1
|
Yan Q, Zhang M, Jia Y, Dong F, Shen Y, Li F. Identification of crucial metabolites in colored grain wheat (Triticum aestivum L.) regulated by nitrogen application. Food Res Int 2024; 191:114700. [PMID: 39059952 DOI: 10.1016/j.foodres.2024.114700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024]
Abstract
Colored wheats have drawn attention due to their nutritional compounds. However, limited information is obtained on the effects of nitrogen fertilizer on crucial metabolites and grain quality of wheats with different color grain. In the study, the pot experiment was conducted with white (W), blue (B), and purple (P) grain wheats treated with three levels of N (LN, 0 g kg-1; MN, 0.05 g kg-1; HN, 0.1 g kg-1). Higher N level could promote wheat growth, improve grain indexes, and nutrient uptake. SPAD values of flag leaves remained in the order HN > MN > LN across all wheat varieties, and maintained increasing during tested stages under purple wheat. Metabolomics analysis showed that the annotated 358 metabolites mainly belonged to 29 classes, including carboxylic acids and their derivatives, fatty acids, flavonoids, and phenols. 35, 39, and 70 differential accumulated metabolites were respectively found between the WLN vs. WHN, the BHN vs. BLN, and the PHN vs. PLN, which were mainly enriched in "biosynthesis of plant secondary metabolites", "cGMP-PKG signaling pathway", "sphingolipid signaling pathway", "biosynthesis of alkaloids derived from histidine and purine", and "biosynthesis of plant hormones". Additionally, erucic acid was dominated in the three wheat cultivars, and was decreased after treated with high N levels. Our study preliminarily revealed the different response mechanisms to different N levels in the white, blue, and purple grain wheats, and lay a theoretical foundation for further breeding of excellent colored grain varieties.
Collapse
Affiliation(s)
- Qiuyan Yan
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Minmin Zhang
- College of Resources and Environment, Shanxi Agricultural University, Taigu 030801, PR China.
| | - Yaqin Jia
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Fei Dong
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Yanting Shen
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| | - Feng Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, PR China.
| |
Collapse
|
2
|
Yang Y, Tian L, Shu J, Wu Q, Liu B. Potential hazards of typical small molecular organic matters in shale gas wastewater for wheat irrigation: 2-butoxyethanol and dimethylbenzylamine. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122729. [PMID: 37858699 DOI: 10.1016/j.envpol.2023.122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
2-butoxyethanol (BE) and dimethylbenzylamine (DMBA) are small molecular organic compounds commonly found in shale gas wastewater (SGW) and environmental samples, yet their environmental risks in exposure and irrigation reuse have not been thoroughly studied. From the perspectives of physicochemical properties and toxicity, seven groups of irrigation treatment were designed for wheat irrigation according to the concentration gradient. Overall, wheat growth was normal, but higher DMBA concentrations resulted in more severe growth inhibition. The absorption of BE by various tissues of wheat was positively correlated with its concentration, while the absorption of DMBA by wheat stems showed the same trend. Interestingly, there was no significant difference in the absorption of DMBA by wheat grains in different groups. The detection results of nutritional and heavy metal elements in wheat tissues showed that the presence of organic compounds changed the relative sensitivity of wheat leaves and grains to some elements (such as Mg, Mn, Mo, etc.) enrichment. The Cd and Pb contents of wheat grains in all groups complied with national safety standards, but the As or Cr concentration in wheat grains treated with BE or DMBA exceeded the limits in some cases. Transcriptome sequencing, GO annotation, and KEGG enrichment analysis revealed similar gene functions and metabolic pathways enriched by BE and DMBA. The safe and sustainable agricultural reuse of SGW still has great potential as a promising water resources management strategy.
Collapse
Affiliation(s)
- Yushun Yang
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Lun Tian
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Jingyu Shu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Qidong Wu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China
| | - Baicang Liu
- State Key Laboratory of Hydraulics & Mountain River Engineering, College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu, Sichuan, 610065, PR China; Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Yibin, Sichuan, 644000, PR China.
| |
Collapse
|
3
|
Riboni N, Bianchi F, Mattarozzi M, Caldara M, Gullì M, Graziano S, Maestri E, Marmiroli N, Careri M. Ultra-high Performance Liquid Chromatography-Ion Mobility-High-Resolution Mass Spectrometry to Evaluate the Metabolomic Response of Durum Wheat to Sustainable Treatments. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15407-15416. [PMID: 37796632 PMCID: PMC10591464 DOI: 10.1021/acs.jafc.3c04532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/07/2023] [Accepted: 09/22/2023] [Indexed: 10/07/2023]
Abstract
Sustainable agriculture aims at achieving a healthy food production while reducing the use of fertilizers and greenhouse gas emissions using biostimulants and soil amendments. Untargeted metabolomics by ultra-high performance liquid chromatography-ion mobility-high-resolution mass spectrometry, operating in a high-definition MSE mode, was applied to investigate the metabolome of durum wheat in response to sustainable treatments, i.e., the addition of biochar, commercial plant growth promoting microbes, and their combination. Partial least squares-discriminant analysis provided a good discrimination among treatments with sensitivity, specificity, and a non-error rate close to 1. A total of 88 and 45 discriminant compounds having biological, nutritional, and technological implications were tentatively identified in samples grown in 2020 and 2021. The addition of biochar-biostimulants produced the highest up-regulation of lipids and flavonoids, with the glycolipid desaturation being the most impacted pathway, whereas carbohydrates were mostly down-regulated. The findings achieved suggest the safe use of the combined biochar-biostimulant treatment for sustainable wheat cultivation.
