1
|
Wang X, Zhang S, Yan H, Ma Z, Zhang Y, Luo H, Yang X. Association of exposure to ozone and fine particulate matter with ovarian reserve among women with infertility. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122845. [PMID: 37926414 DOI: 10.1016/j.envpol.2023.122845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Evidence linking diminished ovarian reserve, a significant cause of female infertility, and exposure to particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5) or O3 exposure remains a critical knowledge gap in female fertility. This study investigated the association between ambient PM2.5, O3 pollution, and anti-Müllerian hormone (AMH), a sensitive marker of ovarian reserve, in reproductive-aged Chinese women. We enrolled 2212 women with spontaneous menstrual cycles who underwent AMH measurements at a reproductive medicine center between 2018 and 2021. The daily mean concentrations of outdoor PM2.5 and O3 were estimated using a validated spatiotemporal model, followed by matching the participants' residential addresses. Three exposure periods were designed according to AMH expression patterns during follicle development. A generalized linear model was used to investigate changes in AMH associated with air pollution. The results showed a mean AMH level of 3.47 ± 2.61 ng/mL. During the six months from primary to early antral follicle stage (Period 1), each 10 μg/m3 increase in PM2.5 and O3 exposure was associated with AMH changes of -0.21 (95% confidence interval [CI]: -0.48, 0.06) ng/mL and -0.31 (95% CI: -0.50, -0.12) ng/mL, respectively. Further analyses indicated that the reduced ovarian reserve measured by AMH level was only significantly associated with PM2.5 exposure during follicle development from the primary to preantral follicle stage (Period 2) but was significantly associated with O3 exposure during Periods 1, 2, and 3. These observations were robust in the dual-pollutant model considering co-exposure to PM2.5 and O3. The results indicated an inverse association between ovarian reserve and ambient O3 exposure and suggested distinct susceptibility windows for O3 and PM2.5 for reduced ovarian reserve. These findings highlight the need to control ambient air pollution to reduce invisible risks to women's fertility, especially at high O3 concentrations.
Collapse
Affiliation(s)
- Xinyan Wang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Shuai Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Huihui Yan
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Zhao Ma
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China
| | - Yunshan Zhang
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China
| | - Haining Luo
- Center for Reproductive Medicine, Tianjin Central Hospital of Obstetrics and Gynecology, Maternal Hospital of Nankai University, Tianjin Key Laboratory of Human Development and Reproductive Regulation, No. 156 Nankai Third Road, Tianjin 300100, China.
| | - Xueli Yang
- Department of Occupational and Environmental Health, School of Public Health, Tianjin Medical University, Tianjin 300070, China; State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Yao Y, Ma K, He C, Zhang Y, Lin Y, Fang F, Li S, He H. Urban Surface Ozone Concentration in Mainland China during 2015-2020: Spatial Clustering and Temporal Dynamics. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3810. [PMID: 36900822 PMCID: PMC10001023 DOI: 10.3390/ijerph20053810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Urban ozone (O3) pollution in the atmosphere has become increasingly prominent on a national scale in mainland China, although the atmospheric particulate matter pollution has been significantly reduced in recent years. The clustering and dynamic variation characteristics of the O3 concentrations in cities across the country, however, have not been accurately explored at relevant spatiotemporal scales. In this study, a standard deviational ellipse analysis and multiscale geographically weighted regression models were applied to explore the migration process and influencing factors of O3 pollution based on measured data from urban monitoring sites in mainland China. The results suggested that the urban O3 concentration in mainland China reached its peak in 2018, and the annual O3 concentration reached 157 ± 27 μg/m3 from 2015 to 2020. On the scale of the whole Chinese mainland, the distribution of O3 exhibited spatial dependence and aggregation. On the regional scale, the areas of high O3 concentrations were mainly concentrated in Beijing-Tianjin-Hebei, Shandong, Jiangsu, Henan, and other regions. In addition, the standard deviation ellipse of the urban O3 concentration covered the entire eastern part of mainland China. Overall, the geographic center of ozone pollution has a tendency to move to the south with the time variation. The interaction between sunshine hours and other factors (precipitation, NO2, DEM, SO2, PM2.5) significantly affected the variation of urban O3 concentration. In Southwest China, Northwest China, and Central China, the suppression effect of vegetation on local O3 was more obvious than that in other regions. Therefore, this study clarified for the first time the migration path of the gravity center of the urban O3 pollution and identified the key areas for the prevention and control of O3 pollution in mainland China.
