1
|
Kritikos M, Zhou JW, Huang C, Gandy S, Pellecchia AC, Santiago-Michels S, Carr MA, Islam S, Yang Y, Horton MK, Lucchini RG, Franceschi AM, Bangiyev L, Vaska P, Clouston SA, Luft BJ. Exposure duration and cerebral amyloidosis in the olfactory cortex of World Trade Center responders: A positron emission tomography and magnetic resonance imaging study. J Alzheimers Dis 2024:13872877241302350. [PMID: 39610293 DOI: 10.1177/13872877241302350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
BACKGROUND Amyloid-β proteins, a hallmark of Alzheimer's disease, are believed to play an adaptive role in the cerebral immune response. OBJECTIVE Amyloid is believed to play a role in cerebral immune response and could play a similar role in response to air pollution exposures. In the present study, we examined whether WTC exposure duration was associated with cerebral amyloidosis in WTC responders. METHODS WTC responders (aged 44-65 years) who varied in exposure duration but did not use personalized protective equipment were assessed using positron-emission tomography with [18F]-Florbetaben. The outcome was the cortical [18F]-Florbetaben burden, measured using regional standardized uptake value ratios (SUVRs) in 34 Desikan-Killiany regions of interest. Spearman's ρ and generalized linear models were used to estimate correlations between WTC exposure duration and cortical [18F]-Florbetaben SUVR. Cognitive and behavioral symptoms were measured. Magnetic resonance imaging was used to measure cortical thickness and diffusivity. RESULTS The mean age of imaged responders was 56 years old. WTC exposure duration was associated with olfactory [18F]-Florbetaben SUVR (Spearman's ρ = 0.43, p = 0.011), which was in turn associated with elevated [18F]-Florbetaben SUVR in ventral regions (ρ = 0.41, p = 0.016). Cortical [18F]-Florbetaben in ventral regions was associated with reduced response speed (ρ = -0.72, p < 0.001), was co-located with cortical diffusivity across regions in the parietal and frontal lobes and reduced cortical thickness in the isthmus cingulate (ρ = -0.53, p = 0.001). CONCLUSIONS Low-grade amyloidosis in the olfactory and frontal lobes was associated with WTC exposure duration. Future work should examine whether low-grade amyloidosis is correlated with the location or distribution of neurofibrillary tangles in WTC responders.
Collapse
Affiliation(s)
- Minos Kritikos
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Juin-Wan Zhou
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Chuan Huang
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, USA
| | - Sam Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry and Mount Sinai Alzheimer's Disease Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alison C Pellecchia
- Stony Brook World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | | | - Melissa A Carr
- Stony Brook World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Shabab Islam
- Stony Brook World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
| | - Yuan Yang
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Roberto G Lucchini
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
- Department of Biomedical, Metabolic and Neurosciences, University of Modena, Modena MO, Italy
| | | | - Lev Bangiyev
- Department of Radiology, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Paul Vaska
- Department of Biomedical Engineering, Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Sean Ap Clouston
- Program in Public Health and Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| | - Benjamin J Luft
- Stony Brook World Trade Center Health and Wellness Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY, USA
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Health Sciences Center, Stony Brook, NY, USA
| |
Collapse
|
2
|
Liu Z, Hu B, Tang J, Liu X, Cheng B, Jia C, Zhang L. Frontiers and hotspots evolution between air pollution and Alzheimer's disease: A bibliometric analysis from 2013 to 2023. J Alzheimers Dis 2024; 102:257-274. [PMID: 39573870 DOI: 10.1177/13872877241289381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
In recent years, the study of air pollution has received increasing attention from researchers, but a summary of Alzheimer's disease (AD) and air pollution is missed. Through combing the documents in the core dataset of Web of Science, this study analyzes current research based on specific keywords. CiteSpace and VOSviewer perform statistical analysis of measurement metrics to visualize a network of relevant content elements. The research devotes discussion to the relationship between air pollution and AD. Keyword hotspots include AD, children, oxidative stress, and system inflammation. Overall, 304 documents on air pollution and AD from 2013 to 2023 were retrieved from Web of Science. One hundred twenty-two journals published relevant articles, and the number of articles has increased gradually since the past decade. Research and development in AD and air pollution are progressing rapidly, but there is still a need for more connections with multidisciplinary technologies to explore cutting-edge hotspots.
Collapse
Affiliation(s)
- Zhirong Liu
- Department of General Surgery, The Affiliated Hospital of Chengdu Medical College, Chengdu Second People's Hospital, Chengdu, China
| | - BingShuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - Ju Tang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - BaoJing Cheng
- President Office, Chengdu Medical College, Chengdu, China
| | - Cui Jia
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, China
| |
Collapse
|
3
|
Herting MM, Bottenhorn KL, Cotter DL. Outdoor air pollution and brain development in childhood and adolescence. Trends Neurosci 2024; 47:593-607. [PMID: 39054161 PMCID: PMC11324378 DOI: 10.1016/j.tins.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024]
Abstract
Exposure to outdoor air pollution has been linked to adverse health effects, including potential widespread impacts on the CNS. Ongoing brain development may render children and adolescents especially vulnerable to neurotoxic effects of air pollution. While mechanisms remain unclear, promising advances in human neuroimaging can help elucidate both sensitive periods and neurobiological consequences of exposure to air pollution. Herein we review the potential influences of air pollution exposure on neurodevelopment, drawing from animal toxicology and human neuroimaging studies. Due to ongoing cellular and system-level changes during childhood and adolescence, the developing brain may be more sensitive to pollutants' neurotoxic effects, as a function of both timing and duration, with relevance to cognition and mental health. Building on these foundations, the emerging field of environmental neuroscience is poised to further decipher which air toxicants are most harmful and to whom.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Katherine L Bottenhorn
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Department of Psychology, Florida International University, Miami, FL, USA
| | - Devyn L Cotter
- Department of Populations and Public Health Sciences, University of Southern California, Los Angeles, CA, USA; Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Liu C, Meng L, Gao Y, Chen J, Zhu M, Xiong M, Xiao T, Gu X, Liu C, Li T, Zhang Z. PM2.5 triggers tau aggregation in a mouse model of tauopathy. JCI Insight 2024; 9:e176703. [PMID: 39133647 PMCID: PMC11383351 DOI: 10.1172/jci.insight.176703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 05/31/2024] [Indexed: 09/11/2024] Open
Abstract
The aggregation and prion-like propagation of tau are the hallmarks of Alzheimer's disease (AD) and other tauopathies. However, the molecular mechanisms underlying the assembly and spread of tau pathology remain elusive. Epidemiological data show that exposure to fine particulate matter (PM2.5) is associated with an increased risk of AD. However, the molecular mechanisms remain unknown. Here, we showed that PM2.5 triggered the aggregation of tau and promoted the formation of tau fibrils. Injection of PM2.5-induced tau preformed fibrils (PFFs) into the hippocampus of tau P301S transgenic mice promoted the aggregation of tau and induced cognitive deficits and synaptic dysfunction. Furthermore, intranasal administration of PM2.5 exacerbated tau pathology and induced cognitive impairment in tau P301S mice. In conclusion, our results indicated that PM2.5 exposure promoted tau pathology and induced cognitive impairments. These results provide mechanistic insight into how PM2.5 increases the risk of AD.
Collapse
Affiliation(s)
- Congcong Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lanxia Meng
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yan Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiehui Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Zhu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tingting Xiao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoling Gu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoyang Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan, China
| | - Tao Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
- Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, China
| |
Collapse
|
5
|
Chen TB, Liang CS, Chang CM, Yang CC, Yu HL, Wu YS, Huang WJ, Tsai IJ, Yan YH, Wei CY, Yang CP. Association Between Exposure to Particulate Matter and the Incidence of Parkinson's Disease: A Nationwide Cohort Study in Taiwan. J Mov Disord 2024; 17:313-321. [PMID: 38887056 PMCID: PMC11300401 DOI: 10.14802/jmd.24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVE Emerging evidence suggests that air pollution exposure may increase the risk of Parkinson's disease (PD). We aimed to investigate the association between exposure to fine particulate matter (PM2.5) and the risk of incident PD nationwide. METHODS We utilized data from the Taiwan National Health Insurance Research Database, which is spatiotemporally linked with air quality data from the Taiwan Environmental Protection Administration website. The study population consisted of participants who were followed from the index date (January 1, 2005) until the occurrence of PD or the end of the study period (December 31, 2017). Participants who were diagnosed with PD before the index date were excluded. To evaluate the association between exposure to PM2.5 and incident PD risk, we employed Cox regression to estimate the hazard ratio and 95% confidence interval (CI). RESULTS A total of 454,583 participants were included, with a mean (standard deviation) age of 63.1 (9.9) years and a male proportion of 50%. Over a mean follow-up period of 11.1 (3.6) years, 4% of the participants (n = 18,862) developed PD. We observed a significant positive association between PM2.5 exposure and the risk of PD, with a hazard ratio of 1.22 (95% CI, 1.20-1.23) per interquartile range increase in exposure (10.17 μg/m3) when adjusting for both SO2 and NO2. CONCLUSION We provide further evidence of an association between PM2.5 exposure and the risk of PD. These findings underscore the urgent need for public health policies aimed at reducing ambient air pollution and its potential impact on PD.
Collapse
Affiliation(s)
- Ting-Bin Chen
- Department of Neurology, Neurological Institute, Taichung Veterans General Hospital, Taichung, Taiwan
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Beitou Branch, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ching-Mao Chang
- Center for Traditional Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Institute of Traditional Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Cheng-Chia Yang
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Hwa-Lung Yu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei, Taiwan
| | - Yuh-Shen Wu
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - Winn-Jung Huang
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
| | - I-Ju Tsai
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan
| | - Yuan-Horng Yan
- Department of Medical Research, Kuang Tien General Hospital, Taichung, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
| | - Cheng-Yu Wei
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
- Department of Neurology, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Chun-Pai Yang
- Department of Neurology, Kuang Tien General Hospital, Taichung, Taiwan
- Department of Safety, Health, and Environmental Engineering, Hung Kuang University, Taichung, Taiwan
- Department of Nutrition and Institute of Biomedical Nutrition, Hung Kuang University, Taichung, Taiwan
- Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
6
|
White AR. The firestorm within: A narrative review of extreme heat and wildfire smoke effects on brain health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171239. [PMID: 38417511 DOI: 10.1016/j.scitotenv.2024.171239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Climate change is generating increased heatwaves and wildfires across much of the world. With these escalating environmental changes comes greater impacts on human health leading to increased numbers of people suffering from heat- and wildfire smoke-associated respiratory and cardiovascular impairment. One area of health impact of climate change that has received far less attention is the effects of extreme heat and wildfire smoke exposure on human brain health. As elevated temperatures, and wildfire-associated smoke, are increasingly experienced simultaneously over summer periods, understanding this combined impact is critical to management of human health especially in the elderly, and people with dementia, and other neurological disorders. Both extreme heat and wildfire smoke air pollution (especially particulate matter, PM) induce neuroinflammatory and cerebrovascular effects, oxidative stress, and cognitive impairment, however the combined effect of these impacts are not well understood. In this narrative review, a comprehensive examination of extreme heat and wildfire smoke impact on human brain health is presented, with a focus on how these factors contribute to cognitive impairment, and dementia, one of the leading health issues today. Also discussed is the potential impact of combined heat and wildfire smoke on brain health, and where future efforts should be applied to help advance knowledge in this rapidly growing and critical field of health research.
Collapse
Affiliation(s)
- Anthony R White
- Mental Health and Neuroscience Program, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia; A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211 Kuopio, Finland; School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia; School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, QLD, Australia.
| |
Collapse
|
7
|
Sakowski SA, Koubek EJ, Chen KS, Goutman SA, Feldman EL. Role of the Exposome in Neurodegenerative Disease: Recent Insights and Future Directions. Ann Neurol 2024; 95:635-652. [PMID: 38411261 PMCID: PMC11023772 DOI: 10.1002/ana.26897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Neurodegenerative diseases are increasing in prevalence and place a significant burden on society. The causes are multifactorial and complex, and increasing evidence suggests a dynamic interplay between genes and the environment, emphasizing the importance of identifying and understanding the role of lifelong exposures, known as the exposome, on the nervous system. This review provides an overview of recent advances toward defining neurodegenerative disease exposomes, focusing on Parkinson's disease, amyotrophic lateral sclerosis, and Alzheimer's disease. We present the current state of the field based on emerging data, elaborate on key themes and potential mechanisms, and conclude with limitations and future directions. ANN NEUROL 2024;95:635-652.
