1
|
Salubi EA, Gizaw Z, Schuster-Wallace CJ, Pietroniro A. Climate change and waterborne diseases in temperate regions: a systematic review. JOURNAL OF WATER AND HEALTH 2025; 23:58-78. [PMID: 39882854 DOI: 10.2166/wh.2024.314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/29/2024] [Indexed: 01/31/2025]
Abstract
Risk of waterborne diseases (WBDs) persists in temperate regions. The extent of influence of climate-related factors on the risk of specific WBDs in a changing climate and the projections of future climate scenarios on WBDs in temperate regions are unclear. A systematic review was conducted to identify specific waterborne pathogens and diseases prevalent in temperate region literature and transmission cycle associations with a changing climate. Projections of WBD risk based on future climate scenarios and models used to assess future disease risk were identified. Seventy-five peer-reviewed full-text articles for temperate regions published in the English language were included in this review after a search of Scopus and Web of Science databases from 2010 to 2023. Using thematic analysis, climate-related drivers impacting WBD risk were identified. Risk of WBDs was influenced mostly by weather (rainfall: 22% and heavy rainfall: 19%) across the majority of temperate regions and hydrological (streamflow: 50%) factors in Europe. Future climate scenarios suggest that WBD risk is likely to increase in temperate regions. Given the need to understand changes and potential feedback across fate, transport and exposure pathways, more studies should combine data-driven and process-based models to better assess future risks using model simulations.
Collapse
Affiliation(s)
- Eunice A Salubi
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada E-mail:
| | - Zemichael Gizaw
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada; Department of Environmental and Occupational Health and Safety, Institute of Public Health, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Corinne J Schuster-Wallace
- Department of Geography and Planning, University of Saskatchewan, 117 Science Place, Saskatoon, Saskatchewan S7N 5C8, Canada; Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada
| | - Alain Pietroniro
- Global Institute for Water Security, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada; Schulich School of Engineering, University of Calgary, 622 Collegiate Pl NW, Calgary, Alberta T2N 4V8, Canada
| |
Collapse
|
2
|
Peer K, Hubbard B, Monti M, Vander Kelen P, Werner AK. The private well water climate impact index: Characterization of community-level climate-related hazards and vulnerability in the continental United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177409. [PMID: 39510280 DOI: 10.1016/j.scitotenv.2024.177409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
BACKGROUND Private wells use groundwater as their source and their drinking water quality is unregulated in the United States at the federal level. Due to the lack of water quality regulations, those reliant on private wells have the responsibility of ensuring that the water is safe to drink. Where extreme weather is projected to increase with climate change, contamination due to climate-related hazards adds further layers of complexity for those relying on private wells. We sought to characterize community-level climate-related hazards and vulnerability for persons dependent on private wells in the continental United States (CONUS). Additional objectives of this work were to quantify the burden to private well water communities by climate region and demographic group. METHODS Grounded in the latest climate change framework and private well water literature, we created the Private Well Water Climate Impact Index (PWWCII). We searched the literature and identified nationally consistent, publicly available, sub-county data to build Overall, Drought, Flood, and Wildfire PWWCIIs at the national and state scales. We adapted the technical construction of this relative index from the California Communities Environmental Health Screening Tool (CalEnviroScreen 4.0). RESULTS The distribution of climate-related impact census tracts varied across CONUS by nationally-normed PWWCII type. Compared to the Southeast where the majority of the 2010 estimated U.S. private well water population lived, the estimated persons dependent upon private well water living in the West had an increased odds of living in higher impact census tracts for the Overall, Drought, and Wildfire PWWCIIs across CONUS. Compared to non-Hispanic White persons, non-Hispanic American Indian and Alaska Native (AI/AN) persons had an increased odds of living in higher impact census tracts for all four PWWCII types across CONUS. CONCLUSIONS The PWWCII fills a gap as it provides a baseline understanding of potential climate-related impacts to communities reliant on private well water across CONUS.
