1
|
Mellor E, Trasande L, Albergamo V, Kannan K, Li Z, Ghassabian A, Afanasyeva Y, Liu M, Cowell W. Sociodemographic and dietary determinants of glyphosate exposure in a NYC-based pregnancy cohort. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125083. [PMID: 39374760 DOI: 10.1016/j.envpol.2024.125083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Previous studies have provided evidence for associations between glyphosate and aminomethylphosphonic acid (AMPA) exposure and adverse birth outcomes. However, few pregnancy cohort studies have investigated dietary and other determinants of glyphosate and AMPA exposure. We aimed to identify dietary and sociodemographic factors that predict glyphosate and AMPA exposure in a contemporary, urban pregnancy cohort in the US. The study included 725 pregnant participants from the New York University Children's Health and Environment Study (NYU CHES) in New York City. Urinary concentrations of glyphosate and AMPA, determined by high-performance liquid chromatography and tandem mass spectrometry, were analyzed in urine collected from NYU CHES participants across three prenatal time points. The Diet Health Questionnaire II was completed to capture dietary intake during the prenatal period. Descriptive statistics and bivariate linear models were used to assess determinants of urinary glyphosate and AMPA concentrations. Median urinary glyphosate and AMPA levels were 0.36 ng/mL and 0.37 ng/mL, respectively. Lower glyphosate levels were associated with younger age, obesity, public insurance, being single, and lower educational attainment. Nuts, seeds and whole grain intake was associated with increased urinary glyphosate concentrations. Urinary glyphosate concentrations were lower in summer than in winter. The study findings highlight widespread exposure to glyphosate and AMPA in this pregnancy cohort, with nuts/seeds and whole grains identified as possible dietary sources of exposure. High detection rates in the study population necessitate further research on dietary exposure patterns and perinatal outcomes to inform targeted interventions and reduce exposure in vulnerable populations.
Collapse
Affiliation(s)
- Ellison Mellor
- Department of Rehabilitation Medicine, NYU Grossman School of Medicine, New York, NY, USA; CUNY Graduate School of Public Health and Health Policy, New York, NY, USA
| | - Leonardo Trasande
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Vittorio Albergamo
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Kurunthachalam Kannan
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Zhongmin Li
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA
| | - Akhgar Ghassabian
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Yelena Afanasyeva
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Mengling Liu
- Division of Biostatistics, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA
| | - Whitney Cowell
- Division of Environmental Pediatrics, Department of Pediatrics, NYU Grossman School of Medicine, New York, NY, USA; Division of Epidemiology, Department of Population Health, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Jauregui-Zunzunegui S, Rodríguez-Artalejo F, Tellez-Plaza M, García-Esquinas E. Glyphosate exposure, muscular health and functional limitations in middle-aged and older adults. ENVIRONMENTAL RESEARCH 2024; 251:118547. [PMID: 38452917 DOI: 10.1016/j.envres.2024.118547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Glyphosate is the most widely used herbicide worldwide, both in domestic and industrial settings. Experimental research in animal models has demonstrated changes in muscle physiology and reduced contractile strength associated with glyphosate exposure, while epidemiological studies have shown associations between glyphosate exposure and adverse health outcomes in critical biological systems affecting muscle function. METHODS This study used data from a nationally representative survey of the non-institutionalized U.S. general population (NHANES, n = 2132). Urine glyphosate concentrations were determined by ion chromatography with tandem mass spectrometry. Hand grip strength (HGS) was measured using a Takei Dynamometer, and relative strength estimated as the ratio between HGS in the dominant hand and the appendicular lean mass (ALM) to body mass index (ALMBMI) ratio. Low HGS and low relative HGS were defined as 1 sex-, age- and race-specific SD below the mean. Physical function limitations were identified as significant difficulty or incapacity in various activities. RESULTS In fully-adjusted models, the Mean Differences (MD) and 95% confidence intervals [95%CI] per doubling increase in glyphosate concentrations were -0.55 [-1.09, -0.01] kg for HGS in the dominant hand, and -0.90 [-1.58. -0.21] kg for HGS/ALMBMI. The Odds Ratios (OR) [95% CI] for low HGS, low relative HGS and functional limitations by glyphosate concentrations were 1.27 [1.03, 1.57] for low HGS; 1.43 [1.05; 1.94] for low relative HGS; 1.33 [1.08, 1.63] for stooping, crouching or kneeling difficulty; 1.17 [0.91, 1.50] for lifting or carrying items weighting up to 10 pounds difficulty; 1.21 [1.01, 1.40] for standing up from armless chair difficulty; and 1.47 [1.05, 2.29] for ascending ten steps without pause difficulty. CONCLUSIONS Glyphosate exposure may be a risk factor for decreased grip strength and increased physical functional limitations. More studies investigating the influence of this and other environmental pollutants on functional aging are needed.
Collapse
Affiliation(s)
- Sara Jauregui-Zunzunegui
- Department of Preventive Medicine and Public Health, Hospital Universitario Nuestra Señora de Candelaria, Spain.
| | - Fernando Rodríguez-Artalejo
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; IMDEA-Food, CEI UAM+CSIC, Madrid, Spain.
| | - María Tellez-Plaza
- Department of Preventive Medicine and Public Health, Universidad Autónoma de Madrid, Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain.
| | - Esther García-Esquinas
- CIBERESP (CIBER of Epidemiology and Public Health), Madrid, Spain; Department of Chronic Diseases Epidemiology, National Center of Epidemiology, Carlos III Health Institute, Madrid, Spain.