Collapse
Affiliation(s)
- Stacey A. Sakowski
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Emily J. Koubek
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kevin S. Chen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurosurgery, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stephen A. Goutman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eva L. Feldman
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- NeuroNetwork for Emerging Therapies, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Chen AP, Ismail Z, Mann FD, Bromet EJ, Clouston SAP, Luft BJ. Behavioral Impairments and Increased Risk of Cortical Atrophy Risk Scores Among World Trade Center Responders. J Geriatr Psychiatry Neurol 2024; 37:114-124. [PMID: 37542409 PMCID: PMC10839111 DOI: 10.1177/08919887231195234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Objective: World Trade Center (WTC) responders are susceptible to both cognitive and neuropsychiatric impairments, particularly chronic posttraumatic stress disorder. The present study examined self-reported behavioral impairments in a sample of 732 WTC responders, 199 of whom were determined to have high risk of WTC-related cortical atrophy by an artificial neural network. Results: We found that responders at increased risk of cortical atrophy showed behavioral impairment across five domains: motivation, mood, disinhibition, empathy, and psychosis (14.6% vs 3.9% in the low-risk group; P = 3.90 × 10-7). Factor analysis models revealed that responders at high risk of cortical atrophy tended to have deficits generalized across all aspects of behavioral impairment with focal dysfunction in sensory psychosis. We additionally describe how relationships are modulated by exposure severity and pharmacological treatments. Discussion: Our findings suggest a potential link between sensory deficits and the development of cortical atrophy in WTC responders and may indicate symptoms consistent with a clinical portrait of parietal dominant Alzheimer's disease or a related dementia (ADRD). Results underscore the importance of investigating neuropsychiatric symptomatology in clinical evaluations of possible ADRD.
Collapse
Affiliation(s)
- Allen P.F. Chen
- Department of Neurobiology and Behavior, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Zahinoor Ismail
- Hotchkiss Brain Institute and O’Brien Institute for Public Health, University of Calgary
| | - Frank D. Mann
- Program in Public Health, Renaissance School of Medicine, Stony Brook, NY, USA
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Evelyn J. Bromet
- Department of Psychiatry, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Sean A. P. Clouston
- Program in Public Health, Renaissance School of Medicine, Stony Brook, NY, USA
- Department of Family, Population, and Preventive Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| | - Benjamin J. Luft
- Department of Medicine, Renaissance School of Medicine, Stony Brook, NY, USA
| |
Collapse
|
9
|
Singh S A, Ansari MN, M. Elossaily G, Vellapandian C, Prajapati B. Investigating the Potential Impact of Air Pollution on Alzheimer's Disease and the Utility of Multidimensional Imaging for Early Detection. ACS OMEGA 2024; 9:8615-8631. [PMID: 38434844 PMCID: PMC10905749 DOI: 10.1021/acsomega.3c06328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/25/2023] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Pollution is ubiquitous, and much of it is anthropogenic in nature, which is a severe risk factor not only for respiratory infections or asthma sufferers but also for Alzheimer's disease, which has received a lot of attention recently. This Review aims to investigate the primary environmental risk factors and their profound impact on Alzheimer's disease. It underscores the pivotal role of multidimensional imaging in early disease identification and prevention. Conducting a comprehensive review, we delved into a plethora of literature sources available through esteemed databases, including Science Direct, Google Scholar, Scopus, Cochrane, and PubMed. Our search strategy incorporated keywords such as "Alzheimer Disease", "Alzheimer's", "Dementia", "Oxidative Stress", and "Phytotherapy" in conjunction with "Criteria Pollutants", "Imaging", "Pathology", and "Particulate Matter". Alzheimer's disease is not only a result of complex biological factors but is exacerbated by the infiltration of airborne particles and gases that surreptitiously breach the nasal defenses to traverse the brain, akin to a Trojan horse. Various imaging modalities and noninvasive techniques have been harnessed to identify disease progression in its incipient stages. However, each imaging approach possesses inherent limitations, prompting exploration of a unified technique under a single umbrella. Multidimensional imaging stands as the linchpin for detecting and forestalling the relentless march of Alzheimer's disease. Given the intricate etiology of the condition, identifying a prospective candidate for Alzheimer's disease may take decades, rendering the development of a multimodal imaging technique an imperative. This research underscores the pressing need to recognize the chronic ramifications of invisible particulate matter and to advance our understanding of the insidious environmental factors that contribute to Alzheimer's disease.
Collapse
Affiliation(s)
- Ankul Singh S
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Mohd Nazam Ansari
- Department
of Pharmacology and Toxicology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Gehan M. Elossaily
- Department
of Basic Medical Sciences, College of Medicine, AlMaarefa University, P.O. Box 71666, Riyadh 13713, Saudi Arabia
| | - Chitra Vellapandian
- Department
of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology (SRMIST), Kattankulathur, Tamil Nadu 603203, India
| | - Bhupendra Prajapati
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy,
Shree S.K. Patel College of Pharmaceutical Education and Research, Ganpat University, Gozaria Highway, Mehsana, North Gujarat 384012, India
| |
Collapse
|
10
|
Gui J, Liu J, Wang L, Yang X, Tian B, Luo H, Huang D, Han Z, Yang J, Ding R, Fang Z, Li X, Cheng L, Jiang L. Autophagy alleviates hippocampal neuroinflammation by inhibiting the NLRP3 inflammasome in a juvenile rat model exposed particulate matter. Toxicology 2024; 502:153730. [PMID: 38237716 DOI: 10.1016/j.tox.2024.153730] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/01/2024] [Accepted: 01/12/2024] [Indexed: 02/16/2024]
Abstract
Ambient fine particulate matter (PM) is a global public and environmental problem. PM is closely associated with several neurological diseases, which typically involve neuroinflammation. We investigated the impact of PM exposure on neuroinflammation using both in vivo (in a juvenile rat model with PM exposure concentrations of 1, 2, and 10 mg/kg for 28 days) and in vitro (in BV-2 and HT-22 cell models with PM concentrations of 50-200 μg/ml for 24 h). We observed that PM exposure induced the activation of the NLRP3 inflammasome, leading to the production of IL-1β and IL-18 in the rat hippocampus and BV-2 cells. Furthermore, inhibition of the NLRP3 inflammasome with MCC950 effectively reduced neuroinflammation and ameliorated hippocampal damage. In addition, autophagy activation was observed in the hippocampus of PM-exposed rats, and the promotion of autophagy by rapamycin (Rapa) effectively attenuated the NLRP3-mediated neuroinflammation induced by PM exposure. However, autophagic flow was blocked in BV-2 cells exposed to PM, and Rapa failed to ameliorate NLRP3 inflammasome activation. We found that autophagy was activated in HT-22 cells exposed to PM and that treatment with Rapa reduced the release of reactive oxygen species (ROS) and malondialdehyde (MDA), as well as cell apoptosis. In a subsequent coculture model of BV-2 and HT-22 cells, we observed the activation of the NLRP3 inflammasome in BV-2 cells when the HT-22 cells were exposed to PM, and this activation was alleviated when PM-exposed HT-22 cells were pretreated with Rapa. Overall, our study revealed that PM exposure triggered hippocampal neuroinflammation by activating the NLRP3 inflammasome. Notably, autophagy mitigated NLRP3 inflammasome activation, potentially by reducing neuronal ROS and apoptosis. This research emphasized the importance of reducing PM exposure and provided valuable insight into its neurotoxicity.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Lingman Wang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Bing Tian
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Zhixu Fang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Xue Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China.
| |
Collapse
|
11
|
Bradley M, Dean K, Lim S, Laurens KR, Harris F, Tzoumakis S, O'Hare K, Carr VJ, Green MJ. Early life exposure to air pollution and psychotic-like experiences, emotional symptoms, and conduct problems in middle childhood. Soc Psychiatry Psychiatr Epidemiol 2024; 59:87-98. [PMID: 37470830 PMCID: PMC10799785 DOI: 10.1007/s00127-023-02533-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Air pollution has been linked to a variety of childhood mental health problems, but results are inconsistent across studies and the effect of exposure timing is unclear. We examined the associations between air pollution exposure at two time-points in early development and psychotic-like experiences (PLEs), and emotional and conduct symptoms, assessed in middle childhood (mean age 11.5 years). METHODS Participants were 19,932 children selected from the NSW Child Development Study (NSW-CDS) with available linked multi-agency data from birth, and self-reported psychotic-like experiences (PLEs) and psychopathology at age 11-12 years (middle childhood). We used binomial logistic regression to examine associations between exposure to nitrogen dioxide (NO2) and particulate matter less than 2.5 μm (PM2.5) at two time-points (birth and middle childhood) and middle childhood PLEs, and emotional and conduct symptoms, with consideration of socioeconomic status and other potential confounding factors in adjusted models. RESULTS In fully adjusted models, NO2 exposure in middle childhood was associated with concurrent PLEs (OR = 1.10, 95% CI = 1.02-1.20). Similar associations with PLEs were found for middle childhood exposure to PM2.5 (OR = 1.05, 95% CI = 1.01-1.09). Neither NO2 nor PM2.5 exposure was associated with emotional symptoms or conduct problems in this study. CONCLUSIONS This study highlights the need for a better understanding of potential mechanisms of action of NO2 in the brain during childhood.
Collapse
Affiliation(s)
- Melissa Bradley
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Kimberlie Dean
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Justice Health and Forensic Mental Health Network, Sydney, NSW, Australia
| | - Samsung Lim
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, Australia
- Biosecurity Program, Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Kristin R Laurens
- School of Psychology and Counselling, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Felicity Harris
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Stacy Tzoumakis
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- School of Criminology and Criminal Justice, Griffith University, Southport, QLD, Australia
| | - Kirstie O'Hare
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Vaughan J Carr
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Psychiatry, Monash University, Melbourne, VIC, Australia
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Melissa J Green
- School of Clinical Medicine, Discipline of Psychiatry and Mental Health, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, 2052, Australia.
- Neuroscience Research Australia, Sydney, NSW, Australia.
| |
Collapse
|
12
|
Gui J, Liu J, Wang L, Luo H, Huang D, Yang X, Song H, Han Z, Ding R, Yang J, Jiang L. TREM2 mitigates NLRP3-mediated neuroinflammation through the NF-κB and PI3k/Akt signaling pathways in juvenile rats exposed to ambient particulate matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119863-119878. [PMID: 37930574 DOI: 10.1007/s11356-023-30764-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Ambient particulate matter (PM) is a global public and environmental problem. PM is closely associated with several neurological disorders that typically involve neuroinflammation. There have been few studies on the effect of PM on neuroinflammation to date. In this study, we used a juvenile rat model (PM exposure was conducted at a dose of 10 mg/kg body weight per day for 4 weeks) and a BV-2 cell model (PM exposure was conducted at concentrations of 50, 100, 150, and 200 μg/ml for 24 h) to investigate PM-induced neuroinflammation mediated by NLRP3 inflammasome activation and the role of TREM2 in this process. Our findings revealed that PM exposure reduced TREM2 protein and mRNA levels in the rat hippocampus and BV-2 cells. TREM2 overexpression attenuated PM-induced spatial learning and memory deficits in rats. Moreover, we observed that TREM2 overexpression in vivo and in vitro effectively mitigated the increase in NLRP3 and pro-Caspase1 protein expression, as well as the secretion of IL-1β and IL-18. Exposure to PM increased the expression of NF-κB and decreased the phosphorylation of PI3k/Akt in vivo and in vitro, and this process was effectively reversed by overexpressing TREM2. Our results indicated that PM exposure could reduce TREM2 expression and induce NLRP3 inflammasome-mediated neuroinflammation and that TREM2 could mitigate NLRP3 inflammasome-mediated neuroinflammation by regulating the NF-κB and PI3k/Akt signaling pathways. These findings shed light on PM-induced neuroinflammation mechanisms and potential intervention targets.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Jie Liu
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Lingman Wang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Hanyu Luo
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Dishu Huang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Xiaoyue Yang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Honghong Song
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Ziyao Han
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Ran Ding
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Jiaxin Yang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China
| | - Li Jiang
- Department of Neurology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Children's Hospital of Chongqing Medical University, No. 136, Zhongshan Er Road, Yuzhong District, Chongqing, 400014, China.
| |
Collapse
|
13
|
Lee J, Weerasinghe-Mudiyanselage PDE, Kim B, Kang S, Kim JS, Moon C. Particulate matter exposure and neurodegenerative diseases: A comprehensive update on toxicity and mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115565. [PMID: 37832485 DOI: 10.1016/j.ecoenv.2023.115565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/30/2023] [Accepted: 10/08/2023] [Indexed: 10/15/2023]
Abstract
Exposure to particulate matter (PM) has been associated with a range of health impacts, including neurological abnormalities that affect neurodevelopment, neuroplasticity, and behavior. Recently, there has been growing interest in investigating the possible relationship between PM exposure and the onset and progression of neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and multiple sclerosis. However, the precise mechanism by which PM affects neurodegeneration is still unclear, even though several epidemiological and animal model studies have provided mechanistic insights. This article presents a review of the current research on the neurotoxicity of PM and its impact on neurodegenerative diseases. This review summarizes findings from epidemiological and animal model studies collected through searches in Google Scholar, PubMed, Web of Science, and Scopus. This review paper also discusses the reported effects of PM exposure on the central nervous system and highlights research gaps and future directions. The information presented in this review may inform public health policies aimed at reducing PM exposure and may contribute to the development of new treatments for neurodegenerative diseases. Further mechanistic and therapeutic research will be needed to fully understand the relationship between PM exposure and neurodegenerative diseases.
