1
|
Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.04.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
2
|
Smichi N, Fendri A, Triki S, Arondel V, Rebai A, Gargouri Y, Miled N. Biochemical characterization, cloning and molecular modeling of a digestive lipase from red seabream ( Pagrus major): Structural explanation of the interaction deficiency with colipase and lipidic interface. Eng Life Sci 2017; 17:664-677. [PMID: 32624812 DOI: 10.1002/elsc.201600246] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 11/30/2016] [Accepted: 01/05/2017] [Indexed: 11/12/2022] Open
Abstract
Red seabream digestive lipase (RsDL) was purified from fresh pyloric caeca. Pure RsDL has an apparent molecular mass of 50 kDa. The RsDL is more active on short-chain triacylglycerols (TC4), and enzymatic activity decreases when medium (TC8) or long-chain (olive oil) triacylglycerols were used as substrates. The specific activities of RsDL are very weak as compared to those obtained with classical pancreatic lipases. No colipase was detected in the red seabream pyloric caeca. Furthermore, the RsDL was not activated by a mammal colipase. Similar results were reported for annular seabream lipase. In order to explain structurally the discrepancies between sparidae and mammal lipases, genes encoding mature RsDL and five other lipases from sparidae fish species were cloned and sequenced. Phylogenetic studies indicated the closest homology of sparidae lipases to bird pancreatic ones. Structural models were built for annular seabream and RsDL under their closed and open forms using mammal pancreatic lipases as templates. Several differences were noticed when analyzing the amino acids corresponding to those involved in HPL binding to colipase. This is likely to prevent interaction between the fish lipase and the mammalian colipase and may explain the fact that mammalian colipase is not effective in activating sparidae lipases. In addition, several hydrophobic residues, playing a key role in anchoring pancreatic lipase onto the lipid interface, are replaced by polar residues in fish lipases. This might explain the reason why the latter enzymes display weak activity levels when compared to mammalian pancreatic lipases.
Collapse
Affiliation(s)
- Nabil Smichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases ENIS Sfax Tunisia
| | - Ahmed Fendri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases ENIS Sfax Tunisia
| | - Soumaya Triki
- Department of Bioinformatics and Human Genetics Center of Biotechnology of Sfax Sfax Tunisia
| | - Vincent Arondel
- Laboratory of Membrane Biogenesis, CNRS, UMR5200 Bordeaux University BP81, 71 Edouard Bourlaux Villenave d'Ornon France
| | - Ahmed Rebai
- Department of Bioinformatics and Human Genetics Center of Biotechnology of Sfax Sfax Tunisia
| | - Youssef Gargouri
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases ENIS Sfax Tunisia
| | - Nabil Miled
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases ENIS Sfax Tunisia
| |
Collapse
|
3
|
Köse K, Erol K, Ali Köse D, Evcı E, Uzun L. Affinity purification lipase from wheat germ: comparison of hydrophobic and metal chelation effect. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:574-583. [DOI: 10.3109/21691401.2016.1161642] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Kazım Köse
- Scientific Technical Research and Application Center, Hitit University, Çorum, Turkey
| | - Kadir Erol
- Department of Chemistry, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Dursun Ali Köse
- Department of Chemistry, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Emre Evcı
- Department of Molecular Biology and Genetics, Faculty of Science and Literature, Hitit University, Çorum, Turkey
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, Faculty of Science, Ankara, Turkey
| |
Collapse
|
4
|
Bouchaâla E, BouAli M, Ali YB, Miled N, Gargouri Y, Fendri A. Biochemical Characterization and Molecular Modeling of Pancreatic Lipase from a Cartilaginous Fish, the Common Stingray (Dasyatis pastinaca). Appl Biochem Biotechnol 2015; 176:151-69. [DOI: 10.1007/s12010-015-1564-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 03/12/2015] [Indexed: 11/29/2022]
|
5
|
Zarai Z, Ali MB, Fendri A, Louati H, Mejdoub H, Gargouri Y. Purification and biochemical properties of Hexaplex trunculus digestive lipase. Process Biochem 2012. [DOI: 10.1016/j.procbio.2012.10.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Silva MF, Freire DMG, de Castro AM, Di Luccio M, Mazutti MA, Oliveira JV, Treichel H, de Oliveira D. Concentration, partial characterization, and immobilization of lipase extract from P. brevicompactum by solid-state fermentation of babassu cake and castor bean cake. Appl Biochem Biotechnol 2011; 164:755-66. [PMID: 21258873 DOI: 10.1007/s12010-011-9171-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Accepted: 01/09/2011] [Indexed: 11/29/2022]
Abstract
One relevant limitation hindering the industrial application of microbial lipases has been attributed to their production cost, which is determined by the production yield, enzyme stability among other. The objective of this work was to evaluate the concentration and immobilization of lipase extracts from Penicillium brevicompactum obtained by solid-state fermentation of babassu cake and castor bean cake. The precipitation with ammonium sulfate 60% of saturation of crude extract obtained with babassu cake as raw material showed an enhancement in hydrolytic and esterification activities from 31.82 to 227.57 U/g and from 170.92 to 207.40 U/g, respectively. Concentrated lipase extracts showed preference to medium-chain triglycerides and fatty acids. It is shown that the enzyme activity is maintained during storage at low temperatures (4 and -10°C) for up to 30 days. Higher esterification activities were achieved when the lipase extract was immobilized in sodium alginate and activated coal.
