1
|
Parker MC, Fritts SR, Weaver SP, Meierhofer MB, Dutton J. Inter- and intraspecific variability of total mercury concentrations in bats of Texas (USA). ENVIRONMENTAL RESEARCH 2024; 259:119570. [PMID: 38971354 DOI: 10.1016/j.envres.2024.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/15/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Exposure to mercury (Hg) may cause deleterious health effects in wildlife, including bats. Texas produces more Hg pollution than any other state in the United States, yet only one study has examined Hg accumulation in bats. This study measured the concentration of total Hg (THg) in fur (n = 411) collected from ten bat species across 32 sites in eastern and central Texas, USA. Fur THg concentrations were compared among species, and when samples sizes were large enough, between sex and life stage within a species, and the proximity to coal-fired power plants. For all sites combined and species with a sample size ≥8, mean THg concentrations (μg/g dry weight) were greatest in tri-colored bats (Perimyotis subflavus; 6.04), followed by evening bats (Nycticeius humeralis; 5.89), cave myotis (Myotis velifer; 2.11), northern yellow bats (Lasiurus intermedius; 1.85), Brazilian free-tailed bats (Tadarida brasiliensis; 1.03), and red bats (Lasiurus borealis/blossevillii; 0.974), and lowest in hoary bats (Lasiurus cinereus; 0.809). Within a species, fur THg concentrations did not significantly vary between sex for the five examined species (red bat, northern yellow bat, cave myotis, evening bat, Brazilian free-tailed bat) and only between life stage in evening bats. Site variations in fur THg concentrations were observed for evening bats, tri-colored bats, and Brazilian free-tailed bats. Evening bats sampled closer to point sources of Hg pollution had greater fur THg concentrations than individuals sampled further away. Sixteen percent of evening bats and 8.7% of tri-colored bats had a fur THg concentration exceeding the 10 μg/g toxicity threshold level, suggesting that THg exposure may pose a risk to the health of bats in Texas, particularly those residing in east Texas and on the upper Gulf coast. The results of this study can be incorporated into future management and recovery plans for bats in Texas.
Collapse
Affiliation(s)
- Matthew C Parker
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | - Sarah R Fritts
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| | | | - Melissa B Meierhofer
- Department of Rangeland, Wildlife & Fisheries Management, Texas A&M University, College Station, TX, 77843, USA; Finnish Museum of Natural History, University of Helsinki, Pohjoinen Rautatiekatu 13, 00100, Helsinki, Finland.
| | - Jessica Dutton
- Department of Biology, Texas State University, San Marcos, TX, 78666, USA.
| |
Collapse
|
2
|
Bonisoli-Alquati A, Jackson AK, Eagles-Smith CA, Moyo S, Pérez-Umphrey AA, Polito MJ, Snider AM, Williams ST, Woltmann S, Stouffer PC, Taylor SS. Mercury concentrations in Seaside Sparrows and Marsh Rice Rats differ across the Mississippi River Estuary. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:959-971. [PMID: 39048895 PMCID: PMC11399195 DOI: 10.1007/s10646-024-02789-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Mercury (Hg) concentrations and their associated toxicological effects in terrestrial ecosystems of the Gulf of Mexico are largely unknown. Compounding this uncertainty, a large input of organic matter from the 2010 Deepwater Horizon oil spill may have altered Hg cycling and bioaccumulation dynamics. To test this idea, we quantified blood concentrations of total mercury (THg) in Seaside Sparrows (Ammospiza maritima) and Marsh Rice Rats (Oryzomys palustris) in marshes west and east of the Mississippi River in 2015 and 2016. We also tested for a difference in THg concentrations between oiled and non-oiled sites. To address the potential confounding effect of diet variation on Hg transfer, we used stable nitrogen (δ15N) and carbon (δ13C) isotope values as proxies of trophic position and the source of primary production, respectively. Our results revealed that five to six years after the spill, THg concentrations were not higher in sites oiled by the spill compared to non-oiled sites. In both species, THg was higher at sites east of the Mississippi River compared to control and oiled sites, located west. In Seaside Sparrows but not in Marsh Rice Rats, THg increased with δ15N values, suggesting Hg trophic biomagnification. Overall, even in sites with the most elevated THg, concentrations were generally low. In Seaside Sparrows, THg concentrations were also lower than previously reported in this and other closely related passerines, with only 7% of tested birds exceeding the lowest observed effect concentration associated with toxic effects across bird species (0.2 µg/g ww). The factors associated with geographic heterogeneity in Hg exposure remain uncertain. Clarification could inform risk assessment and future restoration and management actions in a region facing vast anthropogenic changes.
