1
|
Dymond MK. A Membrane Biophysics Perspective on the Mechanism of Alcohol Toxicity. Chem Res Toxicol 2023. [PMID: 37186813 DOI: 10.1021/acs.chemrestox.3c00039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Motivations for understanding the underlying mechanisms of alcohol toxicity range from economical to toxicological and clinical. On the one hand, acute alcohol toxicity limits biofuel yields, and on the other hand, acute alcohol toxicity provides a vital defense mechanism to prevent the spread of disease. Herein the role that stored curvature elastic energy (SCE) in biological membranes might play in alcohol toxicity is discussed, for both short and long-chain alcohols. Structure-toxicity relationships for alcohols ranging from methanol to hexadecanol are collated, and estimates of alcohol toxicity per alcohol molecule in the cell membrane are made. The latter reveal a minimum toxicity value per molecule around butanol before alcohol toxicity per molecule increases to a maximum around decanol and subsequently decreases again. The impact of alcohol molecules on the lamellar to inverse hexagonal phase transition temperature (TH) is then presented and used as a metric to assess the impact of alcohol molecules on SCE. This approach suggests the nonmonotonic relationship between alcohol toxicity and chain length is consistent with SCE being a target of alcohol toxicity. Finally, in vivo evidence for SCE-driven adaptations to alcohol toxicity in the literature are discussed.
Collapse
Affiliation(s)
- Marcus K Dymond
- Chemistry Research and Enterprise Group, University of Brighton, Huxley Building, Lewes Road, Brighton BN2 4GJ, United Kingdom
| |
Collapse
|
2
|
Terasaki M, Inoue A, Kanamoto E, Yoshida S, Yamada M, Toda H, Nishida H. Co-cultivation of sake yeast and Kocuria isolates from the sake brewing process. FEMS Microbiol Lett 2021; 368:6280977. [PMID: 34021569 DOI: 10.1093/femsle/fnab053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/19/2021] [Indexed: 02/01/2023] Open
Abstract
Kocuria isolates collected from the sake brewing process have inhabited the Narimasa Sake Brewery in Toyama, Japan. To investigate the effect of these actinobacterial isolates on the growth and metabolism of sake yeast, co-cultivation of sake yeast and Kocuria isolates was performed in a medium containing tryptone, glucose and yeast extract (TGY), and a solution containing koji (steamed rice covered with Aspergillus oryzae) and glucose. In the TGY medium, the ethanol concentration and the number of living cells of each microorganism were measured. In the koji solution, the concentrations of ethanol and organic acids (citric acid, lactic acid and succinic acid) were measured. The results showed that in TGY media, the growth of each Kocuria isolate in the co-culture of the two Kocuria isolates was similar to that in each monoculture. However, the growth of both Kocuria isolates was inhibited in the co-cultures of sake yeast and Kocuria isolates. On the other hand, the growth and ethanol productivity of sake yeast did not differ between its monoculture and co-cultures with Kocuria isolates. In the koji solution, Kocuria isolates TGY1120_3 and TGY1127_2 affected the concentrations of ethanol and lactic acid, respectively. Thus, Kocuria isolates affected the microbial metabolism, but the effects were not identical between the two isolates. This strongly suggests that bacteria inhabiting a sake brewery may influence the flavor and taste of sake products of the brewery.
