1
|
Pachapur VL, Castillo MV, Saini R, Brar SK, Le Bihan Y. Integrated biorefinery approach for utilization of wood waste into levulinic acid and 2-Phenylethanol production under mild treatment conditions. J Biotechnol 2024; 389:78-85. [PMID: 38718873 DOI: 10.1016/j.jbiotec.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/11/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
In a bid to explore the on-site biorefinery approach for conversion of forestry residues, lignocellulosic biomass into value-added products was studied. The bark white pine wood was subjected to the microwave technique of fast and slow hydrolysis under varying acid and biomass concentrations to produce levulinic acid (LA). The HCl (2% v/v) and plant biomass (1% w/v) were identified as the optimum conditions for fast wood hydrolysis (270 ºC for 12 sec), which led to maximum LA yield of 446.68 g/kgPB. The proposed sustainable approach is mild, quick, and utilized a very low concentration of the HCl for the production of LA. The hydrolysate was used as a medium for Kluyveromyces marxianus growth to produce 2-phenylethanol (2-PE). K. marxianus used 74-95% of furfural from hydrolysate as a co-substrate to grow. The proposed model of the integrated biorefinery is an affordable on-site approach of using forest waste into localized solutions to produce LA and 2-PE.
Collapse
Affiliation(s)
- Vinayak Laxman Pachapur
- Investissement Québec-CRIQ, Québec, QC, Canada; Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Mariana Valdez Castillo
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Rahul Saini
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | | |
Collapse
|
2
|
Lee DS, Cho EJ, Nguyen DT, Song Y, Chang J, Bae HJ. Succinic acid production from softwood with genome-edited Corynebacterium glutamicum using the CRISPR-Cpf1 system. Biotechnol J 2024; 19:e2300309. [PMID: 38180273 DOI: 10.1002/biot.202300309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
Corynebacterium glutamicum is a useful microbe that can be used for producing succinic acid under anaerobic conditions. In this study, we generated a knock-out mutant of the lactate dehydrogenase 1 gene (ΔldhA-6) and co-expressed the succinic acid transporter (Psod:SucE- ΔldhA) using the CRISPR-Cpf1 genome editing system. The highly efficient HPAC (hydrogen peroxide and acetic acid) pretreatment method was employed for the enzymatic hydrolysis of softwood (Pinus densiflora) and subsequently utilized for production of succinic acid. Upon evaluating a 1%-5% hydrolysate concentration range, optimal succinic acid production with the ΔldhA mutant was achieved at a 4% hydrolysate concentration. This resulted in 14.82 g L-1 succinic acid production over 6 h. No production of acetic acid and lactic acid was detected during the fermentation. The co-expression transformant, [Psod:SucE-ΔldhA] produced 17.70 g L-1 succinic acid in 6 h. In the fed-batch system, 39.67 g L-1 succinic acid was produced over 48 h. During the fermentation, the strain consumed 100% and 73% of glucose and xylose, respectively. The yield of succinic acid from the sugars consumed was approximately 0.77 g succinic acid/g sugars. These results indicate that the production of succinic acid from softwood holds potential applications in alternative biochemical processes.
Collapse
Affiliation(s)
- Dae-Seok Lee
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Eun Jin Cho
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | | | - Younho Song
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
| | - Jihye Chang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju, Republic of Korea
| | - Hyeun-Jong Bae
- Bio-energy Research Institute, Chonnam National University, Gwangju, Republic of Korea
- School of Biotechology, Tan Tao University, Long An, Viet Nam
| |
Collapse
|
3
|
Barletta M, Aversa C, Ayyoob M, Gisario A, Hamad K, Mehrpouya M, Vahabi H. Poly(butylene succinate) (PBS): Materials, processing, and industrial applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Modeling the Succinic Acid Bioprocess: A Review. FERMENTATION 2022. [DOI: 10.3390/fermentation8080368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Succinic acid has attracted much interest as a key platform chemical that can be obtained in high titers from biomass through sustainable fermentation processes, thus boosting the bioeconomy as a critical production strategy for the future. After several years of development of the production of succinic acid, many studies on lab or pilot scale production have been reported. The relevant experimental data reveal underlying physical and chemical dynamic phenomena. To take advantage of this vast, but disperse, kinetic information, a number of mathematical kinetic models of the unstructured non-segregated type have been proposed in the first place. These relatively simple models feature critical aspects of interest for the design, control, optimization and operation of this key bioprocess. This review includes a detailed description of the phenomena involved in the bioprocesses and how they reflect on the most important and recent models based on macroscopic and metabolic chemical kinetics, and in some cases even coupling mass transport.
Collapse
|
5
|
Liu X, Zhao G, Sun S, Fan C, Feng X, Xiong P. Biosynthetic Pathway and Metabolic Engineering of Succinic Acid. Front Bioeng Biotechnol 2022; 10:843887. [PMID: 35350186 PMCID: PMC8957974 DOI: 10.3389/fbioe.2022.843887] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/16/2022] [Indexed: 11/25/2022] Open
Abstract
Succinic acid, a dicarboxylic acid produced as an intermediate of the tricarboxylic acid (TCA) cycle, is one of the most important platform chemicals for the production of various high value-added derivatives. As traditional chemical synthesis processes suffer from nonrenewable resources and environment pollution, succinic acid biosynthesis has drawn increasing attention as a viable, more environmentally friendly alternative. To date, several metabolic engineering approaches have been utilized for constructing and optimizing succinic acid cell factories. In this review, different succinic acid biosynthesis pathways are summarized, with a focus on the key enzymes and metabolic engineering approaches, which mainly include redirecting carbon flux, balancing NADH/NAD+ ratios, and optimizing CO2 supplementation. Finally, future perspectives on the microbial production of succinic acid are discussed.
Collapse
Affiliation(s)
- Xiutao Liu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Guang Zhao
- State Key Lab of Microbial Technology, Shandong University, Qingdao, China
| | - Shengjie Sun
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Chuanle Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China.,School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Xinjun Feng
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Peng Xiong
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| |
Collapse
|
6
|
Uribe Santos DL, Delgado JA, Águeda VI, Álvarez Torrellas S, Larriba M. Recovery of a Succinic, Formic, and Acetic Acid Mixture from a Model Fermentation Broth by Simulated Moving Bed Adsorption with Methanol as a Desorbent. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - José Antonio Delgado
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| | - Vicente Ismael Águeda
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| | | | - Marcos Larriba
- Department of Chemical Engineering, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
7
|
Management of Dark Fermentation Broth via Bio Refining and Photo Fermentation. ENERGIES 2021. [DOI: 10.3390/en14196268] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Lignocellulose and starch-based raw materials are often applied in the investigations regarding biohydrogen generation using dark fermentation. Management of the arising post-fermentation broth becomes a problem. The Authors proposed sequential processes, to improve the efficiency of both hydrogen generation and by-products management carried under model conditions. During the proposed procedure, the simple sugars remaining in broth are converted into organic acids, and when these products are used as substrates for the photo fermentation process. To enhance the broth management also conditions promoting Deep Eutectic Solvents (DES) precursors synthesis are simultaneously applied. Application of Box-Behnken design allows defining of the optimal conditions for conversion to DESs precursors. During the procedure hydrogen was obtained, the concentration of hydrogen in the photo fermentation reached up to 819 mL H2/L medium/7 d, depending on the broth type, i.e., when the broth was optimized for formic acid concentration. The DESs precursors were separated and engaged in DESs synthesis. To confirm the formation of the DESs, FT-IR analyses were performed. The Chemical Oxygen Demand of post-fermentation broths after dark fermentation optimized for formic acid was reduced by ca. 82%. The proposed procedure can be successfully used as a method of post-fermentation broth management.