Collapse
Affiliation(s)
- Youru Yao
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
| | - Kang Ma
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
| | - Cheng He
- Helmholtz Zentrum München–German Research Center for Environmental Health (GmbH), Institute of Epidemiology, 85764 Neuherberg, Germany
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Yuesheng Lin
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
| | - Fengman Fang
- Key Laboratory of Earth Surface Processes and Regional Response in the Yangtze-Huaihe River Basin, School of Geography and Tourism, Anhui Normal University, Wuhu 241002, China
| | - Shiyin Li
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
3
|
Pang L, Yu W, Lv J, Dou Y, Zhao H, Li S, Guo Y, Chen G, Cui L, Hu J, Zhao Y, Zhao Q, Chen ZJ. Air pollution exposure and ovarian reserve impairment in Shandong province, China: The effects of particulate matter size and exposure window. ENVIRONMENTAL RESEARCH 2023; 218:115056. [PMID: 36521537 DOI: 10.1016/j.envres.2022.115056] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Lack of evidence exists on whether air pollution exposure may affect ovarian reserve, especially for Chinese women. OBJECTIVES To explore the association between exposure to various air pollutants and anti-Müllerian hormone (AMH), a predictor of ovarian reserve, over different exposure windows in Shandong Province, China. METHODS We enrolled 18,878 women who had AMH measurements in the Center for Reproductive Medicine, Shandong University during 2010-2019. Daily average concentrations of ambient particulate matter with diameters ≤1 μm/2.5 μm/10 μm (PM1, PM2.5, and PM10), nitrogen dioxide (NO2) and ozone (O3) were developed at a spatial resolution of 0.01° × 0.01°, and assigned to the residential addresses. Three exposure windows were considered, i.e., the process from primary to small antral follicle stage (W1), from primary to secondary follicle stage (W2), and from secondary to small antral follicle stage (W3). The air pollution-AMH association was fitted using the multivariable linear mixed effect model with adjustment for potential confounders. Stratified analyses were performed by age group, overweight status, residential region, and educational level. RESULTS The level of AMH changed by -8.8% (95% confidence interval (CI): -12.1%, -5.3%), -2.1% (95% CI: -3.5%, -0.6%), -1.9% (95% CI: -3.3%, -0.5%), and -4.5% (95% CI: -7.1%, -1.9%) per 10 μg/m3 increase in PM1, PM2.5, PM10, and NO2, respectively, during W1. The effect estimates were significant during W2 for PM1, PM2.5 and NO2 while minimal association was observed in W3. Greater vulnerability for certain air pollutants were observed for women who lived in inland areas and were less educated. CONCLUSIONS We found that ovarian reserve was negatively associated with air pollution exposure for women, particularly from the primary to secondary follicle stage. The effect estimate increased by the reduction in the diameter of PMs, which also varied across population sub-groups.
Collapse
Affiliation(s)
- Lihong Pang
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Wenhao Yu
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Jiale Lv
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yunde Dou
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Han Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Gongbo Chen
- Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Linlin Cui
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Jingmei Hu
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Yueran Zhao
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
| | - Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Department of Epidemiology, IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40225, Germany.
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China; Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong, 250012, China; Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China; Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China; Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, 200135, China.