Collapse
Affiliation(s)
- Jeongmin Lee
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Poornima D E Weerasinghe-Mudiyanselage
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Sohi Kang
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR program, Chonnam National University, Gwangju 61186, South Korea.
| |
Collapse
|
14
|
Calderón-Garcidueñas L, Hernández-Luna J, Aiello-Mora M, Brito-Aguilar R, Evelson PA, Villarreal-Ríos R, Torres-Jardón R, Ayala A, Mukherjee PS. APOE Peripheral and Brain Impact: APOE4 Carriers Accelerate Their Alzheimer Continuum and Have a High Risk of Suicide in PM 2.5 Polluted Cities. Biomolecules 2023; 13:927. [PMID: 37371506 DOI: 10.3390/biom13060927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/22/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
This Review emphasizes the impact of APOE4-the most significant genetic risk factor for Alzheimer's disease (AD)-on peripheral and neural effects starting in childhood. We discuss major mechanistic players associated with the APOE alleles' effects in humans to understand their impact from conception through all life stages and the importance of detrimental, synergistic environmental exposures. APOE4 influences AD pathogenesis, and exposure to fine particulate matter (PM2.5), manufactured nanoparticles (NPs), and ultrafine particles (UFPs) associated with combustion and friction processes appear to be major contributors to cerebrovascular dysfunction, neuroinflammation, and oxidative stress. In the context of outdoor and indoor PM pollution burden-as well as Fe, Ti, and Al alloys; Hg, Cu, Ca, Sn, and Si UFPs/NPs-in placenta and fetal brain tissues, urban APOE3 and APOE4 carriers are developing AD biological disease hallmarks (hyperphosphorylated-tau (P-tau) and amyloid beta 42 plaques (Aβ42)). Strikingly, for Metropolitan Mexico City (MMC) young residents ≤ 40 y, APOE4 carriers have 4.92 times higher suicide odds and 23.6 times higher odds of reaching Braak NFT V stage versus APOE4 non-carriers. The National Institute on Aging and Alzheimer's Association (NIA-AA) framework could serve to test the hypothesis that UFPs and NPs are key players for oxidative stress, neuroinflammation, protein aggregation and misfolding, faulty complex protein quality control, and early damage to cell membranes and organelles of neural and vascular cells. Noninvasive biomarkers indicative of the P-tau and Aβ42 abnormal protein deposits are needed across the disease continuum starting in childhood. Among the 21.8 million MMC residents, we have potentially 4 million APOE4 carriers at accelerated AD progression. These APOE4 individuals are prime candidates for early neuroprotective interventional trials. APOE4 is key in the development of AD evolving from childhood in highly polluted urban centers dominated by anthropogenic and industrial sources of pollution. APOE4 subjects are at higher early risk of AD development, and neuroprotection ought to be implemented. Effective reductions of PM2.5, UFP, and NP emissions from all sources are urgently needed. Alzheimer's Disease prevention ought to be at the core of the public health response and physicians-scientist minority research be supported.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico
| | | | - Mario Aiello-Mora
- Otorrinolaryngology Department, Instituto Nacional de Cardiología, Mexico City 14080, Mexico
| | | | - Pablo A Evelson
- Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires C1113 AAD, Argentina
| | | | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA 95814, USA
- West Virginia University, Morgantown, WV 26506, USA
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India
| |
Collapse
|
15
|
Flood-Garibay JA, Angulo-Molina A, Méndez-Rojas MÁ. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:704-726. [PMID: 36752881 DOI: 10.1039/d2em00276k] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
According to the World Health Organization, both indoor and urban air pollution are responsible for the deaths of around 3.5 million people annually. During the last few decades, the interest in understanding the composition and health consequences of the complex mixture of polluted air has steadily increased. Today, after decades of detailed research, it is well-recognized that polluted air is a complex mixture containing not only gases (CO, NOx, and SO2) and volatile organic compounds but also suspended particles such as particulate matter (PM). PM comprises particles with sizes in the range of 30 to 2.5 μm (PM30, PM10, and PM2.5) and ultrafine particles (UFPs) (less than 0.1 μm, including nanoparticles). All these constituents have different chemical compositions, origins and health consequences. It has been observed that the concentration of PM and UFPs is high in urban areas with moderate traffic and increases in heavy traffic areas. There is evidence that inhaling PM derived from fossil fuel combustion is associated with a wide variety of harmful effects on human health, which are not solely associated with the respiratory system. There is accumulating evidence that the brains of urban inhabitants contain high concentrations of nanoparticles derived from combustion and there is both epidemiological and experimental evidence that this is correlated with the appearance of neurodegenerative human diseases. Neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, and cerebrovascular accidents, are among the main debilitating disorders of our time and their epidemiology can be classified as a public health emergency. Therefore, it is crucial to understand the pathophysiology and molecular mechanisms related to PM exposure, specifically to UFPs, present as pollutants in air, as well as their correlation with the development of neurodegenerative diseases. Furthermore, PM can enhance the transmission of airborne diseases and trigger inflammatory and immune responses, increasing the risk of health complications and mortality. Therefore, understanding the different levels of this issue is important to create and promote preventive actions by both the government and civilians to construct a strategic plan to treat and cope with the current and future epidemic of these types of disorders on a global scale.
Collapse
Affiliation(s)
- Jessica Andrea Flood-Garibay
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| | | | - Miguel Ángel Méndez-Rojas
- Departamento de Ciencias Químico-Biológicas, Escuela de Ciencias, Universidad de las Américas Puebla, Ex-Hda. de Santa Catarina Mártir s/n, San Andrés Cholula, 72820, Puebla, Mexico.
| |
Collapse
|
16
|
Gui J, Liu J, Han Z, Yang X, Ding R, Yang J, Luo H, Huang D, Chen H, Cheng L, Jiang L. The dysfunctionality of hippocampal synapses may be directly related to PM-induced impairments in spatial learning and memory in juvenile rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114729. [PMID: 36889211 DOI: 10.1016/j.ecoenv.2023.114729] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Epidemiological studies have demonstrated that exposure to air particulate matter (PM) increases the incidence of cardiovascular and respiratory diseases and exerts a significant neurotoxic effect on the nervous system, especially on the immature nervous system. Here, we selected PND28 rats to simulate the immature nervous system of young children and used neurobehavioral methods to examine how exposure to PM affected spatial learning and memory, as well as electrophysiology, molecular biology, and bioinformatics to study the morphology of hippocampus and the function of hippocampal synapses. We discovered that spatial learning and memory were impaired in rats exposed to PM. The morphology and structure of the hippocampus were altered in the PM group. In addition, after exposure to PM, the relative expression of synaptophysin (SYP) and postsynaptic density 95 (PSD95) proteins decreased dramatically in rats. Furthermore, PM exposure impaired long-term potentiation (LTP) in the hippocampal Schaffer-CA1 pathway. Interestingly, RNA sequencing and bioinformatics analysis revealed that the differentially expressed genes (DEGs) were rich in terms associated with synaptic function. Five hub genes (Agt, Camk2a, Grin2a, Snca, and Syngap1) that may play a significant role in the dysfunctionality of hippocampal synapses were identified. Our findings implied that exposure to PM impaired spatial learning and memory via exerting impacts on the dysfunctionality of hippocampal synapses in juvenile rats and that Agt, Camk2a, Grin2a, Snca, and Syngap1 may drive PM-caused synaptic dysfunction.
Collapse
Affiliation(s)
- Jianxiong Gui
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jie Liu
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ziyao Han
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Xiaoyue Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Ran Ding
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Jiaxin Yang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Hanyu Luo
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Dishu Huang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Hengsheng Chen
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Cheng
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing 400014, China.
| |
Collapse
|
17
|
Essers E, Binter AC, Neumann A, White T, Alemany S, Guxens M. Air pollution exposure during pregnancy and childhood, APOE ε4 status and Alzheimer polygenic risk score, and brain structural morphology in preadolescents. ENVIRONMENTAL RESEARCH 2023; 216:114595. [PMID: 36257450 DOI: 10.1016/j.envres.2022.114595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 09/27/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Air pollution exposure is associated with impaired neurodevelopment, altered structural brain morphology in children, and neurodegenerative disorders. Differential susceptibility to air pollution may be influenced by genetic features. OBJECTIVES To evaluate whether the apolipoprotein E (APOE) genotype or the polygenic risk score (PRS) for Alzheimer's Disease (AD) modify the association between air pollution exposure during pregnancy and childhood and structural brain morphology in preadolescents. METHODS We included 1186 children from the Generation R Study. Concentrations of fourteen air pollutants were calculated at participants' home addresses during pregnancy and childhood using land-use-regression models. Structural brain images were collected at age 9-12 years to assess cortical and subcortical brain volumes. APOE status and PRS for AD were examined as genetic modifiers. Linear regression models were used to conduct single-pollutant and multi-pollutant (using the Deletion/Substitution/Addition algorithm) analyses with a two-way interaction between air pollution and each genetic modifier. RESULTS Higher pregnancy coarse particulate matter (PMcoarse) and childhood polycyclic aromatic hydrocarbons exposure was differentially associated with larger cerebral white matter volume in APOE ε4 carriers compared to non-carriers (29,485 mm3 (95% CI 6,189; 52,781) and 18,663 mm3 (469; 36,856), respectively). Higher pregnancy PMcoarse exposure was differentially associated with larger cortical grey matter volume in children with higher compared to lower PRS for AD (19436 mm3 (825, 38,046)). DISCUSSION APOE status and PRS for AD possibly modify the association between air pollution exposure and brain structural morphology in preadolescents. Higher air pollution exposure is associated with larger cortical volumes in APOE ε4 carriers and children with a high PRS for AD. This is in line with typical brain development, suggesting an antagonistic pleiotropic effect of these genetic features (i.e., protective effect in early-life, but neurodegenerative effect in adulthood). However, we cannot discard chance findings. Future studies should evaluate trajectorial brain development using a longitudinal design.
Collapse
Affiliation(s)
- Esmée Essers
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| | - Anne-Claire Binter
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain.
| | - Alexander Neumann
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - Tonya White
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus Medical Centre, Rotterdam, the Netherlands.
| | - Silvia Alemany
- Psychiatric Genetics Unit, Group of Psychiatry, Mental Health, and Addiction, Vall d'Hebron Research Institute, Barcelona, Spain; Biomedical Network Research Centre on Mental Health (CIBERSAM), Barcelona, Spain; Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mònica Guxens
- ISGlobal, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, the Netherlands.
| |
Collapse
|
18
|
Shang M, Tang M, Xue Y. Neurodevelopmental toxicity induced by airborne particulate matter. J Appl Toxicol 2023; 43:167-185. [PMID: 35995895 DOI: 10.1002/jat.4382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/17/2022] [Accepted: 08/17/2022] [Indexed: 11/08/2022]
Abstract
Airborne particulate matter (PM), the primary component associated with health risks in air pollution, can negatively impact human health. Studies have shown that PM can enter the brain by inhalation, but data on the exact quantity of particles that reach the brain are unknown. Particulate matter exposure can result in neurotoxicity. Exposure to PM poses a greater health risk to infants and children because their nervous systems are not fully developed. This review paper highlights the association between PM and neurodevelopmental toxicity (NDT). Exposure to PM can induce oxidative stress and inflammation, potentially resulting in blood-brain barrier damage and increased susceptibility to development of neurodevelopmental disorders (NDD), such as autism spectrum disorders and attention deficit disorders. In addition, human and animal exposure to PM can induce microglia activation and epigenetic alterations and alter the neurotransmitter levels, which may increase risks for development of NDD. However, the systematic comparisons of the effects of PM on NDD at different ages of exposure are deficient. The elucidation of PM exposure risks and NDT in children during the early developmental stages are of great importance. The synthesis of current research may help to identify markers and mechanisms of PM-induced neurodevelopmental toxicity, allowing for the development of strategies to prevent permanent damage of developing brain.
