1
|
Vasanthakumaran M, Ramesh M, Murugan K, Hema T, Rajaganesh R, Hwang JS. Developmental toxicity, biochemical and biomarker in the zebrafish (Danio rerio) embryo exposed to biosynthesized cadmium oxide nanoparticles. CHEMOSPHERE 2024; 369:143851. [PMID: 39622455 DOI: 10.1016/j.chemosphere.2024.143851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/22/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
Cadmium oxide nanoparticles (CdO-NPs) play an important role in health applications due to their antibacterial properties. However, ecotoxicological investigations of these NPs and their adverse effects on aquatic organisms are necessary to protect the environment. Zebrafish is widely used as a model organism to explore toxic effects at multiple levels of integration. Hence, the objective of this work was to pursue possible harmful impacts of CdO -NPs that have been produced through biosynthesis, utilizing extract from the lily plant Gloriosa superba leaves, on the growth and biochemical changes in zebrafish (Danio rerio) embryos and larvae. UV, SEM, TEM, FTIR, EDAX, DLS, and ZETA-potential techniques were employed to examine the structure and morphology of the biosynthesized CdO-NPs. The identification of bioactive chemicals from the leaf extract of G. superba was conducted using GC-MS. To study the in vivo toxicity of CdO-NPs, zebrafish embryos and larvae were treated with two different concentrations of G. superba leave extract (0.5 and 1.0 mg/mL) at 96 h after fertilization (hpf). Bended tail, pericardial edema, shortened yolk sac extension, scoliosis, and damaged eyes were observed in the CdO-NPs treated groups. In addition, there was a considerable decrease in the levels of superoxide dismutase (SOD), catalase (CAT), glutathione S-transferases (GST), and lipid peroxidation (LPO). The CdO-NPs treated groups showed significant alterations in biochemical markers, including protein levels, glucose levels, and acetylcholinesterase (AChE) activity. Overall, our findings indicated that CdO-NPs induced a dose-dependent toxicity in zebrafish embryos. The investigated parameters serve as reliable biomarkers for the surveillance of CdO-NPs in aquatic ecosystems and their impact on living animals.
Collapse
Affiliation(s)
- Murugan Vasanthakumaran
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India; Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Kadarkarai Murugan
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Tamilselvan Hema
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Rajapandian Rajaganesh
- Division of Entomology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, 20224, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| |
Collapse
|
2
|
Shah LA, Subhan H, Alam S, Ye D, Ullah M. Bentonite clay reinforced alginate grafted composite hydrogel with remarkable sorptive performance toward removal of methylene green. Int J Biol Macromol 2024; 279:135600. [PMID: 39276899 DOI: 10.1016/j.ijbiomac.2024.135600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/25/2023] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
The rapid industrial progress in today's world has led to an alarming increase in water pollution caused by various contaminants such as synthetic dyes. To address this issue, a new hydrogel sorbent, BC-r-Na-Alg-g-p(NIPAm-co-AAc), was developed by combining bentonite clay, sodium alginate, and poly(N-isopropyl acrylamide-co-acrylic acid) through one-pot free radical polymerization at 60 °C. The developed sorbent was characterized using several analytical techniques including SEM, FTIR, TGA, UTM, and swelling studies. The swelling capacity of the sorbent was observed to increase remarkably with an increase in pH, reaching a maximum of 9664 % at pH 11. In batch mode sorption experiments, the sorbent's performance toward methylene green (MG) was investigated by analysing the effects of contact time, pH, temperature, and concentration. The experimental data were fitted to pseudo-second-order kinetic and Langmuir isotherm models, indicating chemisorption as the dominant interaction mode between the anionic sorbent and cationic MG. However, physisorption may also occur to a lesser extent, indicated by the significant R2 of the pseudo-first-order kinetic and Freundlich isotherm models. Additionally, the sorbent exhibited very little decrease (approximately 5 %) in sorptive performance for six sorption-desorption cycles. Overall, the facile fabrication, excellent swelling (9664 %), promising sorption performance (2573 mg.g-1), and good recyclability (6 cycles) make the developed sorbent a potential candidate for various industrial applications.
Collapse
Affiliation(s)
- Luqman Ali Shah
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan.
| | - Hanif Subhan
- Polymer Laboratory, National Centre of Excellence in Physical Chemistry, University of Peshawar, 25120, Pakistan; Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Sultan Alam
- Department of Chemistry, University of Malakand, KPK, Pakistan
| | - Daixin Ye
- Institute for Sustainable Energy, College of Sciences, Shanghai University, Shanghai 200444, PR China
| | - Mohib Ullah
- Department of Chemistry, Balochistan university of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta 87300, Pakistan
| |
Collapse
|
3
|
Tripathi M, Pathak S, Singh R, Singh P, Singh PK, Shukla AK, Maurya S, Kaur S, Thakur B. A Comprehensive Review of Lab-Scale Studies on Removing Hexavalent Chromium from Aqueous Solutions by Using Unmodified and Modified Waste Biomass as Adsorbents. TOXICS 2024; 12:657. [PMID: 39330585 PMCID: PMC11435892 DOI: 10.3390/toxics12090657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/28/2024]
Abstract
Anthropogenic activities and increasing human population has led to one of the major global problems of heavy metal contamination in ecosystems and to the generation of a huge amount of waste material biomass. Hexavalent chromium [Cr(VI)] is the major contaminant introduced by various industrial effluents and activities into the ecosystem. Cr(VI) is a known mutagen and carcinogen with numerous detrimental effects on the health of humans, plants, and animals, jeopardizing the balance of ecosystems. Therefore, the remediation of such a hazardous toxic metal pollutant from the environment is necessary. Various physical and chemical methods are available for the sequestration of toxic metals. However, adsorption is recognized as a more efficient technology for Cr(VI) remediation. Adsorption by utilizing waste material biomass as adsorbents is a sustainable approach in remediating hazardous pollutants, thus serving the dual purpose of remediating Cr(VI) and exploiting waste material biomass in an eco- friendly manner. Agricultural biomass, industrial residues, forest residues, and food waste are the primary waste material biomass that could be employed, with different strategies, for the efficient sequestration of toxic Cr(VI). This review focuses on the use of diverse waste biomass, such as industrial and agricultural by-products, for the effective remediation of Cr(VI) from aqueous solutions. The review also focuses on the operational conditions that improve Cr(VI) remediation, describes the efficacy of various biomass materials and modifications, and assesses the general sustainability of these approaches to reducing Cr(VI) pollution.
Collapse
Affiliation(s)
- Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Sukriti Pathak
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Ranjan Singh
- Department of Microbiology, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Pankaj Singh
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India; (S.P.); (P.S.)
| | - Pradeep Kumar Singh
- Department of Biochemistry, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, Uttar Pradesh, India;
| | - Awadhesh Kumar Shukla
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sadanand Maurya
- Department of Botany, K.S. Saket P.G. College, Ayodhya 224001, Uttar Pradesh, India; (A.K.S.)
| | - Sukhminderjit Kaur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| | - Babita Thakur
- Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India (B.T.)
| |
Collapse
|
4
|
Zhang D, Liu Z. Employing dolomite as magnesium source to prepare calcined layered double hydroxides for chromium contaminated soil treatment: Exploring the influence of temperature, bioavailability, and microbial diversity. Heliyon 2024; 10:e34664. [PMID: 39170300 PMCID: PMC11336319 DOI: 10.1016/j.heliyon.2024.e34664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/24/2024] [Accepted: 07/15/2024] [Indexed: 08/23/2024] Open
Abstract
Layered double hydroxides (LDH-D) and their calcined counterparts, using dolomite as a source of magnesium, were utilized for the immobilization of chromium (Cr(VI)) in soil. The results indicate that LDH-D, both with and without varying calcination temperatures, can effectively immobilize Cr(VI) in soil. Among the different calcination temperatures tested, LDH-D subjected to calcination at 500 °C (LDH-D-500) showed particularly high efficacy. Long-term TCLP experiments demonstrated the inhibition of soil-to-plant transmission of Cr(VI), thereby highlighting the long-lasting immobilization capacity of LDH-D and its calcined derivatives. Furthermore, the analysis of the microbial community's adaptation in post-remediation soil confirmed the durability and bioavailability of LDH-D-500 for Cr immobilization. Examination of the material's morphology and structure after immobilization shed light on the mechanism of immobilization in soil. The results revealed that interlayer anion exchange and surface adsorption were the main factors responsible for the effective immobilization of LDH-D and LDH-D-300. On the other hand, LDH-D-900, with a dominant spinel (MgAl2O4) structure, faced challenges in returning to its original layered configuration, making surface adsorption the primary mechanism for immobilization. LDH-D-500 primarily relied on the structure memory effects of LDHs to immobilize Cr(VI) through structural recovery processes, facilitated by electrostatic attraction and surface adsorption. It is also important to note that CaCO3 plays an important role in adsorption. Additionally, a portion of Cr(VI) was converted to Cr(III) through phenomena such as isomer substitution and complexation adsorption. The proficiency of LDH-D-500 in immobilizing Cr, its ability for instantaneous separation, and the potential for regeneration make it a promising material for remediation of heavy metal-contaminated soil. The investigations suggest that the use of dolomite to create hydrotalcite and calcining it at 500 °C could effectively render environmental Cr inactive, thereby optimizing resource utilization.
