1
|
Zhao N, Sang C, Cao R, Yao Z, Gao F, Tian S, Hou Y. Impacts of mining on the diversity of benthic macroinvertebrates - A case study of molybdenum mining area in Luanchuan county. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 364:125335. [PMID: 39566712 DOI: 10.1016/j.envpol.2024.125335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/05/2024] [Accepted: 11/16/2024] [Indexed: 11/22/2024]
Abstract
Mineral exploitation is one of the human activities that seriously affect freshwater ecosystems. It is of great significance to study the impact of mining on the α and β diversity of macroinvertebrates. This study reveals the response of taxonomic and functional α and β diversity of macroinvertebrates to mining activities in the Luanchuan molybdenum mining area. A total of 40 sets of macroinvertebrates, sediment and water samples in the Taowan North River (TR), Yu River (UR) and Hongluo River (HR) in the molybdenum mining area were collected. The results show that: 1) the mining activities led to obvious differences in the environmental factors of the three rivers. The heavy metals in the sediments and water bodies of TR and UR showed different degrees of exceedance, while there was no exceedance of heavy metals in HR; 2) The taxonomic and functional α diversity was much lower in the TR and the UR than in the HR. The concentrations of heavy metals in sediments and water bodies were significantly negatively correlated with the taxonomic and functional α diversity; 3) Mineral extraction resulted in significant differences in macroinvertebrate β diversity among the three rivers. The taxonomic and functional β diversity of the macroinvertebrate communities in TR and UR was much higher than that in HR. The turnover and nestedness of functional β diversity showed significant differences. Functional β diversity was more obviously affected by heavy metal exceedance than taxonomic β diversity. Nestedness were more sensitive to exceedance of heavy metals than turnover. The results of this study can provide a theoretical basis for ecological restoration and protection of rivers in mining areas.
Collapse
Affiliation(s)
- Na Zhao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China.
| | - Chenxi Sang
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Ruixue Cao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Zhijun Yao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Feilong Gao
- College of Agricultural Equipment Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Shimin Tian
- Key Laboratory of Yellow River Sediment, Yellow River Institute of Hydraulic Research, Zhengzhou, 450003, China
| | - Yiming Hou
- State Key Laboratory of Eco-Hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, Shaanxi, 710048, China
| |
Collapse
|
2
|
Kokotović I, Kolar V, Rožman M, Bočkor L, Vitecek S, Previšić A. Wastewater and warming effects on aquatic invertebrates: Experimental insights into multi-level biodiversity consequences. WATER RESEARCH 2024; 267:122496. [PMID: 39340863 DOI: 10.1016/j.watres.2024.122496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
Wastewater effluents and global warming affect freshwater ecosystems and impact their crucial biodiversity. Our study aimed at characterizing individual and combined impacts of wastewater effluent and increased water temperature (as one aspect of climate change) on model freshwater communities. We tested the effect of experimental treatments on genetic diversity, survival, body weight, total lipid content, lipidome and metabolome of individual species as well as community composition and phylogenetic diversity. In a 21-day mesocosm experiment we assessed the responses of a simplified freshwater food web comprising of moss and seven species of benthic macroinvertebrate shredders and grazers (mayflies, stoneflies, caddisflies and amphipods) to four treatments in a full factorial design: control, increased water temperature, wastewater and a multiple stressor treatment combining increased temperature and wastewater. Physiological responses varied among taxa, with species-specific sensitivities observed in survival and lipid content. The lowest total lipid content was observed in caddisflies and a mayfly subjected to multiple stressor treatment. The effects of stressors were reflected in the altered metabolic pathways and lipid metabolism of the individual taxa, with differential treatment effects also observed between taxa. A notable decrease in phylogenetic diversity was observed across all experimental communities. Gammarus fossarum demonstrated a high susceptibility to environmental stressors at the genetic level. Hence, while commonly used indicators of ecosystem health (e.g. community composition) remained stable, molecular indicators (e.g. phylogenetic diversity, metabolome and lipidome) responded readily to experimental treatments. These findings underscore the vulnerability of macroinvertebrates to environmental stressors, even over relatively short exposure periods. They highlight the importance of molecular indicators in detecting immediate ecological impacts, offering valuable information for conservation strategies and understanding the ecological consequences in freshwater ecosystems.