| |
Collapse
|
3
|
Sun X, Zhang H, Huang X, Yang D, Wu C, Liu H, Zhang L. Associations of glyphosate exposure and serum sex steroid hormones among 6-19-year-old children and adolescents. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 275:116266. [PMID: 38564862 DOI: 10.1016/j.ecoenv.2024.116266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Glyphosate, ranked as one of the most widely used herbicides in the world, has raised concerns about its potential disruptive effects on sex hormones. However, limited human evidence was available, especially for children and adolescents. The present study aimed to examine the associations between exposure to glyphosate and sex hormones among participants aged 6-19 years, utilizing data from the National Health and Nutrition Examination Survey (NHANES) conducted between 2013 and 2016. Children and adolescents who had available data on urinary glyphosate, serum sex steroid hormones, including testosterone (TT), estradiol (E2) and sex hormone binding globulin (SHBG), and covariates were selected. Additionally, the ratio of TT to E2 (TT/E2) and the free androgen index (FAI), which was calculated using TT/SHBG, were also included as sex hormone indicators. Survey regression statistical modeling was used to examine the associations between urinary glyphosate concentration and sex hormone indicators by age and sex group. Among the 964 participants, 83.71% had been exposed to glyphosate (>lower limit of detection). The survey regression revealed a marginally negative association between urinary glyphosate and E2 in the overall population, while this association was more pronounced in adolescents with a significant trend. In further sex-stratified analyses among adolescents, a significant decrease in E2, FAI, and TT (p trend <0.05) was observed in female adolescents for the highest quartile of urinary glyphosate compared to the lowest quartile. However, no similar association was observed among male adolescents. Our findings suggest that exposure to glyphosate at the current level may decrease the levels of sex steroids in adolescents, particularly female adolescents. Considering the cross-sectional study design, further research is needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaojie Sun
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China; Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Xiaojing Huang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Di Yang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Chuansha Wu
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China
| | - Hongxiu Liu
- Key Laboratory of Environment and Health, Ministry of Education and Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling Zhang
- Department of Environmental Hygiene and Occupational Medicine, School of Public Health, Wuhan University of Science and Technology, Wuhan, China; Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
4
|
Liu J, Wang L, Li S, Lin Z, Yang G, Miao Z. Association of urine glyphosate levels with renal injury biomarkers in children living close to major vegetable-producing regions in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168677. [PMID: 38007119 DOI: 10.1016/j.scitotenv.2023.168677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/27/2023]
Abstract
Glyphosate (GLY)-based herbicides exposure contributes to renal dysfunction in experimental conditions, but the effects on humans are rarely reported. Biomonitoring is practically relevant for evaluating the association of urine GLY levels and renal damage in children living close to vegetable-cultivating regions. In this study, we collected the first-morning void urine samples of 239 healthy children (aged 3-12, 48.12 % boys) living near major vegetable-producing regions in March-May and August 2023 in Shandong Province, China. Urine levels of GLY and kidney injury-associated biomarkers were determined using ELISA kits to assess their correlation. GLY was detected in 92.05 % of urine samples (220 out of 239 participants) and the geometric concentration (GM) was 7.429 μg/L (range: 0.625 to 38.267 μg/L). Binary logistic regression and multivariate regression analysis revealed GLY detectability and levels positively correlated with home ventilation and self-producing vegetable intake of the subjects, as well as sampling periods. Moreover, a statistically significant concentration association with urine GLY was found for kidney injury-associated biomarkers (NGAL and KIM-1) (R2 = 0.923 and 0.855, respectively). Additionally, risk assessment revealed that the maximum value of probable daily intake was 0.150 mg/kg bw/day, accounting for 30.1 % of the established Acceptable Daily Intake of GLY. This study unveils a positive correlation between continuous GLY-based herbicide exposure and renal injury biomarkers of children. A large-scale epidemiological study is warranted for comprehensively assessing the effects of GLY-based herbicides on kidney function of the entire public.
Collapse
Affiliation(s)
- Jingbo Liu
- College of Biological and Brewing Engineering, Taishan University, Tai'an City, China.
| | - Lei Wang
- The Second Children & Women's Healthcare of Ji'nan City, Laiwu City, China
| | - Song Li
- College of Basic Medicine, Shandong First Medical University, Ji'nan City, China
| | - Zhenxian Lin
- College of Biological and Brewing Engineering, Taishan University, Tai'an City, China
| | - Guangcheng Yang
- College of Biological and Brewing Engineering, Taishan University, Tai'an City, China
| | - Zengmin Miao
- College of Life Sciences, Shandong First Medical University, Tai'an City, China.
| |
Collapse
|
5
|
Wei X, Pan Y, Zhang Z, Cui J, Yin R, Li H, Qin J, Li AJ, Qiu R. Biomonitoring of glyphosate and aminomethylphosphonic acid: Current insights and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132814. [PMID: 37890382 DOI: 10.1016/j.jhazmat.2023.132814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/28/2023] [Accepted: 10/18/2023] [Indexed: 10/29/2023]
Abstract
Glyphosate is one of the most widely used herbicides globally, raising concerns about its potential impact on human health. Biomonitoring studies play a crucial role in assessing human exposure to glyphosate and providing valuable insights into its distribution and metabolism in the body. This review aims to summarize the current trends and future perspectives in biomonitoring of glyphosate and its major degradation product of aminomethylphosphonic acid (AMPA). A comprehensive literature search was conducted, focusing on studies published between January 2000 and December 2022. The findings demonstrated that glyphosate and AMPA have been reported in different human specimens with urine as the dominance. Sample pretreatment techniques of solid-phase and liquid-liquid extractions coupled with liquid/gas chromatography-tandem mass spectrometry have achieved matrix elimination and accurate analysis. We also examined and compared the exposure characteristics of these compounds among different regions and various populations, with significantly higher levels of glyphosate and AMPA observed in Asian populations and among occupational groups. The median urinary concentration of glyphosate in children was 0.54 ng/mL, which was relatively higher than those in women (0.28 ng/mL) and adults (0.12 ng/mL). It is worth noting that children may exhibit increased susceptibility to glyphosate exposure or have different exposure patterns compared to women and adults. A number of important perspectives were proposed in order to further facilitate the understanding of health effects of glyphosate and AMPA, which include, but are not limited to, method standardization, combined exposure assessment, attention for vulnerable populations, long-term exposure effects and risk communication and public awareness.