Collapse
Affiliation(s)
- Mengting Shang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
19
|
Armas FV, D’Angiulli A. Neuroinflammation and Neurodegeneration of the Central Nervous System from Air Pollutants: A Scoping Review. TOXICS 2022; 10:666. [PMID: 36355957 PMCID: PMC9698785 DOI: 10.3390/toxics10110666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
In this scoping review, we provide a selective mapping of the global literature on the effects of air pollution on the life-span development of the central nervous system. Our synthesis first defines developmental neurotoxicants and the model effects of particulate matter. We then discuss air pollution as a test bench for neurotoxicants, including animal models, the framework of systemic inflammation in all affected organs of the body, and the cascade effects on the developing brain, with the most prevalent neurological structural and functional outcomes. Specifically, we focus on evidence on magnetic resonance imaging and neurodegenerative diseases, and the links between neuronal apoptosis and inflammation. There is evidence of a developmental continuity of outcomes and effects that can be observed from utero to aging due to severe or significant exposure to neurotoxicants. These substances alter the normal trajectory of neurological aging in a propulsive way towards a significantly higher rate of acceleration than what is expected if our atmosphere were less polluted. The major aggravating role of this neurodegenerative process is linked with the complex action of neuroinflammation. However, most recent evidence learned from research on the effects of COVID-19 lockdowns around the world suggests that a short-term drastic improvement in the air we breathe is still possible. Moreover, the study of mitohormesis and vitagenes is an emerging area of research interest in anti-inflammatory and antidegenerative therapeutics, which may have enormous promise in combatting the deleterious effects of air pollution through pharmacological and dietary interventions.
Collapse
Affiliation(s)
| | - Amedeo D’Angiulli
- Department of Neuroscience, Carleton University, Ottawa, ON K1S 5B6, Canada
| |
Collapse
|
20
|
Yuan X, Yang Y, Liu C, Tian Y, Xia D, Liu Z, Pan L, Xiong M, Xiong J, Meng L, Zhang Z, Ye K, Jiang H, Zhang Z. Fine Particulate Matter Triggers α‐Synuclein Fibrillization and Parkinson‐like Neurodegeneration. Mov Disord 2022; 37:1817-1830. [DOI: 10.1002/mds.29181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Yuan
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Yingxu Yang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Chaoyang Liu
- Research Center for Environment and Health Zhongnan University of Economics and Law Wuhan China
| | - Ye Tian
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Danhao Xia
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Zehua Liu
- Research Center for Environment and Health Zhongnan University of Economics and Law Wuhan China
| | - Lina Pan
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Min Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Jing Xiong
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Lanxia Meng
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Zhaohui Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, and Brain Cognition and Brain Disease Institute (BCBDI) Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences Shenzhen China
| | - Haiqiang Jiang
- Innovative Institute of Chinese Medicine and Pharmacy Shandong University of Traditional Chinese Medicine Jinan China
| | - Zhentao Zhang
- Department of Neurology Renmin Hospital of Wuhan University Wuhan China
| |
Collapse
|
21
|
Lukina AO, Burstein B, Szyszkowicz M. Urban air pollution and emergency department visits related to central nervous system diseases. PLoS One 2022; 17:e0270459. [PMID: 35759498 PMCID: PMC9236246 DOI: 10.1371/journal.pone.0270459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 06/12/2022] [Indexed: 11/18/2022] Open
Abstract
Ambient air pollution has been associated with adverse neurological health outcomes. Ambient pollutants are thought to trigger oxidative stress and inflammation to which vulnerable populations, such as elderly may be particularly susceptible. Our study investigated the possible association between concentrations of ambient air pollutants and the number of emergency department (ED) visits for nervous system disorders among people residing in a large Canadian city. A time-stratified case-crossover study design combining data from the National Ambulatory Care Reporting System (NACRS) and the National Air Pollution Surveillance (NAPS) between 2004 and 2015 was used. Two air quality health indices were considered in additional to specific pollutants, including carbon monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3) and fine particulate matter (PM2.5). Weather condition data were included in the models. ED visits with a discharge diagnosis were identified using ICD-10 codes (G00-G99). The analysis was stratified by sex and age, also by seasons. The associations were investigated in arrays organized as 18 strata and 15 time lags (in days) for each pollutant. Overall, 140,511 ED visits were included for the analysis. Most ED visits were related to episodic and paroxysmal diagnoses (G40-G47, 64%), with a majority of visits for migraines (G43, 39%). Among females, an increase of 0.1ppm ambient CO was associated with an increased risk of paroxysmal diagnoses at day 1 (RR = 1.019 (95%CI 1.004–1.033)), day 6 (1.024 (1.010–1.039)) and day 7 (1.022 (1.007–1.036). PM2.5 and SO2, and air quality indices were similarly associated with ED visits for episodic and paroxysmal disorders in days 6 and 7. Findings highlight that ambient air pollution is associated with an increased number of ED visits for nervous system disorders, particularly visits for paroxysmal diagnoses.
Collapse
Affiliation(s)
- Anna O. Lukina
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Brett Burstein
- Division of Pediatric Emergency Medicine, Department of Pediatrics, Montreal Children’s Hospital, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Mieczysław Szyszkowicz
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
- * E-mail:
| |
Collapse
|
22
|
Cerebral Iron Deposition in Neurodegeneration. Biomolecules 2022; 12:biom12050714. [PMID: 35625641 PMCID: PMC9138489 DOI: 10.3390/biom12050714] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 02/04/2023] Open
Abstract
Disruption of cerebral iron regulation appears to have a role in aging and in the pathogenesis of various neurodegenerative disorders. Possible unfavorable impacts of iron accumulation include reactive oxygen species generation, induction of ferroptosis, and acceleration of inflammatory changes. Whole-brain iron-sensitive magnetic resonance imaging (MRI) techniques allow the examination of macroscopic patterns of brain iron deposits in vivo, while modern analytical methods ex vivo enable the determination of metal-specific content inside individual cell-types, sometimes also within specific cellular compartments. The present review summarizes the whole brain, cellular, and subcellular patterns of iron accumulation in neurodegenerative diseases of genetic and sporadic origin. We also provide an update on mechanisms, biomarkers, and effects of brain iron accumulation in these disorders, focusing on recent publications. In Parkinson’s disease, Friedreich’s disease, and several disorders within the neurodegeneration with brain iron accumulation group, there is a focal siderosis, typically in regions with the most pronounced neuropathological changes. The second group of disorders including multiple sclerosis, Alzheimer’s disease, and amyotrophic lateral sclerosis shows iron accumulation in the globus pallidus, caudate, and putamen, and in specific cortical regions. Yet, other disorders such as aceruloplasminemia, neuroferritinopathy, or Wilson disease manifest with diffuse iron accumulation in the deep gray matter in a pattern comparable to or even more extensive than that observed during normal aging. On the microscopic level, brain iron deposits are present mostly in dystrophic microglia variably accompanied by iron-laden macrophages and in astrocytes, implicating a role of inflammatory changes and blood–brain barrier disturbance in iron accumulation. Options and potential benefits of iron reducing strategies in neurodegeneration are discussed. Future research investigating whether genetic predispositions play a role in brain Fe accumulation is necessary. If confirmed, the prevention of further brain Fe uptake in individuals at risk may be key for preventing neurodegenerative disorders.
Collapse
|
23
|
Re DB, Yan B, Calderón-Garcidueñas L, Andrew AS, Tischbein M, Stommel EW. A perspective on persistent toxicants in veterans and amyotrophic lateral sclerosis: identifying exposures determining higher ALS risk. J Neurol 2022; 269:2359-2377. [PMID: 34973105 PMCID: PMC9021134 DOI: 10.1007/s00415-021-10928-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023]
Abstract
Multiple studies indicate that United States veterans have an increased risk of developing amyotrophic lateral sclerosis (ALS) compared to civilians. However, the responsible etiological factors are unknown. In the general population, specific occupational (e.g. truck drivers, airline pilots) and environmental exposures (e.g. metals, pesticides) are associated with an increased ALS risk. As such, the increased prevalence of ALS in veterans strongly suggests that there are exposures experienced by military personnel that are disproportionate to civilians. During service, veterans may encounter numerous neurotoxic exposures (e.g. burn pits, engine exhaust, firing ranges). So far, however, there is a paucity of studies investigating environmental factors contributing to ALS in veterans and even fewer assessing their exposure using biomarkers. Herein, we discuss ALS pathogenesis in relation to a series of persistent neurotoxicants (often emitted as mixtures) including: chemical elements, nanoparticles and lipophilic toxicants such as dioxins, polycyclic aromatic hydrocarbons and polychlorinated biphenyls. We propose these toxicants should be directly measured in veteran central nervous system tissue, where they may have accumulated for decades. Specific toxicants (or mixtures thereof) may accelerate ALS development following a multistep hypothesis or act synergistically with other service-linked exposures (e.g. head trauma/concussions). Such possibilities could explain the lower age of onset observed in veterans compared to civilians. Identifying high-risk exposures within vulnerable populations is key to understanding ALS etiopathogenesis and is urgently needed to act upon modifiable risk factors for military personnel who deserve enhanced protection during their years of service, not only for their short-term, but also long-term health.
Collapse
Affiliation(s)
- Diane B Re
- Department of Environmental Health Science, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, USA
| | - Beizhan Yan
- Department of Geochemistry, Lamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USA
| | - Lilian Calderón-Garcidueñas
- Department Biomedical Sciences, College of Health, University of Montana, Missoula, MT, USA
- Universidad del Valle de México, Mexico City, Mexico
| | - Angeline S Andrew
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Maeve Tischbein
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA.
| |
Collapse
|
24
|
Calderón-Garcidueñas L, Hernández-Luna J, Mukherjee PS, Styner M, Chávez-Franco DA, Luévano-Castro SC, Crespo-Cortés CN, Stommel EW, Torres-Jardón R. Hemispheric Cortical, Cerebellar and Caudate Atrophy Associated to Cognitive Impairment in Metropolitan Mexico City Young Adults Exposed to Fine Particulate Matter Air Pollution. TOXICS 2022; 10:toxics10040156. [PMID: 35448417 PMCID: PMC9028857 DOI: 10.3390/toxics10040156] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/14/2022] [Accepted: 03/22/2022] [Indexed: 12/16/2022]
Abstract
Exposures to fine particulate matter PM2.5 are associated with Alzheimer's, Parkinson's (AD, PD) and TDP-43 pathology in young Metropolitan Mexico City (MMC) residents. High-resolution structural T1-weighted brain MRI and/or Montreal Cognitive Assessment (MoCA) data were examined in 302 volunteers age 32.7 ± 6.0 years old. We used multivariate linear regressions to examine cortical surface area and thickness, subcortical and cerebellar volumes and MoCA in ≤30 vs. ≥31 years old. MMC residents were exposed to PM2.5 ~ 30.9 µg/m3. Robust hemispheric differences in frontal and temporal lobes, caudate and cerebellar gray and white matter and strong associations between MoCA total and index scores and caudate bilateral volumes, frontotemporal and cerebellar volumetric changes were documented. MoCA LIS scores are affected early and low pollution controls ≥ 31 years old have higher MoCA vs. MMC counterparts (p ≤ 0.0001). Residency in MMC is associated with cognitive impairment and overlapping targeted patterns of brain atrophy described for AD, PD and Fronto-Temporal Dementia (FTD). MMC children and young adult longitudinal studies are urgently needed to define brain development impact, cognitive impairment and brain atrophy related to air pollution. Identification of early AD, PD and FTD biomarkers and reductions on PM2.5 emissions, including poorly regulated heavy-duty diesel vehicles, should be prioritized to protect 21.8 million highly exposed MMC urbanites.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT 59812, USA
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
- Correspondence: ; Tel.: +1-406-243-4785
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| | - Martin Styner
- Neuro Image Research and Analysis Lab, University of North Carolina, Chapel Hill, NC 27599, USA;
| | - Diana A. Chávez-Franco
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Samuel C. Luévano-Castro
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Celia Nohemí Crespo-Cortés
- Escuela de Ciencias de la Salud, Universidad del Valle de México, Mexico City 14370, Mexico; (D.A.C.-F.); (S.C.L.-C.); (C.N.C.-C.)