Collapse
Affiliation(s)
- Donghua Zhang
- Department of Mining Engineering, College of Mining Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Zhimeng Liu
- Shanxi Coal Institute of Planing &design (group) Co.,ltd., Taiyuan, 030024, China
| |
Collapse
|
5
|
Liu C, Yan X, Zhang HX, Yang JM, Yoon KB. Silicone-modified black peanut shell (BPS) biochar adsorbents: Preparation and their adsorptions for copper(II) from water. Heliyon 2024; 10:e35169. [PMID: 39166084 PMCID: PMC11334888 DOI: 10.1016/j.heliyon.2024.e35169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/18/2024] [Accepted: 07/24/2024] [Indexed: 08/22/2024] Open
Abstract
Novel silicone-modified biochar adsorbents (BPS-MBCs) were prepared by utilizing waste black peanut shell (BPS) as a raw biochar and gamma-amino-propyl triethoxysilane (silicone) as an inorganic modifier. The novelty of this work is that the incorporation of silicone into BPS can rise the specific surface area and porosity of BPS-MBCs and elevate their adsorptions for copper (II). Sorption kinetics data for copper (II) were molded using five kinetic equations [i.e. Lagergren 1st-order and 2nd-order, intraparticle diffusion (IN-D), Elovich, and Diffusion-chemisorption]. The equilibrium adsorption data for copper (II) were analyzed using two-parameter isotherm equations [i.e. Langmuir, Freundlich, Dubinin-Radushkevich, and Temkin] and three-parameter Sips, Redlich-Peterson and Toth isotherm models. It was validated that copper (II) sorption on BPS-MBCs matched better with pseudo-2nd-order kinetic, Diffusion-chemisorption and Langmuir isotherm models. The maximal qmLan of BPS-MBC-400 was near 284 mg/g at 45 °C. By multi-phase fitting of IN-D modelling, intra-particle diffusion coefficient (kin-d) and diffusion coefficient of external mass-transfer (DEx-Di) for copper (II) were calculated. The low sorption energy from Temkin and mean free energy from D-R modellings implied that copper (II) sorption was initiated by weak non-covalent bond interactions. Thermodynamic parameters indicated that copper (II) on BPS-MBCs was an endothermic and spontaneous process. Recycling of BPS-MBC-400 for copper (II) suggested it has excellent reusability. The major mechanism of copper (II) on BPS-MBCs is possibly comprised of multiple processes, such as physical adsorption (electrostatic attraction), chemical adsorption (adsorption from functional groups, chelation, and ion exchange) and diffusion-chemisorption. Based on these findings, it is expects that BPS-MBCs are promising sorbents for copper (II) eradication from Cu(II)-including wastewater.
Collapse
Affiliation(s)
- Chen Liu
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Xin Yan
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - He-Xin Zhang
- School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Jian-ming Yang
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
| | - Keun-Byoung Yoon
- Department of Polymer Science and Engineering, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
6
|
Bahaidarah EA. An Effective Sol-Gel-Functionalized Polyurethane Foams Solid Platform Packed Minicolumns for Complete Extraction of Chromium (VI) from Water: Kinetic, Sorption Isotherms, Thermodynamic Study, and Analytical Utility. Int J Anal Chem 2024; 2024:3152894. [PMID: 39376696 PMCID: PMC11458274 DOI: 10.1155/2024/3152894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 06/06/2024] [Accepted: 07/15/2024] [Indexed: 10/09/2024] Open
Abstract
In the modern era, sol-gel plays a key role in the progress of a new generation of dispersive solid-phase microextractors (d-µ SPMEs) for the removal of organic and inorganic pollutants in complex matrices. Thus, the current study reports the use of sol-gel-functionalized polyurethane foams (PUFs) as a novel solid platform for complete extraction of chromium (VI) species from aqueous media. The planned protocol was based upon the complete extraction of the formed binary complex ion associates between the protonated ether and/or urethane groups of PUFs and chlorochromate anion [CrO3Cl]- aq in aqueous HCl (≥1M) medium in addition to H-bonding and the electrostatic π-π interaction that resulted between the CrO3Cl- and the silanol group (Si/ZrO2, Si-O-Zr) and siloxane (Si-O-Si) groups of the sol-gel. The impact of the analytical parameters (solution pH, natural mineral acids, shaking time, temperature, and chromium (VI) concentrations) was critically studied. At the optimal conditions, the uptake capacity of the established extractor (9.9 mg·g-1) was in agreement with the Langmuir adsorption capacity (12.08 mg·g-1) of the monolayer. The sorption data fitted well with the pseudo first-order kinetic model (R 2 = 0.9961) with an overall rate constant (k 1) of 0.081 min-1 and an equilibrium capacity (q e ) of 8.6 mg·g-1, which is in a good agreement with the experimental value (9.9 mg·g-1). The sorption of the oxyion [CrO3Cl]- aq onto the solid sorbent is an endothermic and spontaneous process as reflected from the values of ΔH (6.99 kJ·mol-1) and ΔG (-8.14 kJ·mol-1 at 293 K), respectively. The ΔS value (15.13 kJ·mol-1·K-1) reflects that the [CrO3Cl]- aq retention onto the sol-gel-treated PUFs sorbent proceeded in a more unplanned fashion. Sol-gel-treated PUFs sorbent-packed minicolumns were successfully used for the complete removal of trace levels of chromium (VI) species from water samples. Sorbed chromium (VI) species were recovered with NaOH (0.5 M) and analysed by spectrophotometry, which supports the utility of the sol-gel-treated PUFs as a low-cost solid extractor for water treatment.
Collapse
Affiliation(s)
- Effat A. Bahaidarah
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
7
|
Ahmed MJ, Anastopoulos I, Kalderis D, Haris M, Usman M. Insight into the wheat residues-derived adsorbents for the remediation of organic and inorganic aquatic contaminants: A review. ENVIRONMENTAL RESEARCH 2024; 250:118507. [PMID: 38387498 DOI: 10.1016/j.envres.2024.118507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024]
Abstract
Wheat is a major grain crop of the world that provides a stable food for human consumption. Large amounts of by-products/waste materials are produced after the harvesting and processing of wheat crop. Such materials can cause an environmental issue if not disposed of properly. Several studies have shown that wheat residues can be efficient precursors for adsorbents because of their availability, renewability, lignocellulosic composition, and surface active groups enriched structure. In the literature, there are few review articles that address wheat residues-based adsorbents. However, these reviews were specific in terms of adsorbate or adsorbent and did not provide detailed information about the modification, properties, and regeneration of these adsorbents. This article extensively reviews the utilization of wheat biomass/waste including straw, bran, husk, and stalk as precursors for raw or untreated, chemically treated, carbonaceous, and composite adsorbents against various environmental pollutants. The influences of inlet pollutant amount, adsorbent dose, pH, temperature, and time on the performance of adsorbents against pollutants were considered. The maximum uptakes, equilibrium time, and adsorption nature were identified from isotherms, kinetic, and thermodynamic studies. The highest adsorbed amounts of most tested contaminants were 448.20, 322.58, and 578.13 mg/g for lead, chromium, and copper, 1374.6 and 1449.4 mg/g for methylene blue and malachite green, and 854.75, 179.21, and 107.77 mg/g for tetracycline, phosphate, and nitrate, respectively. For the studied adsorbate/adsorbent systems the adsorption mechanism and regeneration were also discussed. Significant results and future directions are finally presented.
Collapse
Affiliation(s)
- Muthanna J Ahmed
- Department of Chemical Engineering, College of Engineering, University of Baghdad, 10071 Baghdad, Iraq.
| | - Ioannis Anastopoulos
- Department of Agriculture, University of Ioannina, UoI Kostakii Campus, 47040 Arta, Greece
| | - Dimitrios Kalderis
- Laboratory of Environmental Technologies and Applications, Department of Electronic Engineering, Hellenic Mediterranean University, Chania 73100, Greece
| | - Muhammad Haris
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Muhammad Usman
- Université de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, F-35000, Rennes, France
| |
Collapse
|
8
|
Tawfeeq HR, Al-Jubori SS, Mussa AH. Purification and characterization of catechol 1,2-dioxygenase (EC 1.13.11.1; catechol-oxygen 1,2-oxidoreductase; C12O) using the local isolate of phenol-degrading Pseudomonas putida. Folia Microbiol (Praha) 2024; 69:579-593. [PMID: 37702837 DOI: 10.1007/s12223-023-01090-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/25/2023] [Indexed: 09/14/2023]
Abstract
The purpose of the present study was to purify and characterize the catechol 1,2-dioxygenase (EC 1.13.11.1; catechol-oxygen 1,2-oxidoreductase; C12O) enzyme from the local isolate of Pseudomonas putida. This enzyme catalyzes the initial reaction in the ortho-pathway for phenol degradation in various gram-negative bacteria, including the genus of Pseudomonas. Pseudomonads are commonly used in the biodegradation of xenobiotics due to their versatility in degrading a wide range of chemical compounds. Eighty-nine soil samples were taken from the contaminated soil of the Midland Refineries Company (MRC) of Al-Daura refinery area at Baghdad from April to August 2021. The samples were grown in a mineral salt medium containing 250 mg per L of phenol to test their ability to biodegrade phenol. The pH was adjusted to 8.0 at 30 °C using a shaking incubator for 24-48 h. A number of 62 (69.6%) isolates of the total number were able to degrade phenol efficiently. The findings of the VITEK system and the housekeeping gene 16S rDNA confirmed that out of the positive isolates for phenol degradation, 36 from 62 (58.06%) were identified as Pseudomonas spp. isolates. Those isolates were distributed as P. aeruginosa 30 (83.3%) and P. putida 6 (16.6%). The enzyme production capabilities of the isolates were evaluated, and the highest activity was 2.39 U per mg for the isolate No. 15 which it was identified as P. putida. The previous isolate was selected for enzyme production, purification, and characterization. The enzyme was purified using ion exchange and gel filtration chromatography, with a combined yield of 36.12% and purification fold of 15.42 folds. Using a gel filtration column, the enzyme's molar mass was calculated to be 69 kDa after purification. The purified enzyme was stable at 35 °C and a pH of 6.0.