Collapse
|
8
|
Omwene PI, Yağcıoğlu M, Öcal-Sarihan ZB, Ertan F, Keris-Sen ÜD, Karagunduz A, Keskinler B. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition. 3 Biotech 2021; 11:389. [PMID: 34458059 DOI: 10.1007/s13205-021-02939-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022] Open
Abstract
Bio-based succinic acid production has attracted global attention since its consideration as a potential replacement to petroleum-based platform chemicals. This study used three different CO2 sources, namely NaHCO3, K2CO3 and MgCO3 for fermentation of succinic acid (SA) by Actinobacillus succinogenes under three distinct substrate conditions i.e. lactose, whey and whey devoid of any supplements. Batch experiments were performed in both anaerobic flasks and 5L benchtop fermenter. SA fermentation in anaerobic flasks was unfettered by supplementary nutrients. However, fermentation in the benchtop fermenter devoid of supplementary nutrients resulted into 42% reduction in SA yield as well as lower SA productivities. Furthermore, a significant reduction of cell growth occurred in anerobic flasks at pH < 6.0, and complete termination of bacterial activity was noted at pH < 5.3. The highest SA titer, yield and productivity of 15.67 g/L, 0.54 g/g and 0.33 g/L/h, respectively, was recorded from whey fermentation with MgCO3. The present study further highlights significant inhibitory effect of K2CO3 buffered medium on Actinobacillus succinogenes. Thus, we can claim that environmental pollution as well as costs of SA production from whey can be reduced by leveraging on whey residual nutrients to support the activity of Actinobacillus succinogenes.
Collapse
Affiliation(s)
- Philip Isaac Omwene
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
- Faculty of Agriculture and Environmental Sciences, Muni University, P.O.Box 725, Arua, Uganda
| | - Meltem Yağcıoğlu
- Institute of Earth and Marine Sciences, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Zehra Betül Öcal-Sarihan
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| | - Fatma Ertan
- Department of Chemistry, Gebze Technical University, Kocaeli, Turkey
| | - Ülker Diler Keris-Sen
- Institute of Earth and Marine Sciences, Gebze Technical University, 41400 Kocaeli, Turkey
| | - Ahmet Karagunduz
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| | - Bülent Keskinler
- Department of Environmental Engineering, Gebze Technical University, 41400 Gebze-Kocaeli, Turkey
| |
Collapse
|
9
|
da Costa RMF, Winters A, Hauck B, Martín D, Bosch M, Simister R, Gomez LD, Batista de Carvalho LAE, Canhoto JM. Biorefining Potential of Wild-Grown Arundo donax, Cortaderia selloana and Phragmites australis and the Feasibility of White-Rot Fungi-Mediated Pretreatments. FRONTIERS IN PLANT SCIENCE 2021; 12:679966. [PMID: 34276732 PMCID: PMC8283202 DOI: 10.3389/fpls.2021.679966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/10/2021] [Indexed: 05/29/2023]
Abstract
Arundo donax, Cortaderia selloana and Phragmites australis are high-biomass-producing perennial Poalean species that grow abundantly and spontaneously in warm temperate regions, such as in Mediterranean-type climates, like those of Southern Europe, Western United States coastal areas, or in regions of South America, South Africa and Australia. Given their vigorous and spontaneous growth, biomass from the studied grasses often accumulates excessively in unmanaged agro-forestry areas. Nonetheless, this also creates the demand and opportunity for the valorisation of these biomass sources, particularly their cell wall polymers, for biorefining applications. By contrast, a related crop, Miscanthus × giganteus, is a perennial grass that has been extensively studied for lignocellulosic biomass production, as it can grow on low-input agricultural systems in colder climates. In this study Fourier transform mid-infrared spectroscopy (FTIR), high-performance anion-exchange chromatography (HPAEC) and lignin content determinations were used for a comparative compositional characterisation of A. donax, C. selloana and P. australis harvested from the wild, in relation to a trial field-grown M. × giganteus high-yielding genotype. A high-throughput saccharification assay showed relatively high sugar release values from the wild-grown grasses, even with a 0.1M NaOH mild alkali pretreatment. In addition to this alkaline pretreatment, biomass was treated with white-rot fungi (WRF), which preferentially degrade lignin more readily than holocellulose. Three fungal species were used: Ganoderma lucidum, Pleurotus ostreatus and Trametes versicolor. Our results showed that neutral sugar contents are not significantly altered, while some lignin is lost during the pretreatments. Furthermore, sugar release upon enzymatic saccharification was enhanced, and this was dependent on the plant biomass and fungal species used in the treatment. To maximise the potential for lignocellulose valorisation, the liquid fractions from the pretreatments were analysed by high performance liquid chromatography - photodiode array detection - electrospray ionisation tandem mass spectrometry (HPLC-PDA-ESI-MS n ). This study is one of the first to report on the composition of WRF-treated grass biomass, while assessing the potential relevance of breakdown products released during the treatments, beyond more traditional sugar-for-energy applications. Ultimately, we expect that our data will help promote the valorisation of unused biomass resources, create economic value, while contributing to the implementation of sustainable biorefining systems.
Collapse
Affiliation(s)
- Ricardo M. F. da Costa
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Ana Winters
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Barbara Hauck
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Daniel Martín
- Molecular Physical-Chemistry R&D Unit, Department of Chemistry, University of Coimbra, Coimbra, Portugal
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Rachael Simister
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | - Leonardo D. Gomez
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, United Kingdom
| | | | - Jorge M. Canhoto
- Centre for Functional Ecology, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
|
11
|
Klonos PA, Papadopoulos L, Kasimatis M, Iatrou H, Kyritsis A, Bikiaris DN. Synthesis, Crystallization, Structure Memory Effects, and Molecular Dynamics of Biobased and Renewable Poly( n-alkylene succinate)s with n from 2 to 10. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02109] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Panagiotis A. Klonos
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Lazaros Papadopoulos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| | - Maria Kasimatis
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Hermis Iatrou
- Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, Athens 15771, Greece
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, Athens 15780, Greece
| | - Dimitrios N. Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, Thessaloniki GR-541 24, Greece
| |
Collapse
|
12
|
Sorokina KN, Samoylova YV, Gromov NV, Ogorodnikova OL, Parmon VN. Production of biodiesel and succinic acid from the biomass of the microalga Micractinium sp. IC-44. BIORESOURCE TECHNOLOGY 2020; 317:124026. [PMID: 32866839 DOI: 10.1016/j.biortech.2020.124026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 06/11/2023]
Abstract
In this study, a combined approach to produce fatty acid methyl esters (FAMEs) and succinic acid from the biomass of the microalga Micractinium sp. IC-44 using ionic liquids (ILs) was presented. After 22 days of cultivation, the biomass productivity was 0.034 ± 0.001 g L-1day-1, and the lipid content was 11.5 ± 0.5%. Direct biomass transesterification using H2SO4 in the presence of IL [BMIM][HSO4] resulted in a FAME yield of 42.0 ± 4.3%, which exceeded the yields obtained after transesterification of extracted lipids (20.5 ± 3.5% using ILs and 27.1 ± 2.4% using methanol/chloroform) and direct biomass transesterification without using ILs (31.6 ± 1.7%). The residual biomass obtained after direct transesterification using ILs was subjected to acid hydrolysis (sugar yield was 81.1 ± 2.4%). The purified hydrolysate was fermented using Actinobacillus succinogenes 130Z to obtain a succinic acid yield of 0.67 g g-1 of fermentable sugars. Therefore, this study demonstrated the successful conversion of the Micractinium sp. IC-44 biomass into biodiesel and succinic acid.