Collapse
Affiliation(s)
- Xin Wei
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanan Pan
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ziqi Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingyi Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Renli Yin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Junhao Qin
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Adela Jing Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
6
|
Marciano LPA, Costa LF, Cardoso NS, Freire J, Feltrim F, Oliveira GS, Paula FBA, Silvério ACP, Martins I. Biomonitoring and risk assessment of human exposure to triazole fungicides. Regul Toxicol Pharmacol 2024; 147:105565. [PMID: 38185363 DOI: 10.1016/j.yrtph.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/23/2023] [Accepted: 01/04/2024] [Indexed: 01/09/2024]
Abstract
Risk assessment and biomarkers were evaluated in volunteers exposed to triazole fungicides in southern Minas Gerais, Brazil. Volunteers were divided into two groups: occupationally and environmentally exposed to pesticides (n = 140) and those unexposed (n = 50) from urban areas. Urine samples were analyzed by GC-MS for triazoles, and samples from men and women in the exposed group were quantified. Groups were further stratified by sex to evaluate the biomarkers results. Oxidative stress was indicated by biomarker analysis for occupationally exposed men with elevated malondialdehyde levels and reduced superoxide dismutase and catalase activity (p < 0.0001). Bile acid levels were also elevated in the exposed group (p < 0.0001). Biomarkers in this study suggest recent, reversible changes due to pesticide exposure. Liver enzyme levels showed no significant differences. The highest Estimated Daily Intake for epoxiconazole ranged from 0.534 to 6.31 μg/kg-bw/day for men and 0.657-8.77 μg/kg-bw/day for women in the exposed group. Considering the highest detected urinary triazole value, the calculated Hazard Quotient for epoxiconazole was 0.789 for men and 1.1 for women. Results indicate a health risk associated with environmental triazole exposure, highlighting the importance of biomonitoring in risk assessment to prevent intoxication and assist in mitigating adverse health effects from chronic pesticide exposure.
Collapse
Affiliation(s)
- Luiz P A Marciano
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Luiz F Costa
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Naiane S Cardoso
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Josiane Freire
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernando Feltrim
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Geovana S Oliveira
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | - Fernanda B A Paula
- Clinical and Experimental Analysis Laboratory, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| | | | - Isarita Martins
- Laboratory of Toxicant and Drug Analyses, Department of Clinical and Toxicological Analysis, Gabriel Monteiro da Silva St. 700, Federal University of Alfenas - Unifal-MG, 37130-000, Alfenas, MG, Brazil.
| |
Collapse
|
7
|
Curl CL, Hyland C, Spivak M, Sheppard L, Lanphear B, Antoniou MN, Ospina M, Calafat AM. The Effect of Pesticide Spray Season and Residential Proximity to Agriculture on Glyphosate Exposure among Pregnant People in Southern Idaho, 2021. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:127001. [PMID: 38054699 PMCID: PMC10699167 DOI: 10.1289/ehp12768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 09/20/2023] [Accepted: 10/17/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Glyphosate is one of the most heavily used pesticides in the world, but little is known about sources of glyphosate exposure in pregnant people living in agricultural regions. OBJECTIVE Our objective was to evaluate glyphosate exposure during pregnancy in relation to residential proximity to agriculture as well as agricultural spray season. METHODS We quantified glyphosate concentrations in 453 urine samples collected biweekly from a cohort of 40 pregnant people in southern Idaho from February through December 2021. We estimated each participant's glyphosate exposure as the geometric mean (GM) of glyphosate concentrations measured in all samples (average n = 11 samples/participant), as well as the GM of samples collected during the pesticide "spray season" (defined as those collected 1 May-15 August; average n = 5 samples/participant) and the "nonspray season" (defined as those collected before 1 May or after 15 August; average n = 6 samples/participant). We defined participants who resided < 0.5 km from an actively cultivated agriculture field to live "near fields" and those residing ≥ 0.5 km from an agricultural field to live "far from fields" (n = 22 and 18, respectively). RESULTS Among participants living near fields, urinary glyphosate was detected more frequently and at significantly increased GM concentrations during the spray season in comparison with the nonspray season (81% vs. 55%; 0.228 μ g / L vs. 0.150 μ g / L , p < 0.001 ). In contrast, among participants who lived far from fields, neither glyphosate detection frequency nor GMs differed in the spray vs nonspray season (66% vs. 64%; 0.154 μ g / L vs. 0.165 μ g / L , p = 0.45 ). Concentrations did not differ by residential proximity to fields during the nonspray season (0.154 μ g / L vs. 0.165 μ g / L , for near vs. far, p = 0.53 ). DISCUSSION Pregnant people living near agriculture fields had significantly increased urinary glyphosate concentrations during the agricultural spray season than during the nonspray season. They also had significantly higher urinary glyphosate concentrations during the spray season than those who lived far from agricultural fields at any time of year, but concentrations did not differ during the nonspray season. These findings suggest that agricultural glyphosate spray is a source of exposure for people living near fields. https://doi.org/10.1289/EHP12768.