Collapse
Affiliation(s)
- Komal Peer
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States.
| | - Brian Hubbard
- Environmental Health Services Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Michele Monti
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Patrick Vander Kelen
- Environmental Health Services Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| | - Angela K Werner
- National Environmental Public Health Tracking Program, Division of Environmental Health Science and Practice, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, United States
| |
Collapse
|
3
|
Barnes J, Sheffield P, Graber N, Jessel S, Lanza K, Limaye VS, Morrow F, Sauthoff A, Schmeltz M, Smith S, Stevens A. New York State Climate Impacts Assessment Chapter 07: Human Health and Safety. Ann N Y Acad Sci 2024; 1542:385-445. [PMID: 39652410 DOI: 10.1111/nyas.15244] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
New Yorkers face a multitude of health and safety risks that are exacerbated by a changing climate. These risks include direct impacts from extreme weather events and other climate hazards, as well as indirect impacts occurring through a chain of interactions. Physical safety, physical health, and mental health are all part of the equation-as are the many nonclimate factors that interact with climate change to influence health outcomes. This chapter provides an updated assessment of all these topics at the intersection of climate change, public health and safety, and equity in the state of New York. Key findings are presented below.
Collapse
Affiliation(s)
- Janice Barnes
- Climate Adaptation Partners, New York, New York, USA
| | - Perry Sheffield
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathan Graber
- Pediatrics, Albany Medical Center, Albany, New York, USA
| | - Sonal Jessel
- WE ACT for Environmental Justice, New York, New York, USA
| | - Kevin Lanza
- Environmental and Occupational Health Sciences, The University of Texas Health Science Center at Houston School of Public Health, Austin, Texas, USA
| | - Vijay S Limaye
- Natural Resources Defense Council, New York, New York, USA
| | | | - Anjali Sauthoff
- Westchester County Climate Crisis Task Force and Independent Environmental Health Consultant, Pleasantville, New York, USA
| | - Michael Schmeltz
- Department of Public Health, California State University at East Bay, Hayward, California, USA
| | - Shavonne Smith
- Environmental Department, Shinnecock Indian Nation, Southampton, New York, USA
| | - Amanda Stevens
- New York State Energy Research and Development Authority, Albany, New York, USA
| |
Collapse
|
4
|
Crayol E, Huneau F, Garel E, Zuffianò LE, Limoni PP, Romanazzi A, Mattei A, Re V, Knoeller K, Polemio M. Investigating pollution input to coastal groundwater-dependent ecosystems in dry Mediterranean agricultural regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176015. [PMID: 39241882 DOI: 10.1016/j.scitotenv.2024.176015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The insufficient taking into account of groundwater as a basis for implementing protection measures for coastal wetlands can be related to the damage they are increasingly exposed to. The aim of this study is to demonstrate the pertinence of combining hydrogeological tools with assessment of pollutant fluxes and stable isotopes of O, H and N, as well as groundwater time-tracers to identify past and present pollution sources resulting from human activities and threatening shallow groundwater-dependent ecosystems. A survey combining physico-chemical parameters, major ions, environmental isotopes (18O, 2H, 15N and 3H), with emerging organic contaminants including pesticides and trace elements, associated with a land use analysis, was carried out in southern Italy, including groundwater, surface water and lagoon water samples. Results show pollution of the shallow groundwater and the connected lagoon from both agricultural and domestic sources. The N-isotopes highlight nitrate sources as coming from the soil and associated with the use of manure-type fertilizers related to the historical agricultural context of the area involving high-productivity olive groves. Analysis of EOCs has revealed the presence of 8 pesticides, half of which have been banned for two decades and two considered as pollutant legacies (atrazine and simazine), as well as 15 molecules, including pharmaceuticals and stimulants, identified in areas with human regular presence, including rapidly degradable compounds (caffeine and ibuprofen). Results show that agricultural pollution in the area is associated with the legacy of intensive olive growing in the past, highlighting the storage capacity of the aquifer, while domestic pollution is sporadic and associated with regular human presence without efficient modern sanitation systems. Moreover, results demonstrate the urgent need to consider groundwater as a vector of pollution to coastal ecosystems and the impact of pollutant legacies in planning management measures and policies, with the aim of achieving 'good ecological status' for waterbodies.