Collapse
Affiliation(s)
- Ksenia N Sorokina
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrentieva, 5, 630090 Novosibirsk, Russia.
| | - Yuliya V Samoylova
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrentieva, 5, 630090 Novosibirsk, Russia
| | - Nikolay V Gromov
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrentieva, 5, 630090 Novosibirsk, Russia
| | - Olga L Ogorodnikova
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrentieva, 5, 630090 Novosibirsk, Russia
| | - Valentin N Parmon
- Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences, prosp. Lavrentieva, 5, 630090 Novosibirsk, Russia
| |
Collapse
|
13
|
Pachapur VL, Kaur Brar S, Le Bihan Y. Integrated wood biorefinery: Improvements and tailor-made two-step strategies on hydrolysis techniques. BIORESOURCE TECHNOLOGY 2020; 299:122632. [PMID: 31889603 DOI: 10.1016/j.biortech.2019.122632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 06/10/2023]
Abstract
This study categorized different pretreatment methods into mild (below 120 °C), normal (120-200 °C) and extreme conditions (above 200 °C) for selective approach with efficient wood hydrolysis for direct market applications. The model two-step strategy of selective normal-hydrolysis: steam explosion (170 °C for 30 min) with concentrating normal-hydrolysis: organosolv at (160 °C for 20 min) on hard/softwood will delivery individual fractions of hemicellulose, lignin, and cellulose with recovery rate above 95%. The first step releases C5 sugars with a recovery rate of 80% followed by the second step for C6 sugars with 95% rate and direct use of reduced sugars into C5 and C6 value-added products. The categorized conditions will ease the selection of the pretreatment method for the wood type and model strategy will increase the hydrolysis rate with greater simplicity and validity. The integrated wood biorefinery with two-step treatment is an in-house and closed-loop with endless industrial applications.
Collapse
Affiliation(s)
- Vinayak Laxman Pachapur
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Centre de recherche industrielle du Québec (CRIQ), Québec, QC, Canada.
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| | - Yann Le Bihan
- Centre de recherche industrielle du Québec (CRIQ), Québec, QC, Canada
| |
Collapse
|
14
|
Luthfi AAI, Tan JP, Isa NFAM, Bukhari NA, Shah SSM, Mahmod SS, Jahim JM. Multiple crystallization as a potential strategy for efficient recovery of succinic acid following fermentation with immobilized cells. Bioprocess Biosyst Eng 2020; 43:1153-1169. [PMID: 32095989 DOI: 10.1007/s00449-020-02311-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 12/17/2022]
Abstract
This study aimed to enhance the crystallizability of bio-based succinic acid for its efficient recovery while maintaining the end product at the highest purity. Immobilization of Actinobacillus succinogenes was initially evaluated based on three different carriers: volcanic glass, clay pebbles, and silica particles. The adsorption capacity of metabolites with a low concentration (10 g/L) and a high concentration (40 g/L) was investigated. It was demonstrated that clay pebbles adsorbed the least succinic acid (< 11 mg/g clay pebbles). The repeated batch-fermentation trials with immobilized cells highlighted that succinic acid with an average concentration of up to 36.3 g/L with a metabolite-production ratio of 3:1 (succinic acid to by-products) could be attained within 130 h. Subsequently, the purification of succinic acid through crystallization was assessed in terms of pH, temperature, crystallization time, initial succinic acid concentration and multiple recrystallization processes. Increasing the crystallization time from 6 h to 9 h afforded an improvement of 17% in the recovery of succinic acid crystals. Moreover, a fourfold concentration coefficient of the broth yielded the highest purity percentage (99.9%). The crystallization in three consecutive stages at 9 h (with a fourfold concentration coefficient) successfully improved the total recovery percentage of succinic acid from 55.0 to 84.8%.
Collapse
Affiliation(s)
- Abdullah Amru Indera Luthfi
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jian Ping Tan
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nur Fatin Ajeera Mohd Isa
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Nurul Adela Bukhari
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.,Energy and Environment Unit, Engineering & Processing Research Division, Malaysian Palm Oil Board (MPOB), 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Siti Syazwani Mohd Shah
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Safa Senan Mahmod
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Jamaliah Md Jahim
- Research Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia. .,Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
15
|
Peinemann JC, Pleissner D. Continuous pretreatment, hydrolysis, and fermentation of organic residues for the production of biochemicals. BIORESOURCE TECHNOLOGY 2020; 295:122256. [PMID: 31645308 DOI: 10.1016/j.biortech.2019.122256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Agricultural residues pose a valuable resource. Through microbial fermentations, a variety of products can be obtained, ranging from fuels to platform chemicals. Depending on the nature of the organic residue, pretreatment and hydrolysis are needed prior to fermentation in order to release fermentable sugars. Continuous set-ups are common for the production of methane or ethanol from lignocellulosic biomass, however, this does not apply for the fermentative generation of biochemicals, an approach that conserves chemical functionality present in biomass. Certainly, continuous set-ups could beneficially contribute to bioeconomy by providing techniques allowing the production of biochemicals in a sustainable and efficient way. This review summarizes research conducted on the continuous pretreatment, hydrolysis, and fermentation of lignocellulosic biomass, and particularly towards the production of the biobased molecules: Succinic and lactic acid.
Collapse
Affiliation(s)
- Jan Christoph Peinemann
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, Lüneburg 21335, Germany
| | - Daniel Pleissner
- Sustainable Chemistry (Resource Efficiency), Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, C13.203, Lüneburg 21335, Germany; Institute for Food and Environmental Research e.V., Papendorfer Weg 3, Bad Belzig 14806, Germany.
| |
Collapse
|
16
|
Klonos PA, Kluge M, Robert T, Kyritsis A, Bikiaris DN. Molecular dynamics, crystallization and hydration study of Poly(Propylene succinate) based Poly(Ester amide)s. POLYMER 2020. [DOI: 10.1016/j.polymer.2019.122056] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Coban HB. Organic acids as antimicrobial food agents: applications and microbial productions. Bioprocess Biosyst Eng 2019; 43:569-591. [PMID: 31758240 DOI: 10.1007/s00449-019-02256-w] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 12/30/2022]
Abstract
Food safety is a global health and socioeconomic concern since many people still suffer from various acute and life-long diseases, which are caused by consumption of unsafe food. Therefore, ensuring safety of the food is one of the most essential issues in the food industry, which needs to be considered during not only food composition formulation but also handling and storage. For safety purpose, various chemical preservatives have been used so far in the foods. Recently, there has been renewed interest in replacing chemically originated food safety compounds with natural ones in the industry, which can also serve as antimicrobial agents. Among these natural compounds, organic acids possess the major portion. Therefore, in this paper, it is aimed to review and compile the applications, effectiveness, and microbial productions of various widely used organic acids as antimicrobial agents in the food industry.
Collapse
Affiliation(s)
- Hasan Bugra Coban
- Izmir International Biomedicine and Genome Institute, Dokuz Eylul University Health Campus, Balcova, 35340, Izmir, Turkey.
| |
Collapse
|
18
|
Adnan AI, Ong MY, Nomanbhay S, Chew KW, Show PL. Technologies for Biogas Upgrading to Biomethane: A Review. Bioengineering (Basel) 2019; 6:bioengineering6040092. [PMID: 31581659 PMCID: PMC6956267 DOI: 10.3390/bioengineering6040092] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 11/23/2022] Open
Abstract
The environmental impacts and high long-term costs of poor waste disposal have pushed the industry to realize the potential of turning this problem into an economic and sustainable initiative. Anaerobic digestion and the production of biogas can provide an efficient means of meeting several objectives concerning energy, environmental, and waste management policy. Biogas contains methane (60%) and carbon dioxide (40%) as its principal constituent. Excluding methane, other gasses contained in biogas are considered as contaminants. Removal of these impurities, especially carbon dioxide, will increase the biogas quality for further use. Integrating biological processes into the bio-refinery that effectively consume carbon dioxide will become increasingly important. Such process integration could significantly improve the sustainability of the overall bio-refinery process. The biogas upgrading by utilization of carbon dioxide rather than removal of it is a suitable strategy in this direction. The present work is a critical review that summarizes state-of-the-art technologies for biogas upgrading with particular attention to the emerging biological methanation processes. It also discusses the future perspectives for overcoming the challenges associated with upgradation. While biogas offers a good substitution for fossil fuels, it still not a perfect solution for global greenhouse gas emissions and further research still needs to be conducted.