Collapse
Affiliation(s)
- Momoka Terasaki
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Airu Inoue
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Emi Kanamoto
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Saki Yoshida
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masato Yamada
- Narimasa Sake Brewery, 418 Tachi, Nanto, Toyama 939-1676, Japan
| | - Hiroshi Toda
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Hiromi Nishida
- Graduate School of Engineering and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
3
|
Terasaki M, Kimura Y, Yamada M, Nishida H. Genomic information of Kocuria isolates from sake brewing process. AIMS Microbiol 2021; 7:114-123. [PMID: 33659772 PMCID: PMC7921380 DOI: 10.3934/microbiol.2021008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/23/2021] [Indexed: 11/18/2022] Open
Abstract
Bacteria belonging to the genus Kocuria were identified as bacteria peculiar to a sake brewery in Toyama, Japan. Comparison of the 16S rRNA gene sequences revealed two groups of Kocuria isolates. Among known species, one group was similar to K. koreensis (Kk type), and the other, K. uropygioeca (Ku type). We determined complete genomic DNA sequences from two isolates, TGY1120_3 and TGY1127_2, which belong to types Kk and Ku, respectively. Comparison of these genomic information showed that these isolates differ at the species level with different genomic characters. Isolate TGY1120_3 comprised one chromosome and three plasmids, and the same transposon coding region was located on two loci on the chromosome and one locus on one plasmid, suggesting that the genetic element may be transferred between the chromosome and plasmid. Isolate TGY1127_2 comprised one chromosome and one plasmid. This plasmid encoded an identical transposase coding region, strongly suggesting that the genetic element may be transferred between these different isolates through plasmids. These four plasmids carried a highly similar region, indicating that they share a common ancestor. Thus, these two isolates may form a community and exchange their genetic information during sake brewing.
Collapse
Affiliation(s)
- Momoka Terasaki
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yukiko Kimura
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Masato Yamada
- Narimasa Sake Brewery, 418 Tachi, Nanto, Toyama 939-1676, Japan
| | - Hiromi Nishida
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
4
|
Nishida H. Sake Brewing and Bacteria Inhabiting Sake Breweries. Front Microbiol 2021; 12:602380. [PMID: 33746911 PMCID: PMC7970033 DOI: 10.3389/fmicb.2021.602380] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/27/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Hiromi Nishida
- Department of Biotechnology, Toyama Prefectural University, Imizu, Japan
| |
Collapse
|
5
|
Whon TW, Kim HS, Bae JW. Complete genome sequence of Kocuria rhizophila BT304, isolated from the small intestine of castrated beef cattle. Gut Pathog 2018; 10:42. [PMID: 30275909 PMCID: PMC6161389 DOI: 10.1186/s13099-018-0270-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/24/2018] [Indexed: 11/17/2022] Open
Abstract
Background Members of the species Kocuria rhizophila, belonging to the family Micrococcaceae in the phylum Actinobacteria, have been isolated from a wide variety of natural sources, such as soil, freshwater, fish gut, and clinical specimens. K. rhizophila is important from an industrial viewpoint, because the bacterium grows rapidly with high cell density and exhibits robustness at various growth conditions. However, the bacterium is an opportunistic pathogen involved in human infections. Here, we sequenced and analyzed the genome of the K. rhizophila strain BT304, isolated from the small intestine of adult castrated beef cattle. Results The genome of K. rhizophila BT304 consisted of a single circular chromosome of 2,763,150 bp with a GC content of 71.2%. The genome contained 2359 coding sequences, 51 tRNA genes, and 9 rRNA genes. Sequence annotations with the RAST server revealed many genes related to amino acid, carbohydrate, and protein metabolism. Moreover, the genome contained genes related to branched chain amino acid biosynthesis and degradation. Analysis of the OrthoANI values revealed that the genome has high similarity (> 97.8%) with other K. rhizophila strains, such as DC2201, FDAARGOS 302, and G2. Comparative genomic analysis further revealed that the antibiotic properties of K. rhizophila vary among the strains. Conclusion The relatively small number of virulence-related genes and the great potential in production of host available nutrients suggest potential application of the BT304 strain as a probiotic in breeding beef cattle. Electronic supplementary material The online version of this article (10.1186/s13099-018-0270-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tae Woong Whon
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Hyun Sik Kim
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| | - Jin-Woo Bae
- Department of Biology and Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447 Republic of Korea
| |
Collapse
|
6
|
Moreno-Andrés J, Acevedo-Merino A, Nebot E. Study of marine bacteria inactivation by photochemical processes: disinfection kinetics and growth modeling after treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:27693-27703. [PMID: 29307073 DOI: 10.1007/s11356-017-1185-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/28/2017] [Indexed: 06/07/2023]
Abstract
The importance of seawater treatment in order to avoid microbiological pollution related to aquaculture or ballast water management has increased during the last few years. Bacterial indicators used for the evaluation of different disinfection treatments are usually related with both waste and drinking water, these standards are not usual microorganisms found in seawater. Thus, it is thought necessary to study the behavior of different marine-specific organisms in regard to improve the disinfection processes in seawater. In this study, three different bacteria have been selected among major groups of bacterial community from marine waters: two water-associated, Roseobacter sp. and Pseudomonas litoralis, and one sediment-associated, Kocuria rhizophila. A kinetic inactivation model together with a post-treatment growth tendency has been obtained after the application of UV-C and UV/H2O2 processes. According to the first kinetic rate constant, different responses were obtained for the different bacterial groups. Once the treatment was applied, modeling of growth curves revealed high recover within the first 3 days after treatment, even when UV/H2O2 was applied. This study introduces a sensitivity index, in which results show different levels of resistance for both treatments, being Roseobacter sp. the most sensitive bacteria, followed by P. litoralis and K. rhizophila.