Collapse
Affiliation(s)
- E Crayol
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France.
| | - E Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - L E Zuffianò
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - P P Limoni
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - A Romanazzi
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - A Mattei
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - V Re
- Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria 53, 56126 Pisa, Italy
| | - K Knoeller
- UFZ-Helmholtz Centre for Environmental Research, Isotope Tracer Group, Theodor-Lieser-Str. 4, 06120 Halle, Germany; Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
| | - M Polemio
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| |
Collapse
|
5
|
Mooney S, Lavallee S, O'Dwyer J, Majury A, O'Neill E, Hynds PD. Private groundwater contamination and risk management: A comparative scoping review of similarities, drivers and challenges across two socio-economically developed regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171112. [PMID: 38387579 DOI: 10.1016/j.scitotenv.2024.171112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/13/2024] [Accepted: 02/18/2024] [Indexed: 02/24/2024]
Abstract
Consolidation of multi-domain risk management research is essential for strategies facilitating the concerted government (educational) and population-level (behavioural) actions required to reduce microbial private groundwater contamination. However, few studies to date have synthesised this literature or sought to ascertain the causal generality and extent of supply contamination and preventive responses. In light of the Republic of Ireland (ROI) and Ontario's high reliance and research focus on private wells and consequent utility for empirical comparison, a scoping review of pertinent literature (1990-2022) from both regions was undertaken. The SPICE (Setting, Perspective, Intervention, Comparison, Evaluation) method was employed to inform literature searches, with Scopus and Web of Science selected as primary databases for article identification. The review identified 65 relevant articles (Ontario = 34, ROI = 31), with those investigating well user actions (n = 22) and groundwater quality (n = 28) the most frequent. A markedly higher pooled proportion of private supplies in the ROI exhibited microbial contamination (38.3 % vs. 4.1 %), despite interregional similarities in contamination drivers (e.g., weather, physical supply characteristics). While Ontarian well users demonstrated higher rates of historical (≥ 1) and annual well testing (90.6 % vs. 71.1 %; 39.1 % vs. 8.6 %) and higher rates of historical well treatment (42.3 % vs. 24.3 %), interregional levels of general supply knowledge were analogous (70.7 % vs. 71.0 %). Financial cost, organoleptic properties and residence on property during supply construction emerged as predictors of cognition and behaviour in both regions. Review findings suggest broad interregional similarities in drivers of supply contamination and individual-level risk mitigation, indicating that divergence in contamination rates may be attributable to policy discrepancies - particularly well testing incentivisation. The paucity of identified intervention-oriented studies further highlights the importance of renewed research and policy agendas for improved, targeted well user outreach and incentivised, convenience-based services promoting routine supply maintenance.
Collapse
Affiliation(s)
- S Mooney
- School of Architecture, Planning & Environmental Policy, University College Dublin, Ireland.
| | - S Lavallee
- Center for Tobacco and the Environment, San Diego State University, San Diego, CA, United States
| | - J O'Dwyer
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, Ireland; Environmental Research Institute, University of Cork, Cork, Ireland; Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland
| | - A Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada
| | - E O'Neill
- School of Architecture, Planning & Environmental Policy, University College Dublin, Ireland; UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - P D Hynds
- Irish Centre for Research in Applied Geosciences (iCRAG), University College Dublin, Dublin, Ireland; Environmental Sustainability & Health Institute, Technological University Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Slovic AD, Indvik K, Soriano Martins L, Kephart JL, Swanson S, Alex Quistberg D, Moran M, Bakhtsiyarava M, Zavaleta-Cortijo C, Gouveia N, Diez Roux AV. Climate hazards in Latin American cities: Understanding the role of the social and built environments and barriers to adaptation action. CLIMATE RISK MANAGEMENT 2024; 45:100625. [PMID: 39296795 PMCID: PMC11406151 DOI: 10.1016/j.crm.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 05/25/2024] [Accepted: 05/31/2024] [Indexed: 09/21/2024]
Abstract
Climate hazards threaten the health and wellbeing of people living in urban areas. This study characterized reported climate hazards, adaptation action, and barriers to adaptation in 124 Latin American cities, and associations of climate hazards with urban social and built environment characteristics. We examined cities that responded to a global environmental disclosure system and that were included in the Urban Health in Latin America (SALURBAL) Project database. The cities studied reported a median of three climate hazards. The most reported hazards were storms (61%) water scarcity (57%) extreme temperature (52%) and wildfires (51%). Thirty-eight percent of cities reported four or more distinct types of hazards. City size, density, GDP, and greenness were related to hazard reports, and although most cities reported taking actions to reduce vulnerability to climate change, 23% reported no actions at all. The most frequently reported actions were hazard mapping and modeling (47%) and increasing vegetation or greenspace coverage (45%). Other actions, such as air quality initiatives and urban planning, were much less common (8% and 3%, respectively). In terms of challenges in adapting to climate change, 35% of cities reported no challenges. The most frequently reported challenges were urban environment and development (43%) and living conditions (35%). Access to data, migration, public health, and safety/security were rarely reported as challenges. Our results suggest that climate hazards are recognized, but that adaptation responses are limited and that many important challenges to response action are not fully recognized. This study contributes to understanding of local priorities, ongoing actions, and required support for urban climate vulnerability assessment and adaptation responses. Findings suggest the need for future research documenting local perceptions of climate hazards and comparison with documented climate hazards.