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| |
Collapse
|
25
|
Gui SY, Chen YN, Wu KJ, Liu W, Wang WJ, Liang HR, Jiang ZX, Li ZL, Hu CY. Association Between Exposure to Per- and Polyfluoroalkyl Substances and Birth Outcomes: A Systematic Review and Meta-Analysis. Front Public Health 2022; 10:855348. [PMID: 35400049 PMCID: PMC8988915 DOI: 10.3389/fpubh.2022.855348] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/23/2022] [Indexed: 12/17/2022] Open
Abstract
Background A large body of emerging evidence suggests that per- and polyfluoroalkyl substances (PFAS) affect birth outcomes in various pathways, but the evidence is inconsistent. Therefore, this study aimed to systematically review the epidemiological evidence on PFAS exposure and birth outcomes. Methods Three electronic databases were searched for epidemiological studies through February 13, 2021. We used random-effects meta-analysis for eight birth outcome indicators to calculate summary effect estimates for various exposure types. The risk of bias and the overall quality and level of evidence for each exposure-outcome pair were assessed. Results The initial search identified 58 potentially eligible studies, of which 46 were ultimately included. Many PFAS were found to have previously unrecognized statistically significant associations with birth outcomes. Specifically, birth weight (BW) was associated with PFAS, with effect sizes ranging from −181.209 g (95% confidence interval (CI) = −360.620 to −1.798) per 1 ng/ml increase in perfluoroheptanesulfonate (PFHpS) to −24.252 g (95% CI = −38.574 to −9.930) per 1 ln (ng/ml) increase in perfluorodecaoic acid (PFDA). Similar patterns were observed between other PFAS and birth outcomes: perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) with birth length (BL) and ponderal index (PI), PFOS and perfluorododecanoic acid (PFDoDA) with head circumference (HC), PFHpS with gestational age (GA), and perfluorononanoic acid (PFNA) and PFHpS with preterm birth (PTB). Additionally, PFDA showed a statistically significant association with small for gestational age (SGA). The level of the combined evidence for each exposure-outcome pair was considered to be “moderate”. Conclusion This study showed that PFAS exposure was significantly associated with increased risks of various adverse birth outcomes and that different birth outcome indicators had different degrees of sensitivity to PFAS. Further studies are needed to confirm our results by expanding the sample size, clarifying the effects of different types or doses of PFAS and the time of blood collection on birth outcomes, and fully considering the possible confounders.
Collapse
Affiliation(s)
- Si-Yu Gui
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Yue-Nan Chen
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Ke-Jia Wu
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen Liu
- Department of Clinical Medicine, The First School of Clinical Medicine, Anhui Medical University, Hefei, China
| | - Wen-Jing Wang
- Department of Pharmacy, School of Clinical Pharmacy, Anhui Medical University, Hefei, China
| | - Huan-Ru Liang
- Department of General Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zheng-Xuan Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ze-Lian Li
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- *Correspondence: Ze-Lian Li
| | - Cheng-Yang Hu
- Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, Hefei, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Cheng-Yang Hu
| |
Collapse
|
26
|
Calderón-Garcidueñas L, Chávez-Franco DA, Luévano-Castro SC, Macías-Escobedo E, Hernández-Castillo A, Carlos-Hernández E, Franco-Ortíz A, Castro-Romero SP, Cortés-Flores M, Crespo-Cortés CN, Torres-Jardón R, Stommel EW, Rajkumar RP, Mukherjee PS. Metals, Nanoparticles, Particulate Matter, and Cognitive Decline. Front Neurol 2022; 12:794071. [PMID: 35126295 PMCID: PMC8815025 DOI: 10.3389/fneur.2021.794071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022] Open
Abstract
Exposure to metals is ubiquitous and emission sources include gasoline, diesel, smoke from wildfires, contaminated soil, water and food, medical implants, waste recycling facilities, subway exposures, and occupational environments. PM2.5 exposure is associated with impaired cognitive performance, neurobehavioral alterations, incidence of dementia, and Alzheimer's disease (AD) risk. Heavy-duty diesel vehicles are major emitters of metal-rich PM2.5 and nanoparticles in Metropolitan Mexico City (MMC). Cognitive impairment was investigated in 336 clinically healthy, middle-class, Mexican volunteers, age 29.2 ± 13.3 years with 13.7 ± 2.4 years of education using the Montreal Cognitive Assessment (MoCA). MoCA scores varied with age and residency in three Mexican cities with cognition deficits impacting ~74% of the young middle-class population (MoCA ≤ 25). MMC residents ≥31 years (x¯46.2 ± 11.8 y) had MoCA x¯20.4 ± 3.4 vs. low pollution controls 25.2 ± 2.4 (p < 0.0001). Formal education years positively impacted MoCA total scores across all participants (p < 0.0001). Residency in PM2.5 polluted cities impacts multi-domain cognitive performance. Identifying and making every effort to lower key pollutants impacting neural risk trajectories and monitoring cognitive longitudinal performance are urgent. PM2.5 emission control should be prioritized, metal emissions targeted, and neuroprevention interventions implemented early.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Biomedical Sciences, University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | | | | - Elijah W Stommel
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Geisel School of Medicine, Lebanon, NH, United States
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
27
|
Markevych I, Orlov N, Grellier J, Kaczmarek-Majer K, Lipowska M, Sitnik-Warchulska K, Mysak Y, Baumbach C, Wierzba-Łukaszyk M, Soomro MH, Compa M, Izydorczyk B, Skotak K, Degórska A, Bratkowski J, Kossowski B, Domagalik A, Szwed M. NeuroSmog: Determining the Impact of Air Pollution on the Developing Brain: Project Protocol. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 19:310. [PMID: 35010570 PMCID: PMC8744611 DOI: 10.3390/ijerph19010310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Exposure to airborne particulate matter (PM) may affect neurodevelopmental outcomes in children. The mechanisms underlying these relationships are not currently known. We aim to assess whether PM affects the developing brains of schoolchildren in Poland, a country characterized by high levels of PM pollution. Children aged from 10 to 13 years (n = 800) are recruited to participate in this case-control study. Cases (children with attention deficit hyperactivity disorder (ADHD)) are being recruited by field psychologists. Population-based controls are being sampled from schools. The study area comprises 18 towns in southern Poland characterized by wide-ranging levels of PM. Comprehensive psychological assessments are conducted to assess cognitive and social functioning. Participants undergo structural, diffusion-weighted, task, and resting-state magnetic resonance imaging (MRI). PM concentrations are estimated using land use regression models, incorporating information from air monitoring networks, dispersion models, and characteristics of roads and other land cover types. The estimated concentrations will be assigned to the prenatal and postnatal residential and preschool/school addresses of the study participants. We will assess whether long-term exposure to PM affects brain function, structure, and connectivity in healthy children and in those diagnosed with ADHD. This study will provide novel, in-depth understanding of the neurodevelopmental effects of PM pollution.
Collapse
Affiliation(s)
- Iana Markevych
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Natasza Orlov
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK
| | - James Grellier
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- European Centre of Environment and Human Health, University of Exeter Medical School, Royal Cornwall Hospital, Truro, Cornwall TR1 3HD, UK
| | - Katarzyna Kaczmarek-Majer
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
- Systems Research Institute, Polish Academy of Sciences, Newelska 6, 01-447 Warsaw, Poland
| | - Małgorzata Lipowska
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
- Institute of Psychology, University of Gdansk, Bażyńskiego 4, 80-952 Gdansk, Poland
| | - Katarzyna Sitnik-Warchulska
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
| | - Yarema Mysak
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Clemens Baumbach
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- ENIANO GmbH, Schwanthalerstraße 73, 80336 Munich, Germany
| | - Maja Wierzba-Łukaszyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Munawar Hussain Soomro
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Mikołaj Compa
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| | - Bernadetta Izydorczyk
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
- Faculty of Management and Social Communication, Institute of Applied Psychology, Jagiellonian University, Łojasiewicza 4, 30-348 Krakow, Poland; (M.L.); (K.S.-W.)
| | - Krzysztof Skotak
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Anna Degórska
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Jakub Bratkowski
- Institute of Environmental Protection-National Research Institute, Krucza 5/11d, 00-548 Warsaw, Poland; (K.K.-M.); (K.S.); (A.D.); (J.B.)
| | - Bartosz Kossowski
- Laboratory of Brain Imaging, Nencki Institute for Experimental Biology, Pasteur 3, 02-093 Warsaw, Poland;
| | - Aleksandra Domagalik
- Brain Imaging Core Facility, Małopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7A, 30-387 Krakow, Poland;
| | - Marcin Szwed
- Institute of Psychology, Jagiellonian University, Ingardena 6, 30-060 Krakow, Poland; (I.M.); (N.O.); (J.G.); (Y.M.); (C.B.); (M.W.-Ł.); (M.H.S.); (M.C.); (B.I.)
| |
Collapse
|
28
|
Zhu X, Shou Y, Ji X, Hu Y, Wang H. S-adenosylmethionine decarboxylase 1 and its related spermidine synthesis mediate PM 2.5 exposure-induced neuronal apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 224:112678. [PMID: 34419641 DOI: 10.1016/j.ecoenv.2021.112678] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/27/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
PM2.5 exposure is considered harmful to central nerve system, while the specific biochemical mechanism underlying is still unrevealed. Neuronal apoptosis is believed the crucial event in pathogenesis of neurodegenerative diseases, but evidence supporting neuronal apoptosis as the mechanism for PM2.5 exposure induced neuronal injury is insufficient. S-adenosylmethionine decarboxylase 1 (AMD1) and its related spermidine synthesis have been shown to associate with cellular apoptosis, but its role in PM2.5 exposure induced neuronal apoptosis was rarely reported. The current study was aimed to better understand contribution of AMD1 activity and spermidine in PM2.5 exposure induced neuronal apoptosis. Sixteen C57BL/6 male mice were randomly divided and kept into ambient PM2.5 chamber or filtered air chamber for 6 months to establish the mouse model of whole-body ambient PM2.5 chronic exposure. In parallel, PC12 cells and primary hippocampal neurons were applied for various concentrations of PM2.5 treatment (0, 25, 50, 100, 200, and 400 μg/mL) to explore the possible cellular and molecular mechanism which may be critically involved in the process. Results showed that PM2.5 exposure triggered neuronal apoptosis with increased expression of Bax/Bcl-2 and cleaved caspase-3. PM2.5 exposure reduced AMD1 expression and spermidine synthesis. AMD1 inhibition could mimic PM2.5 exposure induced neuronal apoptosis. Spermidine supplementation rescued against neurotoxicity and inhibited PM2.5 induced apoptosis via impaired depolarization of mitochondrial membrane potential and reduced mitochondrial apoptosis related proteins. In summary, our work demonstrated that exposure to PM2.5 led to neuronal apoptosis, which may be the key event in the process of air pollution induced neurodegenerative diseases. AMD1 and spermidine associated with neuronal apoptosis induced by PM2.5 exposure, which was at least partially dependent on mitochondria mediated pathway.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- School of Medicine, Hangzhou Normal University, China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, China; The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, China
| | - Xintong Ji
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Medicine, Hangzhou Normal University, China.