Collapse
Affiliation(s)
- Marceli Fernandes Silva
- Departamento de Engenharia de Alimentos, URI-Campus de Erechim, Av. Sete de Setembro 1621, Erechim, 99700-000, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Gao B, Xu T, Lin J, Zhang L, Su E, Jiang Z, Wei D. Improving the catalytic activity of lipase LipK107 from Proteus sp. by site-directed mutagenesis in the lid domain based on computer simulation. ACTA ACUST UNITED AC 2011. [DOI: 10.1016/j.molcatb.2010.12.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Bou Ali M, Ben Ali Y, Karray A, Fendri A, Gargouri Y. Purification and characterization of the first recombinant bird pancreatic lipase expressed in Pichia pastoris: the turkey. Lipids Health Dis 2011; 10:24. [PMID: 21272342 PMCID: PMC3038135 DOI: 10.1186/1476-511x-10-24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2010] [Accepted: 01/27/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The turkey pancreatic lipase (TPL) was purified from delipidated pancreases. Some biochemical properties and kinetic studies were determined using emulsified system and monomolecular film techniques. Those studies have shown that despite the accumulation of free fatty acids at the olive oil/water interface, TPL continues to hydrolyse efficiently the olive oil and the TC4 in the absence of colipase and bile salts, contrary to most classical digestive lipases which denaturate rapidly under the same conditions. The aim of the present study was to express TPL in the methylotrophic yeast Pichia pastoris in order to get a large amount of this enzyme exhibiting interesting biochemical properties, to purify and characterize the recombinant enzyme. RESULTS The recombinant TPL was secreted into the culture medium and the expression level reached about 15 mg/l after 4 days of culture. Using Q-PCR, the number of expression cassette integrated on Pichia genomic DNA was estimated to 5. The purified rTPL, with molecular mass of 50 kDa, has a specific activity of 5300 U/mg on emulsified olive oil and 9500 U/mg on tributyrin. The optimal temperature and pH of rTPL were 37°C and pH 8.5. The stability, reaction kinetics and effects of calcium ions and bile salts were also determined. CONCLUSIONS Our results show that the expressed TPL have the same properties as the native TPL previously purified. This result allows us the use of the recombinant enzyme to investigate the TPL structure-function relationships.