| |
Collapse
|
4
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Impacts of exposure to air pollution, radon and climate drivers on the COVID-19 pandemic in Bucharest, Romania: A time series study. ENVIRONMENTAL RESEARCH 2022; 212:113437. [PMID: 35594963 PMCID: PMC9113773 DOI: 10.1016/j.envres.2022.113437] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 05/05/2023]
Abstract
During the ongoing global COVID-19 pandemic disease, like several countries, Romania experienced a multiwaves pattern over more than two years. The spreading pattern of SARS-CoV-2 pathogens in the Bucharest, capital of Romania is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation. Through descriptive statistics and cross-correlation analysis applied to daily time series of observational and geospatial data, this study aims to evaluate the synergy of COVID-19 incidence and lethality with air pollution and radon under different climate conditions, which may exacerbate the coronavirus' effect on human health. During the entire analyzed period 1 January 2020-21 December 2021, for each of the four COVID-19 waves were recorded different anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere, and favorable stability conditions during fall-early winter seasons for COVID-19 disease fast-spreading, mostly during the second, and the fourth waves. As the temporal pattern of airborne SARS-CoV-2 and its mutagen variants is affected by seasonal variability of the main air pollutants and climate parameters, this paper found: 1) the daily outdoor exposures to air pollutants (particulate matter PM2.5 and PM10, nitrogen dioxide-NO2, sulfur dioxide-SO2, carbon monoxide-CO) and radon - 222Rn, are directly correlated with the daily COVID-19 incidence and mortality, and may contribute to the spread and the severity of the pandemic; 2) the daily ground ozone-O3 levels, air temperature, Planetary Boundary Layer height, and surface solar irradiance are anticorrelated with the daily new COVID-19 incidence and deaths, averageingful for spring-summer periods. Outdoor exposure to ambient air pollution associated with radon is a non-negligible driver of COVID-19 transmission in large metropolitan areas, and climate variables are risk factors in spreading the viral infection. The findings of this study provide useful information for public health authorities and decision-makers to develop future pandemic diseases strategies in high polluted metropolitan environments.
Collapse
Affiliation(s)
- Maria A Zoran
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania.
| | - Roxana S Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Dan M Savastru
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| | - Marina N Tautan
- National Institute of R&D for Optoelectronics, Bucharest, Magurele, Romania
| |
Collapse
|
5
|
Estimating the Impact of Air Pollution on Healthcare-Seeking Behaviour by Applying a Difference-in-Differences Method to Syndromic Surveillance Data. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127097. [PMID: 35742342 PMCID: PMC9222304 DOI: 10.3390/ijerph19127097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022]
Abstract
Syndromic surveillance data were used to estimate the direct impact of air pollution on healthcare-seeking behaviour, between 1 April 2012 and 31 December 2017. A difference-in-differences approach was used to control for spatial and temporal variations that were not due to air pollution and a meta-analysis was conducted to combine estimates from different pollution periods. Significant increases were found in general practitioner (GP) out-of-hours consultations, including a 98% increase (2–386, 95% confidence interval) in acute bronchitis and a 16% (3–30) increase in National Health Service (NHS) 111 calls for eye problems. However, the numbers involved are small; for instance, roughly one extra acute bronchitis consultation in a local authority on a day when air quality is poor. These results provide additional information for healthcare planners on the impacts of localised poor air quality. However, further work is required to identify the separate impact of different pollutants.
Collapse
|
6
|
Lin H, Long Y, Su Y, Song K, Li C, Ding N. Air pollution and hospital admissions for critical illness in emergency department: a tertiary-center research in Changsha, China, 2016-2020. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21440-21450. [PMID: 34761317 DOI: 10.1007/s11356-021-17295-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
We aimed to comprehensively investigate the associations of air pollutants with hospital admissions for critical illness in ED. Patients with critical illness including level 1 and level 2 of the Emergency Severity Index admitted in ED of Changsha Central Hospital from January 2016 to December 2020 were enrolled. Meteorological and air pollutants data source were collected from the National Meteorological Science Data Center. A Poisson generalized linear regression combined with a polynomial distributed lag model (PDLM) was utilized to explore the effect of air pollution on hospital admissions for critical illness in ED. Benchmarks as references (25th) were conducted for comparisons with high levels of pollutant concentrations (75th). At first, lagged effects of all different air pollutants were analyzed. Then, based on the most significant factor, analyses in subgroups were performed by gender (male and female), age (< 45, 45-65, and > 65), disorders (cardiovascular, neurological, respiratory), and seasons (spring, summer, autumn, and winter). A total of 47,290 patients with critical illness admitted in ED were included. The effects of air pollutants (PM2.5, PM10, SO2, NO2, O3 and CO) on critical illness ED visits were statistically significant. Strong collinearity between PM2.5 and PM10 (r = 0.862) was found. Both single-day lag and cumulative-day lag day models showed that PM2.5 had the strongest effects (lag 0, RR = 1.025, 95% CI 1.008-1.043, and lag 0-14, RR = 1.067, 95% CI 1.017-1.120, respectively). In both PM2.5 and PM10, the risks of critical illness in male, > 65 ages, respiratory diseases, and winter increased the most significant. Air pollutants, especially PM2.5 and PM10 exposure, could increase the risk of critical illness admission.