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China.
| |
Collapse
|
29
|
Chen APF, Clouston SAP, Kritikos M, Richmond L, Meliker J, Mann F, Santiago-Michels S, Pellecchia AC, Carr MA, Kuan PF, Bromet EJ, Luft BJ. A deep learning approach for monitoring parietal-dominant Alzheimer's disease in World Trade Center responders at midlife. Brain Commun 2021; 3:fcab145. [PMID: 34396105 PMCID: PMC8361422 DOI: 10.1093/braincomms/fcab145] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/04/2021] [Accepted: 04/12/2021] [Indexed: 01/21/2023] Open
Abstract
Little is known about the characteristics and causes of early-onset cognitive impairment. Responders to the 2001 New York World Trade Center disaster represent an ageing population that was recently shown to have an excess prevalence of cognitive impairment. Neuroimaging and molecular data demonstrate that a subgroup of affected responders may have a unique form of parietal-dominant Alzheimer's Disease. Recent neuropsychological testing and artificial intelligence approaches have emerged as methods that can be used to identify and monitor subtypes of cognitive impairment. We utilized data from World Trade Center responders participating in a health monitoring program and applied a deep learning approach to evaluate neuropsychological and neuroimaging data to generate a cortical atrophy risk score. We examined risk factors associated with the prevalence and incidence of high risk for brain atrophy in responders who are now at midlife. Training was conducted in a randomly selected two-thirds sample (N = 99) enrolled using of the results of a structural neuroimaging study. Testing accuracy was estimated for each training cycle in the remaining third subsample. After training was completed, the scoring methodology that was generated was applied to longitudinal data from 1441 World Trade Center responders. The artificial neural network provided accurate classifications of these responders in both the testing (Area Under the Receiver Operating Curve, 0.91) and validation samples (Area Under the Receiver Operating Curve, 0.87). At baseline and follow-up, responders identified as having a high risk of atrophy (n = 378) showed poorer cognitive functioning, most notably in domains that included memory, throughput, and variability as compared to their counterparts at low risk for atrophy (n = 1063). Factors associated with atrophy risk included older age [adjusted hazard ratio, 1.045 (95% confidence interval = 1.027-1.065)], increased duration of exposure at the WTC site [adjusted hazard ratio, 2.815 (1.781-4.449)], and a higher prevalence of post-traumatic stress disorder [aHR, 2.072 (1.408-3.050)]. High atrophy risk was associated with an increased risk of all-cause mortality [adjusted risk ratio, 3.19 (1.13-9.00)]. In sum, the high atrophy risk group displayed higher levels of previously identified risk factors and characteristics of cognitive impairment, including advanced age, symptoms of post-traumatic stress disorder, and prolonged duration of exposure to particulate matter. Thus, this study suggests that a high risk of brain atrophy may be accurately monitored using cognitive data.
Collapse
Affiliation(s)
- Allen P F Chen
- Medical Scientist Training Program, Department of Neurobiology and Behavior, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Sean A P Clouston
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Minos Kritikos
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Lauren Richmond
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jaymie Meliker
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Frank Mann
- Family, Population, and Preventive Medicine, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
- Program in Public Health, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11794, USA
| | - Stephanie Santiago-Michels
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Alison C Pellecchia
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Melissa A Carr
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
| | - Pei-Fen Kuan
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Evelyn J Bromet
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Benjamin J Luft
- Stony Brook World Trade Center Wellness Program, Renaissance School of Medicine at Stony, Brook University, Stony Brook, NY 11725, USA
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
30
|
Bernal-Meléndez E, Callebert J, Bouillaud P, Persuy MA, Olivier B, Badonnel K, Chavatte-Palmer P, Baly C, Schroeder H. Dopaminergic and serotonergic changes in rabbit fetal brain upon repeated gestational exposure to diesel engine exhaust. Arch Toxicol 2021; 95:3085-3099. [PMID: 34189592 DOI: 10.1007/s00204-021-03110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Estefania Bernal-Meléndez
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | | | - Marie-Annick Persuy
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Benoit Olivier
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Karine Badonnel
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Christine Baly
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Henri Schroeder
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
31
|
Calderón-Garcidueñas L, Rajkumar RP, Stommel EW, Kulesza R, Mansour Y, Rico-Villanueva A, Flores-Vázquez JO, Brito-Aguilar R, Ramírez-Sánchez S, García-Alonso G, Chávez-Franco DA, Luévano-Castro SC, García-Rojas E, Revueltas-Ficachi P, Villarreal-Ríos R, Mukherjee PS. Brainstem Quadruple Aberrant Hyperphosphorylated Tau, Beta-Amyloid, Alpha-Synuclein and TDP-43 Pathology, Stress and Sleep Behavior Disorders. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:6689. [PMID: 34206224 PMCID: PMC8297352 DOI: 10.3390/ijerph18136689] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/27/2022]
Abstract
Quadruple aberrant hyperphosphorylated tau (p-τ), amyloid-β peptide, alpha-synuclein and TDP-43 brainstem and supratentorial pathology are documented in forensic ≤40y autopsies in Metropolitan Mexico City (MMC), and p-τ is the major aberrant protein. Post-traumatic stress disorder (PTSD) is associated with an elevated risk of subsequent dementia, and rapid eye movement sleep behavior disorder (RBD) is documented in PD, AD, Lewy body dementia and ALS. This study aimed to identify an association between PTSD and potential pRBD in Mexico. An anonymous online survey of 4502 urban college-educated adults, 29.3 ± 10.3 years; MMC, n = 1865; non-MMC, n = 2637, measured PTSD symptoms using the Impact of Event Scale-Revised (IES-R) and pRBD symptoms using the RBD Single-Question. Over 50% of the participants had IES-R scores ≥33 indicating probable PTSD. pRBD was identified in 22.6% of the participants across Mexico and 32.7% in MMC residents with PTSD. MMC subjects with PTSD had an OR 2.6218 [2.5348, 2.7117] of answering yes to the pRBD. PTSD and pRBD were more common in women. This study showed an association between PTSD and pRBD, strengthening the possibility of a connection with misfolded proteinopathies in young urbanites. We need to confirm the RBD diagnosis using an overnight polysomnogram. Mexican women are at high risk for stress and sleep disorders.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- Department of Biomedical & Pharmaceutical Sciences, College of Health, The University of Montana, Missoula, MT 59812, USA
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry 605006, India;
| | - Elijah W. Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA;
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - Yusra Mansour
- Henry Ford Macomb, Department of Otolaryngology—Facial Plastic Surgery, Lake Erie College of Osteopathic Medicine, Erie, PA 16509, USA;
| | - Adriana Rico-Villanueva
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Jorge Orlando Flores-Vázquez
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Rafael Brito-Aguilar
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Silvia Ramírez-Sánchez
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Griselda García-Alonso
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Diana A. Chávez-Franco
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Samuel C. Luévano-Castro
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Edgar García-Rojas
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | - Paula Revueltas-Ficachi
- Universidad del Valle de México, Mexico City 14370, Mexico; (A.R.-V.); (J.O.F.-V.); (R.B.-A.); (S.R.-S.); (G.G.-A.); (D.A.C.-F.); (S.C.L.-C.); (E.G.-R.); (P.R.-F.)
| | | | - Partha S. Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata 700108, India;
| |
Collapse
|
32
|
Haghani A, Morgan TE, Forman HJ, Finch CE. Air Pollution Neurotoxicity in the Adult Brain: Emerging Concepts from Experimental Findings. J Alzheimers Dis 2021; 76:773-797. [PMID: 32538853 DOI: 10.3233/jad-200377] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epidemiological studies are associating elevated exposure to air pollution with increased risk of Alzheimer's disease and other neurodegenerative disorders. In effect, air pollution accelerates many aging conditions that promote cognitive declines of aging. The underlying mechanisms and scale of effects remain largely unknown due to its chemical and physical complexity. Moreover, individual responses to air pollution are shaped by an intricate interface of pollutant mixture with the biological features of the exposed individual such as age, sex, genetic background, underlying diseases, and nutrition, but also other environmental factors including exposure to cigarette smoke. Resolving this complex manifold requires more detailed environmental and lifestyle data on diverse populations, and a systematic experimental approach. Our review aims to summarize the modest existing literature on experimental studies on air pollution neurotoxicity for adult rodents and identify key gaps and emerging challenges as we go forward. It is timely for experimental biologists to critically understand prior findings and develop innovative approaches to this urgent global problem. We hope to increase recognition of the importance of air pollution on brain aging by our colleagues in the neurosciences and in biomedical gerontology, and to support the immediate translation of the findings into public health guidelines for the regulation of remedial environmental factors that accelerate aging processes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | - Todd E Morgan
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA
| | | | - Caleb E Finch
- Leonard Davis School of Gerontology, USC, Los Angeles, CA, USA.,Dornsife College, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
|
34
|
Iaccarino L, La Joie R, Lesman-Segev OH, Lee E, Hanna L, Allen IE, Hillner BE, Siegel BA, Whitmer RA, Carrillo MC, Gatsonis C, Rabinovici GD. Association Between Ambient Air Pollution and Amyloid Positron Emission Tomography Positivity in Older Adults With Cognitive Impairment. JAMA Neurol 2021; 78:197-207. [PMID: 33252608 DOI: 10.1001/jamaneurol.2020.3962] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Importance Amyloid-β (Aβ) deposition is a feature of Alzheimer disease (AD) and may be promoted by exogenous factors, such as ambient air quality. Objective To examine the association between the likelihood of amyloid positron emission tomography (PET) scan positivity and ambient air quality in individuals with cognitive impairment. Design, Setting, and Participants This cross-sectional study used data from the Imaging Dementia-Evidence for Amyloid Scanning Study, which included more than 18 000 US participants with cognitive impairment who received an amyloid PET scan with 1 of 3 Aβ tracers (fluorine 18 [18F]-labeled florbetapir, 18F-labeled florbetaben, or 18F-labeled flutemetamol) between February 16, 2016, and January 10, 2018. A sample of older adults with mild cognitive impairment (MCI) or dementia was selected. Exposures Air pollution was estimated at the patient residence using predicted fine particulate matter (PM2.5) and ground-level ozone (O3) concentrations from the Environmental Protection Agency Downscaler model. Air quality was estimated at 2002 to 2003 (early, or approximately 14 [range, 13-15] years before amyloid PET scan) and 2015 to 2016 (late, or approximately 1 [range, 0-2] years before amyloid PET scan). Main Outcomes and Measures Primary outcome measure was the association between air pollution and the likelihood of amyloid PET scan positivity, which was measured as odds ratios (ORs) and marginal effects, adjusting for demographic, lifestyle, and socioeconomic factors and medical comorbidities, including respiratory, cardiovascular, cerebrovascular, psychiatric, and neurological conditions. Results The data set included 18 178 patients, of which 10 991 (60.5%) had MCI and 7187 (39.5%) had dementia (mean [SD] age, 75.8 [6.3] years; 9333 women [51.3%]). Living in areas with higher estimated biennial PM2.5 concentrations in 2002 to 2003 was associated with a higher likelihood of amyloid PET scan positivity (adjusted OR, 1.10; 95% CI, 1.05-1.15; z score = 3.93; false discovery rate [FDR]-corrected P < .001; per 4-μg/m3 increments). Results were similar for 2015 to 2016 data (OR, 1.15; 95% CI, 1.05-1.26, z score = 3.14; FDR-corrected P = .003). An average marginal effect (AME) of +0.5% (SE = 0.1%; z score, 3.93; 95% CI, 0.3%-0.7%; FDR-corrected P < .001) probability of amyloid PET scan positivity for each 1-μg/m3 increase in PM2.5 was observed for 2002 to 2003, whereas an AME of +0.8% (SE = 0.2%; z score = 3.15; 95% CI, 0.3%-1.2%; FDR-corrected P = .002) probability was observed for 2015 to 2016. Post hoc analyses showed no effect modification by sex (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.04; z score = 1.13; FDR-corrected P = .56]; 2015-2016: β = 1.02 [95% CI, 0.98-1.07; z score = 0.91; FDR-corrected P = .56]) or clinical stage (2002-2003: interaction term β = 1.01 [95% CI, 0.99-1.03; z score = 0.77; FDR-corrected P = .58]; 2015-2016: β = 1.03; 95% CI, 0.99-1.08; z score = 1.46; FDR-corrected P = .47]). Exposure to higher O3 concentrations was not associated with amyloid PET scan positivity in both time windows. Conclusions and Relevance This study found that higher PM2.5 concentrations appeared to be associated with brain Aβ plaques. These findings suggest the need to consider airborne toxic pollutants associated with Aβ pathology in public health policy decisions and to inform individual lifetime risk of developing AD and dementia.