Collapse
Affiliation(s)
| | | | - Amel Hussaein Mussa
- Biology Department, Faculty of Science, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
9
|
Sabando-Fraile C, Corral-Bobadilla M, Lostado-Lorza R, Gallarta-González F. Applying circular economy principles and life cycle assessment: A novel approach using vine shoots waste for cadmium removal from water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171947. [PMID: 38527549 DOI: 10.1016/j.scitotenv.2024.171947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/21/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
This research investigates the potential of utilizing vine shoots, a byproduct of the viticulture industry, as biosorbent for cadmium removal from aqueous solutions. The Spanish wine industry, one of the most influential sectors, produces two to three million tons of vine shoots. By using vine shoots as biosorbent, this study contributes to the circular economy paradigm, transforming waste materials into valuable resources and minimizing environmental impacts associated with waste generation and disposal. The research underscores the significance of vine shoots in biosorption due to its high lignocellulosic content. By experimental analysis, the efficacy of vine shoots in cadmium biosorption is evaluated, considering factors such as environmental impact or energy consumption. This study examines the effect of six key input parameters on cadmium removal efficiency and power consumption, identifying optimal conditions for maximum removal with minimal energy consumption. The findings suggest that vine shoots offer promising biosorption capabilities, promoting sustainability in wastewater treatment and environmental remediation efforts. By employing the response surface method alongside desirability functions, the study determined the optimal variables for two distinct optimization scenarios. Notably, in the second optimization scenario, a cadmium removal rate of 99.23 % was achieved while consuming 25.6 W of power. The input parameters for this achievement should be set as follows: initial cadmium concentration of 100 ppm, pH level of 8, stirring time of 75 min, stirring speed of 100 rpm, temperature of 26 °C, and a dose of vine shoots of 0.1 g.
Collapse
Affiliation(s)
- Celia Sabando-Fraile
- Department of Mechanical Engineering, University of La Rioja, C/San José de Calasanz 31, 26004 Logroño, La Rioja. Spain.
| | - Marina Corral-Bobadilla
- Department of Mechanical Engineering, University of La Rioja, C/San José de Calasanz 31, 26004 Logroño, La Rioja. Spain.
| | - Rubén Lostado-Lorza
- Department of Mechanical Engineering, University of La Rioja, C/San José de Calasanz 31, 26004 Logroño, La Rioja. Spain.
| | - Félix Gallarta-González
- Department of Chemistry, University of La Rioja, C/Madre de Dios 53, 26006 Logroño, La Rioja, Spain.
| |
Collapse
|
10
|
Mladenović Nikolić N, Kljajević L, Nenadović SS, Potočnik J, Knežević S, Dolenec S, Trivunac K. Adsorption Efficiency of Cadmium (II) by Different Alkali-Activated Materials. Gels 2024; 10:317. [PMID: 38786234 PMCID: PMC11121154 DOI: 10.3390/gels10050317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
The objective of this study was to demonstrate the potential utilization of fly ash (FA), wood ash (WA), and metakaolin (MK) in developing new alkali-activated materials (AAMs) for the removal of cadmium ions from waste water. The synthesis of AAMs involved the dissolution of solid precursors, FA, WA, and MK, by a liquid activator (Na2SiO3 and NaOH). In concentrated solutions of the activator, the formation of an aluminosilicate gel structure occurred. DRIFT spectroscopy of the AAMs indicated main vibration bands between 1036 cm-1 and 996 cm-1, corresponding to Si-O-Si/Si-O-Al bands. Shifting vibration bands were seen at 1028 cm-1 to 1021 cm-1, indicating that the Si-O-Si/Si-O-Al bond is elongating, and the bond angle is decreasing. Based on the X-ray diffraction results, alkali-activated samples consist of an amorphous phase and residual mineral phases. The characteristic "hump" of an amorphous phase in the range from 20 to 40° 2θ was observed in FA and in all AWAFA samples. By the XRD patterns of the AAMs obtained by the activation of a solid three-component system, a new crystalline phase, gehlenite, was identified. The efficiency of AAMs in removing cadmium ions from aqueous solutions was tested under various conditions. The highest values of adsorption capacity, 64.76 mg/g (AWAFA6), 67.02 mg/g (AWAFAMK6), and 72.84 mg/g mg/g (AWAMK6), were obtained for materials activated with a 6 M NaOH solution in the alkali activator. The Langmuir adsorption isotherm and pseudo-second kinetic order provided the best fit for all investigated AAMs.
Collapse
Affiliation(s)
- Nataša Mladenović Nikolić
- Department for Materials, “Vinča“ Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11 000 Belgrade, Serbia; (L.K.); (S.S.N.); (S.K.)
| | - Ljiljana Kljajević
- Department for Materials, “Vinča“ Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11 000 Belgrade, Serbia; (L.K.); (S.S.N.); (S.K.)
| | - Snežana S. Nenadović
- Department for Materials, “Vinča“ Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11 000 Belgrade, Serbia; (L.K.); (S.S.N.); (S.K.)
| | - Jelena Potočnik
- Department of Atomic Physics, “Vinča“ Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11 000 Belgrade, Serbia;
| | - Sanja Knežević
- Department for Materials, “Vinča“ Institute of Nuclear Sciences—National Institute of the Republic of Serbia, University of Belgrade, 11 000 Belgrade, Serbia; (L.K.); (S.S.N.); (S.K.)
| | - Sabina Dolenec
- Slovenian National Building and Civil Engineering Institute, Dimičeva ulica 12, 1000 Ljubljana, Slovenia;
- Department of Geology, Faculty of Natural Sciences and Engineering, University of Ljubljana, Aškerčeva ulica 12, 1000 Ljubljana, Slovenia
| | - Katarina Trivunac
- Department of Analytical Chemistry and Quality Control, Faculty of Technology and Metallurgy, University of Belgrade, 11 000 Belgrade, Serbia;
| |
Collapse
|
11
|
Tan YY, Abdul Raman AA, Zainal Abidin MII, Buthiyappan A. A review on sustainable management of biomass: physicochemical modification and its application for the removal of recalcitrant pollutants-challenges, opportunities, and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:36492-36531. [PMID: 38748350 DOI: 10.1007/s11356-024-33375-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/13/2024] [Indexed: 06/20/2024]
Abstract
Adsorption is one of the most efficient methods for remediating industrial recalcitrant wastewater due to its simple design and low investment cost. However, the conventional adsorbents used in adsorption have several limitations, including high cost, low removal rates, secondary waste generation, and low regeneration ability. Hence, the focus of the research has shifted to developing alternative low-cost green adsorbents from renewable resources such as biomass. In this regard, the recent progress in the modification of biomass-derived adsorbents, which are rich in cellulosic content, through a variety of techniques, including chemical, physical, and thermal processes, has been critically reviewed in this paper. In addition, the practical applications of raw and modified biomass-based adsorbents for the treatment of industrial wastewater are discussed extensively. In a nutshell, the adsorption mechanism, particularly for real wastewater, and the effects of various modifications on biomass-based adsorbents have yet to be thoroughly studied, despite the extensive research efforts devoted to their innovation. Therefore, this review provides insight into future research needed in wastewater treatment utilizing biomass-based adsorbents, as well as the possibility of commercializing biomass-based adsorbents into viable products.
Collapse
Affiliation(s)
- Yan Ying Tan
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Abdul Aziz Abdul Raman
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Izzudin Izzat Zainal Abidin
- Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Sheer A, Fahad Sardar M, Younas F, Zhu P, Noreen S, Mehmood T, Ur Rahman Farooqi Z, Fatima S, Guo W. Trends and social aspects in the management and conversion of agricultural residues into valuable resources: A comprehensive approach to counter environmental degradation, food security, and climate change. BIORESOURCE TECHNOLOGY 2024; 394:130258. [PMID: 38151206 DOI: 10.1016/j.biortech.2023.130258] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/11/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The circular economy is essential as it encourages the reuse and recycling of resources while reducing waste, which ultimately helps to reduce environmental pollution and boosts economic efficiency. The current review highlights the management of agricultural and livestock residues and their conversion into valuable resources to combat environmental degradation and improve social well-being. The current trends in converting agricultural residues into useful resources emphasize the social benefits of waste management and conversion. It also emphasizes how waste conversion can reduce environmental degradation and enhance food security. Using agricultural residues can increase soil health and agricultural output while reducing pollution, greenhouse gas emissions, and resource depletion. Promoting sustainable waste-to-resource conversion processes requires a combination of strategies that address technical, economic, social, and environmental aspects. These multiple strategies are highlighted along with prospects and considerations.
Collapse
Affiliation(s)
- Abbas Sheer
- College of Law, University of Sharjah, Sharjah, UAE
| | - Muhammad Fahad Sardar
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| | - Fazila Younas
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pengcheng Zhu
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China
| | - Saima Noreen
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Tariq Mehmood
- Helmholtz Centre for Environmental Research-UFZ, Department of Environmental Engineering, Permoserstr 15, D-04318 Leipzig, Germany
| | - Zia Ur Rahman Farooqi
- Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad 38040, Pakistan
| | - Sidra Fatima
- College of Forestry Economic and Management, Beijing Forestry University BFU, Beijing, China
| | - Weihua Guo
- Key Laboratory of Ecological Prewarning, Protection and Restoration of Bohai Sea, Ministry of Natural Resources, School of Life Sciences, Shandong University, Qingdao 266237, China.
| |
Collapse
|
13
|
Zohrabi Y, Ghazi ME, Izadifard M, Valipour A. Synthesis, structural, magnetic property, and Cd(II) adsorption behavior of Ca-substituted MgFe 2O 4 nanomaterials in aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:4080-4099. [PMID: 38102424 DOI: 10.1007/s11356-023-31326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
In the present study, magnetic nanomaterials (Mg1-xCaxFe2O4, 0.0 ≤ x ≤ 0.8) were prepared via a simple sol-gel method. The samples were characterized using XRD, TEM, SEM, EDX, FTIR, BET, and VSM. The structural and magnetic properties of prepared nanomaterials (NMs) were investigated, and the adsorption capacity of Cd2+ from aqueous solution was evaluated via flame atomic absorption spectroscopy (AAS). The impact of several factors on Cd2+ adsorption such as contact time (1-60 min), pH (3-8), dose (0.003-0.03 g), and initial concentration of Cd2+ (5-60 mg L-1) has been assessed. The adsorption capacity of Cd2+ for the prepared NMs followed the pseudo-second order. Several isotherm models were analyzed, and the Langmuir model was found to be the best fit for NMs. Among as-prepared NMs, Mg0.8Ca0.2Fe2O4 (MCF2, cubic 97%, orthorhombic 3%, qe 100 mg g-1) and Mg0.2Ca0.8Fe2O4 (MCF8, cubic 18%, orthorhombic 83%, qe 90 mg g-1) samples exhibited the highest adsorption performance at conditions, viz., contact time 20 min, pH 7, NM dosage 3 mg, and ions at a concentration 60 mg l-1. Cd removal percentages were achieved 93 and 75 for MCF2 and MCF8, respectively. Overall, the prepared MCF2 and MCF8 NMs could be used as effective adsorbents to eliminate toxic Cd2+ from polluted aqueous solution.