Collapse
Affiliation(s)
- Amir Izzuddin Adnan
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Mei Yin Ong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Saifuddin Nomanbhay
- Institute of Sustainable Energy, Universiti Tenaga Nasional, 43000 Kajang, Selangor, Malaysia.
| | - Kit Wayne Chew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
19
|
Huang M, Cheng J, Chen P, Zheng G, Wang D, Hu Y. Efficient production of succinic acid in engineered Escherichia coli strains controlled by anaerobically-induced nirB promoter using sweet potato waste hydrolysate. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:147-154. [PMID: 30784862 DOI: 10.1016/j.jenvman.2019.02.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/30/2018] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Succinic acid has attracted interest worldwide as a precursor of many industrially crucial chemicals. Biosynthesis of succinic acid from biomass is developing as an environmentally friendly strategy now. Conversion of sweet potato waste (SPW) to succinic acid could implement high-value utilization of biomass, cut cost of the fermentation process and reduce the pollution of environment. Engineered Escherichia coli (E. coli) strain HD134 under the control of anaerobically-induced nirB promoter from Salmonella enterica (PSnirB) could produce about 16.30 g/L succinic acid with a yield of 0.83 g/g after 48 h on glucose. With SPW hydrolysate as the substrate, 18.65 g/L succinic acid with a yield of 0.94 g/g after 48 h fermentation achieved. Compared to SD134 under Trc control induced with Isopropyl β-D-Thiogalactoside (IPTG), this concentration and yield represented an 8.56% and 6.82% increase, respectively. The use of anaerobically-induced PSnirB not only could attain higher production of succinic acid than IPTG-induced Trc promoter, but omit cost of expensive exogenous inducers. The efficient production of succinic acid from SPW was firstly studied by anaerobically-induced PSnirB control, which achieved relative lower cost compared to glucose as substrate and IPTG as the inducer. This novel fermentation process conduces to the cosmically industrial succinic acid bioproduction.
Collapse
Affiliation(s)
- Meihua Huang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jie Cheng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Peng Chen
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China
| | - Gaowei Zheng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Dan Wang
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, PR China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Yuanliang Hu
- Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, College of Life Sciences, Hubei Normal University, Huangshi 435002, PR China.
| |
Collapse
|
20
|
Ferone M, Raganati F, Olivieri G, Marzocchella A. Bioreactors for succinic acid production processes. Crit Rev Biotechnol 2019; 39:571-586. [DOI: 10.1080/07388551.2019.1592105] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mariateresa Ferone
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- UCD School of Agriculture & Food Science, University College Dublin, Dublin, Ireland
| | - Francesca Raganati
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Giuseppe Olivieri
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
- Department of Agrotechnology and Food Sciences, Wageningen University and Research Centre, Wageningen, The Netherlands
| | - Antonio Marzocchella
- Dipartimento di Ingegneria Chimica, dei Materiali e della Produzione Industriale, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
21
|
Shah SSM, Luthfi AAI, Low KO, Harun S, Manaf SFA, Illias RM, Jahim JM. Preparation of kenaf stem hemicellulosic hydrolysate and its fermentability in microbial production of xylitol by Escherichia coli BL21. Sci Rep 2019; 9:4080. [PMID: 30858467 PMCID: PMC6411968 DOI: 10.1038/s41598-019-40807-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/19/2019] [Indexed: 12/20/2022] Open
Abstract
Kenaf (Hibiscus cannabinus L.), a potential fibre crop with a desirably high growth rate, could serve as a sustainable feedstock in the production of xylitol. In this work, the extraction of soluble products of kenaf through dilute nitric-acid hydrolysis was elucidated with respect to three parameters, namely temperature, residence time, and acid concentration. The study will assist in evaluating the performance in terms of xylose recovery. The result point out that the maximum xylose yield of 30.7 g per 100 g of dry kenaf was attained from 2% (v/v) HNO3 at 130 °C for 60 min. The detoxified hydrolysate was incorporated as the primary carbon source for subsequent fermentation by recombinant Escherichia coli and the performance of strain on five different semi-synthetic media on xylitol production were evaluated herein. Among these media, batch cultivation in a basal salt medium (BSM) afforded the highest xylitol yield of 0.35 g/g based on xylose consumption, which corresponded to 92.8% substrate utilization after 38 h. Subsequently, fermentation by E. coli in the xylose-based kenaf hydrolysate supplemented with BSM resulting in 6.8 g/L xylitol which corresponding to xylitol yield of 0.38 g/g. These findings suggested that the use of kenaf as the fermentation feedstock could be advantageous for the development of sustainable xylitol production.
Collapse
Affiliation(s)
- Siti Syazwani Mohd Shah
- Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Abdullah Amru Indera Luthfi
- Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Kheng Oon Low
- Malaysia Genome Institute (MGI), National Insitutes of Biotechnology Malaysia, Jalan Bangi Lama, Kajang, Malaysia
| | - Shuhaida Harun
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Shareena Fairuz Abdul Manaf
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.,Faculty of Chemical Engineering, Universiti Teknologi MARA, 40450, Shah Alam, Selangor Darul Ehsan, Malaysia
| | - Rosli Md Illias
- Malaysia Genome Institute (MGI), National Insitutes of Biotechnology Malaysia, Jalan Bangi Lama, Kajang, Malaysia
| | - Jamaliah Md Jahim
- Chemical Engineering Programme, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia. .,Research Centre of Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
22
|
Cimini D, Zaccariello L, D’Ambrosio S, Lama L, Ruoppolo G, Pepe O, Faraco V, Schiraldi C. Improved production of succinic acid from Basfia succiniciproducens growing on A. donax and process evaluation through material flow analysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:22. [PMID: 30740143 PMCID: PMC6360672 DOI: 10.1186/s13068-019-1362-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/25/2019] [Indexed: 05/30/2023]
Abstract
BACKGROUND Due to its wide range of applications in the food, pharmaceutical and chemical fields, microbial synthesis of succinic acid is receiving growing attention, generating already relevant industrial results, as well as fueling constant research for improvements. In order to develop a sustainable process, a special focus is now set on the exploitation and conversion of lignocellulosic biomasses into platform chemicals. RESULTS In the present work we used Basfia succiniciproducens BPP7 in separated hydrolysis and fermentation experiments with Arundo donax as starting material. Fed-batch strategies showed a maximal production of about 37 g/L of succinic acid after 43 h of growth and a productivity of 0.9 g/L h on the pilot scale. Global mass balance calculations demonstrated a hydrolysis and fermentation efficiency of about 75%. Moreover, the application of a material flow analysis showed the obtainment of 88.5 and 52 % of succinic acid, per kg of virgin biomass and on the total generated output, respectively. CONCLUSIONS The use of fed-batch strategies for the growth of B. succiniciproducens on A. donax improved the titer and productivity of succinic acid on pre-pilot scale. Process evaluation through material flow analysis showed successful results and predicted a yield of succinic acid of about 30% in a fed-batch process that uses A. donax as only carbon source also in the feed. Preliminary considerations on the possibility to achieve an energetic valorization of the residual solid coming from the fermentation process were also carried out.