Collapse
Affiliation(s)
- Javier Moreno-Andrés
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain.
| | - Asunción Acevedo-Merino
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain
| | - Enrique Nebot
- Department of Environmental Technologies, INMAR-Marine Research Institute, University of Cádiz, Campus Universitario Puerto Real, 11510, Puerto Real, Cádiz, Spain
| |
Collapse
|
7
|
Toda H, Koyanagi T, Enomoto T, Itoh N. Characterization of two cryptic plasmids from Kocuria palustris IPUFS-1 and construction of novel Escherichia coli – Kocuria shuttle vector for biocatalysis. J Biosci Bioeng 2017; 124:255-262. [DOI: 10.1016/j.jbiosc.2017.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 03/30/2017] [Accepted: 03/31/2017] [Indexed: 12/12/2022]
|
8
|
Characterization of a novel strain phylogenetically related to Kocuria rhizophila and its chemical modification to improve performance of microbial fuel cells. Biosens Bioelectron 2015; 69:113-20. [DOI: 10.1016/j.bios.2015.02.025] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/02/2015] [Accepted: 02/15/2015] [Indexed: 12/15/2022]
|
9
|
Toda H, Ohuchi T, Imae R, Itoh N. Microbial production of aliphatic (S)-epoxyalkanes by using Rhodococcus sp. strain ST-10 styrene monooxygenase expressed in organic-solvent-tolerant Kocuria rhizophila DC2201. Appl Environ Microbiol 2015; 81:1919-25. [PMID: 25556188 PMCID: PMC4345390 DOI: 10.1128/aem.03405-14] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 12/27/2014] [Indexed: 11/20/2022] Open
Abstract
We describe the development of biocatalysis for producing optically pure straight-chain (S)-epoxyalkanes using styrene monooxygenase of Rhodococcus sp. strain ST-10 (RhSMO). RhSMO was expressed in the organic solvent-tolerant microorganism Kocuria rhizophila DC2201, and the bioconversion reaction was performed in an organic solvent-water biphasic reaction system. The biocatalytic process enantioselectively converted linear terminal alkenes to their corresponding (S)-epoxyalkanes using glucose and molecular oxygen. When 1-heptene and 6-chloro-1-hexene were used as substrates (400 mM) under optimized conditions, 88.3 mM (S)-1,2-epoxyheptane and 246.5 mM (S)-1,2-epoxy-6-chlorohexane, respectively, accumulated in the organic phase with good enantiomeric excess (ee; 84.2 and 95.5%). The biocatalysis showed broad substrate specificity toward various aliphatic alkenes, including functionalized and unfunctionalized alkenes, with good to excellent ee. Here, we demonstrate that this biocatalytic system is environmentally friendly and useful for producing various enantiopure (S)-epoxyalkanes.