Collapse
Affiliation(s)
- Younes Zohrabi
- Department of Physics, Shahrood University of Technology, Shahrood, Iran
| | | | - Morteza Izadifard
- Department of Physics, Shahrood University of Technology, Shahrood, Iran
| | - Alireza Valipour
- Water and Wastewater Research Center (WWRC), Water Research Institute (WRI), Shahid Abbaspour Blvd., Tehran, 16765 313, Iran
| |
Collapse
|
14
|
Murtaza B, Naseer A, Imran M, Shah NS, Al-Kahtani AA, ALOthman ZA, Shahid M, Iqbal J, Abbas G, Natasha N, Amjad M. Chromium removal from aqueous solution using bimetallic Bi 0/Cu 0-based nanocomposite biochar. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9003-9016. [PMID: 37266751 DOI: 10.1007/s10653-023-01630-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/23/2023] [Indexed: 06/03/2023]
Abstract
Chromium (Cr), due to its greater contamination in aquifers and distinct eco-toxic impacts, is of greater environmental concern. This study aimed to synthesize nanocomposites of almond shells biochar (BC) with zerovalent bismuth and/or copper (Bi0/BC, Cu0/BC, and Bi0-Cu0/BC) for the removal of Cr from aqueous solution. The synthesized nanocomposites were investigated using various characterization techniques such as XRD, FTIR spectroscopy, SEM, and EDX. The Cr removal potential by the nanocomposites was explored under different Cr concentrations (25-100 mg/L), adsorbent doses (0.5-2.0 g/L), solution pH (2-8), and contact time (10-160 min). The above-mentioned advanced techniques verified successful formation of Bi0/Cu0 and their composite with BC. The synthesized nanocomposites were highly effective in the removal of Cr. The Bi0-Cu0/BC nano-biocomposites showed higher Cr removal efficiency (92%) compared to Cu0/BC (85%), Bi0/BC (76%), and BC (67%). The prepared nanocomposites led to effective Cr removal at lower Cr concentrations (25 mg/L) and acidic pH (4.0). The Cr solubility changes with pH, resulting in different degrees of Cr removal by Bi0-Cu0/BC, with Cr(VI) being more soluble and easier to adsorb at low pH levels and Cr(III) being less soluble and more difficult to adsorb at high pH levels. The experimental Cr adsorption well fitted with the Freundlich adsorption isotherm model (R2 > 0.99) and pseudo-second-order kinetic model. Among the prepared nanocomposites, the Bi0-Cu0/BC showed greater stability and reusability. It was established that the as-synthesized Bi0-Cu0/BC nano-biocomposite showed excellent adsorption potential for practical Cr removal from contaminated water.
Collapse
Affiliation(s)
- Behzad Murtaza
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Aqsa Naseer
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Imran
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Noor S Shah
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Abdullah A Al-Kahtani
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zeid A ALOthman
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Jibran Iqbal
- College of Natural and Health Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, UAE
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Natasha Natasha
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Amjad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| |
Collapse
|
15
|
Zhang X, Bhattacharya T, Wang C, Kumar A, Nidheesh PV. Straw-derived biochar for the removal of antibiotics from water: Adsorption and degradation mechanisms, recent advancements and challenges. ENVIRONMENTAL RESEARCH 2023; 237:116998. [PMID: 37634688 DOI: 10.1016/j.envres.2023.116998] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 08/29/2023]
Abstract
Antibiotics, a kind of containments with the properties of widely distributed and difficult to degrade, has aroused extensive attention in the world. As a prevalent agricultural waste, straws can be utilized to prepare biochar (straw-derived biochar, SBC) to remove antibiotics from aquatic environment. To date, although a number of review papers have summarized and discussed research on biochar application in wastewater treatment and soil remediation, there are few reviews on SBC for antibiotic removal. Due to the limitations of poor adsorption and degradation performance of the pristine SBC, it is necessary to modify SBC to improve its applications for antibiotics removal. The maximum antibiotic removal capacity of modified SBC could reach 1346.55 mg/g. Moreover, the adsorption mechanisms between modified SBC and antibiotics mainly involve π-π interactions, electrostatic interactions, hydrophobic interactions, and charge dipole interactions. In addition, the modified SBC could completely degrade antibiotics within 6 min by activating oxidants, such as PS, PDS, H2O2, and O3. The mechanisms of antibiotic degradation by SBC activated oxidants mainly include free radicals (including SO4•-, •OH, and O2•-) and non-free radical pathway (such as, 1O2, electrons transfer, and surface-confined reaction). Although SBC and modified SBC have demonstrated excellent performance in removing antibiotics, they still face some challenges in practical applications, such as poor stability, high cost, and difficulties in recycling. Therefore, the further research directions and trends for the development of SBC and biochar-based materials should be taken into consideration.
Collapse
Affiliation(s)
- Xiuxiu Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Tansuhree Bhattacharya
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Chongqing Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| | - Abhishek Kumar
- Department of Civil and Environmental Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Puthiya Veetil Nidheesh
- Environmental Impact and Sustainability Division, CSIR - National Environmental Engineering Research Institute, Nagpur, Maharashtra, India.
| |
Collapse
|
16
|
Yan D, Xue S, Zhang Z, Xu G, Zhang Y, Gao J, Zhang W. Air nanobubble water improves plant uptake and tolerance toward cadmium in phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122577. [PMID: 37722479 DOI: 10.1016/j.envpol.2023.122577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/12/2023] [Accepted: 09/16/2023] [Indexed: 09/20/2023]
Abstract
Heavy metal contamination continues to be a persistent environmental problem. To address this issue, this study evaluated the impact of air nanobubbles (NBs) in water on the uptake of heavy metals by Alternanthera philoxeroides (A. philoxeroides), a common aquatic plant in China known for its rapid growth, strong vitality, and high capacity for heavy metal remediation. This study found that diluted air NBs (25% concentration) boosted cadmium uptake of A. philoxeroides by 17.39%. They also enhanced plant growth (25-50%) and photosynthetic pigments (10-20%) even at low cadmium levels (0.1 mM). Furthermore, the incorporation of 25% air NBs has been demonstrated to significantly amplify the performance of key antioxidant enzymes, such as superoxide dismutase and catalase, alongside heightened levels of crucial antioxidants such as malondialdehyde. This heightened activity of antioxidant defenses offers a compelling explanation for the potential amelioration of cadmium toxicity and concurrent enhancements in overall plant growth rates. Notably, a comprehensive analysis utilizing the excitation emission matrix-parallel factor analysis (EEM-PARAFAC) technique has revealed alterations in the composition of rhizosphere dissolved organic matter due to the presence of NBs. This ncomposition change of the rhizosphere dissolved organic mattermposition has subsequently exerted an influence on plant complexation processes and the subsequent uptake of cadmium. This study demonstrates that the strategic implementation of air NBs in water systems holds the potential to significantly enhance the plant's ability to detoxify cadmium and improve the uptake of heavy metals during phytoremediation processes.
Collapse
Affiliation(s)
- Dajiang Yan
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Shan Xue
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA
| | - Zhibin Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China.
| | - Guodong Xu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Yanhao Zhang
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, 250101, China
| | - Jianan Gao
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA
| | - Wen Zhang
- John A. Reif, Jr. Department of Civil and Environmental Engineering, New Jersey Institute of Technology, 323 Martin Luther King Blvd., Newark, NJ, 07102, USA.
| |
Collapse
|
17
|
Lee JW, Jo AH, Lee DC, Choi CY, Kang JC, Kim JH. Review of cadmium toxicity effects on fish: Oxidative stress and immune responses. ENVIRONMENTAL RESEARCH 2023; 236:116600. [PMID: 37429393 DOI: 10.1016/j.envres.2023.116600] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/17/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Cadmium (Cd) in aquatic environments can cause environmental toxicity to fish and induce oxidative stress owing to an excessive production of reactive oxygen species in fish bodies. Fish have developed various antioxidant systems to protect themselves from reactive oxygen species; thus, a change in antioxidant responses in fish can be a criterion for evaluating oxidative stress resulting from Cd exposure. Because Cd exposure may be recognized as an exogenous substance by a fish body, it may lead to the stimulation or suppression of its immune system. Various immune responses can be assessed to evaluate Cd toxicity in fish. This review aimed to identify the impacts of Cd exposure on oxidative stress and immunotoxicity in fish as well as identify accurate indicators of Cd toxicity in aquatic ecosystems.