Collapse
Affiliation(s)
| | - Katherine Indvik
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Lucas Soriano Martins
- Department of Preventive Medicine, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Josiah L Kephart
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Sandra Swanson
- Monash Sustainable Development Institute, Monash University, Melbourne, Australia
| | - D Alex Quistberg
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| | - Mika Moran
- School of Public Health, University of Haifa, Haifa, Israel
| | - Maryia Bakhtsiyarava
- Institute of Transportation Studies, University of California - Berkeley, CA, United States
| | - Carol Zavaleta-Cortijo
- Unidad de ciudadanía intercultural y salud indígena, Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Nelson Gouveia
- Department of Preventive Medicine, University of Sao Paulo Medical School, São Paulo, Brazil
| | - Ana V Diez Roux
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, United States
| |
Collapse
|
7
|
Crayol E, Huneau F, Garel E, Mattei A, Santoni S, Pasqualini V, Re V. Socio-hydrogeological survey and assessment of organic pollutants to highlight and trace back pollution fluxes threatening a coastal groundwater-dependent ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165343. [PMID: 37422224 DOI: 10.1016/j.scitotenv.2023.165343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Despite being a vector of pollution towards connected ecosystems, groundwater is often underestimated or not taken into account in management frameworks. To fill this gap, we propose to add socio-economic data to hydrogeological investigations to identify past and present pollution sources linked to human activities at watershed scale in order to forecast threats towards groundwater-dependent ecosystems (GDEs). The aim of this paper is to demonstrate, by a cross-disciplinary approach, the added value of socio-hydrogeological investigations to tackle anthropogenic pollution fluxes towards a GDE and to contribute to more sustainable management of groundwater resources. A survey combining chemical compounds analysis, data compilation, land use analysis and field investigations with a questionnaire was carried out on the Biguglia lagoon plain (France). Results show a pollution with a two-fold source, both agricultural and domestic, in all water bodies of the plain. The pesticide analysis reveals the presence of 10 molecules, including domestic compounds, with concentrations exceeding European groundwater quality standards for individual pesticides, as well as pesticides already banned for twenty years. On the basis of both the field survey and the questionnaire, agricultural pollution has been identified as very local highlighting the storage capacity of the aquifer, whereas domestic pollution is diffuse over the plain and attributed to sewage network effluents and septic tanks. Domestic compounds present shorter residence time within the aquifer highlighting continuous inputs, related to consumption habits of the population. Under the Water Framework Directive (WFD), member states are required to preserve the good ecological status, quality and quantity of water bodies. However, for GDEs it is difficult to achieve the 'good status' required without considering the groundwater's pollutant storage capacity and pollution legacy. To help resolve this issue, socio-hydrogeology has proved to be an efficient tool as well as for implementing effective protection measures for Mediterranean GDEs.
Collapse
Affiliation(s)
- E Crayol
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France.