Collapse
Affiliation(s)
- Cynthia L. Curl
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Carly Hyland
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
- Division of Environmental Health Sciences, School of Public Health, University of California Berkeley, Berkeley, CA, USA
- Division of Agriculture and National Resources, University of California, Berkeley, CA, USA
| | - Meredith Spivak
- School of Public and Population Health, Boise State University, Boise, Idaho, USA
| | - Lianne Sheppard
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Bruce Lanphear
- Simon Fraser University, Vancouver, British Columbia, Canada
| | - Michael N. Antoniou
- Gene Expression and Therapy Group, Department of Medical and Molecular Genetics, King’s College London, London, UK
- Life Sciences and Medicine, Guy’s Hospital, London, UK
| | - Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Antonia M. Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
8
|
González-Moscoso M, Meza-Figueroa D, Martínez-Villegas NV, Pedroza-Montero MR. GLYPHOSATE IMPACT on human health and the environment: Sustainable alternatives to replace it in Mexico. CHEMOSPHERE 2023; 340:139810. [PMID: 37598951 DOI: 10.1016/j.chemosphere.2023.139810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
Glyphosate is a broad-spectrum, non-selective herbicide used to control weeds and protect agricultural crops, and it is classified as potentially carcinogenic by the International Agency for Research on Cancer. In Mexico, the use of pesticides is a common practice, including glyphosate. However, on December 31st, 2020, the Mexican government decreed the prohibition of this herbicide as of January 2024. In this review, we investigate the association between glyphosate and cancer risk and found that most of the studies focused using animals showing negative effects such as genotoxicity, cytotoxicity and neurotoxicity, some studies used cancer cell lines showing proliferative effects due to glyphosate exposure. To our knowledge, in Mexico, there are no scientific reports on the association of glyphosate with any type of cancer. In addition, we reviewed the toxicological effects of the herbicide glyphosate, and the specific case of the current situation of the use and environmental damage of this herbicide in Mexico. We found that few studies have been published on glyphosate, and that the largest number of publications are from the International Agency for Research on Cancer classification to date. Additionally, we provide data on glyphosate stimulation at low doses as a biostimulant in crops and analytical monitoring techniques for the detection of glyphosates in different matrices. Finally, we have tried to summarize the actions of the Mexican government to seek sustainable alternatives and replace the use of glyphosate, to obtain food free of this herbicide and take care of the health of the population and the environment.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Departamento de Nanotecnología, Universidad Politécnica de Chiapas (UPChiapas), Carretera Tuxtla Gutierrez.-Portillo Zaragoza Km 21+500, Col. Las Brisas, Suchiapa, 29150, Chiapas, Mexico.
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| | | | - Martín Rafael Pedroza-Montero
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Encinas, Hermosillo, 83000, Sonora, Mexico
| |
Collapse
|
9
|
Grau D, Grau N, Paroissin C, Gascuel Q, Di Cristofaro J. Underestimation of glyphosate intake by the methods currently used by regulatory agencies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:100626-100637. [PMID: 37639106 DOI: 10.1007/s11356-023-29463-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 08/18/2023] [Indexed: 08/29/2023]
Abstract
The acceptable daily intake (ADI) is an estimate of the amount of a substance in food or beverages that can be consumed daily over a lifetime without presenting an appreciable risk to health. To assess the risk of ingesting glyphosate, regulatory agencies compare glyphosate daily intake to ADI. Based on published data on urine glyphosate levels measured according to known quantities of ingested glyphosate, our objectives were to test the robustness of the mathematical model currently used to calculate glyphosate daily intake, and to propose alternative models based on urinary excretion kinetics. Our results support that the quantity of ingested glyphosate is systematically underestimated by the model currently used by regulatory agencies, whereas the other models evaluated showed better estimations, with differences according to gender. Our results also show a great variability between individuals, leading to some uncertainties notably with regards to the ADI, and further support that glyphosate excretion varies significantly among individuals who follow a similar dosing regimen. In conclusion, our study highlights the lack of reliability of assessment processes carried out by regulatory agencies for glyphosate in particular, and pesticides in general, and questions the relevance of such processes supposed to safeguard human health and the environment.
Collapse
Affiliation(s)
- Daniel Grau
- Association Campagne Glyphosate, Foix, France
| | - Nicole Grau
- Association Campagne Glyphosate, Foix, France
| | | | | | | |
Collapse
|
10
|
Costas-Ferreira C, Durán R, Faro LF. Neurotoxic effects of exposure to glyphosate in rat striatum: Effects and mechanisms of action on dopaminergic neurotransmission. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 193:105433. [PMID: 37248010 DOI: 10.1016/j.pestbp.2023.105433] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 04/09/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
The main objective of this study was to evaluate the effects and possible mechanisms of action of glyphosate and a glyphosate-based herbicide (GBH) on dopaminergic neurotransmission in the rat striatum. Acute exposure to glyphosate or GBH, administered by systemic (75 or 150 mg/kg, i.p.) or intrastriatal (1, 5, or 10 mM for 1 h) routes, produced significant concentration-dependent increases in dopamine release measured in vivo by cerebral microdialysis coupled to HPLC with electrochemical detection. Systemic administration of glyphosate also significantly impaired motor control and decreased striatal acetylcholinesterase activity and antioxidant capacity. At least two mechanisms can be proposed to explain the glyphosate-induced increases in extracellular dopamine levels: increased exocytotic dopamine release from synaptic vesicles or inhibition of dopamine transporter (DAT). Thus, we investigated the effects of intrastriatal administration of glyphosate (5 mM) in animals pretreated with tetrodotoxin (TTX) or reserpine. It was observed that TTX (10 or 20 μM) had no significant effect on glyphosate-induced dopamine release, while reserpine (10 mg/kg i.p) partially but significantly reduced the dopamine release. When glyphosate was coinfused with nomifensine (50 μM), the increase in dopamine levels was significantly higher than that observed with glyphosate or nomifensine alone. So, two possible hypotheses could explain this additive effect: both glyphosate and nomifensine act through different mechanisms at the dopaminergic terminals to increase dopamine levels; or both nomifensine and glyphosate act on DAT, with glyphosate simultaneously inhibiting reuptake and stimulating dopamine release by reversing the DAT function. Future research is needed to determine the effects of this pesticide at environmentally relevant doses.