Collapse
Affiliation(s)
- Andrea Bonisoli-Alquati
- Department of Biological Sciences, California State Polytechnic University, Pomona, Pomona, CA, 91768, USA.
| | - Allyson K Jackson
- Purchase College SUNY, Department of Environmental Studies, Purchase, NY, 10577, USA
| | - Collin A Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Sydney Moyo
- Louisiana State University, Department of Biological Sciences, Baton Rouge, LA, 70803, USA
| | - Anna A Pérez-Umphrey
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA, 70803, USA
| | - Michael J Polito
- Louisiana State University, Department of Oceanography and Coastal Sciences, Baton Rouge, LA, 70803, USA
| | - Allison M Snider
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA, 70803, USA
| | - S Tyler Williams
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA, 70803, USA
| | - Stefan Woltmann
- Center of Excellence for Field Biology, and Department of Biology, Austin Peay State University, Clarksville, TN, 37040, USA
| | - Philip C Stouffer
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA, 70803, USA
| | - Sabrina S Taylor
- School of Renewable Natural Resources, Louisiana State University and LSU AgCenter, Baton Rouge, LA, 70803, USA
| |
Collapse
|
3
|
Gómez R, Neri-Bazán RM, Posadas-Mondragon A, Vizcaíno-Dorado PA, Magaña JJ, Aguilar-Faisal JL. Molecular Assessments, Statistical Effectiveness Parameters and Genetic Structure of Captive Populations of Tursiops truncatus Using 15 STRs. Animals (Basel) 2022; 12:ani12141857. [PMID: 35883404 PMCID: PMC9312175 DOI: 10.3390/ani12141857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The bottlenose dolphins are one of the most used species in entertainment, assisted therapy, education, and research on welfare. However, their maintenance in captivity requires powerful and sensitive tools for preserving their diversity. The number of genetic markers for this purpose remains controversial, restraining the marine species’ genetic diversity determination. We aimed to select 15 hypervariable molecular markers whose statistical parameters were made in 210 captive dolphins from 18 Mexican centers to support their usefulness. The proposed set of markers allowed us to obtain a genetic fingerprint of each dolphin. Additionally, we identified the structure of the captive population, analyzing the groups according to the capture location. Such characterization is key for maintaining the captive species’ biodiversity rates within conservation and reintroduction programs. However, these 15 genetic markers can also be helpful for small- isolated populations, subspecies and other genera of endangered and vulnerable species. Abstract Genetic analysis is a conventional way of identifying and monitoring captive and wildlife species. Knowledge of statistical parameters reinforcing their usefulness and effectiveness as powerful tools for preserving diversity is crucial. Although several studies have reported the diversity of cetaceans such as Tursiops truncatus using microsatellites, its informative degree has been poorly reported. Furthermore, the genetic structure of this cetacean has not been fully studied. In the present study, we selected 15 microsatellites with which 210 dolphins were genetically characterized using capillary electrophoresis. The genetic assertiveness of this set of hypervariable markers identified one individual in the range of 6.927e13 to 1.806e16, demonstrating its substantial capability in kinship relationships. The genetic structure of these 210 dolphins was also determined regarding the putative capture origin; a genetic stratification (k = 2) was found. An additional dolphin group of undetermined origin was also characterized to challenge the proficiency of our chosen markers. The set of markers proposed herein could be a helpful tool to guarantee the maintenance of the genetic diversity rates in conservation programs both in Tursiops truncatus and across other odontocetes, Mysticeti and several genera of endangered and vulnerable species.