Collapse
Affiliation(s)
- Hiroshi Toda
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Takuya Ohuchi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Ryouta Imae
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| | - Nobuya Itoh
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, Kurokawa, Imizu, Toyama, Japan
| |
Collapse
|
10
|
Abstract
We report the draft genome sequence of Kocuria rhizophila P7-4, which was isolated from the intestine of Siganus doliatus caught in the Pacific Ocean. The 2.83-Mb genome sequence consists of 75 large contigs (>100 bp in size) and contains 2,462 predicted protein-coding genes.
Collapse
|
11
|
da Silva TL, Feijão D, Roseiro JC, Reis A. Monitoring Rhodotorula glutinis CCMI 145 physiological response and oil production growing on xylose and glucose using multi-parameter flow cytometry. BIORESOURCE TECHNOLOGY 2011; 102:2998-3006. [PMID: 21030251 DOI: 10.1016/j.biortech.2010.10.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/30/2010] [Accepted: 10/01/2010] [Indexed: 05/30/2023]
Abstract
Flow cytometry was used to monitor the lipid content, viability and intrinsic light scatter properties of Rhodotorula glutinis CCMI 145 cells growing on batch cultures using xylose and glucose as carbon sources. The highest lipid content was observed for cells grown on glucose, at the end of the exponential phase (17.8% w/w). The proportion of cells stained with PI attaining 77% at the end of the glucose growth. Cells growing on xylose produced a maximum lipid content of 10.6% (w/w), at the stationary phase. An increase in the proportion of cells stained with PI was observed, reaching 29% at the end of xylose growth. Changes in the side and forward light scatter detected during the yeast batch cultures supported that R. glutinis cells grown on glucose experienced harsher conditions, resulting in a high level of cytoplasmic membrane damage, which did not occur when R. glutinis cells grew on xylose.
Collapse
Affiliation(s)
- Teresa Lopes da Silva
- Laboratório Nacional de Energia e Geologia (LNEG), Unidade de Bioenergia, Estrada do Paço do Lumiar, Lisboa, Portugal.
| | | | | | | |
Collapse
|
12
|
Radniecki TS, Gilroy CA, Semprini L. Linking NE1545 gene expression with cell volume changes in Nitrosomonas europaea cells exposed to aromatic hydrocarbons. CHEMOSPHERE 2011; 82:514-520. [PMID: 21106218 DOI: 10.1016/j.chemosphere.2010.10.083] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/25/2010] [Accepted: 10/26/2010] [Indexed: 05/30/2023]
Abstract
Nitrosomonas europaea, a model ammonia oxidizing bacterium, was exposed to a wide variety of aromatic hydrocarbons in 3 h batch assays. The expression of NE1545, a phenol sentinel gene involved in fatty acid metabolism, was monitored via quantitative real-time polymerase chain reaction (qRT-PCR) and a Coulter Counter technique was used to monitor changes in cell volume. Decreases in cell volume and NE1545 gene expression correlated strongly with exposure to aromatic hydrocarbons that possessed a single polar group substitution (e.g. phenol and aniline). Aromatic hydrocarbons that contain no polar group substitutions (e.g. toluene) or multiple polar group substitutions (e.g. p-hydroquinone) caused negligible changes in NE1545 expression and cell volume. The oxidation of aromatic hydrocarbons by N. europaea from configurations without a single polar group to one with two polar groups (e.g. p-cresol oxidized to 4-hydroxybenzyl alcohol) and from configurations with no polar groups to one with a single polar group (e.g. ethylbenzene oxidized to 4-ethylphenol) greatly influenced NE1545 gene expression and observed changes in cell volume. Nitrification inhibition in N. europaea by the aromatic hydrocarbons was found to be completely reversible; however, the decreases in cell volume were not reversible suggesting a physical change in cell membrane composition. Ammonia monooxygenase blocking studies showed that the chemical exposure that was responsible for the cell volume decrease and up-regulation in gene expression and not the observed inhibition. N. europaea is the first bacterium shown to experience significant changes in cell volume when exposed to μM concentrations of aromatic hydrocarbons, three orders of magnitude lower than previous studies with other bacteria.
