingbing Cui
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Haohao Cui
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Mengyang Zhao
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Jun Shi
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Jingguo Li
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingguo Li, ; Zhan Zhou,
| | - Zhan Zhou
- Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, China
- *Correspondence: Jingguo Li, ; Zhan Zhou,
| |
Collapse
|
9
|
Isiksel E, Attar A, Mutlu O, Altikatoglu Yapaoz M. Bioinspired fabrication of CuONPs synthesized via Cotoneaster and application in dye removal: antioxidant and antibacterial studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:161-171. [PMID: 35895176 DOI: 10.1007/s11356-022-22149-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
In this study, bioinspired fabrication of copper oxide nanoparticles (CuONPs) which are widely researched in nanotechnology field with Cotoneaster extract was performed. Cotoneaster plant extract was chosen as a good antioxidant and antibacterial agent in terms of the amount of phenolic and flavonoid compounds it contains. The obtained CuONPs were characterized by UV-Vis, FTIR, and SEM analyses. Antibacterial activity of the fabricated nanoparticles was evaluated against Escherichia coli and Staphylococcus aureus. Total phenolic compound, total flavonoid amount, and reducing power of the CuONPs were determined. Furthermore, paint removal properties of copper oxide nanoparticles on various dyes were investigated. Fabrication of the CuONPs was evaluated morphologically by color change and in UV spectrum by SPR band at 338 nm. The characteristic peak of CuONPs at 621 cm-1 was monitored employing FT-IR. SEM results showed that the fabricated CuONPs were spherical and between 50 and 160 nm. The CuONPs represented notable antibacterial efficiency against E. coli and S. aureus with inhibition zone of 19 ± 1 and 23 ± 2, respectively employing disk diffusion. The antioxidant properties of the CuONPs were also confirmed. Total phenolic substance content of the CuONP solution was 6.04 μg pyrocathecol equivalent/mg nanoparticle and total flavonoid content value was found as 122.46 μg catechin equivalent/mg nanoparticle. The reducing power of the fabricated CuONPs was found to be good when compared to the standard antioxidants BHA and α-tocopherol. In addition, the decolorization efficiency of the fabricated CuONPs has a strong potential on the industrial dye removal of neutral red and naphthol blue black.
Collapse
Affiliation(s)
- Ecem Isiksel
- Department of Chemistry, Faculty of Science and Letters, Yildiz Technical University, Davutpasa Campus, Istanbul, 34220, Turkey
| | - Azade Attar
- Department of Bioengineering, Faculty of Chemical & Metallurgical Engineering, Yildiz Technical University, Davutpasa Campus, Istanbul, 34220, Turkey.
| | - Ozge Mutlu
- Department of Chemistry, Faculty of Science and Letters, Yildiz Technical University, Davutpasa Campus, Istanbul, 34220, Turkey
| | - Melda Altikatoglu Yapaoz
- Department of Chemistry, Faculty of Science and Letters, Yildiz Technical University, Davutpasa Campus, Istanbul, 34220, Turkey
| |
Collapse
|
10
|
Gouasmia A, Zouaoui E, Mekkaoui AA, Haddad A, Bousba D. Highly efficient photocatalytic degradation of malachite green dye over copper oxide and copper cobaltite photocatalysts under solar or microwave irradiation. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
11
|
Zhang X, Wang K, He C, Lin Y, Hu H, Huang Q, Yu H, Zhou T, Lin Q. Regulation pore size distribution for facilitating malachite green removal on carbon foam. ENVIRONMENTAL RESEARCH 2022; 213:113715. [PMID: 35718166 DOI: 10.1016/j.envres.2022.113715] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Malachite green (MG) is widely used as a textile dye and an aquacultural biocide, and become a serious pollution of drink water, but effectually isolating and removing it from wastewater are still a challenge. Here we report a new strategy to prepare a carbon foam with tunable pore size distribution by a one-pot lava foam process. We find that uniform micropore size is beneficial to the formation of C-OH coordination on the pore surface, increasing MG adsorption rates via H+ ionization. As a result, carbon foam with uniform pore size distribution demonstrates an optimum MG removal efficiency of 1812 mg g-1 and a higher partition coefficient of 3.02 mg g-1 μM-1, which is twice that of carbon foams with irregular pore size distribution. The adsorption of MG onto these adsorbents was found to be an endothermic monolayer chemical adsorption process, and the Gibbs free energy of adsorption process was decreased obviously by regulating micropore size distribution. The experiment results are in good agreement with pseudo-second-order kinetic and Langmuir isotherm models. Revealed the pore size distribution was the critical factor of MG removal by carbon foam. It should be and inspiration for the design and development of highly efficiency adsorbents for dyes removal.
Collapse
Affiliation(s)
- Xinqi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China; Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Kang Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Chong He
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yun Lin
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Hui Hu
- School of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Qingming Huang
- Fujian College Association Instrumental Analysis Center, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Han Yu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| | - Tianhua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, PR China.
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
12
|
Electrochemical sensor design based on CuO nanosheets/ Cellulose derivative nanocomposite for hydrazine monitoring in environmental samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Garg P, Attri P, Sharma R, Chauhan M, Chaudhary GR. Advances and Perspective on Antimicrobial Nanomaterials for Biomedical Applications. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.898411] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Microbial infection and antibiotic resistance is recognized as a serious problem to society from both an economical perspective and a health concern. To tackle this problem, “nanotechnology,” a multidisciplinary field of research, has provided a plethora of nanomaterials for potential applications in the antimicrobial sector. This letter discusses how antimicrobial nanomaterials are shaping this challenging field and being evaluated as therapeutic and medication delivery agents. The recently designed smart antimicrobial surfaces with switchable features that displayed synergistic antibacterial action were also highlighted. To end, we provide the current scenario and future perspectives with regards to emerging antimicrobial nano-engineered materials and nanotechnology.