Collapse
Affiliation(s)
- Hang Lin
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China
| | - Yong Long
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China
| | - Yingjie Su
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China
| | - Kun Song
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China
| | - Changluo Li
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China
| | - Ning Ding
- Department of Emergency Medicine, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, NO. 161 Shaoshan South Road, Changsha, Hunan, 410004, China.
| |
Collapse
|
7
|
Wang L, Fang L, Fang Z, Zhang M, Zhang L. Assessment of the association between prenatal exposure to multiple ambient pollutants and preterm birth: A prospective cohort study in Jinan, east China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113297. [PMID: 35149411 DOI: 10.1016/j.ecoenv.2022.113297] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Air pollution has been documented with a series of adverse pregnancy outcomes, yet their reproductive and developmental toxicity on human beings has not been fully elucidated. Here, we analyzed the geographic distribution of Jinan and examined its contribution to air pollution. After adjusting demographic variables and environmental co-pollutants, we built statistical models based on 424 couples and checked different air pollutants on their pregnancy outcomes. We find that Jinan is tightly surrounded by mountains from 3 of 4 sides, geographically resulting in a typical basin texture that hinders the diffusion of ambient pollutants. Of 424 pregnant women enrolled in this study, 17 subjects were diagnosed with preterm birth. Using air quality index (AQI) as an integrated indicator of PM10, PM2.5, SO2, NO2, CO, and O3, we found that each interquartile range (IQR) increase in AQI was associated with 11% increased odds of preterm birth. Also, elevating PM2.5, PM10, SO2, and O3 led to different increased risk levels of preterm birth. By running the generalized additive model analyses, the association of AQI and preterm birth was further confirmed. In conclusion, based on samples in Jinan, east China, prenatal exposure to multiple ambient pollutants is associated with reduced gestational age and increased risk of preterm birth.
Collapse
Affiliation(s)
- Lifeng Wang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Lei Fang
- School of Public Health, Weifang Medical University, Weifang 261042, China
| | - Zhenya Fang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Meihua Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China
| | - Lin Zhang
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province, Shandong University, Jinan 250001, China.
| |
Collapse
|
8
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Assessing the impact of air pollution and climate seasonality on COVID-19 multiwaves in Madrid, Spain. ENVIRONMENTAL RESEARCH 2022; 203:111849. [PMID: 34370990 PMCID: PMC8343379 DOI: 10.1016/j.envres.2021.111849] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 05/17/2023]
Abstract
While the COVID-19 pandemic is still in progress, being under the fifth COVID-19 wave in Madrid, over more than one year, Spain experienced a four wave pattern. The transmission of SARS-CoV-2 pathogens in Madrid metropolitan region was investigated from an urban context associated with seasonal variability of climate and air pollution drivers. Based on descriptive statistics and regression methods of in-situ and geospatial daily time series data, this study provides a comparative analysis between COVID-19 waves incidence and mortality cases in Madrid under different air quality and climate conditions. During analyzed period 1 January 2020-1 July 2021, for each of the four COVID-19 waves in Madrid were recorded anomalous anticyclonic synoptic meteorological patterns in the mid-troposphere and favorable stability conditions for COVID-19 disease fast spreading. As airborne microbial temporal pattern is most affected by seasonal changes, this paper found: 1) a significant negative correlation of air temperature, Planetary Boundary Layer height, and surface solar irradiance with daily new COVID-19 incidence and deaths; 2) a similar mutual seasonality with climate variables of the first and the fourth COVID-waves from spring seasons of 2020 and 2021 years. Such information may help the health decision makers and public plan for the future.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
9
|
Wang H, Geng Y, Zhang J, Xia X, Feng Y. Ecological Civilization Demonstration Zone, Air Pollution Reduction, and Political Promotion Tournament in China: Empirical Evidence from a Quasi-Natural Experiment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph182211880. [PMID: 34831639 PMCID: PMC8617732 DOI: 10.3390/ijerph182211880] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/28/2022]
Abstract
Using the ecological civilization demonstration zone as a quasi-natural experiment, this study has explored the effect of it on air pollution in China by employing the difference-in-differences model and the spatial difference-in-differences model, and further tested the political promotion tournament in China by employing the binary logit model. The results show that the ecological civilization demonstration zone has basically and effectively reduced air pollution, except for carbon monoxide and ozone. In addition, the spatial spillover effects of the ecological civilization demonstration zone on air pollution are not only basically supported among the treated cities, but also extremely established in the untreated cities neighboring the treated cities. Furthermore, no clear evidence supports the establishment of the political promotion tournament in China, while local cadres tend to cope with the assessment of higher officials passively rather than actively. Overall, this study sheds light on the coordination of economic development and ecological civilization from the perspective of the career concerns of local cadres.