Collapse
|
13
|
Sukovich DJ, Seffernick JL, Richman JE, Gralnick JA, Wackett LP. Widespread head-to-head hydrocarbon biosynthesis in bacteria and role of OleA. Appl Environ Microbiol 2010; 76:3850-62. [PMID: 20418421 PMCID: PMC2893475 DOI: 10.1128/aem.00436-10] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Accepted: 04/13/2010] [Indexed: 11/20/2022] Open
Abstract
Previous studies identified the oleABCD genes involved in head-to-head olefinic hydrocarbon biosynthesis. The present study more fully defined the OleABCD protein families within the thiolase, alpha/beta-hydrolase, AMP-dependent ligase/synthase, and short-chain dehydrogenase superfamilies, respectively. Only 0.1 to 1% of each superfamily represents likely Ole proteins. Sequence analysis based on structural alignments and gene context was used to identify highly likely ole genes. Selected microorganisms from the phyla Verucomicrobia, Planctomyces, Chloroflexi, Proteobacteria, and Actinobacteria were tested experimentally and shown to produce long-chain olefinic hydrocarbons. However, different species from the same genera sometimes lack the ole genes and fail to produce olefinic hydrocarbons. Overall, only 1.9% of 3,558 genomes analyzed showed clear evidence for containing ole genes. The type of olefins produced by different bacteria differed greatly with respect to the number of carbon-carbon double bonds. The greatest number of organisms surveyed biosynthesized a single long-chain olefin, 3,6,9,12,15,19,22,25,28-hentriacontanonaene, that contains nine double bonds. Xanthomonas campestris produced the greatest number of distinct olefin products, 15 compounds ranging in length from C(28) to C(31) and containing one to three double bonds. The type of long-chain product formed was shown to be dependent on the oleA gene in experiments with Shewanella oneidensis MR-1 ole gene deletion mutants containing native or heterologous oleA genes expressed in trans. A strain deleted in oleABCD and containing oleA in trans produced only ketones. Based on these observations, it was proposed that OleA catalyzes a nondecarboxylative thiolytic condensation of fatty acyl chains to generate a beta-ketoacyl intermediate that can decarboxylate spontaneously to generate ketones.
Collapse
Affiliation(s)
- David J. Sukovich
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jennifer L. Seffernick
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jack E. Richman
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Jeffrey A. Gralnick
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| | - Lawrence P. Wackett
- Graduate Program in Microbiology, Immunology, and Cancer Biology, BioTechnology Institute, Department of Biochemistry, Molecular Biology and Biophysics, Department of Microbiology, University of Minnesota, St. Paul, Minnesota 55108
| |
Collapse
|
14
|
Abstract
The soil actinomycete Kocuria rhizophila belongs to the suborder Micrococcineae, a divergent bacterial group for which only a limited amount of genomic information is currently available. K. rhizophila is also important in industrial applications; e.g., it is commonly used as a standard quality control strain for antimicrobial susceptibility testing. Sequencing and annotation of the genome of K. rhizophila DC2201 (NBRC 103217) revealed a single circular chromosome (2,697,540 bp; G+C content of 71.16%) containing 2,357 predicted protein-coding genes. Most of the predicted proteins (87.7%) were orthologous to actinobacterial proteins, and the genome showed fairly good conservation of synteny with taxonomically related actinobacterial genomes. On the other hand, the genome seems to encode much smaller numbers of proteins necessary for secondary metabolism (one each of nonribosomal peptide synthetase and type III polyketide synthase), transcriptional regulation, and lateral gene transfer, reflecting the small genome size. The presence of probable metabolic pathways for the transformation of phenolic compounds generated from the decomposition of plant materials, and the presence of a large number of genes associated with membrane transport, particularly amino acid transporters and drug efflux pumps, may contribute to the organism's utilization of root exudates, as well as the tolerance to various organic compounds.
Collapse
|