Collapse
|
14
|
Al-Radadi NS. Laboratory scale medicinal plants mediated green synthesis of biocompatible nanomaterials and their versatile biomedical applications. Saudi J Biol Sci 2022; 29:3848-3870. [PMID: 35844411 PMCID: PMC9280260 DOI: 10.1016/j.sjbs.2022.02.042] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 02/07/2023] Open
|
15
|
Lim KY, Foo KY. One-step synthesis of carbonaceous adsorbent from soybean bio-residue by microwave heating: Adsorptive, antimicrobial and antifungal behavior. ENVIRONMENTAL RESEARCH 2022; 204:112044. [PMID: 34516977 DOI: 10.1016/j.envres.2021.112044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/23/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
In this work, the transformation of soybean industrial bio-residue with limited practical applications, into a multifunctional carbonaceous adsorbent (SBAC) via one-step microwave-irradiation has been succeeded. The surface porosity, chemical compositions, functionalities and surface chemistry were featured by microscopic pore-textural analysis, elemental constitution analysis, morphological characterization and Fourier transform infra-red spectroscopy. The adsorptive performance of SBAC was evaluated in a batch experiment by adopting different classes of water pollutants, specifically methylene blue (MB), acetaminophen and 2,4-dichlorophenoxyacetic acid (2,4-D). The equilibrium uptakes were analyzed with respect to the non-linearized Langmuir, Freundlich and Temkin isotherm equations. The unique features of SBAC, specifically the antimicrobial and antifungal efficacies were examined against gram-positive/negative bacteria and fungi species. An ordered microporous-mesoporous structure of SBAC, with the BET surface area and total pore volume of 1696 m2/g and 0.94 m3/g, respectively, has been achieved. The equilibrium data of MB and acetaminophen were found to be in good agreement with the Langmuir isotherm model, with the monolayer adsorption capacities (Qo) of 434.57 mg/g and 393.31 mg/g, respectively. The adsorptive experiment of 2,4-D was best fitted to the Freundlich isotherm equation, with the Qo of 253.17 mg/g. The regeneration performance of the spent SBAC under microwave-irradiation could maintain at 69.42-79.31%, even after five (5) adsorption-regeneration cycles. SBAC exhibited excellent inhibition efficiencies against gram-positive/negative bacteria and fungi species, with the inhibition zones at 14.0-28.0 mm. This newly developed SBAC appears to be a new powerful candidate for the remediation of different classes of water contaminants, and novel antibacterial and antifungal agents against biological contaminations. The novel concept of "turn waste into wealth" in a cost-effective and energy saving manner for environmental preservation has been successfully accomplished.
Collapse
Affiliation(s)
- Kah Yee Lim
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
| | - Keng Yuen Foo
- River Engineering and Urban Drainage Research Centre (REDAC), Universiti Sains Malaysia (USM), Engineering Campus, Seri Ampangan, 14300, Nibong Tebal, Penang, Malaysia.
| |
Collapse
|
16
|
Nejati M, Rostami M, Mirzaei H, Rahimi-Nasrabadi M, Vosoughifar M, Nasab AS, Ganjali MR. Green methods for the preparation of MgO nanomaterials and their drug delivery, anti-cancer and anti-bacterial potentials: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109107] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
17
|
Cuong HN, Pansambal S, Ghotekar S, Oza R, Thanh Hai NT, Viet NM, Nguyen VH. New frontiers in the plant extract mediated biosynthesis of copper oxide (CuO) nanoparticles and their potential applications: A review. ENVIRONMENTAL RESEARCH 2022; 203:111858. [PMID: 34389352 DOI: 10.1016/j.envres.2021.111858] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 07/22/2021] [Accepted: 08/01/2021] [Indexed: 05/22/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are one of the most widely used nanomaterials nowadays. CuO NPs have numerous applications in biological processes, medicine, energy devices, environmental remediation, and industrial fields from nanotechnology. With the increasing concern about the energy crisis and the challenges of chemical and physical approaches for preparing metal NPs, attempts to develop modern alternative chemistry have gotten much attention. Biological approaches that do not produce toxic waste and therefore do not require purification processes have been the subject of numerous studies. Plants may be extremely useful in the study of biogenic metal NP synthesis. This review aims to shed more light on the interactions between plant extracts and CuO NP synthesis. The use of living plants for CuO NPs biosynthesis is a cost-effective and environmentally friendly process. To date, the findings have revealed many aspects of plant physiology and their relationships to the synthesis of NPs. The current state of the art and potential challenges in the green synthesis of CuO NPs are described in this paper. This study found a recent increase in the green synthesis of CuO NPs using various plant extracts. As a result, a thorough explanation of green synthesis and stabilizing agents for CuO NPs made from these green sources is given. Additionally, the multifunctional applications of CuO NPs synthesized with various plant extracts in environmental remediation, sensing, catalytic reduction, photocatalysis, diverse biological activities, energy storage, and several organic transformations such as reduction, coupling, and multicomponent reactions were carefully reviewed. We expect that this review could serve as a useful guide for readers with a general interest in the plant extract mediated biosynthesis of CuO NPs and their potential applications.
Collapse
Affiliation(s)
- Hoang Ngoc Cuong
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| | - Shreyas Pansambal
- Department of Chemistry, Shri Saibaba College Shirdi, 423 109, Savitribai Phule Pune University, Maharashtra, India.
| | - Suresh Ghotekar
- Department of Chemistry, Smt. Devkiba Mohansinhji Chauhan College of Commerce and Science, University of Mumbai, Silvassa, 396 230, Dadra and Nagar Haveli (UT), India; Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India.
| | - Rajeshwari Oza
- Department of Chemistry, S.N. Arts, D.J.M. Commerce and B.N.S. Science College, Savitribai Phule Pune University, Sangamner, Maharashtra, 422 605, India
| | - Nguyen Thi Thanh Hai
- Institute of Environmental Technology (IET), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet Street, Nghia Do, Cau Giay, Hanoi, Viet Nam
| | - Nguyen Minh Viet
- VNU-Key Laboratory of Advanced Materials for Green Growth, Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, Viet Nam
| | - Van-Huy Nguyen
- Faculty of Biotechnology, Binh Duong University, Thu Dau Mot, Viet Nam
| |
Collapse
|
18
|
Oyster shell derived hydroxyapatite microspheres as an effective adsorbent for remediation of Coomassie brilliant blue. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
El-Denglawey A, Mubarak MF, Selim H. Tertiary Nanocomposites of Metakaolinite/Fe3O4/SBA-15 Nanocomposite for the Heavy Metal Adsorption: Isotherm and Kinetic Study. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05690-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Optimization of Facile Synthesized ZnO/CuO Nanophotocatalyst for Organic Dye Degradation by Visible Light Irradiation Using Response Surface Methodology. Catalysts 2021. [DOI: 10.3390/catal11121509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, we aimed to observe how different operating parameters influenced the photocatalytic degradation of rhodamine B (RhB, cationic dye) and bromophenol Blue (BPB, anionic dye) over ZnO/CuO under visible light irradiation. This further corroborated the optimization study employing the response surface methodology (RSM) based on central composite design (CCD). The synthesis of the ZnO/CuO nanocomposite was carried out using the co-precipitation method. The synthesized samples were characterized via the XRD, FT-IR, FE-SEM, Raman, and BET techniques. The characterization revealed that the nanostructured ZnO/CuO formulation showed the highest surface area (83.13 m2·g−1). Its surface area was much higher than that of pure ZnO and CuO, thereby inheriting the highest photocatalytic activity. To substantiate this photocatalytic action, the investigative analysis was carried out at room temperature, associating first-order kinetics at a rate constant of 0.0464 min−1 for BPB and 0.07091 min−1 for RhB. We examined and assessed the binary interactions of the catalyst dosage, concentration of dye, and irradiation time. The suggested equation, with a high regression R2 value of 0.99701 for BPB and 0.9977 for RhB, accurately matched the experimental results. Through ANOVA we found that the most relevant individual parameter was the irradiation time, followed by catalyst dose and dye concentration. In a validation experiment, RSM based on CCD was found to be suitable for the optimization of the photocatalytic degradation of BPB and RhB over ZnO/CuO photocatalysts, with 98% degradation efficiency.