Collapse
Affiliation(s)
- Ju-Wook Lee
- West Sea Fisheries Research Institute, National Institute of Fisheries Science, Incheon, South Korea
| | - A-Hyun Jo
- Department of Aquatic Life and Medical Science, Sun Moon University, Asan, South Korea
| | - Deok-Chan Lee
- Shellfish Research Team, South Sea Fisheries Research Institute, National Institute of Fisheries Science, Tongyoung 53085, South Korea.
| | - Cheol Young Choi
- Division of Marine BioScience, Korea Maritime and Ocean University, Busan 49112, South Korea.
| | - Ju-Chan Kang
- Department of Aquatic Life Medicine, Pukyong National University, Busan 48513, South Korea.
| | - Jun-Hwan Kim
- Department of Marine Life Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
18
|
Senniappan S, Palanisamy S, Manon Mani V, Umesh M, Govindasamy C, Khan MI, Shanmugam S. Exploring the adsorption efficacy of Cassia fistula seed carbon for Cd (II) ion removal: Comparative study of isotherm models. ENVIRONMENTAL RESEARCH 2023; 235:116676. [PMID: 37453504 DOI: 10.1016/j.envres.2023.116676] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/20/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
The current study demonstrates the potential of Cassia fistula seed carbon (CFSC), a waste lignocellulosic biomass, to eliminate Cd (II) ion-from saturated liquid samples. The efficient removal of about 93.2% (w/v) of Cd (II) ions from 10 mg/L concentration was achieved within 80 min of treatment. The CFSC dosage of 100 mg/50 mL accounted as optimal for enhanced Cd (II) removal. Cd (II) adsorption onto CFSC was observed to be maximum at pH 6. The investigational trials were assessed with three isotherm models such Dubinin-Radushkevich, Freundlich, and Langmuir. The specifications obtained from this experimental study align well with the Langmuir isotherm model, which describes the maximal adsorption capacity of 68.02 mg/g. Cd (II) adsorption data from this study exhibited the R2 of 0.9 under pseudo-second-order. Maximum desorption (76.3% w/v) was obtained with 0.3 M HCL. This study revealed that thermally activated C. fistula seed carbon (CFSC) can be tuned to be lucrative adsorbent for Cd (II) elimination from water and waste-water.
Collapse
Affiliation(s)
- Sasireka Senniappan
- Department of Chemistry, V.S.B College of Engineering Technical Campus, Coimbatore, Tamil Nadu, India.
| | - Shanmughaprabha Palanisamy
- Department of Chemistry, Park College of Engineering and Technology, Coimbatore, 641659, Tamil Nadu, India
| | - Vellingiri Manon Mani
- Department of Biotechnology, Rathnavel Subramaniam College of Arts and Science, Coimbatore, 641402, Tamil Nadu, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Hosur Road, Bengaluru, 560029, Karnataka, India
| | - Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Muhammad Ibrar Khan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Life Sciences, Kreutzwaldi, 51006, Tartu, Estonia.
| |
Collapse
|
19
|
Ahmadian M, Jaymand M. Interpenetrating polymer network hydrogels for removal of synthetic dyes: A comprehensive review. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
20
|
da Silva MCF, Lütke SF, Nascimento VX, Lima ÉC, Silva LFO, Oliveira MLS, Dotto GL. Activated carbon prepared from Brazil nut shells towards phenol removal from aqueous solutions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:82795-82806. [PMID: 37336851 DOI: 10.1007/s11356-023-28268-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 06/10/2023] [Indexed: 06/21/2023]
Abstract
The Brazil nut shell was used as a precursor material for preparing activated carbon by chemical activation with potassium hydroxide. The obtained material (BNSAC) was characterized, and the adsorptive features of phenol were investigated. The characterization showed that the activated carbon presented several rounded cavities along the surface, with a specific surface area of 332 m2 g-1. Concerning phenol adsorption, it was favored using an adsorbent dosage of 0.75 g L-1 and pH 6. The kinetic investigation revealed that the system approached the equilibrium in around 180 min, and the Elovich model represented the kinetic curves. The Sips model well represented the equilibrium isotherms. In addition, the increase in temperature from 25 to 55 °C favored the phenol adsorption, increasing the maximum adsorption capacity value (qs) from 83 to 99 mg g-1. According to the estimated thermodynamic parameters, the adsorption was spontaneous, favorable, endothermic, and governed by physical interactions. Therefore, the Brazil nut shell proved a good precursor material for preparing efficient activated carbon for phenol removal.
Collapse
Affiliation(s)
- Maria C F da Silva
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Sabrina F Lütke
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Victoria X Nascimento
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil
| | - Éder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul-UFRGS, Av. Bento Gonçalves 9500, P.O. Box 15003, Porto Alegre, RS, 91501-970, Brazil
| | - Luis F O Silva
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Marcos L S Oliveira
- Universidad De La Costa, Calle 58 # 55-66, 080002, Barranquilla, Atlántico, Colombia
| | - Guilherme L Dotto
- Research Group On Adsorptive and Catalytic Process Engineering (ENGEPAC), Federal University of Santa Maria, Av. Roraima, 1000-7, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
21
|
Teng HJ, Xia T, Li C, Guo JZ, Chen L, Wu C, Li B. Facile solvent-free radical polymerization to prepare itaconate-functionalized hydrochar for efficient sorption of methylene blue and Pb(II). BIORESOURCE TECHNOLOGY 2023; 377:128943. [PMID: 36958679 DOI: 10.1016/j.biortech.2023.128943] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
An itaconate-functionalized hydrochar (IFHC) was prepared from one-step solvent-free radical copolymerization of bamboo hydrochar, itaconic acid, ammonium persulphate and sodium hydroxide in solvent-free environment, and was employed to absorb methylene blue (MB) and Pb(II) from wastewater. Characterizations show IFHC has rich carboxylate and tends to adsorb cationic contaminants. The largest adsorbed quantities of MB and Pb(II) by IFHC are up to 1036 and 291.8 mg·g-1 at 298 K respectively as per the Langmuir isotherm. Sorption of MB and Pb(II) onto IFHC can be expressed well by Langmuir isotherm and pseudo-2nd-order kinetics equations. The high sorption performance depends on the rich carboxylate, which can adsorb MB/Pb(II) through an electrostatic interaction/inner-surface complexation mechanism. The sorptive capacity of regenerated IFHC decreased below 10% after 5 desorption-resorption cycles. Thus, the solvent-free free radical copolymerization is an environmentally-friendly strategy to synthesize novel efficient sorbents that can clean cationic contaminants from wastewater.
Collapse
Affiliation(s)
- Hua-Jing Teng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Tao Xia
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Cheng Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Jian-Zhong Guo
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Lin Chen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Chunzheng Wu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China
| | - Bing Li
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, Zhejiang 311300, PR China.
| |
Collapse
|
22
|
Ahmad FA. The use of agro-waste-based adsorbents as sustainable, renewable, and low-cost alternatives for the removal of ibuprofen and carbamazepine from water. Heliyon 2023; 9:e16449. [PMID: 37292321 PMCID: PMC10245173 DOI: 10.1016/j.heliyon.2023.e16449] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023] Open
Abstract
The occurrence of residual pharmaceuticals in the aquatic environment poses major toxicological impacts and adds to the increasing pressure on water resources. Many countries are already suffering from water scarcity, and with the burdening costs of water and wastewater treatment, the race towards innovative sustainable strategies for pharmaceutical remediation is ongoing. Out of the available treatment methods, adsorption proved to be a promising, environmentally friendly technique, particularly when efficient waste-based adsorbents are produced from agricultural residues, thus maximizing the value of wastes, minimizing production costs, and saving natural resources from depletion. Among the residual pharmaceuticals, ibuprofen and carbamazepine are heavily consumed and highly occurring in the environment. This paper aims to review the most recent literature on the application of agro-waste-based adsorbents as sustainable alternatives for the removal of ibuprofen and carbamazepine from contaminated waters. Highlights on the major mechanisms implicated in the adsorption of ibuprofen and carbamazepine are presented, and light is shed on multiple operational parameters that hold a key role in the adsorption process. This review also highlights the effects of different production parameters on adsorption efficiency and discusses many limitations currently encountered. Finally, an analysis is included to compare the efficiency of agro-waste-based adsorbents relative to other green and synthetic adsorbents.
Collapse
|
23
|
Yang H, Kim N, Park D. Comment on the review paper "agricultural waste materials for adsorptive removal of phenol, chromium(VI) and cadmium(II) from wastewaters: A review" by Othmani et al. (2022). ENVIRONMENTAL RESEARCH 2023; 228:115859. [PMID: 37080280 DOI: 10.1016/j.envres.2023.115859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
Review papers help researchers understand the direction and flow of research and help beginners quickly acquire relevant knowledge. Therefore, the review paper should describe only accurate contents and should be written with only core and important matters. Recently, Othmani et al. (2022) reviewed more than 200 papers related to the adsorptive removal of three harmful pollutants: toxic organics (phenols), anionic heavy metal (Cr(VI)) and cationic heavy metal (Cd(II)) by agricultural waste materials. However, Cr(VI)-related section of this review is missing something important that should be provided to the readers of this journal. In fact, the removal mechanism of Cr(VI) by nonliving biomass including agricultural waste materials under acidic conditions is not a simple anion adsorption but a complex mechanism involving redox reaction called "adsorption-coupled reduction". Therefore, when interpreting the factors affecting Cr(VI) removal, it should be interpreted in terms of the redox reaction concept, not anion adsorption.