Collapse
Affiliation(s)
- Nicolò Riboni
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Federica Bianchi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Center
for Energy and Environment (CIDEA), Centro Santa Elisabetta, University of Parma, Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Monica Mattarozzi
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Marina Caldara
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
| | - Mariolina Gullì
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Sara Graziano
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Elena Maestri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| | - Nelson Marmiroli
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Centro
Santa Elisabetta, National Interuniversity
Center for Environmental Sciences (CINSA), Parco Area delle Scienze 95, 43124 Parma, Italy
| | - Maria Careri
- Department
of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11/A-17/A, 43124 Parma, Italy
- Interdepartmental
Center SITEIA.PARMA, University of Parma, Parco Area delle Scienze 181/A, 43124 Parma, Italy
| |
Collapse
|
4
|
Szablińska-Piernik J, Lahuta LB. Polar Metabolites Profiling of Wheat Shoots ( Triticum aestivum L.) under Repeated Short-Term Soil Drought and Rewatering. Int J Mol Sci 2023; 24:8429. [PMID: 37176136 PMCID: PMC10179269 DOI: 10.3390/ijms24098429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/04/2023] [Accepted: 05/06/2023] [Indexed: 05/15/2023] Open
Abstract
The response of wheat (Triticum aestivum L.) plants to the soil drought at the metabolome level is still not fully explained. In addition, research focuses mainly on single periods of drought, and there is still a lack of data on the response of plants to short-term cyclical periods of drought. The key to this research was to find out whether wheat shoots are able to resume metabolism after the stress subsides and if the reaction to subsequent stress is the same. Gas chromatography coupled with mass spectrometry (GC-MS) is one of the most valuable and fast methods to discover changes in the primary metabolism of plants. The targeted GC-MS analyses of whole shoots of wheat plants exposed (at the juvenile stage of development) to short-term (five days) mild soil drought/rewatering cycles (until the start of shoot wilting) enabled us to identify 32 polar metabolites. The obtained results revealed an accumulation of sugars (sucrose, fructose, glucose, and 1-kestose), proline, and malic acid. During five days of recovery, shoots regained full turgor and continued to grow, and the levels of accumulated metabolites decreased. Similar changes in metabolic profiles were found during the second drought/rewatering cycle. However, the concentrations of glucose, proline, and malic acid were higher after the second drought than after the first one. Additionally, the concentration of total polar metabolites after each plant rewatering was elevated compared to control samples. Although our results confirm the participation of proline in wheat responses to drought, they also highlight the responsiveness of soluble carbohydrate metabolism to stress/recovery.
Collapse
Affiliation(s)
- Joanna Szablińska-Piernik
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| | - Lesław Bernard Lahuta
- Department of Plant Physiology, Genetics and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego Street 1A/103A, 10-719 Olsztyn, Poland
| |
Collapse
|
5
|
Pszczolińska K, Perkons I, Bartkevics V, Drzewiecki S, Płonka J, Shakeel N, Barchanska H. Targeted and non-targeted analysis for the investigation of pesticides influence on wheat cultivated under field conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120468. [PMID: 36283473 DOI: 10.1016/j.envpol.2022.120468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
A comprehensive approach was applied to evaluate the effects of pesticides on the metabolism of wheat (Triticum aestivum L). The application of commercially available pesticide formulations under field cultivation conditions provided a source of metabolic data unlimited by model conditions, representing a novel approach to study the effects of pesticides on edible plants. Gas and liquid chromatography coupled to tandem mass spectrometry were employed for targeted and non-targeted analysis of wheat roots and shoots sampled six times during the six-week experiment. The applied pesticides: prothioconazole, tebuconazole, fluoxastrobin, diflufenican, florasulam, and penoxulam were found at concentrations ranging 0.0070-25.20 mg/kg and 0.0020-2.2 mg/kg in the wheat roots and shoots, respectively. The following pesticide metabolites were identified in shoots: prothioconazole-desthio (prothioconazole metabolite), 5-(4-chlorophenyl)-2,2-dimethyl-3-(1,2,4-triazol-1-ylmethyl)pentane-1,3-diol (tebuconazole metabolite), and N-(5,8-dimethoxy[1,2,4]triazolo[1,5-c]pyrimidin-2-yl)-2,4-dihydroxy-6-(trifluoromethyl)benzene sulphonamide (penoxulam metabolite). The metabolic fingerprints and profiles changed during the experiment, reflecting the cumulative response of wheat to both its growth environment and pesticides, as well as their metabolites. Approximately 15 days after the herbicide treatment no further changes in the plant metabolic profiles were observed, despite the presence of pesticide and their metabolites in both roots and shoots. This is the first study to combine the determination of pesticides and their metabolites plant tissues with the evaluation of plant metabolic responses under field conditions. This exhaustive approach contributes to broadening the knowledge of pesticide effects on edible plants, relevant to food safety.
Collapse
Affiliation(s)
- Klaudia Pszczolińska
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes Street 3, Riga LV, 1076, Latvia.
| | - Sławomir Drzewiecki
- Institute of Plant Protection - National Research Institute Branch Sośnicowice, 44-153, Sośnicowice, Gliwicka 29, Poland.
| | - Joanna Płonka
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Nasir Shakeel
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| | - Hanna Barchanska
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Faculty of Chemistry, Silesian University of Technology, B. Krzywoustego 6, 44-100, Gliwice, Poland.
| |
Collapse
|