Collapse
Affiliation(s)
- Donatella Cimini
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| | - Lucio Zaccariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania L. Vanvitelli, Via Vivaldi 43, 81100 Caserta, Italy
| | - Sergio D’Ambrosio
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| | - Licia Lama
- Institute of Biomolecular Chemistry (ICB), National Research Council, Via Campi Flegrei, 34, 80078 Pozzuoli, Naples Italy
| | - Giovanna Ruoppolo
- Istituto di Ricerche sulla Combustione (IRC), National Research Council, Piazzale Tecchio 80, 80125 Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici, Naples Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Naples, Italy
| | - Chiara Schiraldi
- Department of Experimental Medicine, University of Campania L. Vanvitelli, Via de Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
23
|
Luthfi AAI, Tan JP, Harun S, Manaf SFA, Jahim JM. Homogeneous solid dispersion (HSD) system for rapid and stable production of succinic acid from lignocellulosic hydrolysate. Bioprocess Biosyst Eng 2018; 42:117-130. [DOI: 10.1007/s00449-018-2019-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/23/2018] [Indexed: 01/22/2023]
|
24
|
Ladakis D, Michailidi K, Vlysidis A, Koutinas A, Kookos IK. Valorization of spent sulphite liquor for succinic acid production via continuous fermentation system. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.05.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Pereira B, Miguel J, Vilaça P, Soares S, Rocha I, Carneiro S. Reconstruction of a genome-scale metabolic model for Actinobacillus succinogenes 130Z. BMC SYSTEMS BIOLOGY 2018; 12:61. [PMID: 29843739 PMCID: PMC5975692 DOI: 10.1186/s12918-018-0585-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/14/2018] [Indexed: 12/23/2022]
Abstract
BACKGROUND Actinobacillus succinogenes is a promising bacterial catalyst for the bioproduction of succinic acid from low-cost raw materials. In this work, a genome-scale metabolic model was reconstructed and used to assess the metabolic capabilities of this microorganism under producing conditions. RESULTS The model, iBP722, was reconstructed based on the functional reannotation of the complete genome sequence of A. succinogenes 130Z and manual inspection of metabolic pathways, covering 1072 enzymatic reactions associated with 722 metabolic genes that involve 713 metabolites. The highly curated model was effective in capturing the growth of A. succinogenes on various carbon sources, as well as the SA production under various growth conditions with fair agreement between experimental and predicted data. Calculated flux distributions under different conditions show that a number of metabolic pathways are affected by the activity of some metabolic enzymes at key nodes in metabolism, including the transport mechanism of carbon sources and the ability to fix carbon dioxide. CONCLUSIONS The established genome-scale metabolic model can be used for model-driven strain design and medium alteration to improve succinic acid yields.
Collapse
Affiliation(s)
- Bruno Pereira
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Joana Miguel
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Paulo Vilaça
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Simão Soares
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| | - Isabel Rocha
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), Oeiras, Portugal
| | - Sónia Carneiro
- SilicoLife Lda, Rua do Canastreiro 15, 4715-387 Braga, Portugal
| |
Collapse
|
26
|
Mao Y, Li G, Chang Z, Tao R, Cui Z, Wang Z, Tang YJ, Chen T, Zhao X. Metabolic engineering of Corynebacterium glutamicum for efficient production of succinate from lignocellulosic hydrolysate. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:95. [PMID: 29636817 PMCID: PMC5883316 DOI: 10.1186/s13068-018-1094-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 03/24/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Succinate has been recognized as one of the most important bio-based building block chemicals due to its numerous potential applications. However, efficient methods for the production of succinate from lignocellulosic feedstock were rarely reported. Nevertheless, Corynebacterium glutamicum was engineered to efficiently produce succinate from glucose in our previous study. RESULTS In this work, C. glutamicum was engineered for efficient succinate production from lignocellulosic hydrolysate. First, xylose utilization of C. glutamicum was optimized by heterologous expression of xylA and xylB genes from different sources. Next, xylA and xylB from Xanthomonas campestris were selected among four candidates to accelerate xylose consumption and cell growth. Subsequently, the optimal xylA and xylB were co-expressed in C. glutamicum strain SAZ3 (ΔldhAΔptaΔpqoΔcatPsod-ppcPsod-pyc) along with genes encoding pyruvate carboxylase, citrate synthase, and a succinate exporter to achieve succinate production from xylose in a two-stage fermentation process. Xylose utilization and succinate production were further improved by overexpressing the endogenous tkt and tal genes and introducing araE from Bacillus subtilis. The final strain C. glutamicum CGS5 showed an excellent ability to produce succinate in two-stage fermentations by co-utilizing a glucose-xylose mixture under anaerobic conditions. A succinate titer of 98.6 g L-1 was produced from corn stalk hydrolysate with a yield of 0.87 g/g total substrates and a productivity of 4.29 g L-1 h-1 during the anaerobic stage. CONCLUSION This work introduces an efficient process for the bioconversion of biomass into succinate using a thoroughly engineered strain of C. glutamicum. To the best of our knowledge, this is the highest titer of succinate produced from non-food lignocellulosic feedstock, which highlights that the biosafety level 1 microorganism C. glutamicum is a promising platform for the envisioned lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Yufeng Mao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Guiying Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Zhishuai Chang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Ran Tao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Zhenzhen Cui
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Zhiwen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Ya-jie Tang
- Key Laboratory of Fermentation Engineering, Ministry of Education, Hubei University of Technology, Wuhan, 430068 China
| | - Tao Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| | - Xueming Zhao
- Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 China
| |
Collapse
|
27
|
Li C, Gao S, Li X, Yang X, Lin CSK. Efficient metabolic evolution of engineered Yarrowia lipolytica for succinic acid production using a glucose-based medium in an in situ fibrous bioreactor under low-pH condition. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:236. [PMID: 30181775 PMCID: PMC6116362 DOI: 10.1186/s13068-018-1233-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/22/2018] [Indexed: 05/02/2023]
Abstract
BACKGROUND Alkali used for pH control during fermentation and acidification for downstream recovery of succinic acid (SA) are the two largest cost contributors for bio-based SA production. To promote the commercialization process of fermentative SA, the development of industrially important microorganisms that can tolerate low pH has emerged as a crucial issue. RESULTS In this study, an in situ fibrous bed bioreactor (isFBB) was employed for the metabolic evolution for selection of Y. lipolytica strain that can produce SA at low pH using glucose-based medium. An evolved strain named Y. lipolytica PSA3.0 that could produce SA with a titer of 19.3 g/L, productivity of 0.52 g/L/h, and yield of 0.29 g/g at pH 3.0 from YPD was achieved. The enzyme activity analysis demonstrated that the pathway from pyruvate to acetate was partially blocked in Y. lipolytica PSA3.0 after the evolution, which is beneficial to cell growth and SA production at low pH. When free-cell batch fermentations were performed using the parent and evolved strains separately, the evolved strain PSA3.0 produced 18.4 g/L SA with a yield of 0.23 g/g at pH 3.0. Although these values were lower than that obtained by the parent strain PSA02004 at its optimal pH 6.0, which were 25.2 g/L and 0.31 g/g, respectively, they were 4.8 and 4.6 times higher than that achieved by PSA02004 at pH 3.0. By fed-batch fermentation, the resultant SA titer of 76.8 g/L was obtained, which is the highest value that ever achieved from glucose-based medium at low pH, to date. When using mixed food waste (MFW) hydrolysate as substrate, 18.9 g/L SA was produced with an SA yield of 0.38 g/g, which demonstrates the feasibility of using low-cost glucose-based hydrolysate for SA production by Y. lipolytica in a low-pH environment. CONCLUSIONS This study presents an effective and efficient strategy for the evolution of Y. lipolytica for SA production under low-pH condition for the first time. The isFBB was demonstrated to improve the metabolic evolution efficiency of Y. lipolytica to the acidic condition. Moreover, the acetate accumulation was found to be the major reason for the inhibition of SA production at low pH by Y. lipolytica, which suggested the direction for further metabolic modification of the strain for improved SA production. Furthermore, the evolved strain Y. lipolytica PSA3.0 was demonstrated to utilize glucose-rich hydrolysate from MFW for fermentative SA production at low pH. Similarly, Y. lipolytica PSA3.0 is expected to utilize the glucose-rich hydrolysate generated from other carbohydrate-rich waste streams for SA production. This study paves the way for the commercialization of bio-based SA and contributes to the sustainable development of a green economy.