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - E Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - A Mattei
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - S Santoni
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | | | - V Re
- Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria 53, 56126 Pisa, Italy
| |
Collapse
|
8
|
He C, Yin P, Chen R, Gao Y, Liu W, Schneider A, Bell ML, Kan H, Zhou M. Cause-specific accidental deaths and burdens related to ambient heat in a warming climate: A nationwide study of China. ENVIRONMENT INTERNATIONAL 2023; 180:108231. [PMID: 37778287 DOI: 10.1016/j.envint.2023.108231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Future warming is projected to increase the heat-related mortality burden, especially for vulnerable populations. However, most previous studies focused on non-accidental morbidity or mortality, with far less research on heat-related accidental events. METHODS We collected individual accidental death records among all residents in Chinese mainland from June to August during 2013-2019. Accidental deaths were further divided into several subtypes by different causes. We used an individual-level, time-stratified, case-crossover study design to estimate the association between daily mean temperature and accidental deaths, and estimate its variation in seven geo-climatic zones, age (5-64, 65-74, ≥75), and sex (male, female). We then estimated the temperature-related excess accidental deaths under global warming scenarios of 1.5, 2, and 3℃. FINDINGS A total of 711,929 accidental death records were included in our study. We found that higher temperatures were associated with increased risks of deaths from the total accidental events and four main subtypes, including traffic, falls, drowning, and unintentional injuries. We also found that younger individuals (ages 5-64) and males faced a higher risk of heat-related mortality due to total accidents, traffic incidents, and drowning. For future climate scenarios, even under the 1.5℃ climate change scenario, 6,939 (95% eCI (empirical Confidence Interval): 6,818-7,067) excess accidental deaths per year are attributed to higher summertime daily temperature over mainland China, and the number of accidental deaths would increase by 16.71% and 33.59% under the 2℃ and 3℃ climate change scenarios, respectively. For residents living in southern coastal and northwest inland regions, the projected increase in accidental death is higher. CONCLUSIONS This nationwide study confirms that higher summer temperatures are linked to an increased risk of accidental deaths. Younger age groups and males face a higher risk. This indicates that current estimates of the health effects of climate change might be underestimated, particularly for younger populations.
Collapse
Affiliation(s)
- Cheng He
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Peng Yin
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Ya Gao
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China
| | - Wei Liu
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Alexandra Schneider
- Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | | | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education, NHC Key Lab of Health Technology Assessment, IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| | - Maigeng Zhou
- National Center for Chronic Noncommunicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| |
Collapse
|
9
|
Latchmore T, Lavallee S, Hynds PD, Brown RS, Majury A. Integrating consumer risk perception and awareness with simulation-based quantitative microbial risk assessment using a coupled systems framework: A case study of private groundwater users in Ontario. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 331:117112. [PMID: 36681033 DOI: 10.1016/j.jenvman.2022.117112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Private well users in Ontario are responsible for ensuring the potability of their own private drinking water source through protective actions (i.e., water treatment, well maintenance, and regular water quality testing). In the absence of regulation and limited surveillance, quantitative microbial risk assessment (QMRA) represents the most practical and robust approach to estimating the human health burden attributable to private wells. For an increasingly accurate estimation, QMRA of private well water should be represented by a coupled model, which includes both the socio-cognitive and physical aspects of private well water contamination and microbial exposure. The objective of the current study was to determine levels of waterborne exposure via well water consumption among three sub-groups (i.e., clusters) of private well users in Ontario and quantify the risk of waterborne acute gastrointestinal illness (AGI) attributed to Giardia, shiga-toxin producing E. coli (STEC) and norovirus from private drinking water sources in Ontario. Baseline simulations were utilized to explore the effect of varying socio-cognitive scenarios on model inputs (i.e., increased awareness, protective actions, aging population). The current study uses a large spatio-temporal groundwater quality dataset and cross-sectional province-wide survey to create socio-cognitive-specific QMRA simulations to estimate the risk of waterborne AGI attributed to three enteric pathogens in private drinking waters source in Ontario. Findings suggest significant differences in the level of exposure among sub-groups of private well users. Private well users within Cluster 3 are characterised by higher levels of exposure and annual illness attributable to STEC, Giardia and norovirus than Clusters 1 and 2. Provincial incidence rates of 520.9 (1522 illness per year), 532.1 (2211 illness per year) and 605.5 (5345 illness per year) cases/100,000 private well users per year were predicted for private well users associated with Clusters 1 through 3. Established models will enable development of necessary tools tailored to specific groups of at-risk well users, allowing for preventative public health management of private groundwater sources.