Collapse
|
21
|
Akbari N, Nabizadeh Chianeh F, Arab A. Efficient electrochemical oxidation of reactive dye using a novel Ti/nanoZnO–CuO anode: electrode characterization, modeling, and operational parameters optimization. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01634-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Rohilla D, Kaur N, Shanavas A, Chaudhary S. Microwave mediated synthesis of dopamine functionalized copper sulphide nanoparticles: An effective catalyst for visible light driven degradation of methlyene blue dye. CHEMOSPHERE 2021; 277:130202. [PMID: 33774243 DOI: 10.1016/j.chemosphere.2021.130202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
The current work highlights the potential aptitude of copper sulphide (CuS) nanoparticles as cost and energy-effective photo-catalyst for degrading methlyene blue dye under visible light. The surface modified CuS nanoparticles with dopamine (DOP) were prepared by using fast and cost effective microwave assisted methodology. Here, DOP act as biological ligand for the reduction and capping of CuS nanoparticles. The structural and morphological analyses revealed the size controlled synthesis of CuS in presence of DOP with higher thermal stability. The bio-compatibility and non-toxic behaviour of CuS@DOP nanoparticles was evaluated against L929 cell lines and on E. coli and S. aureus strains. The visible light driven photocatalytic activity of the synthesized CuS@DOP was scrutinized for the degradation of methylene blue (MB) dyes, as a model of water contaminants. The photocatalytic degradation of MB by CuS@DOP attained 97% after 10 min of visible light irradiation. The effect of catalyst dose, pH, initial concentration of MB dye, electrolytes, contact time, synergic effect of photolysis and catalysis were studied in detail for optimizing the degradation efficiency of CuS@DOP. The mechanism of CuS@DOP photocatalysis and the formed degraded products were analyzed by using LC/MS technique. The reusability and stability of photocatalyst was confirmed by reusing the catalyst for six successive runs with catalytic performance as high as 80%. Thus, CuS@DOP NPs acted as cost effective, non-toxic visible light driven photo-catalyst for the degradation of organic dye from waste water.
Collapse
Affiliation(s)
- Deepak Rohilla
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India
| | - Navneet Kaur
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Asifkhan Shanavas
- Institute of Nano Science and Technology (INST), Mohali, Punjab, India
| | - Savita Chaudhary
- Department of Chemistry and Centre of Advanced Studies in Chemistry, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
23
|
Muthu Kumara Pandian A, Gopalakrishnan B, Rajasimman M, Rajamohan N, Karthikeyan C. Green synthesis of bio-functionalized nano-particles for the application of copper removal - characterization and modeling studies. ENVIRONMENTAL RESEARCH 2021; 197:111140. [PMID: 33864794 DOI: 10.1016/j.envres.2021.111140] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Green technology for the synthesis of nanoparticles has gained momentum due to its cost-effectiveness and eco-friendly nature. In this research study, silver nanoparticles (AgNps) were synthesized using an eco-friendly biological method involving the use of marine algae, Halimeda gracilis. The surface properties of the synthesized silver nanoparticles were studied using UV-visible spectroscopy, Fourier transform infrared spectroscopy and scanning electron microscopy methods. During the synthesis of nano particles, the parameters namely temperature (30 °C to 90 °C), pH (6-10), silver nitrate (AgNO3) concentration (1-3 mg/ml) and quantity of algal extract (1-3 ml) were optimized to improve the production of AgNPs. The application of the synthesized silver nanoparticles for the adsorptive removal of copper from aqueous and industrial wastewater was investigated. Intra-particle diffusion mechanism was identified to be controlling step in metal removal. Regeneration of sorbent was carried out using 2.0 M HCl and the reusability was verified for 6 cycles. A removal efficiency of copper (64.8%) from electroplating wastewater demonstrated the industrial application potential of the synthesized silver nanoparticles.
Collapse
Affiliation(s)
- A Muthu Kumara Pandian
- Department of Biotechnology, Vivekanandha College of Engineering for Women, Tiruchengode, Namakkal, 637205, India.
| | - B Gopalakrishnan
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Naga, 608002, Tamilnadu, India
| | - M Rajasimman
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Naga, 608002, Tamilnadu, India
| | - N Rajamohan
- Chemical Engineering Section, Faculty of Engineering, Sohar University, Oman
| | - C Karthikeyan
- Environmental Engineering Laboratory, Department of Chemical Engineering, Annamalai University, Annamalai Naga, 608002, Tamilnadu, India
| |
Collapse
|
24
|
Alavi M, Dehestaniathar S, Mohammadi S, Maleki A, Karimi N. Antibacterial Activities of Phytofabricated ZnO and CuO NPs by Mentha pulegium Leaf/Flower Mixture Extract against Antibiotic Resistant Bacteria. Adv Pharm Bull 2021; 11:497-504. [PMID: 34513624 PMCID: PMC8421631 DOI: 10.34172/apb.2021.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/02/2020] [Accepted: 08/05/2020] [Indexed: 12/25/2022] Open
Abstract
Purpose: In this study, leaf/flower aqueous extract of medicinal plant species Mentha pulegium was used to synthesize ZnO and CuO nanoparticles (NPs) as a cost-effective, one-step, and eco-friendly method. Methods: Physicochemical properties of both metal oxide NPs (MONPs) were determined by UV-Vis spectroscopy, X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM) and energy dispersive X-ray (EDX) techniques. Results: Phytofabricated ZnONPs and CuNPs illustrated 65.02±7.55 and 26.92±4.7 nm with antibacterial activities against antibiotic-resistant Escherichia coli and Staphylococcus aureus. Higher antibacterial activities were observed for CuONPs compared with ZnONPs. Conclusion: Large surface area and more reactivity resulted from smaller size as well as higher production of reactive oxygen species (ROS) were considered to antibacterial efficiency of CuONPs against antibiotic-resistant E. coli and S. aureus.