Collapse
Affiliation(s)
- Hanui Yang
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea
| | - Namgyu Kim
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea
| | - Donghee Park
- Department of Environmental and Energy Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, 26493, Republic of Korea.
| |
Collapse
|
24
|
Desalegn YM, Bekele EA, Olu FE. Optimization of Cd (II) removal from aqueous solution by natural hydroxyapatite/bentonite composite using response surface methodology. Sci Rep 2023; 13:5158. [PMID: 36991091 DOI: 10.1038/s41598-023-32413-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
AbstractToxic cadmium (Cd) was removed from water using eggshell-based hydroxyapatite (HAp) grafted bentonite (HAp/bentonite) composite through a straightforward chemical synthesis route. The as-prepared adsorbents were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and Brunauer–Emmett–Teller analysis (BET). Optimization of the initial adsorbate concentration, adsorbent dosage, pH, and contact time—all of which affect the adsorption process—was performed using the central composite design (CCD) of the response surface methodology (RSM). 99.3 percent adsorptive removal efficiency was observed at an initial concentration of 61.58 mg/L of Cd (II), with an adsorbent dosage of 1.58 g, a solution pH of 5.88, and a contact time of 49.63 min. The analysis of variance (ANOVA) was performed, and the multiple correlation coefficient (R2) was found to be 0.9915 which confirms the significance of the predicted model. The Langmuir isotherm model best represented the adsorption isotherm data, which also predicted a maximum sorption capacity of 125.47 mg/g. The kinetic data were best described by the pseudo-second order model.
Collapse
|
25
|
Ahmadian M, Derakhshankhah H, Jaymand M. Recent advances in adsorption of environmental pollutants using metal-organic frameworks-based hydrogels. Int J Biol Macromol 2023; 231:123333. [PMID: 36682661 DOI: 10.1016/j.ijbiomac.2023.123333] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Water pollution is increasing significantly owing to industrialization and population growth that lead to serious environmental and health issues. Therefore, the design and development of more effective wastewater treatment approaches are necessary due to a significant upsurge in demand for freshwater. More recently, metal-organic frameworks (MOFs) have attracted attention in environmental science owing to their tunable porosity, unique structure, flexibility, and various composition. Despite these attractive advantages, some drawbacks, including intrinsic fragility, unsatisfied processability, dust formation, and poor reusability, have greatly limited their applications. Therefore, MOFs are often designed as supported-based MOFs (e.g., MOFs-coated composites) or 3D structured composites, such as MOFs-based hydrogels. MOFs-based hydrogels are excellent candidates in the sorption process because of their appropriate adsorption capacity, porous structure, good mechanical properties, durability as well as biodegradable features. In this review, the removal of different pollutants (e.g., synthetic dyes, phosphates, heavy metals, antibiotics, and some organic compounds) from aqueous media has been studied by the adsorption process using MOFs-based hydrogels. The important advancements in the fabrication of MOFs-based hydrogels and their capacities in the adsorption of pollutants under experimental conditions have been discussed. Finally, problems and future perspectives on the adsorption process using MOFs-based hydrogels have been investigated.
Collapse
Affiliation(s)
- Moslem Ahmadian
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Hossein Derakhshankhah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
26
|
Sachin, Pramanik BK, Gupta H, Kumar S, Tawale JS, Shah K, Varathan E, Singh N. Development of a ZnOS+C Composite as a Potential Adsorbent for the Effective Removal of Fast Green Dye from Real Wastewater. ACS OMEGA 2023; 8:9230-9238. [PMID: 36936276 PMCID: PMC10018503 DOI: 10.1021/acsomega.2c06873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 02/17/2023] [Indexed: 08/15/2023]
Abstract
Wastewater treatment is becoming increasingly important due to the potential shortage of pure drinking water in many parts of the world. Adsorption offers a potential technique for the uptake of contaminants and wastewater purification. In the last two decades, several efforts have been made to remove fast green (FG) dye from wastewater via different adsorbent materials. However, adsorption capacity shown by these adsorbents is low and time-consuming. Herein, we have synthesized for the first time a new powdered adsorbent ZnOS+C, modified zinc peroxide with sulfur and activated carbon to effectively remove FG dye from wastewater. Results of batch adsorption experiments have suggested that ZnOS+C has the maximum adsorption potential of 238.28 mg/g for FG dye within 120 min of adsorption equilibrium for a wide range of pH ranging from 2 to 10 pH. The adsorption process conforms to the Freundlich isotherm model, suggesting a multilayered adsorption process on the outer surface of ZnOS+C. The adsorption kinetics study indicates that the kinetics of the reaction are the intraparticle diffusion model. Briefly, this study shows proof of the application of ZnOS+C powder as a new eco-friendly adsorbent with extremely high efficiency and high surface area for removing FG dye.
Collapse
Affiliation(s)
- Sachin
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- School
of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | | | - Harshit Gupta
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shrawan Kumar
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jai Shankar Tawale
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
| | - Kalpit Shah
- School
of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Ezhilselvi Varathan
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Nahar Singh
- BND
Division, CSIR-National Physical Laboratory, Dr. K.S. Krishnan Marg, New Delhi 110012, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
27
|
Mandal S, Marpu SB, Omary MA, Dinulescu CC, Prybutok V, Shi SQ. Lignocellulosic-Based Activated Carbon-Loaded Silver Nanoparticles and Chitosan for Efficient Removal of Cadmium and Optimization Using Response Surface Methodology. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8901. [PMID: 36556707 PMCID: PMC9784523 DOI: 10.3390/ma15248901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
The cadmium-contaminated water body is a worldwide concern for the environment and toxic to human beings and the removal of cadmium ions from drinking and groundwater sustainably and cost-effectively is important. A novel nano-biocomposite was obtained by impregnating silver nanoparticles (AgNPs) within kenaf-based activated carbon (KAC) in the presence of chitosan matrix (CS) by a simple, facile photoirradiation method. The nano-biocomposite (CS-KAC-Ag) was characterized by an environmental scanning electron microscope equipped with energy dispersive X-ray spectroscopy (ESEM-EDX), Fourier-transform infrared spectroscopy (FTIR), and Brunauer−Emmett−Teller (BET) method. A Box−Behnken design of response surface methodology (RSM) was used to optimize the adsorption of Cd2+. It was found that 95.1% of Cd2+ (10 mg L−1) was eliminated at pH 9, contact time of 120 min, and adsorbent dosage of 20 mg, respectively. The adsorption of Cd2+ by CS-KAC-Ag is also in agreement with the pseudo-second-order kinetic model with an R2 (coefficient of determination) factor greater than 99%. The lab data were also corroborated by tests conducted using water samples collected from mining sites in Mexico. Along with Cd2+, the CS-KAC-Ag exhibited superior removal efficiency towards Cr6+ (91.7%) > Ni2+ (84.4%) > Co2+ (80.5%) at pH 6.5 and 0.2 g L−1 dose of the nano-adsorbent. Moreover, the adsorbent was regenerated, and the adsorption capacity remained unaltered after five successive cycles. The results showed that synthesized CS-KAC-Ag was a biocompatible and versatile porous filtering material for the decontamination of different toxic metal ions.
Collapse
Affiliation(s)
- Sujata Mandal
- Ingram School of Engineering, Texas State University, San Marcos, TX 78666, USA
| | - Sreekar B. Marpu
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | - Mohammad A. Omary
- Department of Chemistry, University of North Texas, Denton, TX 76207, USA
| | | | - Victor Prybutok
- Toulouse Graduate School, University of North Texas, Denton, TX 76201, USA
- G. Brint Ryan College of Business, University of North Texas, Denton, TX 76201, USA
| | - Sheldon Q. Shi
- Department of Mechanical Engineering, University of North Texas, Denton, TX 76207, USA
| |
Collapse
|
28
|
Othmani A, Kadier A, Singh R, Igwegbe CA, Bouzid M, Aquatar MO, Khanday WA, Bote ME, Damiri F, Gökkuş Ö, Sher F. A comprehensive review on green perspectives of electrocoagulation integrated with advanced processes for effective pollutants removal from water environment. ENVIRONMENTAL RESEARCH 2022; 215:114294. [PMID: 36113573 DOI: 10.1016/j.envres.2022.114294] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/13/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
The rapidly expanding global energy demand is forcing a release of regulated pollutants into water that is threatening human health. Among various wastewater remediating processes, electrocoagulation (EC) has scored a monumental success over conventional processes because it combines coagulation, sedimentation, floatation and electrochemical oxidation processes that can effectively decimate numerous stubborn pollutants. The EC processes have gained some attention through various academic and industrial publications, however critical evaluation of EC processes, choices of EC processes for various pollutants, process parameters, mechanisms, commercial EC technologies and performance enhancement via other degradation processes (DPs) integration have not been comprehensively covered to date. Therefore, the major objective of this paper is to provide a comprehensive review of 20 years of literature covering EC fundamentals, key process factors for a reactor design, process implementation, current challenges and performance enhancement by coupling EC with pivotal pollutant DPs including, electro/photo-Fenton (E/P-F), photocatalysis, sono-chemical treatment, ozonation, indirect electrochemical/advanced oxidation (AO), and biosorption that have substantially reduced metals, pathogens, toxic compound BOD, COD, colors in wastewater. The results suggest that the optimum treatment time, current density, pulse frequency, shaking speed and spaced electrode improve the pollutants removal efficiency. An elegant process design can prevent electrode passivation which is a critical limitation of EC technology. EC coupling (up or downstream) with other DPs has resulted in the removal of organic pollutants and heavy metals with a 20% improved efficiency by EC-EF, removal of 85.5% suspended solid, 76.2% turbidity, 88.9% BOD, 79.7% COD and 93% color by EC-electroflotation, 100% decolorization by EC-electrochemical-AO, reduction of 78% COD, 81% BOD, 97% color by EC-ozonation and removal of 94% ammonia, 94% BOD, 95% turbidity, >98% phosphorus by aerated EC and peroxicoagulation. The major wastewater purification achievements, future potential and challenges are described to model the future EC integrated systems.