Collapse
Affiliation(s)
- Rocío Gómez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Rocío M. Neri-Bazán
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Araceli Posadas-Mondragon
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
| | - Pablo A. Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
| | - Jonathan J. Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra-Ibarra (INR-LGII), Mexico City 14389, Mexico;
- Departamento de Bioingenieria, Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey-Campus Ciudad de México (ITESM-CCM), Mexico City 14380, Mexico
- Correspondence: (J.J.M.); (J.L.A.-F.)
| | - José Leopoldo Aguilar-Faisal
- Laboratorio de Medicina de Conservación, Escuela Superior de Medicina-Instituto Politécnico Nacional (ESM-IPN), Mexico City 11340, Mexico; (R.M.N.-B.); (A.P.-M.)
- Correspondence: (J.J.M.); (J.L.A.-F.)
| |
Collapse
|
4
|
McCormack MA, McFee WE, Whitehead HR, Piwetz S, Dutton J. Exploring the Use of SEM-EDS Analysis to Measure the Distribution of Major, Minor, and Trace Elements in Bottlenose Dolphin (Tursiops truncatus) Teeth. Biol Trace Elem Res 2022; 200:2147-2159. [PMID: 34273061 DOI: 10.1007/s12011-021-02809-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022]
Abstract
Dolphin teeth contain enamel, dentin, and cementum. In dentin, growth layer groups (GLGs), deposited at incremental rates (e.g., annually), are used for aging. Major, minor, and trace elements are incorporated within teeth; their distribution within teeth varies, reflecting tooth function and temporal changes in an individual's exposure. This study used a scanning electron microscope (SEM) equipped with energy dispersive X-ray spectroscopy (EDS) to determine the distribution of major (e.g., Ca, P), minor (e.g., Cl, Mg, Na), and trace elements (e.g., Cd, Hg, Pb, Zn) in teeth from 12 bottlenose dolphins (Tursiops truncatus). The objective was to compare elemental distributions between enamel and dentin and across GLGs. Across all dolphins and point analyses, the following elements were detected in descending weight percentage (wt %; mean ± SE): O (40.8 ± 0.236), Ca (24.3 ± 0.182), C (14.3 ± 0.409), P (14.0 ± 0.095), Al (4.28 ± 0.295), Mg (1.89 ± 0.047), Na (0.666 ± 0.008), Cl (0.083 ± 0.003). Chlorine and Mg differed between enamel and dentin; Mg increased from the enamel towards the dentin while Cl decreased. The wt % of elements did not vary significantly across the approximate location of the GLGs. Except for Al, which may be due to backscatter from the SEM stub, we did not detect trace elements. Other trace elements, if present, are below the detection limit. Technologies with lower detection limits (e.g., laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)) would be required to confirm the presence and distribution of trace elements in bottlenose dolphin teeth.
Collapse
Affiliation(s)
- Meaghan A McCormack
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| | - Wayne E McFee
- National Centers for Coastal Ocean Science, National Oceanic and Atmospheric Administration, Charleston, SC, 29412, USA
| | | | - Sarah Piwetz
- Texas Marine Mammal Stranding Network, Galveston, TX, 77551, USA
| | - Jessica Dutton
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA
| |
Collapse
|
5
|
McCormack MA, Nowlin WH, Dutton J. Effect of trophic position on mercury concentrations in bottlenose dolphins (Tursiops truncatus) from the northern Gulf of Mexico. ENVIRONMENTAL RESEARCH 2022; 204:112124. [PMID: 34571031 DOI: 10.1016/j.envres.2021.112124] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Marine species from the Gulf of Mexico often have higher mercury (Hg) concentrations than conspecifics in the Atlantic Ocean. Spatial differences in Hg sources, environmental conditions, and microbial communities influence both Hg methylation rates and the bioavailability of Hg to organisms at the base of the food web. Mercury bioaccumulates within organisms and biomagnifies in marine food webs, and therefore reaches the greatest concentrations in long-lived marine carnivores, such as dolphins. In this study, we explored whether differences in trophic position and foraging habitat among bottlenose dolphins (Tursiops truncatus) from the northern Gulf of Mexico (nGoM) contributed to the observed variation in skin total Hg (THg) concentrations. Using the δ13C and δ34S values in dolphin skin, we assigned deceased stranded dolphins from Florida (FL; n = 29) and Louisiana (LA; n = 72) to habitats (estuarine, barrier island, and coastal) east and west of the Mississippi River Delta (MRD). We estimated the mean trophic position of dolphins from each habitat using δ15N values from stranded dolphin skin and tissues of primary consumers taken from the literature following a Bayesian framework. Finally, we compared trophic positions and THg concentrations among dolphins from each habitat, accounting for sex and body length. Estimated marginal mean THg concentrations (μg/g dry weight) were greatest in dolphins assigned to the coastal habitat and estuarine habitats east of the MRD (range: 2.59-4.81), and lowest in dolphins assigned to estuarine and barrier island habitats west of the MRD (range: 0.675-0.993). On average, dolphins from habitats with greater THg concentrations also had higher estimated trophic positions, except for coastal dolphins. Our results suggest that differences in trophic positions and foraging habitats contribute to spatial variability in skin THg concentrations among nGoM bottlenose dolphins, however, the relative influence of these factors on THg concentrations are not easily partitioned.