Collapse
Affiliation(s)
- Mehran Alavi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| | - Saeed Dehestaniathar
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shadieh Mohammadi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Afshin Maleki
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Naser Karimi
- Nanobiotechnology Laboratory, Biology Department, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
25
|
A Systematic Review of Metal Oxide Applications for Energy and Environmental Sustainability. METALS 2020. [DOI: 10.3390/met10121604] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Energy is the fundamental requirement of all physical, chemical, and biological processes which are utilized for better living standards. The toll that the process of development takes on the environment and economic activity is evident from the arising concerns about sustaining the industrialization that has happened in the last centuries. The increase in carbon footprint and the large-scale pollution caused by industrialization has led researchers to think of new ways to sustain the developmental activities, whilst simultaneously minimizing the harming effects on the enviroment. Therefore, decarbonization strategies have become an important factor in industrial expansion, along with the invention of new catalytic methods for carrying out non-thermal reactions, energy storage methods and environmental remediation through the removal or breakdown of harmful chemicals released during manufacturing processes. The present article discusses the structural features and photocatalytic applications of a variety of metal oxide-based materials. Moreover, the practical applicability of these materials is also discussed, as well as the transition of production to an industrial scale. Consequently, this study deals with a concise framework to link metal oxide application options within energy, environmental and economic sustainability, exploring the footprint analysis as well.
Collapse
|
26
|
Green synthesis of metal–organic frameworks: A state-of-the-art review of potential environmental and medical applications. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213407] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
27
|
Bulut Kocabas B, Attar A, Peksel A, Altikatoglu Yapaoz M. Phytosynthesis of CuONPs via Laurus nobilis: Determination of antioxidant content, antibacterial activity, and dye decolorization potential. Biotechnol Appl Biochem 2020; 68:889-895. [PMID: 32835428 DOI: 10.1002/bab.2010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Copper oxide nanoparticles (CuONPs) were phytosynthesized by Laurus nobilis leaf extract, which was used as a reducing and capping agent. UV-vis spectroscopy was applied, and the spectrum of CuONPs gave a peak around 300 and 325 nm. An intense Fourier transform infrared spectroscopy between 4000 and 500 cm-1 wavelengths exhibited exterior functional groups of CuONPs. The results of scanning electron microscopy and transmission electron microscopy revealed that the green synthesized CuONPs were spherical in shape with sizes between 90 and 250 nm. Antibacterial activity of CuONPs was evaluated against both Gram-positive and Gram-negative bacteria. Brilliant Blue R-250 was employed in the dye decolorization studies, and CuONPs achieved 69% decolorization in 60 Min. The antioxidant activity of CuONPs was calculated by analyzing total phenolic compounds and flavonoid content. Furthermore, the reducing power of extract and nanoparticles was determined. Total phenolic compounds of CuONPs were determined as 6.7 µg of pyrocatechol equivalent/mg, while total flavonoids were measured as 236.62 µg catechin/mg sample. Results indicated that the method of CuONP formation is simple and low cost and the phytosynthesized CuONPs had antibacterial, antioxidant, and dye decolorization activity.
Collapse
Affiliation(s)
- Buket Bulut Kocabas
- Department of Chemistry, Faculty of Science and Letters, Davutpasa Campus, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Azade Attar
- Department of Bioengineering, Faculty of Chemical & Metallurgical Engineering, Davutpasa Campus, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Aysegul Peksel
- Department of Chemistry, Faculty of Science and Letters, Davutpasa Campus, Yildiz Technical University, Istanbul, 34220, Turkey
| | - Melda Altikatoglu Yapaoz
- Department of Chemistry, Faculty of Science and Letters, Davutpasa Campus, Yildiz Technical University, Istanbul, 34220, Turkey
| |
Collapse
|
28
|
Rambabu K, Bharath G, Banat F, Show PL. Biosorption performance of date palm empty fruit bunch wastes for toxic hexavalent chromium removal. ENVIRONMENTAL RESEARCH 2020; 187:109694. [PMID: 32485359 DOI: 10.1016/j.envres.2020.109694] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
Biosorption ability of date palm empty fruit bunch (DPEFB) was examined for the removal of toxic hexavalent chromium (Cr6+) ions from synthetic wastewater. The pretreated DPEFB biosorbent was studied for its morphology and surface chemistry through Scanning electron microscopy, Energy dispersive elemental analysis and Fourier transform infrared spectroscopy. Effect of biosorption parameters such as pH, biosorbent dosage, contact time, temperature, initial feed concentration and agitation speed on the Cr6+ ions removal efficiency by DPEFB was critically evaluated. The isoelectric point for the DPEFB sorbent was observed at pH 2, above which it was dehydronated to capture the positively charged Cr6+ ions. Batch biosorption studies showed that an optimal chromium removal efficiency of 58.02% was recorded by the DPEFB biosorbent for pH 2, dosage 0.3 g, 100 rpm agitation speed, 120 min contact time, 50 mg/L initial feed concentration and 30 °C operational temperature. Thermodynamic analysis showed that the binding of Cr6+ ions on DPEFB surface was exothermic, stable and favorable at room temperature. Equilibrium behavior of chromium binding on DPEFB was more aligned to Temkin isotherm (R2 = 0.9852) highlighting the indirect interactions between Cr6+ ions and the biosorbent. Kinetic modeling revealed that the biosorption of Cr6+ ions by DPEFB obeyed pseudo-second order model than the pseudo-first order and intra-particle diffusion models. Reusability studies of the DPEFB sorbent showed that NaNO3 was an effective regenerant and the biosorbent can be efficiently reused up to three successive biosorption-desorption cycles for chromium removal. In summary, the results clearly showed that the DPEFB biowaste seems to be an efficient, economic and eco-friendly biosorbent for sustainable removal of toxic hexavalent chromium ions from domestic and industrial wastewater streams.
Collapse
Affiliation(s)
- K Rambabu
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - G Bharath
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates.