Collapse
Affiliation(s)
- Haijie Wang
- Business School, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (J.Z.); (X.X.)
| | - Yong Geng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Jingxue Zhang
- Business School, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (J.Z.); (X.X.)
| | - Xiqiang Xia
- Business School, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (J.Z.); (X.X.)
| | - Yanchao Feng
- Business School, Zhengzhou University, Zhengzhou 450001, China; (H.W.); (J.Z.); (X.X.)
- Correspondence:
| |
Collapse
|
10
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN, Baschir LA, Tenciu DV. Exploring the linkage between seasonality of environmental factors and COVID-19 waves in Madrid, Spain. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION : TRANSACTIONS OF THE INSTITUTION OF CHEMICAL ENGINEERS, PART B 2021; 152:583-600. [PMID: 36285289 PMCID: PMC9584827 DOI: 10.1016/j.psep.2021.06.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 06/14/2021] [Accepted: 06/27/2021] [Indexed: 05/07/2023]
Abstract
Like several countries, Spain experienced a multi wave pattern of COVID-19 pandemic over more than one year period, between spring 2020 and spring 2021. The transmission of SARS-CoV-2 pandemics is a multi-factorial process involving among other factors outdoor environmental variables and viral inactivation.This study aims to quantify the impact of climate and air pollution factors seasonality on incidence and severity of COVID-19 disease waves in Madrid metropolitan region in Spain. We employed descriptive statistics and Spearman rank correlation tests for analysis of daily in-situ and geospatial time-series of air quality and climate data to investigate the associations with COVID-19 incidence and lethality in Madrid under different synoptic meteorological patterns. During the analyzed period (1 January 2020-28 February 2021), with one month before each of three COVID-19 waves were recorded anomalous anticyclonic circulations in the mid-troposphere, with positive anomalies of geopotential heights at 500 mb and favorable stability conditions for SARS-CoV-2 fast diffusion. In addition, the results reveal that air temperature, Planetary Boundary Layer height, ground level ozone have a significant negative relationship with daily new COVID-19 confirmed cases and deaths. The findings of this study provide useful information to the public health authorities and policymakers for optimizing interventions during pandemics.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Laurentiu A Baschir
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| | - Daniel V Tenciu
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest, 077125, Romania
| |
Collapse
|
11
|
Kirwa K, Eckert CM, Vedal S, Hajat A, Kaufman JD. Ambient air pollution and risk of respiratory infection among adults: evidence from the multiethnic study of atherosclerosis (MESA). BMJ Open Respir Res 2021; 8:e000866. [PMID: 33664125 PMCID: PMC7934778 DOI: 10.1136/bmjresp-2020-000866] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Air pollution may affect the risk of respiratory infection, though research has focused on uncommon infections or infections in children. Whether ambient air pollutants increase the risk of common acute respiratory infections among adults is uncertain, yet this may help understand whether pollutants influence spread of pandemic respiratory infections like COVID-19. OBJECTIVE To estimate the association between ambient air pollutant exposures and respiratory infections in adults. METHODS During five study examinations over 12 years, 6536 participants in the multiethnic study of atherosclerosis (MESA) reported upper respiratory tract infections, bronchitis, pneumonia or febrile illness in the preceding 2 weeks. Using a validated spatiotemporal model, we estimated residential concentrations of ambient PM2.5, NOx and NO2 for the 2-6 weeks (short-term) and year (long-term) prior to each examination. RESULTS In this population aged 44-84 years at baseline, 10%-32% of participants reported a recent respiratory infection, depending on month of examination and study region. PM2.5, NOx and NO2 concentrations over the prior 2-6 weeks were associated with increased reporting of recent respiratory infection, with risk ratios (95% CIs) of 1.04 (1.00 to 1.09), 1.15 (1.10 to 1.20) and 1.21 (1.10 to 1.33), respectively, per increase from 25th to 75th percentile in residential pollutant concentration. CONCLUSION Higher short-term exposure to PM2.5 and traffic-related pollutants are associated with increased risk of symptomatic acute respiratory infections among adults. These findings may provide an insight into the epidemiology of COVID-19.