Collapse
Affiliation(s)
- Chong Li
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
- Agricultural Genomic Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120 Guangdong People’s Republic of China
| | - Shi Gao
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006 People’s Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
28
|
Dong W, Xue M, Zhang Y, Xin F, Wei C, Zhang W, Wu H, Ma J, Jiang M. Characterization of a β-glucosidase from Paenibacillus species and its application for succinic acid production from sugarcane bagasse hydrolysate. BIORESOURCE TECHNOLOGY 2017; 241:309-316. [PMID: 28577479 DOI: 10.1016/j.biortech.2017.05.141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 05/20/2017] [Accepted: 05/22/2017] [Indexed: 06/07/2023]
Abstract
In this study, a β-glucosidase from Paenibacillus sp. M1 was expressed in E. coli BL21(DE3), purified and characterized. The specific activity of purified BglA was 137.64U·mg-1 protein with optimal temperature and pH of 50°C and 6.0. Furthermore, BglA shows excellent adaption to various environmental factors such as temperature, pH and metal ions. Engineered E. coli Suc260 was further reconstructed by overexpressing the β-glucosidase for achieving direct cellobiose utilization, which could efficiently utilize the pretreated sugarcane bagasses hydrolysate (SBH) consisting of 25.30g·L-1 cellobiose, 9.70g·L-1 glucose, 5.90g·L-1 arabinose and 7.10g·L-1 xylose. As a result, 26.50g·L-1 and 24.30g·L-1 succinic acid were produced by strain Suc260(pTbglA) from cellobiose and SBH with corresponding yields of 88.30% and 89.20% using dual-phase fermentation, respectively. This study indicated that incomplete enzymatic hydrolysate of SCB will be a potential feedstock for succinic acid production.
Collapse
Affiliation(s)
- Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Menglei Xue
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Yue Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Fengxue Xin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Ce Wei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Wenming Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Hao Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Jiangfeng Ma
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China
| | - Min Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China; Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, Nanjing 211800, PR China.
| |
Collapse
|
29
|
Vardon DR, Settle AE, Vorotnikov V, Menart MJ, Eaton TR, Unocic KA, Steirer KX, Wood KN, Cleveland NS, Moyer KE, Michener WE, Beckham GT. Ru-Sn/AC for the Aqueous-Phase Reduction of Succinic Acid to 1,4-Butanediol under Continuous Process Conditions. ACS Catal 2017. [DOI: 10.1021/acscatal.7b02015] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Derek R. Vardon
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Amy E. Settle
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Vassili Vorotnikov
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Martin J. Menart
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Todd R. Eaton
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Kinga A. Unocic
- Materials
Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - K. Xerxes Steirer
- Interfacial
and Surface Science, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Kevin N. Wood
- Interfacial
and Surface Science, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Nicholas S. Cleveland
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Kathleen E. Moyer
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - William E. Michener
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| | - Gregg T. Beckham
- National
Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401, United States
| |
Collapse
|
30
|
Ferone M, Raganati F, Olivieri G, Salatino P, Marzocchella A. Biosuccinic Acid from Lignocellulosic-Based Hexoses and Pentoses by Actinobacillus succinogenes: Characterization of the Conversion Process. Appl Biochem Biotechnol 2017; 183:1465-1477. [DOI: 10.1007/s12010-017-2514-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 05/12/2017] [Indexed: 11/27/2022]
|
31
|
Ravikumar S, Baylon MG, Park SJ, Choi JI. Engineered microbial biosensors based on bacterial two-component systems as synthetic biotechnology platforms in bioremediation and biorefinery. Microb Cell Fact 2017; 16:62. [PMID: 28410609 PMCID: PMC5391612 DOI: 10.1186/s12934-017-0675-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 04/04/2017] [Indexed: 12/30/2022] Open
Abstract
Two-component regulatory systems (TCRSs) mediate cellular response by coupling sensing and regulatory mechanisms. TCRSs are comprised of a histidine kinase (HK), which serves as a sensor, and a response regulator, which regulates expression of the effector gene after being phosphorylated by HK. Using these attributes, bacterial TCRSs can be engineered to design microbial systems for different applications. This review focuses on the current advances in TCRS-based biosensors and on the design of microbial systems for bioremediation and their potential application in biorefinery.
Collapse
Affiliation(s)
- Sambandam Ravikumar
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea
| | - Mary Grace Baylon
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| | - Jong-Il Choi
- Biomolecules Engineering Lab, Department of Biotechnology and Bioengineering, Chonnam National University, 77 Yongbong-ro, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
32
|
Dugmore TIJ, Clark JH, Bustamante J, Houghton JA, Matharu AS. Valorisation of Biowastes for the Production of Green Materials Using Chemical Methods. Top Curr Chem (Cham) 2017; 375:46. [PMID: 28374283 PMCID: PMC5396386 DOI: 10.1007/s41061-017-0133-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/20/2017] [Indexed: 10/27/2022]
Abstract
With crude oil reserves dwindling, the hunt for a sustainable alternative feedstock for fuels and materials for our society continues to expand. The biorefinery concept has enjoyed both a surge in popularity and also vocal opposition to the idea of diverting food-grade land and crops for this purpose. The idea of using the inevitable wastes arising from biomass processing, particularly farming and food production, is, therefore, gaining more attention as the feedstock for the biorefinery. For the three main components of biomass-carbohydrates, lipids, and proteins-there are long-established processes for using some of these by-products. However, the recent advances in chemical technologies are expanding both the feedstocks available for processing and the products that be obtained. Herein, this review presents some of the more recent developments in processing these molecules for green materials, as well as case studies that bring these technologies and materials together into final products for applied usage.
Collapse
Affiliation(s)
- Thomas I J Dugmore
- Green Chemistry Centre of Excellence, University of York, York, North Yorkshire, YO10 5DD, UK.
| | - James H Clark
- Green Chemistry Centre of Excellence, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Julen Bustamante
- Green Chemistry Centre of Excellence, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Joseph A Houghton
- Green Chemistry Centre of Excellence, University of York, York, North Yorkshire, YO10 5DD, UK
| | - Avtar S Matharu
- Green Chemistry Centre of Excellence, University of York, York, North Yorkshire, YO10 5DD, UK
| |
Collapse
|
33
|
Biotechnological route for sustainable succinate production utilizing oil palm frond and kenaf as potential carbon sources. Appl Microbiol Biotechnol 2017; 101:3055-3075. [PMID: 28280869 DOI: 10.1007/s00253-017-8210-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 10/20/2022]
Abstract
Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
Collapse
|
34
|
Indera Luthfi AA, Jahim JM, Harun S, Tan JP, Mohammad AW. Potential use of coconut shell activated carbon as an immobilisation carrier for high conversion of succinic acid from oil palm frond hydrolysate. RSC Adv 2017. [DOI: 10.1039/c7ra09413b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Coconut shell activated carbon (CSAC) presented excellent physicochemical characteristics for efficient conversion of oil palm frond (OPF) into succinic acid.
Collapse
Affiliation(s)
- Abdullah Amru Indera Luthfi
- Department of Chemical and Process Engineering
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| | - Jamaliah Md Jahim
- Research Centre for Sustainable Process Technology (CESPRO)
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| | - Shuhaida Harun
- Research Centre for Sustainable Process Technology (CESPRO)
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| | - Jian Ping Tan
- Department of Chemical and Process Engineering
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| | - Abdul Wahab Mohammad
- Research Centre for Sustainable Process Technology (CESPRO)
- Faculty of Engineering and Built Environment
- Universiti Kebangsaan Malaysia
- Malaysia
| |
Collapse
|
35
|
Cimini D, Argenzio O, D'Ambrosio S, Lama L, Finore I, Finamore R, Pepe O, Faraco V, Schiraldi C. Production of succinic acid from Basfia succiniciproducens up to the pilot scale from Arundo donax hydrolysate. BIORESOURCE TECHNOLOGY 2016; 222:355-360. [PMID: 27741473 DOI: 10.1016/j.biortech.2016.10.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 05/03/2023]
Abstract
In the present work the recently isolated strain Basfia succiniciproducens BPP7 was evaluated for the production of succinic acid up to the pilot fermentation scale in separate hydrolysis and fermentation experiments on Arundo donax, a non-food dedicated energy crop. An average concentration of about 17g/L of succinic acid and a yield on consumed sugars of 0.75mol/mol were obtained demonstrating strain potential for further process improvement. Small scale experiments indicated that the concentration of acetic acid in the medium is crucial to improve productivity; on the other hand, interestingly, short-term (24h) adaptation to higher acetic acid concentrations, and strain recovery, were also observed.