| | - Pau Loke Show
- Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
29
|
Devi Priya D, Elango G, Mohana Roopan S, Shanavas S, Acevedo R, Golkonda M, Sridharan M. Abutilon indicum
Mediated CuO Nanoparticles: Eco‐Approach, Optimum Process of Congo Red Dye Degradation, and Mathematical Model for Multistage Operation. ChemistrySelect 2020. [DOI: 10.1002/slct.202000588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Duraipandi Devi Priya
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Ganesh Elango
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
- School of Publish Health, SRM Medical College and Research CentreSRM Institute of Science and Technology Kattankulathur 603 203 Chengalpattu District Tamil Nadu
| | - Selvaraj Mohana Roopan
- Chemistry of Heterocycles & Natural Product Research Laboratory, Department of Chemistry, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamil Nadu India
| | - Shajahan Shanavas
- Nano and Hybrid Materials LaboratoryDepartment of Physics, Periyar University Salem 636 011 India
| | - Roberto Acevedo
- Facultad de Ingeniería y TecnologíaUniversidad San Sebastián Bellavista 7 Santiago 8420524 Chile
| | - Mokeshrayalu Golkonda
- Department of Mathematics, School of Advanced ScienceVellore Institute of Technology Vellore 632 014, Tamilnadu India
| | - Makuteswaran Sridharan
- Department of ChemistryRashtreeya Vidyalaya College of Engineering, Mysore Road, Bangalore 560059 Karnataka India
| |
Collapse
|
30
|
An efficient chemical precipitation route to fabricate 3D flower-like CuO and 2D leaf-like CuO for degradation of methylene blue. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.01.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
31
|
|
32
|
Wei X, Wang X, Gao B, Zou W, Dong L. Facile Ball-Milling Synthesis of CuO/Biochar Nanocomposites for Efficient Removal of Reactive Red 120. ACS OMEGA 2020; 5:5748-5755. [PMID: 32226853 PMCID: PMC7097928 DOI: 10.1021/acsomega.9b03787] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/27/2020] [Indexed: 05/03/2023]
Abstract
With the goal of improving the removal of anionic contaminants, copper oxide (CuO)-modified biochar (BC) nanocomposites were successfully prepared through simply ball milling CuO particles with BC. The physicochemical properties of the fabricated CuO/BC nanocomposites were systematically characterized by a series of techniques; their adsorption performances were assessed, and the main adsorption mechanism was revealed. X-ray powder diffraction, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy analyses of the nanocomposites showed the strong interaction between CuO and BC and confirmed the success of the ball-milling syntheses. Because of strong electrostatic attraction between the embedded CuO nanoparticles and reactive red (RR120), the composited adsorbents exhibited excellent RR120 removal. The 10%-CuO/BC nanocomposite achieved the best RR120 removal efficiency (46%), which is much higher than that of pristine BC (20%). In addition, the adsorption was insensitive to the change of solution initial pH (4-10). The 10%-CuO/BC also showed fast adsorption kinetics (equilibrium time < 3 h) and extremely high adsorption capacity (Langmuir maximum capacity of 1399 mg g-1) to RR120 in aqueous solutions. Findings from this study demonstrate not only the strong feasibility of ball-milling synthesis of BC-based nanocomposites but also the promising potential of the CuO/BC nanocomposites to remove aqueous anionic contaminants.
Collapse
Affiliation(s)
- Xiaoqian Wei
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Xin Wang
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
| | - Bin Gao
- Department
of Agricultural and Biological Engineering, University of Florida, Gainesville, Florida 32611, United States
| | - Weixin Zou
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- E-mail: (W.Z.)
| | - Lin Dong
- Key
Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, PR China
- Jiangsu
Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, Nanjing 210093, PR China
- School
of the Environmental, Nanjing University, Nanjing 210093, PR China
- E-mail: (L.D.)
| |
Collapse
|
33
|
Das KK, Patnaik S, Mansingh S, Behera A, Mohanty A, Acharya C, Parida K. Enhanced photocatalytic activities of polypyrrole sensitized zinc ferrite/graphitic carbon nitride n-n heterojunction towards ciprofloxacin degradation, hydrogen evolution and antibacterial studies. J Colloid Interface Sci 2020; 561:551-567. [DOI: 10.1016/j.jcis.2019.11.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/25/2019] [Accepted: 11/09/2019] [Indexed: 11/27/2022]
|
34
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
35
|
Zhang Q, Lin Q, Zhang X, Chen Y. A novel hierarchical stiff carbon foam with graphene-like nanosheet surface as the desired adsorbent for malachite green removal from wastewater. ENVIRONMENTAL RESEARCH 2019; 179:108746. [PMID: 31586862 DOI: 10.1016/j.envres.2019.108746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
A novel hierarchical stiff carbon foam (HSCF) was successfully prepared via a carbothermal reduction between the carbon foam with two-level pore structure and the Al2O3 from aluminum sulfate, and used as a bulk adsorbent for removing malachite green (MG) dye. The structures of the HSCF were characterized using SEM, XRD, FTIR, BET, and XPS, and the effects of adsorption condition on the MG removal were studied through batch adsorption experiments. Results show that large-sized and complex-shaped HSCF can be easily fabricated with a high compression strength of 1.58 MPa at a low bulk density (0.10 g cm-3). The HSCF possesses a fluffy graphene-like nanosheet surface with a mesoporous structure and meanwhile exhibits good hydrophilicity loaded with aluminum hydroxide. The experimental maximum adsorption capacity for MG reaches 425.2 mg g-1 with a relatively high partition coefficient of 9.38 mg g-1 μM-1 at the optimal condition. The experimental data are in good agreement with Langmuir isotherm and pseudo-second-order kinetic model, and meanwhile, the adsorption of MG onto the HSCF is a spontaneous and endothermic process. Also, the HSCF still exhibits good adsorption ability and stability after seven regeneration cycles.
Collapse
Affiliation(s)
- Qiyun Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Qilang Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China.
| | - Xialan Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| | - Yangfa Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350116, PR China
| |
Collapse
|
36
|
Khorrami S, Zarepour A, Zarrabi A. Green synthesis of silver nanoparticles at low temperature in a fast pace with unique DPPH radical scavenging and selective cytotoxicity against MCF-7 and BT-20 tumor cell lines. ACTA ACUST UNITED AC 2019; 24:e00393. [PMID: 31763203 PMCID: PMC6864360 DOI: 10.1016/j.btre.2019.e00393] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 12/14/2022]
Abstract
Black peel pomegranate is a rare cultivar of pomegranate distinguished by a deep red color. The peel extract of the pomegranate shows unique pharmaceutical properties such as antioxidant and antibacterial. This extract synthesis silver nanoparticles in an ultra-fast pace without any heating or additional accelerators.
"Black Peel Pomegranate" is a rare pomegranate cultivar that its specific features are still uncovered particularly in the bio-nano researches. The present study was organized to evaluate this pomegranate's potential in the biosynthesis of silver nanoparticles as well as bio-medical activities. According to the results, the pomegranate peel extract incredibly inhibited 100 % of DPPH free radicals (EC50 = 5 μg/mL). This extract also induced more than 70 % cell death in the treated breast tumor cell lines, BT-20 and MCF-7. Interestingly, the extract was capable of biosynthesis very stable and small (15.6 nm) silver nanoparticles at ambient temperature in an ultra-fast pace. Likewise, these nanoparticles inhibited 77 % of DPPH free radicals (EC50 = 9 μg/mL). Although this antioxidant capacity was lower than that of the extract, instead, the anticancer activity of the synthesized nanoparticles was significantly enhanced, so that they led to more than 81 % and 89 % cell death in the breast tumor cell lines BT-20 and MCF-7, respectively. Considerably, neither the extract nor the biosynthesized silver nanoparticles, showed significant toxicity against non-tumor cell lines (L-929) at the same concentrations. These features of the biosynthesized nanoparticles were quite outstanding in comparison with chemical/commercial ones. Overall, the present study introduces black peel pomegranate as a worthy bio-agent in the biosynthesis of silver nanoparticles with unique activities as well as a cancer treatment.