Collapse
Affiliation(s)
- Carmen Costas-Ferreira
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Rafael Durán
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain
| | - Lilian Ferreira Faro
- Department of Functional Biology and Health Sciences, Faculty of Biology, University of Vigo, Vigo, Spain.
| |
Collapse
|
11
|
Ward MH, Madrigal JM, Jones RR, Friesen MC, Falk RT, Koebel D, Metayer C. Glyphosate in house dust and risk of childhood acute lymphoblastic leukemia in California. ENVIRONMENT INTERNATIONAL 2023; 172:107777. [PMID: 36746112 DOI: 10.1016/j.envint.2023.107777] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/14/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Residential use of pesticides has been associated with increased risk of childhood acute lymphoblastic leukemia (ALL). We evaluated determinants of glyphosate concentrations in house dust and estimated ALL risk in the California Childhood Leukemia Study (CCLS). METHODS The CCLS is a population-based case-control study of childhood leukemia in California. Among those < 8-years (no move since diagnosis/reference date), we collected dust (2001-2007) from the room where the child spent the most time while awake and measured > 40 pesticides. Three-to-eight years later, we collected a second sample from non-movers. We used Ultra-Performance Liquid Chromatography Tandem Mass Spectrometry to measure glyphosate (µg/g dust) for 181 ALL cases and 225 controls and for 45 households with a second dust sample. We used multivariable Tobit regression to evaluate determinants of glyphosate concentrations. Odds ratios (ORs) and 95 % confidence intervals (CI) were calculated for ALL and quartiles of the concentration (first samples) using unconditional logistic regression. We computed the within- and between-home variance and intraclass correlation coefficient (ICC). RESULTS Glyphosate was frequently detected (cases: 98 %; controls: 99 %). Higher concentrations were associated with occupational pesticide exposure, nearby agricultural use, treatment for lawn weeds and bees/wasps, and sampling season. Increasing concentrations were not associated with ALL risk (adjusted ORQ4vsQ1 = 0.8, CI: 0.4-1.4). We observed similar null associations for boys and girls, Hispanics and non-Hispanic whites, and among those who resided in their home since birth (76 cases/117 controls) or age two (130 cases/176 controls). The ICC was 0.32 indicating high within-home temporal variability during the years of our study. CONCLUSIONS We observed higher concentrations in homes associated with expected predictors of exposure but no association with childhood ALL risk. Due to continuing use, potential exposure to young children is high. It will be important to evaluate risk in future studies with multiple dust measurements or biomarkers of exposure.
Collapse
Affiliation(s)
- Mary H Ward
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Rockville, MD 20850, USA.
| | - Jessica M Madrigal
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Rockville, MD 20850, USA
| | - Rena R Jones
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Rockville, MD 20850, USA
| | - Melissa C Friesen
- Occupational and Environmental Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Rockville, MD 20850, USA
| | - Roni T Falk
- Metabolic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Department of Health and Human Services, 9609 Medical Center Dr., Rockville, MD 20850, USA
| | | | - Catherine Metayer
- University of California, Berkeley, School of Public Health, 1995 University Ave, Suite 265, Berkeley, CA 94704, USA
| |
Collapse
|
12
|
Andersen HR, Rambaud L, Riou M, Buekers J, Remy S, Berman T, Govarts E. Exposure Levels of Pyrethroids, Chlorpyrifos and Glyphosate in EU-An Overview of Human Biomonitoring Studies Published since 2000. TOXICS 2022; 10:789. [PMID: 36548622 PMCID: PMC9788618 DOI: 10.3390/toxics10120789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Currently used pesticides are rapidly metabolised and excreted, primarily in urine, and urinary concentrations of pesticides/metabolites are therefore useful biomarkers for the integrated exposure from all sources. Pyrethroid insecticides, the organophosphate insecticide chlorpyrifos, and the herbicide glyphosate, were among the prioritised substances in the HBM4EU project and comparable human biomonitoring (HBM)-data were obtained from the HBM4EU Aligned Studies. The aim of this review was to supplement these data by presenting additional HBM studies of the priority pesticides across the HBM4EU partner countries published since 2000. We identified relevant studies (44 for pyrethroids, 23 for chlorpyrifos, 24 for glyphosate) by literature search using PubMed and Web of Science. Most studies were from the Western and Southern part of the EU and data were lacking from more than half of the HBM4EU-partner countries. Many studies were regional with relatively small sample size and few studies address residential and occupational exposure. Variation in urine sampling, analytical methods, and reporting of the HBM-data hampered the comparability of the results across studies. Despite these shortcomings, a widespread exposure to these substances in the general EU population with marked geographical differences was indicated. The findings emphasise the need for harmonisation of methods and reporting in future studies as initiated during HBM4EU.