Collapse
Affiliation(s)
- Tessa Latchmore
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Sarah Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul D Hynds
- Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
10
|
Lavallee S, Hynds PD, Brown RS, Majury A. Classification of sub-populations for quantitative risk assessment based on awareness and perception: A cross-sectional population study of private well users in Ontario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159677. [PMID: 36302430 DOI: 10.1016/j.scitotenv.2022.159677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Private well users in Ontario are responsible for protective actions, including source maintenance, treatment, and submitting samples for laboratory testing. However, low participation rates are reported, thus constituting a public health concern, as risk mitigation behaviours can directly reduce exposure to waterborne pathogens. The current study examined the combined effects of socio-demographic profile, experience(s), and "risk domains" (i.e., awareness, attitudes, risk perceptions and beliefs) on behaviours, and subsequently classified private well users in Ontario based on cognitive factors. A province-wide online survey (n = 1228) was employed to quantify Ontario well owners' awareness, perceptions, and behaviours in relation to their personal groundwater supply and local contamination sources. A scoring protocol for four risk domains was developed. Two-step cluster analysis was used to classify respondents based on individual risk domain scores. Logistic regression was employed to identify key variables associated with cluster membership (i.e., profile analysis). Overall, 1140 survey respondents were included for analyses. Three distinct clusters were identified based on two risk domains; groundwater awareness and source risk perception. Profile analyses indicate "low awareness and source risk perception" (Low A/SRP) members were more likely male, while "low awareness and moderate source risk perception" (Low A/Mod SRP) members were more likely female and bottled water users. Well users characterised as "high awareness and source risk perception" (High A/SRP) were more likely to report higher educational attainment and previous well water testing. Findings illustrate that socio-cognitive clusters and their components (i.e., demographics, awareness, attitudes, perceptions, experiences, and protective actions) are distinct based on the likelihood, frequency, and magnitude of waterborne pathogen exposures (i.e., risk-based). Risk-based clustering, when incorporated into quantitative microbial risk assessment, enables the development of effective risk management and communication initiatives that are demographically focused and tailored to specific sub-groups.
Collapse
Affiliation(s)
- Sarah Lavallee
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul D Hynds
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Environmental Sustainability and Health Institute, Technological University Dublin, Dublin, Ireland.
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
11
|
Wang Y, Zhang X, Li Y, Liu Y, Sun B, Wang Y, Zhou Z, Zheng L, Zhang L, Yao X, Cheng Y. Knowledge, Attitude, Risk Perception, and Health-Related Adaptive Behavior of Primary School Children towards Climate Change: A Cross-Sectional Study in China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15648. [PMID: 36497723 PMCID: PMC9740326 DOI: 10.3390/ijerph192315648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Children are disproportionately affected by climate change while evidence regarding their adaptive behavior and relevant influencing factors is limited. OBJECTIVES We attempted to investigate health-related adaptive behavior towards climate change for primary school children in China and explore potential influencing factors. METHODS We conducted a survey of 8322 primary school children in 12 cities across China. Knowledge, attitude, risk perception, and adaptive behavior scores for children were collected using a designed questionnaire. Weather exposures of cities were collected from 2014 to 2018. We applied a multiple linear regression and mixed-effect regression to assess the influencing factors of adaptive behavior. We also used the structural equation model (SEM) to validate the theoretical framework of adaptive behavior. RESULTS Most children (76.1%) were aware of climate change. They mainly get information from television, smartphones, and the Internet. A 1 score increase in knowledge, attitude, and risk perception was associated with 0.210, 0.386, and 0.160 increase in adaptive behavior scores, respectively. Females and children having air conditioners or heating systems at home were positively associated with adaptive behavior. Exposure to cold and rainstorms increased the adaptive behavior scores, while heat exposure had the opposite effects. The SEM showed that knowledge was positively associated with attitude and risk perception. Knowledge, attitude, and risk perception corresponded to 31.6%, 22.8%, and 26.1% changes of adaptive behavior, respectively. CONCLUSION Most primary school children in China were aware of climate change. Knowledge, attitude, risk perception, cold, and rainstorm exposure were positively associated with health-related adaptive behavior towards climate change.