Collapse
Affiliation(s)
- Sadegh Khorrami
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
- Corresponding authors.
| | - Atefeh Zarepour
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, Isfahan, Iran
| | - Ali Zarrabi
- Sabanci University, Nanotechnology Research, and Application Center (SUNUM), Istanbul, 34956, Turkey
- Corresponding authors.
| |
Collapse
|
37
|
Kharissova OV, Kharisov BI, Oliva González CM, Méndez YP, López I. Greener synthesis of chemical compounds and materials. ROYAL SOCIETY OPEN SCIENCE 2019; 6:191378. [PMID: 31827868 PMCID: PMC6894553 DOI: 10.1098/rsos.191378] [Citation(s) in RCA: 108] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 10/04/2019] [Indexed: 05/03/2023]
Abstract
Modern trends in the greener synthesis and fabrication of inorganic, organic and coordination compounds, materials, nanomaterials, hybrids and nanocomposites are discussed. Green chemistry deals with synthesis procedures according to its classic 12 principles, contributing to the sustainability of chemical processes, energy savings, lesser toxicity of reagents and final products, lesser damage to the environment and human health, decreasing the risk of global overheating, and more rational use of natural resources and agricultural wastes. Greener techniques have been applied to synthesize both well-known chemical compounds by more sustainable routes and completely new materials. A range of nanosized materials and composites can be produced by greener routes, including nanoparticles of metals, non-metals, their oxides and salts, aerogels or quantum dots. At the same time, such classic materials as cement, ceramics, adsorbents, polymers, bioplastics and biocomposites can be improved or obtained by cleaner processes. Several non-contaminating physical methods, such as microwave heating, ultrasound-assisted and hydrothermal processes or ball milling, frequently in combination with the use of natural precursors, are of major importance in the greener synthesis, as well as solventless and biosynthesis techniques. Non-hazardous solvents including ionic liquids, use of plant extracts, fungi, yeasts, bacteria and viruses are also discussed in relation with materials fabrication. Availability, necessity and profitability of scaling up green processes are discussed.
Collapse
Affiliation(s)
- Oxana V. Kharissova
- Facultad de Ciencias Físico-Matemáticas, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Boris I. Kharisov
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - César Máximo Oliva González
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Yolanda Peña Méndez
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
| | - Israel López
- Facultad de Ciencias Químicas, Laboratorio de Materiales I, Universidad Autónoma de Nuevo León, UANL, Avenida Universidad, Ciudad Universitaria, 66455 San Nicolás de los Garza, Nuevo León, Mexico
- Centro de Investigación en Biotecnología y Nanotecnología (CIBYN), Laboratorio de Nanociencias y Nanotecnología, Universidad Autónoma de Nuevo León, UANL, Autopista al Aeropuerto Internacional Mariano Escobedo Km. 10, Parque de Investigación e Innovación Tecnológica (PIIT), 66629 Apodaca, Nuevo León, Mexico
| |
Collapse
|
38
|
Siddiqui SI, Zohra F, Chaudhry SA. Nigella sativa seed based nanohybrid composite-Fe 2O 3-SnO 2/BC: A novel material for enhanced adsorptive removal of methylene blue from water. ENVIRONMENTAL RESEARCH 2019; 178:108667. [PMID: 31454728 DOI: 10.1016/j.envres.2019.108667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 06/10/2023]
Abstract
In this work, an advance approach is reported for the water treatment technology using nanohybrid composite Fe2O3-SnO2/BC prepared by incorporation of iron-tin binary oxide into the cellulosic framework of medicinally active Nigella sativa (Black cumin) seed powder. The co-precipitation method was followed to prepare the nanohybrid composite which was subjected to investigate its physiochemical properties using spectroscopic and microscopic techniques. Fourier-transform infrared spectroscopy analysis confirmed the formation of highly functionalized nanocomposite through the hydrogen and electrostatic interactions between the functional groups of seeds and Fe2O3-SnO2. X-ray and selected area electron diffraction pattern revealed the presence of cubic phase of γ-Fe2O3 and tetragonal phase of SnO2 in the composite. The scanning electron microscopic images suggested the porous and relatively smooth surface of the composite, and transmittance electron microscopic images showed the trapping of nano-cubes of Fe2O3-SnO2, having particles size in the range 95-185 nm, into the organic framework of Black cumin seeds, whose zero point charge was found at pH 7.2. The composite was investigated for adsorption of Methylene blue dye from water for which the results revealed that 2.0 gL-1 amount of Fe2O3-SnO2/BC was sufficient to remove more than 95% dye, within 15 min, at 6-9 pH, from its 10 mgL-1 concentration. The thermodynamic studies established spontaneity, feasibility, and endothermic nature of the adsorption process. The adsorption data was satisfactorily described by the Freundlich isotherm which indicated inhomogeneous surface of the composite. Application of Temkin isotherm revealed the same extent of bonding probability and heat of adsorption at 27, 35, and 45 °C. The free energy change calculated from Dubinin-Radushkevich isotherm suggested weak interaction between Methylene blue and Fe2O3-SnO2/BC. The process satisfactorily followed the pseudo-second order kinetics that was controlled by the film diffusion step which indicated interaction of Methylene blue with functional sites of the Fe2O3-SnO2/BC. The Fourier-transform infrared spectroscopy analysis gave the confirmatory evidence for interaction of Methylene blue to Fe2O3-SnO2/BC. The maximum Langmuir adsorption capacity of the Fe2O3-SnO2/BC was found to be 58.82 mgg-1 at 27 °C which is higher than the previously reported adsorbents, MnFe2O4/BC [J. Clean. Prod. 2018. 200, 996-1008], and Fe2O3-ZrO2/BC [J. Clean. Prod. 2019. 223, 849-868]. Therefore, the study showed excellent results for water treatment and can be useful to develop advance water treatment technology.