Collapse
Affiliation(s)
- Leonardo Iaccarino
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Renaud La Joie
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco
| | - Orit H Lesman-Segev
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Eunice Lee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco
| | - Lucy Hanna
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island
| | - Isabel E Allen
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco
| | - Bruce E Hillner
- Department of Medicine, Virginia Commonwealth University, Richmond
| | - Barry A Siegel
- Edward Mallinckrodt Institute of Radiology, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Rachel A Whitmer
- Division of Research, Kaiser Permanente, Oakland, California.,Department of Public Health Sciences, University of California, Davis, Davis
| | - Maria C Carrillo
- Medical and Scientific Relations Division, Alzheimer's Association, Chicago, Illinois
| | - Constantine Gatsonis
- Center for Statistical Sciences, Brown University School of Public Health, Providence, Rhode Island.,Department of Biostatistics, Brown University School of Public Health, Providence, Rhode Island
| | - Gil D Rabinovici
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco.,Associate Editor, JAMA Neurology
| |
Collapse
|
35
|
Tham R, Schikowski T. The Role of Traffic-Related Air Pollution on Neurodegenerative Diseases in Older People: An Epidemiological Perspective. J Alzheimers Dis 2020; 79:949-959. [PMID: 33361591 DOI: 10.3233/jad-200813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Traffic-related air pollution is ubiquitous and almost impossible to avoid. It is important to understand the role that traffic-related air pollution may play in neurodegenerative diseases, such as dementia, Alzheimer's disease, and Parkinson's disease, particularly among older populations and at-risk groups. There is a growing interest in this area among the environmental epidemiology literature and the body of evidence identifying this role is emerging and strengthening. This review focuses on the principal components of traffic-related air pollutants (particulate matter and nitrogen oxides) and the epidemiological evidence of their contribution to common neurodegenerative diseases. All studies reported are currently observational in nature and there are mixed findings depending on the study design, assessment of traffic-related air pollutant levels, assessment of the neurodegenerative disease outcome, time period of assessment, and the role of confounding environmental factors and at-risk genetic characteristics. All current studies have been conducted in income-rich countries where traffic-related air pollution levels are relatively low. Additional longer-term studies are needed to confirm the levels of risk, consider other contributing environmental factors and to be conducted in settings where air pollution exposures are higher and at-risk populations reside and work. Better understanding of these relationships will help inform the development of preventive measures and reduce chronic cognitive and physical health burdens (cost, quality of life) at personal and societal levels.
Collapse
Affiliation(s)
- Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Australia
| | - Tamara Schikowski
- IUF-Leibniz Institute for Environmental Medicine, Duesseldorf, Germany
| |
Collapse
|
36
|
Adivi A, Lucero J, Simpson N, McDonald JD, Lund AK. Exposure to traffic-generated air pollution promotes alterations in the integrity of the brain microvasculature and inflammation in female ApoE -/- mice. Toxicol Lett 2020; 339:39-50. [PMID: 33373663 DOI: 10.1016/j.toxlet.2020.12.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/11/2020] [Accepted: 12/21/2020] [Indexed: 02/03/2023]
Abstract
Traffic-generated air pollutants have been correlated with alterations in blood-brain barrier (BBB) integrity, which is associated with pathologies in the central nervous system (CNS). Much of the existing literature investigating the effects of air pollution in the CNS has predominately been reported in males, with little known regarding the effects in females. As such, this study characterized the effects of inhalation exposure to mixed vehicle emissions (MVE), as well as the presence of female sex hormones, in the CNS of female ApoE-/- mice, which included cohorts of both ovariectomized (ov-) and ovary-intact (ov+) mice. Ov + and ov- were placed on a high-fat diet and randomly grouped to be exposed to either filtered-air (FA) or MVE (200 PM/m3: 50 μg PM/m3 gasoline engine + 150 μg PM/m3 from diesel engine emissions) for 6 h/d, 7d/wk, for 30d. MVE-exposure resulted in altered cerebral microvascular integrity and permeability, as determined by the decreased immunofluorescent expression of tight junction (TJ) proteins, occludin, and claudin-5, and increased IgG extravasation into the cerebral parenchyma, compared to FA controls, regardless of ovary status. Associated with the altered cerebral microvascular integrity, we also observed an increase in matrix metalloproteinases (MMPs) -2/9 activity in the MVE ov+, MVE ov-, and FA ov- groups, compared to FA ov+. There was also elevated expression of intracellular adhesion molecule (ICAM)-1, inflammatory interleukins (IL-1, IL-1β), and tumor necrosis factor (TNF-α) mRNA in the cerebrum of MVE ov + and MVE ov- animals. IκB kinase (IKK) subunits IKKα and IKKβ mRNA expressions were upregulated in the cerebrum of MVE ov- and FA ov- mice. Our findings indicate that MVE exposure mediates altered integrity of the cerebral microvasculature correlated with increased MMP-2/9 activity and inflammatory signaling, regardless of female hormones present.
Collapse
Affiliation(s)
- Anna Adivi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - JoAnn Lucero
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA
| | - Nicholas Simpson
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Jacob D McDonald
- Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM, 87108, USA
| | - Amie K Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, 76201, USA.
| |
Collapse
|
37
|
Finch CE, Morgan TE. Developmental Exposure to Air Pollution, Cigarettes, and Lead: Implications for Brain Aging. ACTA ACUST UNITED AC 2020. [DOI: 10.1146/annurev-devpsych-042320-044338] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Brain development is impaired by maternal exposure to airborne toxins from ambient air pollution, cigarette smoke, and lead. Shared postnatal consequences include gray matter deficits and abnormal behaviors as well as elevated blood pressure. These unexpectedly broad convergences have implications for later life brain health because these same airborne toxins accelerate brain aging. Gene-environment interactions are shown for ApoE alleles that influence the risk of Alzheimer disease. The multigenerational trace of these toxins extends before fertilization because egg cells are formed in the grandmaternal uterus. The lineage and sex-specific effects of grandmaternal exposure to lead and cigarettes indicate epigenetic processes of relevance to future generations from our current and recent exposure to airborne toxins.
Collapse
Affiliation(s)
- Caleb E. Finch
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| | - Todd E. Morgan
- Leonard Davis School of Gerontology and Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California 90089-0191, USA;,
| |
Collapse
|
38
|
Armstrong TD, Suwannasual U, Kennedy CL, Thasma A, Schneider LJ, Phillippi D, Lund AK. Exposure to Traffic-Generated Pollutants Exacerbates the Expression of Factors Associated with the Pathophysiology of Alzheimer’s Disease in Aged C57BL/6 Wild-Type Mice. J Alzheimers Dis 2020; 78:1453-1471. [DOI: 10.3233/jad-200929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Multiple studies report a strong correlation between traffic-generated air pollution-exposure and detrimental outcomes in the central nervous system (CNS), including Alzheimer’s disease (AD). Incidence of AD is rapidly increasing and, worldwide, many live in regions where pollutants exceed regulatory standards. Thus, it is imperative to identify environmental pollutants that contribute to AD, and the mechanisms involved. Objective: We investigated the effects of mixed gasoline and diesel engine emissions (MVE) on the expression of factors involved in progression of AD in the hippocampus and cerebrum in a young versus aged mouse model. Methods: Young (2 months old) and aged (18 months old) male C57BL/6 mice were exposed to either MVE (300μg/m3 PM) or filtered air (FA) for 6 h/d, 7 d/wk, for 50 d. Immunofluorescence and RT-qPCR were used to quantify oxidative stress (8-OHdG) and expression of amyloid-β protein precursor (AβPP), β secretase (BACE1), amyloid-β (Aβ), aryl hydrocarbon receptor (AhR), cytochrome P450 (CYP) 1B1, angiotensin-converting enzyme (ACE1), and angiotensin II type 1 (AT1) receptor in the cerebrum and hippocampus, in addition to cerebral microvascular tight junction (TJ) protein expression. Results: We observed age-related increases in oxidative stress, AhR, CYP1B1, Aβ, BACE1, and AT1 receptor in the CA1 region of the hippocampus, and elevation of cerebral AβPP, AhR, and CYP1B1 mRNA, associated with decreased cerebral microvascular TJ protein claudin-5. MVE-exposure resulted in further promotion of oxidative stress, and significant increases in AhR, CYP1B1, BACE1, ACE1, and Aβ, compared to the young and aged FA-exposed mice. Conclusion: Such findings suggest that MVE-exposure exacerbates the expression of factors in the CNS associated with AD pathogenesis in aged populations.
Collapse
Affiliation(s)
- Tyler D. Armstrong
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Usa Suwannasual
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Conner L. Kennedy
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Akshaykumar Thasma
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Leah J. Schneider
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Danielle Phillippi
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Amie K. Lund
- Advanced Environmental Research Institute, Department of Biological Sciences, University of North Texas, Denton, TX, USA
| |
Collapse
|
39
|
Calderón-Garcidueñas L, González-Maciel A, Reynoso-Robles R, Hammond J, Kulesza R, Lachmann I, Torres-Jardón R, Mukherjee PS, Maher BA. Quadruple abnormal protein aggregates in brainstem pathology and exogenous metal-rich magnetic nanoparticles (and engineered Ti-rich nanorods). The substantia nigrae is a very early target in young urbanites and the gastrointestinal tract a key brainstem portal. ENVIRONMENTAL RESEARCH 2020; 191:110139. [PMID: 32888951 DOI: 10.1016/j.envres.2020.110139] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/21/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate air pollution (PM2.5) exposures are linked with Alzheimer's and Parkinson's diseases (AD,PD). AD and PD neuropathological hallmarks are documented in children and young adults exposed lifelong to Metropolitan Mexico City air pollution; together with high frontal metal concentrations (especially iron)-rich nanoparticles (NP), matching air pollution combustion- and friction-derived particles. Here, we identify aberrant hyperphosphorylated tau, ɑ synuclein and TDP-43 in the brainstem of 186 Mexico City 27.29 ± 11.8y old residents. Critically, substantia nigrae (SN) pathology seen in mitochondria, endoplasmic reticulum and neuromelanin (NM) is co-associated with the abundant presence of exogenous, Fe-, Al- and Ti-rich NPs.The SN exhibits early and progressive neurovascular unit damage and mitochondria and NM are associated with metal-rich NPs including exogenous engineered Ti-rich nanorods, also identified in neuroenteric neurons. Such reactive, cytotoxic and magnetic NPs may act as catalysts for reactive oxygen species formation, altered cell signaling, and protein misfolding, aggregation and fibril formation. Hence, pervasive, airborne and environmental, metal-rich and magnetic nanoparticles may be a common denominator for quadruple misfolded protein neurodegenerative pathologies affecting urbanites from earliest childhood. The substantia nigrae is a very early target and the gastrointestinal tract (and the neuroenteric system) key brainstem portals. The ultimate neural damage and neuropathology (Alzheimer's, Parkinson's and TDP-43 pathology included) could depend on NP characteristics and the differential access and targets achieved via their portals of entry. Thus where you live, what air pollutants you are exposed to, what you are inhaling and swallowing from the air you breathe,what you eat, how you travel, and your occupational longlife history are key. Control of NP sources becomes critical.
Collapse
Affiliation(s)
| | | | | | - Jessica Hammond
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, UNAM, Mexico City, 04510, Mexico
| | | | - Barbara A Maher
- Centre for Environmental Magnetism and Paleomagnetism, Lancaster Environment Centre, University of Lancaster, Lancaster, LA1 4YQ, UK
| |
Collapse
|
40
|
Calderón-Garcidueñas L, Torres-Solorio AK, Kulesza RJ, Torres-Jardón R, González-González LO, García-Arreola B, Chávez-Franco DA, Luévano-Castro SC, Hernández-Castillo A, Carlos-Hernández E, Solorio-López E, Crespo-Cortés CN, García-Rojas E, Mukherjee PS. Gait and balance disturbances are common in young urbanites and associated with cognitive impairment. Air pollution and the historical development of Alzheimer's disease in the young. ENVIRONMENTAL RESEARCH 2020; 191:110087. [PMID: 32890478 PMCID: PMC7467072 DOI: 10.1016/j.envres.2020.110087] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/10/2020] [Accepted: 08/11/2020] [Indexed: 05/03/2023]
Abstract
To determine whether gait and balance dysfunction are present in young urbanites exposed to fine particular matter PM2.5 ≥ annual USEPA standard, we tested gait and balance with Tinetti and Berg tests in 575 clinically healthy subjects, age 21.0 ± 5.7 y who were residents in Metropolitan Mexico City, Villahermosa and Reynosa. The Montreal Cognitive Assessment was also applied to an independent cohort n:76, age 23.3 ± 9.1 y. In the 575 cohort, 75.4% and 34.4% had abnormal total Tinetti and Berg scores and high risk of falls in 17.2% and 5.7% respectively. BMI impacted negatively Tinetti and Berg performance. Gait dysfunction worsen with age and males performed worse than females. Gait and balance dysfunction were associated with mild cognitive impairment MCI (19.73%) and dementia (55.26%) in 57/76 and 19 cognitively intact subjects had gait and balance dysfunction. Seventy-five percent of urbanites exposed to PM2.5 had gait and balance dysfunction. For MMC residents-with historical documented Alzheimer disease (AD) and CSF abnormalities, these findings suggest Alzheimer Continuum is in progress. Early development of a Motoric Cognitive Risk Syndrome ought to be considered in city dwellers with normal cognition and gait dysfunction. The AD research frame in PM2.5 exposed young urbanites should include gait and balance measurements. Multicity teens and young adult cohorts are warranted for quantitative gait and balance measurements and neuropsychological and brain imaging studies in high vs low PM2.5 exposures. Early identification of gait and balance impairment in young air pollution-exposed urbanites would facilitate multidisciplinary prevention efforts for modifying the course of AD.