Collapse
Affiliation(s)
- Helle Raun Andersen
- Clinical Pharmacology, Pharmacy and Environmental Medicine, Department of Public Health, University of Southern Denmark (SDU), 5000 Odense, Denmark
| | - Loïc Rambaud
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Margaux Riou
- Santé Publique France, Environmental and Occupational Health Division, 94410 Saint-Maurice, France
| | - Jurgen Buekers
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Sylvie Remy
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| | - Tamar Berman
- Israel Ministry of Health (MOH-IL), Jerusalem 9446724, Israel
| | - Eva Govarts
- VITO Health, Flemish Institute for Technological Research (VITO), 2400 Mol, Belgium
| |
Collapse
|
13
|
Ospina M, Schütze A, Morales-Agudelo P, Vidal M, Wong LY, Calafat AM. Exposure to glyphosate in the United States: Data from the 2013-2014 National Health and Nutrition Examination Survey. ENVIRONMENT INTERNATIONAL 2022; 170:107620. [PMID: 36368224 DOI: 10.1016/j.envint.2022.107620] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 05/12/2023]
Abstract
BACKGROUND Exposure to glyphosate, the most used herbicide in the United States, is not well characterized. We assessed glyphosate exposure in a representative sample of the U.S. population ≥ 6 years from the 2013-2014 National Health and Nutrition Examination Survey. METHODS We quantified glyphosate in urine (N = 2,310) by ion chromatography isotope-dilution tandem mass spectrometry. We conducted univariate analysis using log-transformed creatinine-corrected glyphosate concentrations with demographic and lifestyle covariates we hypothesized could affect glyphosate exposure based on published data including race/ethnicity, sex, age group, family income to poverty ratio, fasting time, sample collection season, consumption of food categories (including cereal consumption) and having used weed killer products. We used multiple logistic regression to examine the likelihood of glyphosate concentrations being above the 95th percentile and age-stratified multiple linear regression to evaluate associations between glyphosate concentrations and statistically significant covariates from the univariate analysis: race/ethnicity, sex, age group, fasting time, cereal consumption, soft drink consumption, sample collection season, and urinary creatinine. RESULTS Glyphosate weighted detection frequency was 81.2 % (median (interquartile range): 0.392 (0.263-0.656) μg/L; 0.450 (0.266-0.753) μg/g creatinine). Glyphosate concentration decreased from age 6-11 until age 20-59 and increased at 60+ years in univariate analyses. Children/adolescents and adults who fasted > 8 h had significantly lower model-adjusted geometric means (0.43 (0.37-0.51) μg/L and 0.37 (0.33-0.39) μg/L) than those fasting ≤ 8 h (0.51 (0.46-0.56) μg/L and 0.44 (0.41-0.48) μg/L), respectively. The likelihood (odds ratio (95 % CI)) of glyphosate concentrations being > 95th percentile was 1.94 (1.06-3.54) times higher in people who fasted ≤ 8 h than people fasting > 8 h (P = 0.0318). CONCLUSIONS These first nationally representative data suggest that over four-fifths of the U.S. general population ≥ 6 years experienced recent exposure to glyphosate. Variation in glyphosate concentration by food consumption habits may reflect diet or lifestyle differences.
Collapse
Affiliation(s)
- Maria Ospina
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA.
| | - Andre Schütze
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Pilar Morales-Agudelo
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Meghan Vidal
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Lee-Yang Wong
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, 4770 Buford Hwy, MS S103-2, Atlanta, GA 30341, USA
| |
Collapse
|
14
|
Buekers J, Remy S, Bessems J, Govarts E, Rambaud L, Riou M, Halldorsson TI, Ólafsdóttir K, Probst-Hensch N, Ammann P, Weber T, Kolossa-Gehring M, Esteban-López M, Castaño A, Andersen HR, Schoeters G. Glyphosate and AMPA in Human Urine of HBM4EU-Aligned Studies: Part B Adults. TOXICS 2022; 10:552. [PMID: 36287833 PMCID: PMC9612135 DOI: 10.3390/toxics10100552] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 05/26/2023]
Abstract
Within HBM4EU, human biomonitoring (HBM) studies measuring glyphosate (Gly) and aminomethylphosphonic acid (AMPA) in urine samples from the general adult population were aligned and quality-controlled/assured. Data from four studies (ESB Germany (2015-2020); Swiss HBM4EU study (2020); DIET-HBM Iceland (2019-2020); ESTEBAN France (2014-2016)) were included representing Northern and Western Europe. Overall, median values were below the reported quantification limits (LOQs) (0.05-0.1 µg/L). The 95th percentiles (P95) ranged between 0.24 and 0.37 µg/L urine for Gly and between 0.21 and 0.38 µg/L for AMPA. Lower values were observed in adults compared to children. Indications exist for autonomous sources of AMPA in the environment. As for children, reversed dosimetry calculations based on HBM data in adults did not lead to exceedances of the ADI (proposed acceptable daily intake of EFSA for Gly 0.1 mg/kg bw/day based on histopathological findings in the salivary gland of rats) indicating no human health risks in the studied populations at the moment. However, the controversy on carcinogenicity, potential endocrine effects and the absence of a group ADI for Gly and AMPA induce uncertainty to the risk assessment. Exposure determinant analysis showed few significant associations. More data on specific subgroups, such as those occupationally exposed or living close to agricultural fields or with certain consumption patterns (vegetarian, vegan, organic food, high cereal consumer), are needed to evaluate major exposure sources.