Collapse
Affiliation(s)
- Sharf Ilahi Siddiqui
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Fatima Zohra
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Saif Ali Chaudhry
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
39
|
Highly effective CuO catalysts synthesized by various routes for discoloration of methylene blue. CHEMICAL PAPERS 2019. [DOI: 10.1007/s11696-019-00950-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
40
|
Alimard P. Fabrication and kinetic study of Nd-Ce doped Fe3O4-chitosan nanocomposite as catalyst in Fenton dye degradation. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.06.058] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
41
|
Joshi A, Thiel K, Jog K, Dringen R. Uptake of Intact Copper Oxide Nanoparticles Causes Acute Toxicity in Cultured Glial Cells. Neurochem Res 2019; 44:2156-2169. [DOI: 10.1007/s11064-019-02855-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/29/2019] [Accepted: 08/03/2019] [Indexed: 01/11/2023]
|
42
|
Manjunatha C, Nagabhushana B, Raghu M, Pratibha S, Dhananjaya N, Narayana A. Perovskite lanthanum aluminate nanoparticles applications in antimicrobial activity, adsorptive removal of Direct Blue 53 dye and fluoride. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:674-685. [DOI: 10.1016/j.msec.2019.04.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 03/21/2019] [Accepted: 04/06/2019] [Indexed: 10/27/2022]
|
43
|
Aashima, Uppal S, Arora A, Gautam S, Singh S, Choudhary RJ, Mehta SK. Magnetically retrievable Ce-doped Fe 3O 4 nanoparticles as scaffolds for the removal of azo dyes. RSC Adv 2019; 9:23129-23141. [PMID: 35514495 PMCID: PMC9067296 DOI: 10.1039/c9ra03252e] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/05/2019] [Indexed: 11/21/2022] Open
Abstract
Considering the significant impact of magnetically retrievable nanostructures, herein, Fe3O4 and Ce-doped Fe3O4 nanoparticles were employed as scaffolds for the removal of the Reactive Black 5 (RB5) azo dye. We synthesized the Ce-doped Fe3O4 nanoparticles via hydrothermal treatment at 120 °C for 10 h with varying cerium concentrations (1.5-3.5%) and characterized them using basic techniques such as FTIR and UV-visible spectroscopy, and XRD analysis. The retention of their magnetic behaviors even after cerium amalgamation was demonstrated and confirmed by the VSM results. FESEM and EDX were used for the morphological and purity analysis of the synthesized nanoabsorbents. XPS was carried out to determine the electronic configuration of the synthesized samples. The porosity of the magnetic nanoparticles was investigated by BET analysis, and subsequently, the most porous sample was further used in the adsorption studies for the cleanup of RB5 from wastewater. The dye adsorption studies were probed via UV-visible spectroscopy, which indicated the removal efficiency of 87%. The prepared Ce-doped Fe3O4 nanoabsorbent showed the high adsorption capacity of 84.58 mg g-1 towards RB5 in 40 min. This is attributed to the electrostatic interactions between the nanoabsorbent and the dye molecules and high porosity of the prepared sample. The adsorption mechanism was also analyzed. The kinetic data well-fitted the pseudo-first-order model, and the adsorption capability at different equilibrium concentrations of the dye solution indicated monolayer formation and chemisorption phenomena. Furthermore, the magnetic absorbent could be rapidly separated from the wastewater using an external magnetic field after adsorption.
Collapse
Affiliation(s)
- Aashima
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Shivani Uppal
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Arushi Arora
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| | - Sanjeev Gautam
- Dr S. S. Bhatnagar University Institute of Chemical Engineering and Technology (SSB UICET), Panjab University Chandigarh 160014 India
| | - Suman Singh
- CSIR - Central Scientific Instruments Organization Sector-30 Chandigarh 160030 India
| | - R J Choudhary
- UGC-DAE Consortium for Scientific Research University Campus, Khandwa Road Indore - 452 017 India
| | - S K Mehta
- Department of Chemistry, Centre of Advanced Studies in Chemistry, Panjab University Chandigarh 160014 India
| |
Collapse
|
44
|
Hydrothermal-assisted synthesis of highly crystalline titania-copper oxide binary systems with enhanced antibacterial properties. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109839. [PMID: 31500036 DOI: 10.1016/j.msec.2019.109839] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 01/09/2023]
Abstract
Binary oxide systems containing TiO2 and CuO were synthesized using hydrothermal treatment and shown to have enhanced antibacterial properties. A detailed investigation was made of the effect of the molar ratio of components (TiO2:CuO = 7:3, 5:5, 3:7, 1:9) on the physicochemical parameters and antibacterial activity. Analysis of morphology (SEM, TEM and HRTEM) confirmed the presence of spherical and sheet-shaped particles. On the XRD patterns for the binary oxide materials, two crystalline forms (anatase and monoclinic CuO) were observed. It was found that an increase in CuO content led to a decrease in the BET surface area of the TiO2-CuO binary oxide systems. The synthesized TiO2-CuO materials exhibited very good antibacterial activity against both Gram-positive (methicillin-resistant Staphylococcus aureus and Bacillus cereus) and Gram-negative (Salmonella Enteritidis and Pseudomonas aeruginosa) bacteria. The obtained results show that TiO2-CuO oxide materials may have applications in the biomedical and food industries.
Collapse
|
45
|
Abdel Rahman RO, Abdel Moamen OA, Abdelmonem N, Ismail IM. Optimizing the removal of strontium and cesium ions from binary solutions on magnetic nano-zeolite using response surface methodology (RSM) and artificial neural network (ANN). ENVIRONMENTAL RESEARCH 2019; 173:397-410. [PMID: 30954913 DOI: 10.1016/j.envres.2019.03.055] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/14/2019] [Accepted: 03/21/2019] [Indexed: 06/09/2023]
Abstract
The feasibility of using magnetic nano-zeolite (MNZ) to remove cesium and strontium from their binary corrosive solutions was investigated by considering the multi-variant/multi-objective nature of the process. RSM (Response Surface Methodology) and ANN (Artificial Neural Network) were used to model and optimize the removal system and assess sensitive parameters that can affect the process reliability. MNZ is characterized by its high surface area and cation exchange capacity and possesses good regeneration behavior for both elements using citric acid. Its stability is comparable to other sorbents in acidic media and the stability increases in alkaline media, where dissolution rate follow first order reaction on heterogeneous sites. MNZ removes both contaminants simultaneously with small tendency toward Cs, where MNZ is suggested for application in pre-treatment of highly contaminated alkaline solutions. The percentage removal, decontamination factors, and separation factors have different dependency on the effluent/process conditions; this dependency is the same for both contaminants. Sorption kinetics is initially controlled by external mass transfer through the boundaries then intra-particle diffusion dominates the reactions. The process sensitivity to pH changes is attributed to changes in structural elements -species distribution at the solid/aqueous interface. Cs+ and Sr+2 are exchanged with Na+ and H+, regardless the effluent pH value, and with Al and Fe cations at specific pH. Isosteric heat of sorption calculations indicated that the total heat needed to complete the reaction was considerably reduced by operating the process at optimized temperature.