Collapse
Affiliation(s)
- Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, Avenue of the Environment, 5019, Monastir, Tunisia
| | - Abudukeremu Kadier
- Laboratory of Environmental Science and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Raghuveer Singh
- Research Division, James R. Randall Research Center, Archer Daniels Midland (ADM) Company, Decatur, IL, 62521, USA
| | | | - Mohamed Bouzid
- Quantum and Statistical Physics Laboratory, Faculty of Sciences of Monastir, University of Monastir, Environment Boulevard, 5019, Monastir, Tunisia
| | - Md Osim Aquatar
- Environmental Materials Division, CSIR-National Environmental Engineering Research Institute, Jawaharlal Nehru Marg, Nagpur, 440020, India; Academy of Scientific & Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002, India
| | - Waheed Ahmad Khanday
- Department of Chemistry, Government Degree College Anantnag, Jammu & Kashmir, 192101, India
| | - Million Ebba Bote
- Department of Water Supply and Environmental Engineering, Faculty of Civil and Environmental Engineering, Jimma Institute of Technology, Jimma University, Jimma, PoBox - 378, Ethiopia
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca, 20000, Morocco
| | - Ömür Gökkuş
- Department of Environmental Engineering, Erciyes University, Kayseri, 38039, Turkey
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
29
|
Safaviyan M, Faramarzi M, Parsa SAM, Karimi H. Tetraethylenepentamine-enriched magnetic graphene oxide as a novel Cr(VI) removal adsorbent. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
30
|
Abstract
Globally, phenolic contaminants have posed a considerable threat to agro-ecosystems. Exolaccase-boosted humification may be an admirable strategy for phenolic detoxification by creating multifunctional humic-like products (H-LPs). Nonetheless, the potential applicability of the formed H-LPs in agricultural production is still overlooked. This review describes immobilized exolaccase-enabled humification in eliminating phenolic pollutants and producing artificial H-LPs. The similarities and differences between artificial H-LPs and natural humic substances (HSs) in chemical properties are compared. In particular, the agronomic effects of these reproducible artificial H-LPs are highlighted. On the basis of the above summary, the granulation process is employed to prepare granular humic-like organic fertilizers, which can be applied to field crops by mechanical side-deep fertilization. Finally, the challenges and perspectives of exolaccase-boosted humification for practical applications are also discussed. This review is a first step toward a more profound understanding of phenolic detoxification, soil improvement, and agricultural production by exolaccase-boosted humification. Exolaccase-initiated humification is conductive to phenolic detoxification Multiple humic-like products are created in exolaccase-boosted humification Similarities and differences between artificial and natural humus are disclosed Humic-like products can be used to sustain soil health and increase crop yield
Collapse
|
31
|
Gotore O, Osamu N, Rameshprabu R, Arthi M, Unpaprom Y, Itayama T. Iodine adsorption isotherms on Matamba fruit shell stemmed biochar for wastewater re-use strategy in rural areas owing to climate change. CHEMOSPHERE 2022; 303:135126. [PMID: 35644239 DOI: 10.1016/j.chemosphere.2022.135126] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Remote communities in developing countries are facing ever-increasing water scarcities, due to cumulative demand induced by the climate change and global warming impacts. For the socio-economic and health well-being of the local communities, sufficient, efficient, and affordable water supply is fundamental from local-based adsorbents. Matamba Fruit shell was obtained and pyrolyzed to obtain well-transformed biochar, which exhibited enough capacity to remove Iodine from aqueous solution. The maximum capacity of adsorption of the Matamba Fruit shell was 2.122 mmol L-1 and 2.12 mmol L-1 from conventional and Bayesian statistics correspondingly. The difference was insignificant. The surface morphology was evaluated by the Field Emission Scanning Electron Microscopy with Energy Dispersive X-Ray Spectroscopy (FESEM-EDX) which revealed porous structures with irregular openings enough to purge wastewater pollutants. The material surface area was 267.0 m2 g-1, as estimated by both approaches, making the Matamba Fruit shell an emerging potential candidate for environmental pollution control and use in bioremediation practices. The Fourier-transform infrared spectroscopy (FTIR) revealed that surface functional groups of Matamba Fruit shell biochar have enough peak variations in intensity and position due to vibration variations of the surface. The Fruit shell has different functional groups including the hydroxyl (-OH) and the carbonyl groups (CO), CC stretches of aromatic rings, and the carboxylate (C-O-O-) groups. The biochar understudy unveiled its capability for wastewater-treatment reuse in local and urban communities of developing countries to safeguard their health and access to water-supply as the climate change reverberations are affecting the developing countries more pronounced than before.
Collapse
Affiliation(s)
- Obey Gotore
- Graduate School of Advanced Engineering, Nagasaki University, Nagasaki, Japan.
| | - Nakagoe Osamu
- Graduate School of Advanced Engineering, Nagasaki University, Nagasaki, Japan
| | | | - Manivannan Arthi
- Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Yuwalee Unpaprom
- Program in Biotechnology, Maejo University, Chiang Mai, Thailand
| | - Tomoaki Itayama
- Graduate School of Advanced Engineering, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
32
|
Sahu JN, Karri RR, Meikap BC. Adsorptive of Cr(VI) using hybrid evolutionary differential and multivariable quadratic technique. Chem Eng Technol 2022. [DOI: 10.1002/ceat.202200249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jaya Narayan Sahu
- Institute of Chemical Technology, Faculty of Chemistry University of Stuttgart Stuttgart 70550 Germany
- South Ural State University (National Research University) Chelyabinsk Russian Federation
| | - Rama Rao Karri
- Faculty of Engineering Universiti Teknologi Brunei Brunei Darussalam
| | - Bhim Charan Meikap
- Department of Chemical Engineering Indian Institute of Technology (IIT) Kharagpur, West Bengal, Pin 721302 India
| |
Collapse
|
33
|
Adsorption of Cd (II) Using Chemically Modified Rice Husk: Characterization, Equilibrium, and Kinetic Studies. ADSORPT SCI TECHNOL 2022. [DOI: 10.1155/2022/3688155] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Cadmium (Cd) is a highly toxic heavy metal considered carcinogenic to humans. The adsorption behavior of cadmium adsorption using untreated and chemically modified rice husk was investigated. Experimental tests were carried out to evaluate the influence of the variables pH, initial concentration of cadmium, and dosage of adsorbent in the adsorption process. In optimal experimental conditions, the maximum adsorption efficiency was 92.65%. Fourier-transform infrared spectroscopy (FTIR) and scanning electron microscope (SEM) were used allowing the identification of the main functional groups and morphology of rice husk and treated rice husk, and the results showed an improvement of adsorption characteristics after rice husk treatment with NaOH. The optimum adsorption pH for both types of rice husk was 7. The maximum adsorption capacities of RH and treated RH fitted by the Langmuir model were 5.13 mg/g and 11.06 mg/g, respectively. The pseudosecond order kinetics has the best coefficients of determination for untreated (
) and treated (
) rice husk. The adsorption process was found to be endothermic in nature with enthalpy of 14.08 kJ/mol and entropy of 170.98 J/mol.K. The calculated activation energy was 24 kJ/mol. The results showed the potential of rice husk as a low-cost, easily managed, and efficient biosorbent for Cd removal from waters.
Collapse
|
34
|
Marin NM. Maize Stalk Obtained after Acid Treatment and Its Use for Simultaneous Removal of Cu 2+, Pb 2+, Ni 2+, Cd 2+, Cr 3+ and Fe 3. Polymers (Basel) 2022; 14:3141. [PMID: 35956656 PMCID: PMC9371214 DOI: 10.3390/polym14153141] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/20/2022] [Accepted: 07/28/2022] [Indexed: 02/07/2023] Open
Abstract
In this research, eco-friendly material represented by maize stalk (MS) obtained after acid treatment was employed for simultaneous removal of Cu2+, Pb2+, Ni2+, Cd2+, Cr3+ and Fe3+ (MX+) from simulated textile aqueous matrix and tannery wastewater produced by the leather industry. The acid treatment of MS was done with 4 M HCl. The influence of experimental parameters was evaluated in order to optimize the adsorption process for simulated textile matrix. The contact time 10-60 min and initial concentration of 0.5-1 mg/L MX+ influence were studied by batch method. Additionally, the adsorption data of MX+ onto MS was fitting by kinetic and isotherm models. The results obtained showed that the 60 min was necessary to reach adsorption equilibrium of the MS. The adsorption capacity of MS was 0.052 mg Cu2+/g of MS, 0.024 mg Pb2+/g of MS, 0.042 mg Ni2+/g of MS, 0.050 mg Cd2+/g of MS, 0.056 mg Fe3+/g of MS and 0.063 mg Cr3+/g of MS at pH = 4.2. The Langmuir model described the adsorption process very well. The MS showed huge selectivity for Cr3+ and Fe3+ in the presence of Cu2+, Pb2+, Ni2+ and Cd2+. The adsorption of MX+ from liquid phases were analyzed by spectrometric adsorption method (AAS). The solid phases of MS before and after adsorption by TG and SEM analysis were characterized. When MS was used for removal of MX+ from tannery wastewater, two major issues were investigated: First, the decrease of MX+ content from highly polluted and difficult to treat tannery wastewaters by improve its quality and in the second part, specific recovery of MX+ from MS mass increasing the economic efficiency of metals production based on green technology.
Collapse
Affiliation(s)
- Nicoleta Mirela Marin
- National Research and Development Institute for Industrial Ecology ECOIND, Street Podu Dambovitei No. 57-73, District 6, 060652 Bucharest, Romania;
- Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Chemical Engineering and Biotechnologies University POLITEHNICA of Bucharest, Gh. Polizu 1-7, 011061 Bucharest, Romania
| |
Collapse
|
35
|
Alias N, Hussain Z, Tan WK, Kawamura G, Muto H, Matsuda A, Lockman Z. Photoreduction of Cr(VI) in wastewater by anodic nanoporous Nb 2O 5 formed at high anodizing voltage and electrolyte temperature. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:60600-60615. [PMID: 35426025 DOI: 10.1007/s11356-022-20005-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
In this study, nanoporous anodic film was produced by anodization of niobium, Nb in a fluoride ethylene glycol electrolyte. The effect of anodization voltage and electrolyte temperature was studied to find an optimum condition for circular, ordered, and uniform pore formation. The diameter of the pores was found to be larger when the applied voltage was increased from 20 to 80 V. The as-anodized porous film was also observed to comprise of nanocrystallites which formed due to high field-induced crystallization. The nanocrystallites grew into orthorhombic Nb2O5 after post-annealing treatment. The Cr(VI) photoreduction property of both the as-anodized and annealed Nb2O5 samples obtained using an optimized condition (anodization voltage: 60 V, electrolyte temperature: 70 °C) was compared. Interestingly, the as-anodized Nb2O5 film was found to display better photoreduction of Cr(VI) than annealed Nb2O5. However, in terms of stability, the annealed Nb2O5 presented high photocatalytic efficiency for each cycle whereas the as-anodized Nb2O5 showed degradation in photocatalytic performance when used continually.