Collapse
Affiliation(s)
| | | | - Randy J Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, 16509, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Calderón-Garcidueñas L, Torres-Jardón R, Franco-Lira M, Kulesza R, González-Maciel A, Reynoso-Robles R, Brito-Aguilar R, García-Arreola B, Revueltas-Ficachi P, Barrera-Velázquez JA, García-Alonso G, García-Rojas E, Mukherjee PS, Delgado-Chávez R. Environmental Nanoparticles, SARS-CoV-2 Brain Involvement, and Potential Acceleration of Alzheimer's and Parkinson's Diseases in Young Urbanites Exposed to Air Pollution. J Alzheimers Dis 2020; 78:479-503. [PMID: 32955466 DOI: 10.3233/jad-200891] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alzheimer's and Parkinson's diseases (AD, PD) have a pediatric and young adult onset in Metropolitan Mexico City (MMC). The SARS-CoV-2 neurotropic RNA virus is triggering neurological complications and deep concern regarding acceleration of neuroinflammatory and neurodegenerative processes already in progress. This review, based on our MMC experience, will discuss two major issues: 1) why residents chronically exposed to air pollution are likely to be more susceptible to SARS-CoV-2 systemic and brain effects and 2) why young people with AD and PD already in progress will accelerate neurodegenerative processes. Secondary mental consequences of social distancing and isolation, fear, financial insecurity, violence, poor health support, and lack of understanding of the complex crisis are expected in MMC residents infected or free of SARS-CoV-2. MMC residents with pre-SARS-CoV-2 accumulation of misfolded proteins diagnostic of AD and PD and metal-rich, magnetic nanoparticles damaging key neural organelles are an ideal host for neurotropic SARS-CoV-2 RNA virus invading the body through the same portals damaged by nanoparticles: nasal olfactory epithelium, the gastrointestinal tract, and the alveolar-capillary portal. We urgently need MMC multicenter retrospective-prospective neurological and psychiatric population follow-up and intervention strategies in place in case of acceleration of neurodegenerative processes, increased risk of suicide, and mental disease worsening. Identification of vulnerable populations and continuous effort to lower air pollution ought to be critical steps.
Collapse
Affiliation(s)
| | - Ricardo Torres-Jardón
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maricela Franco-Lira
- Colegio de Bachilleres Militarizado, "General Mariano Escobedo", Monterrey, N.L., México
| | - Randy Kulesza
- Auditory Research Center, Lake Erie College of Osteopathic Medicine, Erie, PA, USA
| | | | | | | | | | | | | | | | | | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| | | |
Collapse
|
42
|
Smargiassi A, Sidi EAL, Robert LE, Plante C, Haddad M, Gamache P, Burnett R, Goudreau S, Liu L, Fournier M, Pelletier E, Yankoty I. Exposure to ambient air pollutants and the onset of dementia in Québec, Canada. ENVIRONMENTAL RESEARCH 2020; 190:109870. [PMID: 32739624 DOI: 10.1016/j.envres.2020.109870] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/20/2020] [Accepted: 06/20/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Effects of air pollutants are related to oxidative stress which is also linked to the pathogenesis of dementia including Alzheimer's and related diseases. OBJECTIVE We assessed associations between exposure to air pollutants and the onset of dementia; the association with the distance between residence and major roads was also assessed for the island of Montreal. METHODS We created an open cohort of adults aged 65 years and older starting in 2000 and ending in 2012 in the province of Québec, Canada using linked medico-administrative databases. New cases of dementia were defined based on a validated algorithm. Annual residential levels of nitrogen dioxide (NO2) and fine particles (PM2.5) at residential levels were estimated for each year of follow up using estimates based on satellite images and ground air monitoring data. Hazard ratios (HRs) were assessed with Extended (time dependent exposure) Cox models with age as the time axis and stratified for sex, for the annual exposure level at each residential address. Models were adjusted for the calendar year, area-wide social and material deprivation indexes and for NO2 or PM2.5; they were also indirectly adjusted for smoking. RESULTS 1,807,133 persons (13,242,270 person-years) were followed and 199,826 developed dementia. From models (adjusted for calendar year, social and material deprivation indexes), HRs for an interquartile range (IQR) increase in time-varying exposure to NO2 (IQR 13.26 ppb), PM2.5 (IQR 3.90 μg/m³), and distance to major roads (IQR 150 m, in Montreal only), were 1.005 (CI 95% 0.994-1.017), 1.016 (CI 95% 1.003-1.028) and 0.969 (CI 95% 0.958-0.980), respectively. CONCLUSIONS Results suggest that the onset of dementia may be related to residential exposure to PM2.5, NO2, and distance to major roads.
Collapse
Affiliation(s)
- Audrey Smargiassi
- School of Public Health, Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada; Institut national de la santé publique du Québec, Québec, Canada.
| | | | | | - Céline Plante
- Direction régionale de santé publique de Montréal, Québec, Canada
| | - Mona Haddad
- School of Public Health, Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
| | - Philippe Gamache
- Institut national de la santé publique du Québec, Québec, Canada
| | - Rick Burnett
- Environmental Health Science and Research Bureau, Health, Canada
| | - Sophie Goudreau
- Direction régionale de santé publique de Montréal, Québec, Canada
| | - Ling Liu
- Environmental Health Science and Research Bureau, Health, Canada
| | - Michel Fournier
- Direction régionale de santé publique de Montréal, Québec, Canada
| | - Eric Pelletier
- Institut national de la santé publique du Québec, Québec, Canada
| | - Ines Yankoty
- School of Public Health, Centre of Public Health Research, University of Montreal and CIUSSS du Centre-Sud-de-l'Île-de-Montréal, Montreal, Canada
| |
Collapse
|
43
|
Haghani A, Cacciottolo M, Doty KR, D'Agostino C, Thorwald M, Safi N, Levine ME, Sioutas C, Town TC, Forman HJ, Zhang H, Morgan TE, Finch CE. Mouse brain transcriptome responses to inhaled nanoparticulate matter differed by sex and APOE in Nrf2-Nfkb interactions. eLife 2020; 9:e54822. [PMID: 32579111 PMCID: PMC7314548 DOI: 10.7554/elife.54822] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 06/12/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotoxicity of air pollution is undefined for sex and APOE alleles. These major risk factors of Alzheimer's disease (AD) were examined in mice given chronic exposure to nPM, a nano-sized subfraction of urban air pollution. In the cerebral cortex, female mice had two-fold more genes responding to nPM than males. Transcriptomic responses to nPM had sex-APOE interactions in AD-relevant pathways. Only APOE3 mice responded to nPM in genes related to Abeta deposition and clearance (Vav2, Vav3, S1009a). Other responding genes included axonal guidance, inflammation (AMPK, NFKB, APK/JNK signaling), and antioxidant signaling (NRF2, HIF1A). Genes downstream of NFKB and NRF2 responded in opposite directions to nPM. Nrf2 knockdown in microglia augmented NFKB responses to nPM, suggesting a critical role of NRF2 in air pollution neurotoxicity. These findings give a rationale for epidemiologic studies of air pollution to consider sex interactions with APOE alleles and other AD-risk genes.
Collapse
Affiliation(s)
- Amin Haghani
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Mafalda Cacciottolo
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Kevin R Doty
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Carla D'Agostino
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Max Thorwald
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Nikoo Safi
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Morgan E Levine
- Department of Pathology, Yale School of MedicineNew HavenUnited States
| | - Constantinos Sioutas
- Department of Civil and Environmental Engineering, Viterbi School of Engineering, University of Southern CaliforniaLos AngelesUnited States
| | - Terrence C Town
- Zilkha Neurogenetic Institute, Department of Physiology and Neuroscience, Keck School of Medicine of the University of Southern CaliforniaLos AngelesUnited States
| | - Henry Jay Forman
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Hongqiao Zhang
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Todd E Morgan
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
| | - Caleb E Finch
- Leonard Davis School of Gerontology, University of Southern CaliforniaLos AngelesUnited States
- Dornsife College, University of Southern CaliforniaLos AngelesUnited States
| |
Collapse
|
44
|
Zhu X, Ji X, Shou Y, Huang Y, Hu Y, Wang H. Recent advances in understanding the mechanisms of PM 2.5-mediated neurodegenerative diseases. Toxicol Lett 2020; 329:31-37. [PMID: 32360789 DOI: 10.1016/j.toxlet.2020.04.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 04/15/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
PM2.5 particles are widely believed to be associated with respiratory and cardiovascular diseases. However, recent studies have reported that PM2.5 may be associated with neurodegenerative diseases. The exact mechanism by which PM2.5 mediates neurotoxicity and cognitive dysfunction is still unclear. In the current work, we collected evidence supporting the association between PM2.5 exposure and development of neurodegenerative disorders. Evidence from epidemiological investigations, animal experiments, and ex vivo cell experiments showed that PM2.5 exposure may lead to neuroinflammation, oxidative stress, mitochondrial dysfunction, neuronal apoptosis, synaptic damage and ultimately neurodegenerative diseases.
Collapse
Affiliation(s)
- Xiaozheng Zhu
- School of Medicine, Hangzhou Normal University, China
| | - Xintong Ji
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yikai Shou
- School of Medicine, Hangzhou Normal University, China; The Children's Hospital, The Institute of Translational Medicine, School of Medicine, Zhejiang University, China
| | - Yilu Huang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China
| | - Yu Hu
- School of Medicine, Hangzhou Normal University, China.
| | - Huanhuan Wang
- School of Medicine, Hangzhou Normal University, China; Laboratory of Aging and Cancer Biology of Zhejiang Province, Hangzhou Normal University, China.
| |
Collapse
|
45
|
Kritikos M, Gandy S, Meliker JR, Luft BJ, Clouston SAP. Acute versus Chronic Exposures to Inhaled Particulate Matter and Neurocognitive Dysfunction: Pathways to Alzheimer's Disease or a Related Dementia. J Alzheimers Dis 2020; 78:871-886. [PMID: 33074229 PMCID: PMC7704925 DOI: 10.3233/jad-200679] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
An estimated 92% of the world's population live in regions where people are regularly exposed to high levels of anthropogenic air pollution. Historically, research on the effects of air pollution have focused extensively on cardiovascular and pulmonary health. However, emerging evidence from animal and human studies has suggested that chronic exposures to air pollution detrimentally change the functioning of the central nervous system with the result being proteinopathy, neurocognitive impairment, and neurodegenerative disease. Case analyses of aging World Trade Center responders suggests that a single severe exposure may also induce a neuropathologic response. The goal of this report was to explore the neuroscientific support for the hypothesis that inhaled particulate matter might cause an Alzheimer's-like neurodegenerative disease, in order to consider proposed mechanisms and latency periods linking inhaled particulate matter and neurodegeneration, and to propose new directions in this line of research.
Collapse
Affiliation(s)
- Minos Kritikos
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Samuel Gandy
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jaymie R. Meliker
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Benjamin J. Luft
- World Trade Center Health and Wellness Program, Department of Medicine, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| | - Sean A. P. Clouston
- Department of Family, Population and Preventive Medicine, Program in Public Health, Renaissance School of Medicine at Stony Brook, Stony Brook, NY, USA
| |
Collapse
|