Collapse
Affiliation(s)
- Kipruto Kirwa
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| | - Carly M Eckert
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| | - Sverre Vedal
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, Washington, USA
| | - Anjum Hajat
- Department of Epidemiology, University of Washington School of Public Health, Seattle, Washington, USA
| | - Joel D Kaufman
- Departments of Environmental and Occupational Health Sciences, Medicine, and Epidemiology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
12
|
Zoran MA, Savastru RS, Savastru DM, Tautan MN. Assessing the relationship between ground levels of ozone (O 3) and nitrogen dioxide (NO 2) with coronavirus (COVID-19) in Milan, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 740:140005. [PMID: 32559534 PMCID: PMC7274116 DOI: 10.1016/j.scitotenv.2020.140005] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/30/2020] [Accepted: 06/03/2020] [Indexed: 04/14/2023]
Abstract
This paper investigates the correlation between the high level of coronavirus SARS-CoV-2 infection accelerated transmission and lethality, and surface air pollution in Milan metropolitan area, Lombardy region in Italy. For January-April 2020 period, time series of daily average inhalable gaseous pollutants ozone (O3) and nitrogen dioxide (NO2), together climate variables (air temperature, relative humidity, wind speed, precipitation rate, atmospheric pressure field and Planetary Boundary Layer) were analyzed. In spite of being considered primarily transmitted by indoor bioaerosols droplets and infected surfaces or direct human-to-human personal contacts, it seems that high levels of urban air pollution, and climate conditions have a significant impact on SARS-CoV-2 diffusion. Exhibited positive correlations of ambient ozone levels and negative correlations of NO2 with the increased rates of COVID-19 infections (Total number, Daily New positive and Total Deaths cases), can be attributed to airborne bioaerosols distribution. The results show positive correlation of daily averaged O3 with air temperature and inversely correlations with relative humidity and precipitation rates. Viral genome contains distinctive features, including a unique N-terminal fragment within the spike protein, which allows coronavirus attachment on ambient air pollutants. At this moment it is not clear if through airborne diffusion, in the presence of outdoor and indoor aerosols, this protein "spike" of the new COVID-19 is involved in the infectious agent transmission from a reservoir to a susceptible host during the highest nosocomial outbreak in some agglomerated industrialized urban areas like Milan is. Also, in spite of collected data for cold season (winter-early spring) period, when usually ozone levels have lower values than in summer, the findings of this study support possibility as O3 can acts as a COVID-19 virus incubator. Being a novel pandemic coronavirus version, it might be ongoing during summer conditions associated with higher air temperatures, low relative humidity and precipitation levels.
Collapse
Affiliation(s)
- Maria A Zoran
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania.
| | - Roxana S Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Dan M Savastru
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| | - Marina N Tautan
- IT Department, National Institute of R&D for Optoelectronics, Atomistilor Street 409, MG5, Magurele-Bucharest 077125, Romania
| |
Collapse
|