Collapse
Affiliation(s)
- Meaghan A McCormack
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| | - Weston H Nowlin
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| | - Jessica Dutton
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX, 78666, USA.
| |
Collapse
|
6
|
Barbosa MS, Carvalho DP, Gravena W, de Almeida R, Mussy MH, Sousa EA, Holanda IBB, de Sousa-Filho IF, Bastos WR. Total mercury and methylmercury in river dolphins (Cetacea: Iniidae: Inia spp.) in the Madeira River Basin, Western Amazon. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:45121-45133. [PMID: 33861423 DOI: 10.1007/s11356-021-13953-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 04/12/2021] [Indexed: 06/12/2023]
Abstract
In the Amazon, mercury (Hg) contamination comes from ASGM operations along with soil remobilization processes associated with deforestation. The objective of this study was to evaluate the exposure to methylmercury (MeHg) and total mercury (THg) in 88 samples of skin and blubber tissue obtained from live captured river dolphins (Inia boliviensis, Inia geoffrensis, and Inia spp.) in the Madeira River Basin. THg and MeHg measurements were performed by CV-AAS and GC-AFS, respectively. We also calculated the daily intake rate (DIR) of THg (wet weight) by Inia spp. THg levels in blubber tissue of adult river dolphins (Inia spp.) ranged from 0.015 to 3.804 mg kg-1, while MeHg concentrations in blubber tissue varied from 0.04 to 2.65 mg kg-1 and in skin tissue from 0.09 to 0.66 mg kg-1. There were no significant differences in MeHg concentration in blubber (p = 0.616) and skin (p = 0.498) tissue samples between adult males and females in the different sampling locations. The adult animals showed differences in THg and MeHg concentrations significantly higher than in the calves. The estimate of the DIR of the genus Inia ranged from 1.17 to 12.35 μg kg-1 day-1 (bw), from the consumption of fish species with herbivorous to piscivorous habits, respectively. More biological and ecological data, such as the precise determination of age, mediated length, weight, and diet of river dolphins, are necessary to verify the Hg biomagnification. However, our data indicate that bioaccumulation is an active process in the dolphins of the Madeira River Basin.
Collapse
Affiliation(s)
- Melissa S Barbosa
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Dario P Carvalho
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Santo Antônio Energia, Porto Velho, RO, Brazil
| | - Waleska Gravena
- Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Manaus, AM, Brazil
- Laboratório de Mamíferos Aquáticos, Instituto Nacional de Pesquisas da Amazônia, Manaus, AM, Brazil
| | - Ronaldo de Almeida
- Departamento de Ciências Sociais e Ambientais, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Marília H Mussy
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Eduardo A Sousa
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Igor B B Holanda
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
| | - Izidro F de Sousa-Filho
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley R Bastos
- Laboratório de Biogeoquímica Ambiental WCP, Fundação Universidade Federal de Rondônia, Porto Velho, RO, Brazil.