Collapse
Affiliation(s)
- R O Abdel Rahman
- Hot Lab. Center, Atomic Energy Authority of Egypt, P.O. No. 13759, Cairo, Egypt.
| | - O A Abdel Moamen
- Hot Lab. Center, Atomic Energy Authority of Egypt, P.O. No. 13759, Cairo, Egypt
| | - N Abdelmonem
- Chemical Engineering Department, Faculty of Engineering, Cairo University, Egypt
| | - I M Ismail
- Renewable Energy Engineering, Zewail City of Science and Technology, Giza, Egypt
| |
Collapse
|
46
|
Alhan S, Nehra M, Dilbaghi N, Singhal NK, Kim KH, Kumar S. Potential use of ZnO@activated carbon nanocomposites for the adsorptive removal of Cd 2+ ions in aqueous solutions. ENVIRONMENTAL RESEARCH 2019; 173:411-418. [PMID: 30959244 DOI: 10.1016/j.envres.2019.03.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/04/2019] [Accepted: 03/25/2019] [Indexed: 06/09/2023]
Abstract
Nowadays, the pollution in water resources has become a major concern, both environmentally and in perspective of human health. The bioaccumulation of pollutants, especially heavy metal ions through the food chain, poses a hazardous risk to humans and other living organisms. Nanomaterials and their composites have been recognized for their potential to resolve such problems. Herein, ZnO nanoparticles were synthesized and characterized via different microscopic/spectroscopic techniques. ZnO nanoparticles (i.e., 20 to 50 nm) were obtained in high yield via a facile chemical approach. The ratio of ZnO nanoparticles and activated carbon was optimized to achieve enhanced electrostatic interactions for the effective adsorption of cadmium ions (Cd2+). The adsorptive performance of the nanocomposite was further assessed in relation to several key parameters (e.g., contact time, solution pH, and adsorbent/adsorbate dosage). The nanocomposites (1 mg/ml) offered amaximum adsorption capacity of 96.2 mg/g for Cd2+ ions as confirmed through adsorption isotherms for a best interpretation of the adsorption phenomenon. The favourable adsorption capacity of the synthesized ZnO/activated carbon (9:1) nanocomposites supported their use as an efficient sorbent material in practical performance metrics (e.g., partition coefficient of 0.54 mg g-1μM-1) for the adsorption of Cd2+ ions.
Collapse
Affiliation(s)
- Sarita Alhan
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | | | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India; Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea.
| |
Collapse
|
47
|
Afridi MN, Lee WH, Kim JO. Effect of phosphate concentration, anions, heavy metals, and organic matter on phosphate adsorption from wastewater using anodized iron oxide nanoflakes. ENVIRONMENTAL RESEARCH 2019; 171:428-436. [PMID: 30735950 DOI: 10.1016/j.envres.2019.01.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/26/2018] [Accepted: 01/30/2019] [Indexed: 06/09/2023]
Abstract
Phosphorus is a necessary nutrient for the growth and survival of living beings. Nevertheless, an oversupply of phosphorus in wastewater results in eutrophication. Therefore, its removal from wastewater is important. However, coexisting components, such as anions, heavy metals, and organic matter, might inhibit the phosphate-adsorption mechanism by competing for the active surface sites of the adsorbent. In this study, iron oxide nanoflakes (INFs) were fabricated on iron foil via anodization. The rate of phosphate adsorption from wastewater onto INFs in the presence of three different coexisting components-anions, heavy metals, and organic matter-was evaluated. The morphology of the INFs was analyzed by X-ray diffraction, field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy. The phosphate adsorption equilibrium time using INFs was found to be 1 h. The Elovich model (R2 > 0.99) and the Langmuir model (R2 >0.95) respectively provided the best description of the adsorption kinetics and isotherm, suggesting the chemisorption nature of adsorption. The estimated adsorption capacity of the INFs was 21.5 mg-P g-1. The effect of anions (chloride, sulfate, nitrate, and carbonate) and heavy metals (Cd, As, Cr, and Pb) was studied at three different molar ratios (0.5:1, 1:1, and 1.5:1). The effect of different types of organic matter, such as citric acid, humic acid, and oxalic acid at concentrations of 100 and 200 mg L-1, was also examined. In five regeneration cycles, the total amount of phosphate adsorbed and desorbed, and the recovery percentage were 6.51 mg-P g-1, 5.16 mg-P g-1, and 79.24%, respectively.
Collapse
Affiliation(s)
- Muhammad Naveed Afridi
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Won-Hee Lee
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
48
|
Nehra M, Dilbaghi N, Singhal NK, Hassan AA, Kim KH, Kumar S. Metal organic frameworks MIL-100(Fe) as an efficient adsorptive material for phosphate management. ENVIRONMENTAL RESEARCH 2019; 169:229-236. [PMID: 30476746 DOI: 10.1016/j.envres.2018.11.013] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 05/12/2023]
Abstract
The excessive discharge of phosphate in water bodies is one of the primary factors causing eutrophication. Therefore, its removal is of significant research interest. The present study deals with the development and performance of highly effective phosphate-adsorbent. Here, we have synthesized MIL-100(Fe) metal-organic frameworks as a facile strategy to effectively remove phosphate from eutropic water samples. The adsorbent was characterized by Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA), Brunauer-Emmett-Teller (BET), scanning electron microscopy (SEM), and wavelength dispersive X-ray fluorescence (WDXRF). The phosphate adsorption performance of MIL-100(Fe) was evaluated with the help of different batch experiments relating to the effect of adsorbent/adsorbate concentrations and the solution pH. The MOF offered a maximum adsorption capacity of 93.6 mg g-1 for phosphate from aqueous solutions with Langmuir isotherm model (R2 = 0.99). MIL-100(Fe) offered an absolute phosphate adsorption performance with a partition co-efficient of 15.98 mg g-1 µM-1 at pH 4 and room temperature conditions. Final experiments with real water samples were also performed to examine the effectiveness of MIL-100(Fe) for phosphate adsorption even in the presence of other ions. These findings support the potential utility of MIL-100(Fe) as nanoadsorbent in phosphate removal for water management.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Electronics and Communication Engineering, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India
| | | | - Ashraf Aly Hassan
- Department of Civil Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana 125001, India; Department of Civil Engineering, University of Nebraska Lincoln, P.O. Box 886105, Lincoln, NE 68588-6105, United States.
| |
Collapse
|
49
|
Verma A, Jaihindh DP, Fu YP. Photocatalytic 4-nitrophenol degradation and oxygen evolution reaction in CuO/g-C3N4 composites prepared by deep eutectic solvent-assisted chlorine doping. Dalton Trans 2019; 48:8594-8610. [DOI: 10.1039/c9dt01046g] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heterostructured Cl-CuO/g-C3N4 composite for OER and photocatalytic 4-nitrophenol degradation.
Collapse
Affiliation(s)
- Atul Verma
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| | | | - Yen-Pei Fu
- Department of Materials Science and Engineering
- National Dong Hwa University
- Hualien-97401
- R.O.C
| |
Collapse
|