Collapse
Affiliation(s)
- Nurhaswani Alias
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Zuhailawati Hussain
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| | - Wai Kian Tan
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Go Kawamura
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Hiroyuki Muto
- Institute of Liberal Arts and Sciences, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Atsunori Matsuda
- Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Zainovia Lockman
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Pulau Pinang, Malaysia.
| |
Collapse
|
36
|
Current advances in the classification, production, properties and applications of microbial biosurfactants – A critical review. Adv Colloid Interface Sci 2022; 306:102718. [DOI: 10.1016/j.cis.2022.102718] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/21/2022]
|
37
|
Razavi R, Basij M, Beitollahi H, Panahandeh S. Experimental and theoretical investigation of acetamiprid adsorption on nano carbons and novel PVC membrane electrode for acetamiprid measurement. Sci Rep 2022; 12:12145. [PMID: 35840789 PMCID: PMC9287318 DOI: 10.1038/s41598-022-16459-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/11/2022] [Indexed: 11/20/2022] Open
Abstract
Acetamiprid removal was investigated by synthesized Graphene oxide, multiwall nanotube and graphite from an aqueous solution. For this propose, FT-IR, XRD, UV–Vis, SEM and EDS were used to characterize the synthesized nano adsorbents and to determine the removal process. A novel PVC membrane electrode as selective electrode made for determining the concentration of acetamiprid. Batch adsorption studies were conducted to investigate the effect of temperature, initial acetamiprid concentration, adsorbent type and contact time as important adsorption parameters. The maximum equilibrium time was found to be 15 min for graphene oxide. The kinetics studies showed that the adsorption of acetamiprid followed the pseudo-second-order kinetics mechnism. All the adsorption equilibrium data were well fitted to the Langmuir isotherm model and maximum monolayer adsorption capacity 99 percent. Docking data of adsorption have resulted in the same as experimental data in good manner and confirmed the adsorption process.
Collapse
Affiliation(s)
- Razieh Razavi
- Department of Chemistry, Faculty of Science, University of Jiroft, Jiroft, Iran.
| | - Moslem Basij
- Department of Plant Protection, Faculty of Agriculture, University of Jiroft, Jiroft, Iran.
| | - Hadi Beitollahi
- Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Saleh Panahandeh
- Department of Plant Protection, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
38
|
Zandi‐Mehri E, Taghavi L, Moeinpour F, Khosravi I, Ghasemi S. Modification of halloysite nanotubes by hydroxyl terminated triazine‐based dendritic polymer for efficient adsorptive removal of Cd (II) from aqueous media. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Elham Zandi‐Mehri
- Department of Environment, Qeshm Branch Islamic Azad University Qeshm Iran
| | - Lobat Taghavi
- Department of Natural Resources and Environment, Science and Research Branch Islamic Azad University Tehran Iran
| | - Farid Moeinpour
- Department of Chemistry, Bandar Abbas Branch Islamic Azad University Bandar Abbas Iran
| | - Iman Khosravi
- Department of Chemistry, Qeshm Branch Islamic Azad University Qeshm Iran
| | - Saber Ghasemi
- Department of Environment, Bandar Abbas Branch Islamic Azad University Bandar Abbas Iran
| |
Collapse
|
39
|
Saravanan A, Kumar PS, Ramesh B, Srinivasan S. Removal of toxic heavy metals using genetically engineered microbes: Molecular tools, risk assessment and management strategies. CHEMOSPHERE 2022; 298:134341. [PMID: 35307383 DOI: 10.1016/j.chemosphere.2022.134341] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/03/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
The direct release of industrial effluent into the water and other anthropogenic activities causes water pollution. Heavy metal ions are the primary contaminant in the industrial effluents which are exceptionally toxic at low concentrations, terribly disturb the endurance equilibrium of activities in the eco-system and be remarkably hazardous to human health. Different conventional treatment methodologies were utilized for the removal of toxic pollutants from the contaminated water which has several drawbacks such as cost-ineffective and lower efficiency. Recently, genetically modified micro-organisms (GMMs) stand-out for the removal of toxic heavy metals are viewed as an economically plausible and environmentally safe technique. GMMs are microorganisms whose genetic material has been changed utilizing genetic engineering techniques that exhibit enhanced removal efficiency in comparison with the other treatment methodologies. The present review comments the GMMs such as bacteria, algae and fungi and their potential for the removal of toxic heavy metals. This review provides current aspects of different advanced molecular tools which have been used to manipulate micro-organisms through genetic expression for the breakdown of metal compounds in polluted areas. The strategies, major limitations and challenges for genetic engineering of micro-organisms have been reviewed. The current review investigates the approaches working on utilizing genetically modified micro-organisms and effective removal techniques.
Collapse
Affiliation(s)
- A Saravanan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - B Ramesh
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - S Srinivasan
- Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| |
Collapse
|
40
|
Brar KK, Magdouli S, Othmani A, Ghanei J, Narisetty V, Sindhu R, Binod P, Pugazhendhi A, Awasthi MK, Pandey A. Green route for recycling of low-cost waste resources for the biosynthesis of nanoparticles (NPs) and nanomaterials (NMs)-A review. ENVIRONMENTAL RESEARCH 2022; 207:112202. [PMID: 34655607 DOI: 10.1016/j.envres.2021.112202] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/02/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, nanoparticles (NPs) and nanomaterials (NMs) are used extensively in various streams such as medical science, solar energy, drug delivery, water treatment, and detection of persistent pollutants. Intensive synthesis of NPs/NMs carried out via physico-chemical technologies is deteriorating the environment globally. Therefore, an urgent need to adopt cost-effective and green technologies to synthesize NPs/NMs by recycling of secondary waste resources is highly required. Environmental wastes such as metallurgical slag, electronics (e-waste), and acid mine drainage (AMD) are rich sources of metals to produce NPs. This concept can remediate the environment on the one hand and the other hand, it can provide a future roadmap for economic benefits at industrial scale operations. The waste-derived NPs will reduce the industrial consumption of limited primary resources. In this review article, green emerging technologies involving lignocellulosic waste to synthesize the NPs from the waste streams and the role of potential microorganisms such as microalgae, fungi, yeast, bacteria for the synthesis of NPs have been discussed. A critical insight is also given on use of recycling technologies and the incorporation of NMs in the membrane bioreactors (MBRs) to improve membrane functioning and process performance. Finally, this study aims to mitigate various persisting scientific and technological challenges for the safe disposal and recycling of organic and inorganic waste for future use in the circular economy.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Amina Othmani
- Department of Chemistry, Faculty of Sciences of Monastir, University of Monastir, 5019, Monastir, Tunisia
| | - Javad Ghanei
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Centre Technologique des Résidus Industriels en Abitibi Témiscamingue, J9X0E1, Canada
| | - Vivek Narisetty
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield, MK43 0AL, UK
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum, 695 019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai, 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi, 712 100, China
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research, Lucknow, 226 001, India; Centre for Energy and Environmental Sustainability, Lucknow, 226 0019, India.
| |
Collapse
|
41
|
Wu P, Zhang Z, Luo Y, Bai Y, Fan J. Bioremediation of phenolic pollutants by algae - current status and challenges. BIORESOURCE TECHNOLOGY 2022; 350:126930. [PMID: 35247559 DOI: 10.1016/j.biortech.2022.126930] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/24/2022] [Accepted: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Industrial production processes, especially petroleum processing, will produce high concentration phenolic wastewater. Traditional wastewater treatment technology is costly and may lead to secondary pollution. In order to avoid the adverse effects of incompletely treated phenolics, more advanced methods are required. Algae bioremediate phenolics through green pathways such as adsorption, bioaccumulation, biodegradation, and photodegradation. At the same time, the natural carbon fixation capacity of algae and its potential to produce high-value products make algal wastewater treatment technology economically feasible. This paper reviews the environmental impact of several types of phenolic pollutants in wastewater and different strategies to improve bioremediation efficiency. This paper focuses on the progress of algae removing phenols by different mechanisms and the potential of algae biomass for further biofuel production. This technology holds great promise, but more research on practical wastewater treatment at an industrial scale is needed in the future.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Zhaofei Zhang
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yeling Luo
- Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yunpeng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Bioengineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
42
|
White Grape Pomace Valorization for Remediating Purposes. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12041997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The present investigation focuses on a possible alternative to reduce grape pomace’s negative impact on the environment by exploiting its capacities for wastewater remediation. Therefore, three directions are followed: (1) the characterization of white grape byproducts’ antioxidant and antiradical properties; (2) the determination of organophosphorus compound concentration that might be present in the samples; and (3) the evaluation of the possible use for wastewater remediation. The grape pomace was used for obtaining different extracts considering different extraction conditions. The hydroalcoholic extracts have an increased amount of total phenolic content. The lyophilized hydroalcoholic extract showed high total phenolic content (159.52 mg/100 g) and low organophosphorus content (0.257 ± 0.015 nmol). The lowest DPPH antiradical-scavenging activities were obtained for the extracts in ethanol obtained from refrigerated pomace (0.055) and for dried pomace (0.045).
Collapse
|