Collapse
Affiliation(s)
- Yu Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xinhang Zhang
- Tongzhou Center for Disease Control and Prevention, Beijing 101199, China
| | - Yonghong Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yanxiang Liu
- Public Meteorological Service Center of China Meteorological Administration, Beijing 100081, China
| | - Bo Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yan Wang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Zhirong Zhou
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Lei Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Linxin Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Xiaoyuan Yao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| | - Yibin Cheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing 100021, China
| |
Collapse
|
12
|
Bucatariu F, Zaharia MM, Petrila LM, Simon F, Mihai M. Sand/polyethyleneimine composite microparticles: Eco-friendly, high selective and efficient heavy metal ion catchers. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Deng X, Friedman S, Ryan I, Zhang W, Dong G, Rodriguez H, Yu F, Huang W, Nair A, Luo G, Lin S. The independent and synergistic impacts of power outages and floods on hospital admissions for multiple diseases. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 828:154305. [PMID: 35257771 DOI: 10.1016/j.scitotenv.2022.154305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 05/16/2023]
Abstract
Highly destructive disasters such as floods and power outages (PO) are becoming more commonplace in the U.S. Few studies examine the effects of floods and PO on health, and no studies examine the synergistic effects of PO and floods, which are increasingly co-occurring events. We examined the independent and synergistic impacts of PO and floods on cardiovascular diseases, chronic respiratory diseases, respiratory infections, and food-/water-borne diseases (FWBD) in New York State (NYS) from 2002 to 2018. We obtained hospitalization data from the NYS discharge database, PO data from the NYS Department of Public Service, and floods events from NOAA. Distributed lag nonlinear models were used to evaluate the PO/floods-health association while controlling for time-varying confounders. We identified significant increased health risks associated with both the independent effects from PO and floods, and their synergistic effects. Generally, the Rate Ratios (RRs) for the co-occurrence of PO and floods were the highest, followed by PO alone, and then floods alone, especially when PO coverage is >75th percentile of its distribution (1.72% PO coverage). For PO and floods combined, immediate effects (lag 0) were observed for chronic respiratory diseases (RR:1.58, 95%CI: 1.24, 2.00) and FWBD (RR:3.02, 95%CI: 1.60, 5.69), but delayed effects were found for cardiovascular diseases (lag 3, RR:1.13, 95%CI: 1.03, 1.24) and respiratory infections (lag 6, RR:1.85, 95%CI: 1.35, 2.53). The risk association was slightly stronger among females, whites, older adults, and uninsured people but not statistically significant. Improving power system resiliency could be a very effective way to alleviate the burden on hospitals during co-occurring floods. We conclude that PO and floods have independently and jointly led to increased hospitalization for multiple diseases, and more research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xinlei Deng
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, USA
| | - Samantha Friedman
- Department of Sociology, University at Albany, State University of New York, USA
| | - Ian Ryan
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, USA
| | - Wangjian Zhang
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Guanghui Dong
- School of Public Health, Sun Yat-sen University, Guangzhou, China
| | | | - Fangqun Yu
- School of Public Health and Preventive Medicine, Monash University, Australia
| | - Wenzhong Huang
- School of Public Health and Preventive Medicine, Monash University, Australia
| | - Arshad Nair
- Atmospheric Sciences Research Center, University at Albany, State University of New York, USA
| | - Gan Luo
- Atmospheric Sciences Research Center, University at Albany, State University of New York, USA
| | - Shao Lin
- Department of Environmental Health Sciences, School of Public Health, University at Albany, State University of New York, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, State University of New York, USA.
| |
Collapse
|
14
|
Zhao Q, Yu P, Mahendran R, Huang W, Gao Y, Yang Z, Ye T, Wen B, Wu Y, Li S, Guo Y. Global climate change and human health: Pathways and possible solutions. ECO-ENVIRONMENT & HEALTH (ONLINE) 2022; 1:53-62. [PMID: 38075529 PMCID: PMC10702927 DOI: 10.1016/j.eehl.2022.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 04/13/2022] [Accepted: 04/28/2022] [Indexed: 12/13/2023]
Abstract
Global warming has been changing the planet's climate pattern, leading to increasing frequency, intensity and duration of extreme weather events and natural disasters. These climate-changing events affect various health outcomes adversely through complicated pathways. This paper reviews the main signs of climate change so far, e.g., suboptimal ambient temperature, sea-level rise and other conditions, and depicts the interactive pathways between different climate-changing events such as suboptimal temperature, wildfires, and floods with a broad range of health outcomes. Meanwhile, the modifying effect of socioeconomic, demographic and environmental factors on the pathways is summarised, such that the youth, elderly, females, poor and those living in coastal regions are particularly susceptible to climate change. Although Earth as a whole is expected to suffer from climate change, this review article discusses some potential benefits for certain regions, e.g., a more liveable environment and sufficient food supply. Finally, we summarise certain mitigation and adaptation strategies against climate change and how these strategies may benefit human health in other ways. This review article provides a comprehensive and concise introduction of the pathways between climate change and human health and possible solutions, which may map directions for future research.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Epidemiology, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Pei Yu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Rahini Mahendran
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Wenzhong Huang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yuan Gao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Zhengyu Yang
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Tingting Ye
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Bo Wen
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yao Wu
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, 3004, Australia
| |
Collapse
|