| |
Collapse
|
7
|
McCormack MA, Jackson BP, Dutton J. Relationship between mercury and selenium concentrations in tissues from stranded odontocetes in the northern Gulf of Mexico. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141350. [PMID: 33370896 DOI: 10.1016/j.scitotenv.2020.141350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/13/2020] [Accepted: 07/27/2020] [Indexed: 06/12/2023]
Abstract
Odontocetes are apex predators that, despite accumulating mercury (Hg) to high concentrations in their tissues, show few signs of Hg toxicity. One method of Hg detoxification in odontocetes includes the sequestering of Hg in toxicologically inert mercury selenide (HgSe) compounds. To explore the tissue-specific accumulation of Hg and Se and the potential protective role of Se against Hg toxicity, we measured the concentrations of total mercury (THg) and selenium (Se) in multiple tissues from 11 species of odontocetes that stranded along the northern Gulf of Mexico coast [Florida (FL) and Louisiana (LA)]. Tissues were collected primarily from bottlenose dolphins (Tursiops truncatus; n = 93); however, individuals from species in the following 8 genera were also sampled: Feresa (n = 1), Globicephala (n = 1), Grampus (n = 2), Kogia (n = 5), Mesoplodon (n = 1), Peponocephala (n = 4), Stenella (n = 9), and Steno (n = 1). In all species, mean THg concentrations were greatest in the liver and lowest in the blubber, lung, or skin. In contrast, in most species, mean Se concentrations were greatest in the liver, lung, or skin, and lowest in the blubber. For all species combined, Se:Hg molar ratios decreased with increasing THg concentration in the blubber, kidney, liver, lung, and skin following an exponential decay relationship. In bottlenose dolphins, THg concentrations in the kidney, liver, and lung were significantly greater in FL dolphins compared to LA dolphins. On average, in bottlenose dolphins, Se:Hg molar ratios were approximately 1:1 in the liver and >1:1 in blubber, kidney, lung, and skin, suggesting that Se likely protects against Hg toxicity. However, more research is necessary to understand the variation in Hg accumulation within and among species and to assess how Hg, in combination with other environmental stressors, influences odontocete population health.
Collapse
Affiliation(s)
- Meaghan A McCormack
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX 78666, USA.
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH 03755, USA.
| | - Jessica Dutton
- Department of Biology, Texas State University, Aquatic Station, San Marcos, TX 78666, USA.
| |
Collapse
|
8
|
Huang JN, Wen B, Meng LJ, Li XX, Wang MH, Gao JZ, Chen ZZ. Integrated response of growth, antioxidant defense and isotopic composition to microplastics in juvenile guppy (Poecilia reticulata). JOURNAL OF HAZARDOUS MATERIALS 2020; 399:123044. [PMID: 32521315 DOI: 10.1016/j.jhazmat.2020.123044] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 05/12/2023]
Abstract
Microplastics (MPs) pollution becomes a research hotspot and many studies focus on threats of MPs, but few have integrated multi-level indicators to assess response to MPs of organisms. Here we exposed guppy (Poecilia reticulata) to MPs (polystyrene; 32-40 μm diameter) with two concentrations (100 and 1000 μg/L) for 28 days. We found that higher accumulation of MPs appeared in guppy gill than that in gut. MPs had no obvious effect on guppy growth but significantly inhibited the condition factor. Oxidative stress presented in guppy viscera with activated antioxidants. The decline of Na+/K+-ATP activity in guppy indicated that MPs might interfere with the osmotic balance of gills. MPs reduced body molar ratio of C:N and δ13C value, but no apparent impact on δ15N. It implied that MPs probably altered elemental transition. Eventually, through integrated biomarkers response index (IBR) of guppy, we found that catalase activity was the highest index in response to MPs, and the response of growth performance to MPs was lower than that of oxidative stress and element alteration. Risks of MPs aggravated in a concentration-dependent manner. These findings suggested that multi-level IBR approach should be adopted to quantify effects of MPs on aquatic organisms, especially on fish.
Collapse
Affiliation(s)
- Jun-Nan Huang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Bin Wen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| | - Liu-Jiang Meng
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Xin-Xin Li
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Mei-Hui Wang
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Jian-Zhong Gao
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China
| | - Zai-Zhong Chen
- National Demonstration Centre for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai 201306, China; Shanghai Collaborative Innovation for Aquatic Animal Genetics and Breeding, Shanghai Ocean University, Shanghai 201306, China; Shanghai Engineering Research Centre of Aquaculture, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|