Collapse
Affiliation(s)
- Donatella Cimini
- Second University of Naples, Department of Experimental Medicine, Via de Crecchio 7, 80138 Naples, Italy.
| | - Ottavia Argenzio
- Second University of Naples, Department of Experimental Medicine, Via de Crecchio 7, 80138 Naples, Italy
| | - Sergio D'Ambrosio
- Second University of Naples, Department of Experimental Medicine, Via de Crecchio 7, 80138 Naples, Italy
| | - Licia Lama
- National Research Council, Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Ilaria Finore
- National Research Council, Institute of Biomolecular Chemistry (ICB), Via Campi Flegrei 34, 80078 Pozzuoli, Naples, Italy
| | - Rosario Finamore
- Second University of Naples, Department of Experimental Medicine, Via de Crecchio 7, 80138 Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Via Università 100, 80055 Portici (Naples), Italy
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cinthia, 4, 80126 Naples, Italy
| | - Chiara Schiraldi
- Second University of Naples, Department of Experimental Medicine, Via de Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
36
|
Pleissner D, Qi Q, Gao C, Rivero CP, Webb C, Lin CSK, Venus J. Valorization of organic residues for the production of added value chemicals: A contribution to the bio-based economy. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2015.12.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Pateraki C, Patsalou M, Vlysidis A, Kopsahelis N, Webb C, Koutinas AA, Koutinas M. Actinobacillus succinogenes : Advances on succinic acid production and prospects for development of integrated biorefineries. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.005] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
38
|
Salvachúa D, Smith H, St John PC, Mohagheghi A, Peterson DJ, Black BA, Dowe N, Beckham GT. Succinic acid production from lignocellulosic hydrolysate by Basfia succiniciproducens. BIORESOURCE TECHNOLOGY 2016; 214:558-566. [PMID: 27179951 DOI: 10.1016/j.biortech.2016.05.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 05/03/2023]
Abstract
The production of chemicals alongside fuels will be essential to enhance the feasibility of lignocellulosic biorefineries. Succinic acid (SA), a naturally occurring C4-diacid, is a primary intermediate of the tricarboxylic acid cycle and a promising building block chemical that has received significant industrial attention. Basfia succiniciproducens is a relatively unexplored SA-producing bacterium with advantageous features such as broad substrate utilization, genetic tractability, and facultative anaerobic metabolism. Here B. succiniciproducens is evaluated in high xylose-content hydrolysates from corn stover and different synthetic media in batch fermentation. SA titers in hydrolysate at an initial sugar concentration of 60g/L reached up to 30g/L, with metabolic yields of 0.69g/g, and an overall productivity of 0.43g/L/h. These results demonstrate that B. succiniciproducens may be an attractive platform organism for bio-SA production from biomass hydrolysates.
Collapse
Affiliation(s)
- Davinia Salvachúa
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Holly Smith
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Peter C St John
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Ali Mohagheghi
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Darren J Peterson
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Brenna A Black
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Nancy Dowe
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA
| | - Gregg T Beckham
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA.
| |
Collapse
|
39
|
Zhao Y, Cao W, Wang Z, Zhang B, Chen K, Ouyang P. Enhanced succinic acid production from corncob hydrolysate by microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2016; 202:152-157. [PMID: 26708482 DOI: 10.1016/j.biortech.2015.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 11/29/2015] [Accepted: 12/09/2015] [Indexed: 06/05/2023]
Abstract
In this study, Actinobacillus succinogenes NJ113 microbial electrolysis cells (MECs) were used to enhance the reducing power responsible for succinic acid production from corncob hydrolysate. During corncob hydrolysate fermentation, electric MECs resulted in a 1.31-fold increase in succinic acid production and a 1.33-fold increase in the reducing power compared with those in non-electric MECs. When the hydrolysate was detoxified by combining Ca(OH)2, NaOH, and activated carbon, succinic acid production increased from 3.47 to 6.95 g/l. Using a constant potential of -1.8 V further increased succinic acid production to 7.18 g/l. A total of 18.09 g/l of succinic acid and a yield of 0.60 g/g total sugar were obtained after a 60-h fermentation when NaOH was used as a pH regulator. The improved succinic acid yield from corncob hydrolysate fermentation using A. succinogenes NJ113 in electric MECs demonstrates the great potential of using biomass as a feedstock to cost-effectively produce succinate.
Collapse
Affiliation(s)
- Yan Zhao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Weijia Cao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Zhen Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Bowen Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| | - Kequan Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China.
| | - Pingkai Ouyang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, People's Republic of China
| |
Collapse
|
40
|
Pretreatment of Dried Distiller Grains with Solubles by Soaking in Aqueous Ammonia and Subsequent Enzymatic/Dilute Acid Hydrolysis to Produce Fermentable Sugars. Appl Biochem Biotechnol 2016; 179:237-50. [DOI: 10.1007/s12010-016-1990-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/12/2016] [Indexed: 10/22/2022]
|
41
|
Kumar A, Gautam A, Dutt D. Biotechnological Transformation of Lignocellulosic Biomass in to Industrial Products: An Overview. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/abb.2016.73014] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Salvachúa D, Mohagheghi A, Smith H, Bradfield MFA, Nicol W, Black BA, Biddy MJ, Dowe N, Beckham GT. Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:28. [PMID: 26839591 PMCID: PMC4736274 DOI: 10.1186/s13068-016-0425-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/05/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Co-production of chemicals from lignocellulosic biomass alongside fuels holds promise for improving the economic outlook of integrated biorefineries. In current biochemical conversion processes that use thermochemical pretreatment and enzymatic hydrolysis, fractionation of hemicellulose-derived and cellulose-derived sugar streams is possible using hydrothermal or dilute acid pretreatment (DAP), which then offers a route to parallel trains for fuel and chemical production from xylose- and glucose-enriched streams. Succinic acid (SA) is a co-product of particular interest in biorefineries because it could potentially displace petroleum-derived chemicals and polymer precursors for myriad applications. However, SA production from biomass-derived hydrolysates has not yet been fully explored or developed. RESULTS Here, we employ Actinobacillus succinogenes 130Z to produce succinate in batch fermentations from various substrates including (1) pure sugars to quantify substrate inhibition, (2) from mock hydrolysates similar to those from DAP containing single putative inhibitors, and (3) using the hydrolysate derived from two pilot-scale pretreatments: first, a mild alkaline wash (deacetylation) followed by DAP, and secondly a single DAP step, both with corn stover. These latter streams are both rich in xylose and contain different levels of inhibitors such as acetate, sugar dehydration products (furfural, 5-hydroxymethylfurfural), and lignin-derived products (ferulate, p-coumarate). In batch fermentations, we quantify succinate and co-product (acetate and formate) titers as well as succinate yields and productivities. We demonstrate yields of 0.74 g succinate/g sugars and 42.8 g/L succinate from deacetylated DAP hydrolysate, achieving maximum productivities of up to 1.27 g/L-h. Moreover, A. succinogenes is shown to detoxify furfural via reduction to furfuryl alcohol, although an initial lag in succinate production is observed when furans are present. Acetate seems to be the main inhibitor for this bacterium present in biomass hydrolysates. CONCLUSION Overall, these results demonstrate that biomass-derived, xylose-enriched hydrolysates result in similar yields and titers but lower productivities compared to clean sugar streams, which can likely be improved via fermentation process developments and metabolic engineering. Overall, this study comprehensively examines the behavior of A. succinogenes on xylose-enriched hydrolysates on an industrially relevant, lignocellulosic feedstock, which will pave the way for future work toward eventual SA production in an integrated biorefinery.