Collapse
Affiliation(s)
- Madiha Bou Ali
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS route de Soukra, BP1173, University of Sfax, 3038 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
9
|
Amara S, Fendri A, Ben Salem N, Gargouri Y, Miled N. Snail Hepatopancreatic Lipase: A New Member of Invertebrates Lipases' Group. Appl Biochem Biotechnol 2009; 162:942-52. [DOI: 10.1007/s12010-009-8837-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 10/25/2009] [Indexed: 11/29/2022]
|
10
|
Menoncin S, Domingues NM, Freire DMG, Toniazzo G, Cansian RL, Oliveira JV, Di Luccio M, de Oliveira D, Treichel H. Study of the Extraction, Concentration, and Partial Characterization of Lipases Obtained from Penicillium verrucosum using Solid-State Fermentation of Soybean Bran. FOOD BIOPROCESS TECH 2008. [DOI: 10.1007/s11947-008-0104-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
11
|
Ben Bacha A, Fendri A, Gargouri Y, Mejdoub H, Miled N. Proteolytic cleavage of ostrich and turkey pancreatic lipases: production of an active N-terminal domain. Pancreas 2007; 35:e55-61. [PMID: 17895836 DOI: 10.1097/mpa.0b013e31811f450f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES The aim of this study was to check some biochemical and structural properties of ostrich and turkey pancreatic lipases (OPL and TPL, respectively). METHODS Limited proteolysis of OPL and TPL was performed in conditions similar to those reported for porcine pancreatic lipase. RESULTS In the absence of bile salts and colipase, OPL failed to catalyze the hydrolysis of pure tributyrin or efficiently hydrolyze olive oil emulsion. When bile salts and colipase were preincubated with the substrate, the OPL kinetic behavior remained linear for more than 30 minutes. The enzyme presented a penetration power value into an egg phosphatidylcholine monomolecular film that was comparable to that of HPL and lower than that of TPL. Chymotrypsin, trypsin, and thermolysin were able to hydrolyze OPL and TPL in different ways. In both cases, only N-terminal fragments accumulated during the hydrolysis, whereas no C-terminal fragment was obtained in either case. Tryptic cleavage of OPL and TPL completely degraded the enzymes. Nevertheless, chymotryptic attack generated 35-kd and 43-kd forms for TPL and OPL, respectively. Interestingly, the OPL 43-kd form was inactive, whereas the TPL 35-kd protein conserved its lipolytic activity. CONCLUSIONS OPL, TPL, and mammal pancreatic lipases share a high amino acid sequence homology. Further investigations are, however, needed to identify key residues involved in substrate recognition responsible for biochemical differences between the 2 classes of lipases.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax, Tunisia
| | | | | | | | | |
Collapse
|
12
|
Fendri A, Frikha F, Miled N, Ben Bacha A, Gargouri Y. Modulating the activity of avian pancreatic lipases by an alkyl chain reacting with an accessible sulfhydryl group. Biochem Biophys Res Commun 2007; 360:765-71. [PMID: 17624306 DOI: 10.1016/j.bbrc.2007.06.115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2007] [Accepted: 06/21/2007] [Indexed: 11/21/2022]
Abstract
Both turkey (TPL) and chicken (CPL) pancreatic lipases possess only one exposed sulfhydryl residue (Cystein114). After preincubation with the lipase, the sulfhydryl reagent C12 -TNB was found to be a powerful inhibitor of TPL whereas it had no effect on the CPL activity. Based on the 3D structure modelling and the molecular dynamics, the bulky dodecyl chain might hamper the lid movement of the TPL leading to the lipase inhibition upon reaction with C12 -TNB. Meanwhile, the predicted position of the C12 chain linked to Cystein114 of CPL could not block the lid opening mechanism which explains the absence of inhibition by C12 -TNB. Surprisingly, when added during the substrate hydrolysis, C12 -TNB activated the TPL but not the CPL that was slightly inhibited under these conditions. The 3D structure model generated for the open forms of C12 -TPL and C12 -CPL complexes showed that Cystein114 is still accessible and might react with C12 -TNB. Our models clearly explain the activation of TPL and the partial inhibition of CPL after the binding of the C12 chain to the enzyme.
Collapse
Affiliation(s)
- Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS route de Soukra, BPW 3038 Sfax, Tunisia
| | | | | | | | | |
Collapse
|
13
|
Cherif S, Fendri A, Miled N, Trabelsi H, Mejdoub H, Gargouri Y. Crab digestive lipase acting at high temperature: Purification and biochemical characterization. Biochimie 2007; 89:1012-8. [PMID: 17395356 DOI: 10.1016/j.biochi.2007.02.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2006] [Accepted: 02/06/2007] [Indexed: 11/18/2022]
Abstract
In recent years, recovery and characterization of enzymes from fish and aquatic invertebrates have taken place and this had led to the emergence of some interesting new applications of these enzymes. However, much less is known about lipases from crustaceans. A lipolytic activity was located in the crab digestive glands (hepatopancreas), from which a crab digestive lipase (CDL) was purified. Pure CDL has a molecular mass of 65kDa as determined by SDS/PAGE analysis. Unlike known digestive lipases, CDL displayed its maximal activity on long and short-chain triacylglycerols at a temperature of 60 degrees C. A specific activity of 500U/mg or 130U/mg was obtained with TC(4) or olive oil as substrate, respectively. Only 10% of the maximal activity was detected at 37 degrees C. The enzyme retained 80% of its maximal activity when incubated during 10 min at 60 degrees C, and was completely inactivated at a temperature higher than 65 degrees C. Interestingly, neither colipase, nor bile salts were detected in the crab hepatopancreas. Which suggests that colipase evolved in invertebrates simultaneously with the appearance of an exocrine pancreas and a true liver which produce bile salts. No similarity between the 13 N-terminal amino acid residues of CDL was found with those of known other digestive lipases.