Collapse
Affiliation(s)
- Jurgen Buekers
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sylvie Remy
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Jos Bessems
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Eva Govarts
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | | | | | - Nicole Probst-Hensch
- Swiss Tropical and Public Health institute, 4123 Allschwil, Switzerland
- Department of Public Health, University of Basel, 4056 Basel, Switzerland
| | - Priska Ammann
- Swiss Tropical and Public Health institute, 4123 Allschwil, Switzerland
- Department of Public Health, University of Basel, 4056 Basel, Switzerland
| | - Till Weber
- German Environment Agency (UBA), 06844 Dessau-Roßlau, Germany
| | | | - Marta Esteban-López
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Helle Raun Andersen
- Department of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Greet Schoeters
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
15
|
Buekers J, Remy S, Bessems J, Govarts E, Rambaud L, Riou M, Tratnik JS, Stajnko A, Katsonouri A, Makris KC, De Decker A, Morrens B, Vogel N, Kolossa-Gehring M, Esteban-López M, Castaño A, Andersen HR, Schoeters G. Glyphosate and AMPA in Human Urine of HBM4EU Aligned Studies: Part A Children. TOXICS 2022; 10:470. [PMID: 36006149 PMCID: PMC9415901 DOI: 10.3390/toxics10080470] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 05/26/2023]
Abstract
Few data are available on the exposure of children to glyphosate (Gly) in Europe. Within HBM4EU, new HBM exposure data were collected from aligned studies at five sampling sites distributed over Europe (studies: SLO CRP (SI); ORGANIKO (CY); GerES V-sub (DE); 3XG (BE); ESTEBAN (FR)). Median Gly concentrations in urine were below or around the detection limit (0.1 µg/L). The 95th percentiles ranged between 0.18 and 1.03 µg Gly/L. The ratio of AMPA (aminomethylphosphonic acid; main metabolite of Gly) to Gly at molar basis was on average 2.2 and the ratio decreased with higher Gly concentrations, suggesting that other sources of AMPA, independent of metabolism of Gly to AMPA in the monitored participants, may concurrently operate. Using reverse dosimetry and HBM exposure data from five European countries (east, west and south Europe) combined with the proposed ADI (acceptable daily intake) of EFSA for Gly of 0.1 mg/kg bw/day (based on histopathological findings in the salivary gland of rats) indicated no human health risks for Gly in the studied populations at the moment. However, the absence of a group ADI for Gly+AMPA and ongoing discussions on e.g., endocrine disrupting effects cast some uncertainty in relation to the current single substance ADI for Gly. The carcinogenic effects of Gly are still debated in the scientific community. These outcomes would influence the risk conclusions presented here. Finally, regression analyses did not find clear associations between urinary exposure biomarkers and analyzed potential exposure determinants. More information from questionnaires targeting exposure-related behavior just before the sampling is needed.
Collapse
Affiliation(s)
- Jurgen Buekers
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Sylvie Remy
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Jos Bessems
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Eva Govarts
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
| | - Loïc Rambaud
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Margaux Riou
- Department of Environmental and Occupational Health, Santé Publique France, 94415 Saint-Maurice, France
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Anja Stajnko
- Department of Environmental Sciences, Jozef Stefan Institute, 1000 Ljubljana, Slovenia
| | | | - Konstantinos C. Makris
- Cyprus International Institute for Environmental and Public Health, Cyprus University of Technology, Limassol 3036, Cyprus
| | | | - Bert Morrens
- Department of Social Sciences, University of Antwerp, 2000 Antwerp, Belgium
| | - Nina Vogel
- German Environment Agency (UBA), Berlin, 06844 Dessau-Roßlau, Germany
| | | | - Marta Esteban-López
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Argelia Castaño
- Instituto de Salud Carlos III, National Centre for Environmental Health, 28220 Madrid, Spain
| | - Helle Raun Andersen
- Department of Public Health, University of Southern Denmark, 5000 Odense, Denmark
| | - Greet Schoeters
- Unit Health, VITO, Flemish Institute for Technological Research, 2400 Mol, Belgium
- Department of Biomedical Sciences, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
16
|
Grau D, Grau N, Gascuel Q, Paroissin C, Stratonovitch C, Lairon D, Devault DA, Di Cristofaro J. Quantifiable urine glyphosate levels detected in 99% of the French population, with higher values in men, in younger people, and in farmers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32882-32893. [PMID: 35018595 PMCID: PMC9072501 DOI: 10.1007/s11356-021-18110-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 12/10/2021] [Indexed: 05/05/2023]
Abstract
France is the first pesticide-consuming country in Europe. Glyphosate is the most used pesticide worldwide and glyphosate is detected in the general population of industrialized countries, with higher levels found in farmers and children. Little data was available concerning exposure in France. Our objective was to determine glyphosate levels in the French general population and to search for an association with seasons, biological features, lifestyle status, dietary habits, and occupational exposure. This study includes 6848 participants recruited between 2018 and 2020. Associated data include age, gender, location, employment status, and dietary information. Glyphosate was quantified by a single laboratory in first-void urine samples using ELISA. Our results support a general contamination of the French population, with glyphosate quantifiable in 99.8% of urine samples with a mean of 1.19 ng/ml + / - 0.84 after adjustment to body mass index (BMI). We confirm higher glyphosate levels in men and children. Our results support glyphosate contamination through food and water intake, as lower glyphosate levels are associated with dominant organic food intake and filtered water. Higher occupational exposure is confirmed in farmers and farmers working in wine-growing environment. Thus, our present results show a general contamination of the French population with glyphosate, and further contribute to the description of a widespread contamination in industrialized countries.
Collapse
Affiliation(s)
- Daniel Grau
- Association Campagne Glyphosate, Foix, France
| | - Nicole Grau
- Association Campagne Glyphosate, Foix, France
| | | | | | - Cécile Stratonovitch
- ARSEAA, Pôle Guidance Infantile, Psychiatrie Infanto-juvénile Secteur III, Labège, France
| | - Denis Lairon
- Faculté de Médecine de La Timone, Aix Marseille Université, INSERM, INRA, C2VN, Marseille, France
| | - Damien A Devault
- Centre Universitaire de Formation Et de Recherche de Mayotte, Dembeni, Mayotte, France
| | | |
Collapse
|
17
|
Nguyen MH, Nguyen TD, Vu MT, Duong HA, Pham HV. Determination of Glyphosate, Glufosinate, and Their Major Metabolites in Tea Infusions by Dual-Channel Capillary Electrophoresis following Solid-Phase Extraction. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:5687025. [PMID: 35402060 PMCID: PMC8993582 DOI: 10.1155/2022/5687025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/05/2022] [Indexed: 06/14/2023]
Abstract
In this study, two analytical procedures were developed and validated using dual-channel capillary electrophoresis-coupled contactless conductivity detection (CE-C4D) followed by solid-phase extraction (SPE) for simultaneous determination of glyphosate (GLYP), glufosinate (GLUF), and their two major metabolites, aminomethylphosphonic acid (AMPA) and 3-(methylphosphinico) propionic acid (MPPA), respectively, in a popular beverage such as tea infusions. GLYP, GLUF, and AMPA were analyzed in the first channel using background electrolyte (BGE) of 1 mM histidine (His) adjusted to pH 2.75 by acetic acid (Ace). In contrast, MPPA was quantified in the second channel with a BGE of 30 mM His adjusted to pH 6.7 by 3-(N-morpholino) propanesulfonic acid (MOPS) and 10 µM of cetyltrimethylammonium bromide (CTAB). In addition, the samples of tea infusions were treated using SPE with 10 mL of 0.5 mM HCl in methanol as eluent. At the optimized conditions, the method detection limit (MDL) of GLYP, GLUF, AMPA, and MPPA is 0.80, 1.56, 0.56, and 0.54 μg/l, respectively. The methods were then applied to analyze four target compounds in 16 samples of tea infusions. GLYP was found in two infusion samples of oolong tea with concentrations ranging from 5.34 to 10.74 µg/L, and GLUF was recognized in three samples of green tea infusion in the range of 45.1-53.9 µg/L.