Collapse
Affiliation(s)
- Iva Kokotović
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | - Vojtech Kolar
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic; Institute of Entomology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic; WasserCluster Lunz - Biologische Station, Lunz am See, Austria.
| | | | - Luka Bočkor
- Centre for Applied Bioanthropology, Institute for Anthropological Research, Zagreb, Croatia.
| | - Simon Vitecek
- WasserCluster Lunz - Biologische Station, Lunz am See, Austria; University of Natural Resources and Life Sciences, Vienna, Austria.
| | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
3
|
Wang J, Bao S, Heino J, Liu Z, Xie P, Zhong X, Zhou Q. Interactive effects of aridity and local environmental factors on the functional trait composition and diversity of macroinvertebrate assemblages in dryland rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176671. [PMID: 39362532 DOI: 10.1016/j.scitotenv.2024.176671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Drought and local habitat alteration are major environmental stressors shaping the aquatic biota in dryland rivers. However, the combined effects of these factors on aquatic biodiversity remain poorly understood. We collected macroinvertebrate data from Central Asian dryland rivers in Xinjiang, China, from 2012 to 2022, to investigate the individual and interactive effects of drought (as indicated by increasing values of Aridity, AI) and local habitat conditions (fine sediments, velocity and pH) on aquatic macroinvertebrate functional trait composition and diversity. We found that interactions of the selected environmental stressors exhibited more frequent additive than synergistic or antagonistic effects, leading to shifts in macroinvertebrate functional trait composition and diversity accordingly. Interaction of AI and fine sediments showed more pronounced synergistic effects (positive or negative) compared to others and had positive influences on traits like small body size, ovoviviparity, etc. Functional diversity metrics responded differently to stressor interactions, with FRic and FDis being negatively affected, whereas FEve was positively correlated to stressor interaction, suggesting the complementary roles of functional diversity metrics to diagnose impacts of stressor interactions. Overall, our study provides new insights into macroinvertebrate assemblage-stressor relationships in dryland rivers and can help better assess, predict and manage aquatic biodiversity in these rivers under ongoing environmental change.
Collapse
Affiliation(s)
- Jun Wang
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Simin Bao
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jani Heino
- Geography Research Unit, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland
| | - Zhenyuan Liu
- Department of Ecology and Institute of Hydrobiology, Jinan University, Guangzhou 510632, China
| | - Peng Xie
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuefei Zhong
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiong Zhou
- Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture and Rural Affair, Engineering Research Center of Green Development for Conventional Aquatic Biological Industry in the Yangtze River Eco-nomic Belt, Ministry of Education, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
4
|
Nguyen HH, Peters K, Kiesel J, Welti EAR, Gillmann SM, Lorenz AW, Jähnig SC, Haase P. Stream macroinvertebrate communities in restored and impacted catchments respond differently to climate, land-use, and runoff over a decade. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172659. [PMID: 38657809 DOI: 10.1016/j.scitotenv.2024.172659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 04/26/2024]
Abstract
Identifying which environmental drivers underlie degradation and improvements of ecological communities is a fundamental goal of ecology. Achieving this goal is a challenge due to diverse trends in both environmental conditions and ecological communities across regions, and it is constrained by the lack of long-term parallel monitoring of environmental and community data needed to study causal relationships. Here, we identify key environmental drivers using a high-resolution environmental - ecological dataset, an ensemble of the Soil and Water Assessment Tool (SWAT+) model, and ecological models to investigate effects of climate, land-use, and runoff on the decadal trend (2012-2021) of stream macroinvertebrate communities in a restored urban catchment and an impacted catchment with mixed land-uses in Germany. The decadal trends showed decreased precipitation, increased temperature, and reduced anthropogenic land-uses, which led to opposing runoff trends - with decreased runoff in the restored catchment and increased runoff in the impacted catchment. The two catchments also varied in decadal trends of taxonomic and trait composition and metrics. The most significant improvements over time were recorded in communities of the restored catchment sites, which have become wastewater free since 2007 to 2009. Within the restored catchment sites, community metric trends were primarily explained by land-use and evaporation trends, while community composition trends were mostly associated with precipitation and runoff trends. Meanwhile, the communities in the impacted catchment did not undergo significant changes between 2012 and 2021, likely influenced by the effects of prolonged droughts following floods after 2018. The results of our study confirm the significance of restoration and land-use management in fostering long-term improvements in stream communities, while climate change remains a prodigious threat. The coupling of long-term biodiversity monitoring with concurrent sampling of relevant environmental drivers is critical for preventative and restorative management in ecology.
Collapse
Affiliation(s)
- Hanh H Nguyen
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany.
| | - Kristin Peters
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Jens Kiesel
- Institute for Natural Resource Conservation, Christian-Albrechts-University Kiel, Germany.