Collapse
Affiliation(s)
- Slim Cherif
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, BPW 3038, Sfax, Tunisia
| | | | | | | | | | | |
Collapse
|
14
|
Ben Bacha A, Frikha F, Djemal I, Fendri A, Miled N, Gargouri Y, Mejdoub H. Biochemical and structural comparative study between bird and mammal pancreatic colipases. J Lipid Res 2006; 47:2701-11. [PMID: 16957180 DOI: 10.1194/jlr.m600242-jlr200] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three colipases were purified from pancreas of two birds (ostrich and turkey) and one mammal (dromedary). After acidic and/or heat treatment and precipitation by sulfate ammonium and then ethanol, cofactors were purified by Sephadex G-50 gel filtration followed by ion-exchange chromatography first on Mono S and then on Mono Q. One molecular form was obtained from each species with a molecular mass of approximately 10 kDa. Cofactors were not glycosylated. The N-terminal sequences of the three purified cofactors showed high sequence homology. A 90 amino acid sequence of the ostrich cofactor was established based on peptide sequences from four different digests of the denaturated protein using trypsin, chymotrypsin, thermolysin, or staphylococcal protease. This sequence exhibited a high degree of homology with chicken and mammal cofactors. Bile salt-inhibited pancreatic lipases from five species were activated to variable extents by colipases from bird and mammal origins. The bird pancreatic lipase-colipase system appears to be functionally similar to homologous lipolytic systems from higher mammals. Our comparative study showed that mammal colipase presents a lower activation level toward bird lipases than the bird counterpart. Three-dimensional modeling of ostrich colipase suggested a structural explanation of this fact.
Collapse
Affiliation(s)
- Abir Ben Bacha
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, 3038 Sfax, Tunisia
| | | | | | | | | | | | | |
Collapse
|
15
|
Fendri A, Frikha F, Mosbah H, Miled N, Zouari N, Bacha AB, Sayari A, Mejdoub H, Gargouri Y. Biochemical characterization, cloning, and molecular modelling of chicken pancreatic lipase. Arch Biochem Biophys 2006; 451:149-59. [PMID: 16780787 DOI: 10.1016/j.abb.2006.04.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 04/26/2006] [Accepted: 04/26/2006] [Indexed: 10/24/2022]
Abstract
Chicken pancreatic lipase (CPL) was purified from delipidated pancreas. Pure CPL was obtained after ammonium sulphate fractionation, then DEAE-cellulose, Sephacryl S-200 gel filtration, and FPLC Mono-Q Sepharose columns. The pure lipase is a glycosylated monomer having a molecular mass of about 50kDa. The 23 N-terminal amino acid residues of CPL were sequenced. The sequence is similar to those of avian and mammalian pancreatic lipases. CPL presents the interfacial activation phenomenon tested with tripropionin or vinyl ester. When CPL was inhibited by synthetic detergent (TX-100) or amphipathic protein (BSA), simultaneous addition of bile salts and colipase was required to restore the full CPL activity. In the absence of colipase and bile salts, CPL was unable to hydrolyse tributyrin emulsion. This enzyme can tolerate, more efficiently than HPL, the accumulation of long-chain free fatty acids at the interface when olive oil emulsion was used as substrate in the absence of bile salts and colipase. The CPL activity, under these conditions, was linear whereas that of HPL decreased rapidly. Anti-TPL polyclonal antibodies cross-reacted specifically with CPL. The gene encoding the mature CPL was cloned and sequenced. The deduced amino acid sequence of the mature lipase shows a high degree of homology with the mammalian pancreatic lipases. A 3D structure model of CPL was built using the HPL structure as template. We have concluded that a slight increase in the exposed hydrophobic residues on the surface of CPL, as compared to HPL, could be responsible for a higher tolerance to the presence of long-chain free fatty acids at the lipid/water interface.
Collapse
Affiliation(s)
- Ahmed Fendri
- Laboratoire de Biochimie et de Génie Enzymatique des Lipases, ENIS, BPW, Sfax 3038, Tunisia
| | | | | | | | | | | | | | | | | |
Collapse
|