Collapse
Affiliation(s)
- Manh Huy Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Thanh Dam Nguyen
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Minh Tuan Vu
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hong Anh Duong
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| | - Hung Viet Pham
- Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
- Research Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science (VNU-HUS), Vietnam National University, Hanoi (VNU), 334 Nguyen Trai Street, Thanh Xuan District, Hanoi, Vietnam
| |
Collapse
|
18
|
Pena A, Duarte S, Pereira AMPT, Silva LJG, Laranjeiro CSM, Oliveira M, Lino C, Morais S. Human Biomonitoring of Selected Hazardous Compounds in Portugal: Part I-Lessons Learned on Polycyclic Aromatic Hydrocarbons, Metals, Metalloids, and Pesticides. Molecules 2021; 27:242. [PMID: 35011472 PMCID: PMC8746698 DOI: 10.3390/molecules27010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/26/2021] [Indexed: 11/17/2022] Open
Abstract
Human biomonitoring (HBM) data provide information on total exposure regardless of the route and sources of exposure. HBM studies have been applied to quantify human exposure to contaminants and environmental/occupational pollutants by determining the parent compounds, their metabolites or even their reaction products in biological matrices. HBM studies performed among the Portuguese population are disperse and limited. To overcome this knowledge gap, this review gathers, for the first time, the published Portuguese HBM information concerning polycyclic aromatic hydrocarbons (PAHs), metals, metalloids, and pesticides concentrations detected in the urine, serum, milk, hair, and nails of different groups of the Portuguese population. This integrative insight of available HBM data allows the analysis of the main determinants and patterns of exposure of the Portuguese population to these selected hazardous compounds, as well as assessment of the potential health risks. Identification of the main difficulties and challenges of HBM through analysis of the enrolled studies was also an aim. Ultimately, this study aimed to support national and European policies promoting human health and summarizes the most important outcomes and lessons learned through the HBM studies carried out in Portugal.
Collapse
Affiliation(s)
- Angelina Pena
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Sofia Duarte
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
- Centro de Investigação Vasco da Gama-Departamento de Ciências Veterinárias, Escola Universitária Vasco da Gama, Av. José R. Sousa Fernandes, Campus Universitário-Bloco B, 3020-210 Coimbra, Portugal
| | - André M. P. T. Pereira
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Liliana J. G. Silva
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Célia S. M. Laranjeiro
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Marta Oliveira
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| | - Celeste Lino
- LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, 3000-548 Coimbra, Portugal; (A.P.); (A.M.P.T.P.); (L.J.G.S.); (C.S.M.L.); (C.L.)
| | - Simone Morais
- LAQV/REQUIMTE, Instituto Superior de Engenharia do Porto, Instituto Politécnico do Porto, Rua Dr. António Bernardino de Almeida 431, 4249-015 Porto, Portugal; (M.O.); (S.M.)
| |
Collapse
|
19
|
Lemke N, Murawski A, Schmied-Tobies MIH, Rucic E, Hoppe HW, Conrad A, Kolossa-Gehring M. Glyphosate and aminomethylphosphonic acid (AMPA) in urine of children and adolescents in Germany - Human biomonitoring results of the German Environmental Survey 2014-2017 (GerES V). ENVIRONMENT INTERNATIONAL 2021; 156:106769. [PMID: 34274860 DOI: 10.1016/j.envint.2021.106769] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 05/21/2023]
Abstract
Since the 1970s, glyphosate has become the most used herbicide of the world. The general population is ubiquitously exposed to glyphosate. Its long-term toxicity, carcinogenic potential and other health effects are controversially discussed. Even though the possible health impacts of glyphosate are of global concern, no population-wide monitoring of glyphosate was done yet. This study presents the worldwide first population-representative data on glyphosate and its metabolite aminomethylphosphonic acid (AMPA) for children and adolescents. 2144 first-morning void urine samples of 3-17-year-old children and adolescents living in Germany were analysed for concentrations of glyphosate and AMPA in the German Environmental Survey for Children and Adolescents 2014-2017 (GerESV). In 52 % of the samples (46 % for AMPA) the urinary glyphosate concentrations were above the limit of quantification of 0.1 µg/L. The geometric mean concentrations were 0.107 µg/L (0.090 µg/gcreatinine) for glyphosate and 0.100 µg/L (0.085 µg/gcreatinine) for AMPA. No clear association between exposure to glyphosate or AMPA and vegetarian diet or consumption of cereals, pulses, or vegetables could be identified. The low quantification rate and the 95th percentiles for glyphosate and AMPA of around 0.5 µg/L demonstrate an overall low exposure of the young population in Germany.
Collapse
Affiliation(s)
- Nora Lemke
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany.
| | - Aline Murawski
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | | - Enrico Rucic
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | | - André Conrad
- German Environment Agency (UBA), Berlin/Dessau-Roßlau, Germany
| | | |
Collapse
|