| | - Ellen A R Welti
- Conservation Ecology Center, Smithsonian's National Zoo and Conservation Biology Institute, Front Royal, VA, USA
| | - Svenja M Gillmann
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Armin W Lorenz
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| | - Sonja C Jähnig
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany; Geography Department, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Peter Haase
- Faculty of Biology, University of Duisburg-Essen, Essen, Germany; Department of River Ecology and Conservation, Senckenberg Research Institute and Natural History Museum Frankfurt, Germany; Centre for Water and Environmental Research (ZWU), University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
5
|
Gutiérrez-Cánovas C, von Schiller D, Pace G, Gómez-Gener L, Pascoal C. Multiple stressors alter greenhouse gas concentrations in streams through local and distal processes. GLOBAL CHANGE BIOLOGY 2024; 30:e17301. [PMID: 38687496 DOI: 10.1111/gcb.17301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 03/14/2024] [Accepted: 03/23/2024] [Indexed: 05/02/2024]
Abstract
Streams are significant contributors of greenhouse gases (GHG) to the atmosphere, and the increasing number of stressors degrading freshwaters may exacerbate this process, posing a threat to climatic stability. However, it is unclear whether the influence of multiple stressors on GHG concentrations in streams results from increases of in-situ metabolism (i.e., local processes) or from changes in upstream and terrestrial GHG production (i.e., distal processes). Here, we hypothesize that the mechanisms controlling multiple stressor effects vary between carbon dioxide (CO2) and methane (CH4), with the latter being more influenced by changes in local stream metabolism, and the former mainly responding to distal processes. To test this hypothesis, we measured stream metabolism and the concentrations of CO2 (pCO2) and CH4 (pCH4) in 50 stream sites that encompass gradients of nutrient enrichment, oxygen depletion, thermal stress, riparian degradation and discharge. Our results indicate that these stressors had additive effects on stream metabolism and GHG concentrations, with stressor interactions explaining limited variance. Nutrient enrichment was associated with higher stream heterotrophy and pCO2, whereas pCH4 increased with oxygen depletion and water temperature. Discharge was positively linked to primary production, respiration and heterotrophy but correlated negatively with pCO2. Our models indicate that CO2-equivalent concentrations can more than double in streams that experience high nutrient enrichment and oxygen depletion, compared to those with oligotrophic and oxic conditions. Structural equation models revealed that the effects of nutrient enrichment and discharge on pCO2 were related to distal processes rather than local metabolism. In contrast, pCH4 responses to nutrient enrichment, discharge and temperature were related to both local metabolism and distal processes. Collectively, our study illustrates potential climatic feedbacks resulting from freshwater degradation and provides insight into the processes mediating stressor impacts on the production of GHG in streams.
Collapse
Affiliation(s)
| | - Daniel von Schiller
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Universitat de Barcelona (UB), Barcelona, Spain
- Institut de Recerca de l'Aigua (IdRA), Universitat de Barcelona (UB), Barcelona, Spain
| | - Giorgio Pace
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - Lluís Gómez-Gener
- Centre for Research on Ecology and Forestry Applications, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cláudia Pascoal
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET), Department of Biology, University of Minho, Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|
6
|
Pace G, Lourenço J, Ribeiro CA, Rodrigues C, Pascoal C, Cássio F. Spatial accumulation of flood-driven riverside litter in two Northern Atlantic Rivers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123528. [PMID: 38336138 DOI: 10.1016/j.envpol.2024.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
The escalation of litter accumulation in aquatic environments is recognized as an emerging global concern. Although rivers represent the main conduits for land-based waste into the oceans, the spatial dynamics of litter accumulation in these systems remain poorly investigated, especially after hydro-climatic extreme events. Floods have been identified as major drivers of litter mobilization, including macroplastics, within rivers. However, predicting flood-induced litter accumulation along riverbanks is complex due to the cumulative interplay of multiple environmental (geomorphological and riparian) and anthropogenic factors. Using empirical data collected from 14 stream reaches in two Northern Atlantic rivers in Portugal, our study evaluates which factors, among geomorphological, riparian, and anthropogenic descriptors, best drive riverside litter accumulation after floods. Taking into account the longitudinal gradient and the spatial heterogeneity of the studied reaches, our study enhances how the accumulation and characteristics (type, size) of riverside litter vary across a rural-urban continuum. Our model reveals that the combination of the human population density and the stream slope at river reach showed the highest explanatory power for the accumulation of riverside litter. Our findings indicate that litter tends to be retained close to the source, even under flood conditions. We also found that the structure of riparian vegetation showed low explanatory power for litter accumulation. However, riparian trapping could be influenced by litter input (density and type) which varies with anthropogenic activities. This work highlights the importance of gathering field data to identify critical areas of riverside litter accumulation within river basins. Our findings can further support environmental managers in designing and implementing effective cleanup campaigns and implementing plastic recovery strategies at specific areas. Nevertheless, it is crucial to enhance coordinated efforts across the entire value chain to reduce plastic pollution, promote innovative approaches for plastic litter valorization, and establish effective prevention pathways.
Collapse
Affiliation(s)
- G Pace
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal; Landscape Laboratory (LL), Rua da Ponte Romana, Creixomil, 4835-095, Guimarães, Portugal.
| | - J Lourenço
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal; Landscape Laboratory (LL), Rua da Ponte Romana, Creixomil, 4835-095, Guimarães, Portugal
| | - C A Ribeiro
- Landscape Laboratory (LL), Rua da Ponte Romana, Creixomil, 4835-095, Guimarães, Portugal
| | - C Rodrigues
- Landscape Laboratory (LL), Rua da Ponte Romana, Creixomil, 4835-095, Guimarães, Portugal
| | - C Pascoal
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| | - F Cássio
- Centre of Molecular and Environmental Biology (CBMA) / Aquatic Research Network (ARNET) Associate Laboratory, Department of Biology, University of Minho, Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, Braga, Portugal
| |
Collapse
|