Collapse
Affiliation(s)
- Davinia Salvachúa
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Ali Mohagheghi
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Holly Smith
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | | | - Willie Nicol
- />Department of Chemical Engineering, University of Pretoria, Pretoria, South Africa
| | - Brenna A. Black
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Mary J. Biddy
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Nancy Dowe
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| | - Gregg T. Beckham
- />National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401 USA
| |
Collapse
|
43
|
Chatzifragkou A, Kosik O, Prabhakumari PC, Lovegrove A, Frazier RA, Shewry PR, Charalampopoulos D. Biorefinery strategies for upgrading Distillers’ Dried Grains with Solubles (DDGS). Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
44
|
Bradfield MFA, Nicol W. Continuous succinic acid production from xylose by Actinobacillus succinogenes. Bioprocess Biosyst Eng 2015; 39:233-44. [PMID: 26610345 DOI: 10.1007/s00449-015-1507-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 11/14/2015] [Indexed: 11/28/2022]
Abstract
Continuous, anaerobic fermentations of D-xylose were performed by Actinobacillus succinogenes 130Z in a custom, biofilm reactor at dilution rates of 0.05, 0.10 and 0.30 h(-1). Succinic acid yields on xylose (0.55-0.68 g g(-1)), titres (10.9-29.4 g L(-1)) and productivities (1.5-3.4 g L(-1) h(-1)) were lower than those of a previous study on glucose, but product ratios (succinic acid/acetic acid = 3.0-5.0 g g(-1)) and carbohydrate consumption rates were similar. Also, mass balance closures on xylose were up to 18.2 % lower than those on glucose. A modified HPLC method revealed pyruvic acid excretion at appreciable concentrations (1.2-1.9 g L(-1)) which improved the mass balance closure by up to 16.8 %. Furthermore, redox balances based on the accounted xylose consumed and the excreted metabolites, indicated an overproduction of reducing power. The oxidative pentose phosphate pathway was shown to be a plausible source of the additional reducing power.
Collapse
Affiliation(s)
- Michael F A Bradfield
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.
| | - Willie Nicol
- Department of Chemical Engineering, University of Pretoria, Lynnwood Road, Hatfield, Pretoria, 0002, South Africa.
| |
Collapse
|
45
|
Sirén H. Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Data Brief 2015; 5:194-202. [PMID: 26543881 PMCID: PMC4589829 DOI: 10.1016/j.dib.2015.08.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 08/25/2015] [Accepted: 08/25/2015] [Indexed: 11/24/2022] Open
Abstract
Organic acids are used for starting compounds in material sciences and in biorefinery, food, fuel, pharmaceutical, and medical industry. Here, we provide the data from a biochemical approach made to investigate production of organic acids and isolation of metals from wood, which is the most abundant biomass. Spruce and bark, phloem, and heartwood from pine were fermented with either microbes of oyster mushroom (Pleurotus ostreatus), baker's yeast, or lactic acid bacteria to improve selective fermentation. Using capillary electrophoresis and liquid chromatography techniques, we identified 14 different organic acids and phenolic acids with good yields. With inductively coupled plasma atomic emission spectroscopy 11 metals were quantified and further detailed analysis/results from these data are available in Sirén et al. (2015) [1].
Collapse
Affiliation(s)
- Heli Sirén
- Department of Chemistry, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
46
|
Sirén H, Riikonen P, Yang G, Petton A, Paarvio A, Böke N. Hydrophilic compounds in liquids of enzymatic hydrolyzed spruce and pine biomass. Anal Biochem 2015; 485:86-96. [DOI: 10.1016/j.ab.2015.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 06/02/2015] [Accepted: 06/03/2015] [Indexed: 10/23/2022]
|
47
|
Li Q, Xing J. Microbial Succinic Acid Production Using Different Bacteria Species. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
48
|
Wang H, Pan J, Wang J, Wang N, Zhang J, Li Q, Wang D, Zhou X. Succinic acid production from xylose mother liquor by recombinant Escherichia coli strain. BIOTECHNOL BIOTEC EQ 2014; 28:1042-1049. [PMID: 26019590 PMCID: PMC4433926 DOI: 10.1080/13102818.2014.952501] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Accepted: 06/30/2014] [Indexed: 01/25/2023] Open
Abstract
Succinic acid (1,4-butanedioic acid) is identified as one of important building-block chemicals. Xylose mother liquor is an abundant industrial residue in xylitol biorefining industry. In this study, xylose mother liquor was utilized to produce succinic acid by recombinant Escherichia coli strain SD121, and the response surface methodology was used to optimize the fermentation media. The optimal conditions of succinic acid fermentation were as follows: 82.62 g L−1 total initial sugars, 42.27 g L−1 MgCO3 and 17.84 g L−1 yeast extract. The maximum production of succinic acid was 52.09 ± 0.21 g L−1 after 84 h with a yield of 0.63 ± 0.03 g g−1 total sugar, approaching the predicted value (53.18 g L−1). It was 1.78-fold of the production of that obtained with the basic medium. This was the first report on succinic acid production from xylose mother liquor by recombinant E. coli strains with media optimization using response surface methodology. This work suggested that the xylose mother liquor could be an alternative substrate for the economical production of succinic acid by recombinant E. coli strains.
Collapse
Affiliation(s)
- Honghui Wang
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| | - Jiachuan Pan
- Department of Biomedical and Chemical Engineering, Syracuse University , Syracuse, NY 13244 , USA
| | - Jing Wang
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| | - Nan Wang
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| | - Jie Zhang
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| | - Qiang Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , China
| | - Dan Wang
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| | - Xiaohua Zhou
- College of Chemistry and Chemical Engineering, Chongqing University , Chongqing 400044 , China
| |
Collapse
|
49
|
Tan JP, Md. Jahim J, Wu TY, Harun S, Kim BH, Mohammad AW. Insight into Biomass as a Renewable Carbon Source for the Production of Succinic Acid and the Factors Affecting the Metabolic Flux toward Higher Succinate Yield. Ind Eng Chem Res 2014. [DOI: 10.1021/ie502178j] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Ta Yeong Wu
- Chemical
Engineering Discipline, School of Engineering, Monash University, Jalan
Lagoon Selatan, Bandar Sunway, 46150, Selangor Darul Ehsan, Malaysia
| | | | | | | |
Collapse
|
50
|
Kong X, Qi H, Curtis JM. Synthesis and characterization of high-molecular weight aliphatic polyesters from monomers derived from renewable resources. J Appl Polym Sci 2014. [DOI: 10.1002/app.40579] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaohua Kong
- Department of Agricultural Food and Nutritional Science, Lipid Chemistry Group, 4-10 Agriculture/Forestry Centre; University of Alberta; Edmonton Alberta Canada T6G 2P5
- Bio-Industrial Opportunity Branch, Alberta Agriculture and Rural Development; Agri-Food Discovery Place Building; Edmonton Alberta Canada T6H 2V8
| | - Hong Qi
- Bio-Industrial Opportunity Branch, Alberta Agriculture and Rural Development; Agri-Food Discovery Place Building; Edmonton Alberta Canada T6H 2V8
| | - Jonathan M. Curtis
- Department of Agricultural Food and Nutritional Science, Lipid Chemistry Group, 4-10 Agriculture/Forestry Centre; University of Alberta; Edmonton Alberta Canada T6G 2P5
| |
Collapse
|