1
|
Nguyen AQ, Mohammadi M, Alian M, Muralitharan G, Chauhan VS, Balan V. Exploring the versatility of Porphyridium sp.: A comprehensive review of cultivation, bio-product extraction, purification, and characterization techniques. Biotechnol Adv 2024; 77:108471. [PMID: 39437877 DOI: 10.1016/j.biotechadv.2024.108471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/01/2024] [Accepted: 10/18/2024] [Indexed: 10/25/2024]
Abstract
Interest in red microalgae of the Porphyridium genus has surged due to their richness in phycobiliproteins, polyunsaturated fatty acids, and sulfated polysaccharides. These biomasses and their derivatives find applications across food, feed, nutraceutical, pharmaceutical, and cosmetic industries. A deeper understanding of their properties and extraction methods is essential to optimize downstream processing. This paper comprehensively reviews Porphyridium sp., focusing on cultivation techniques, bioproduct extraction, purification, and characterization. It delves into protein, lipid, and polysaccharide extraction, considering the influence of culture conditions on biomass yield. Various methods like chromatography, electrophoresis, and membrane-based techniques for cell lysis and bioproduct recovery are explored, highlighting their pros and cons. By offering diverse insights, this review aims to inspire innovative research and industry progress in red microalgae biotechnology, contributing to sustainable solutions across sectors.
Collapse
Affiliation(s)
- Anh Quynh Nguyen
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Maedeh Mohammadi
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Mahsa Alian
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA
| | - Gangatharan Muralitharan
- Department of Microbiology, School of Life Sciences, Bharathidasan University, Tiruchirapalli 620024, Tamilnadu, India; National Repository for Microalgae and Cyanobacteria - Freshwater and Marine (NRMC - F & M), Bharathidasan University, Tiruchirappalli 620024, Tamilnadu, India
| | - Vikas Singh Chauhan
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute (CFTRI), Mysuru 570 020, Karnataka, India
| | - Venkatesh Balan
- Department of Engineering Technology, Cullen College of Engineering, Biotechnology Program, University of Houston, Sugar Land, TX 77479, USA.
| |
Collapse
|
2
|
Kovaleski G, Kholany M, Dias LMS, Correia SFH, Ferreira RAS, Coutinho JAP, Ventura SPM. Extraction and purification of phycobiliproteins from algae and their applications. Front Chem 2022; 10:1065355. [PMID: 36531328 PMCID: PMC9752866 DOI: 10.3389/fchem.2022.1065355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/14/2022] [Indexed: 09/02/2023] Open
Abstract
Microalgae, macroalgae and cyanobacteria are photosynthetic microorganisms, prokaryotic or eukaryotic, living in saline or freshwater environments. These have been recognized as valuable carbon sources, able to be used for food, feed, chemicals, and biopharmaceuticals. From the range of valuable compounds produced by these cells, some of the most interesting are the pigments, including chlorophylls, carotenoids, and phycobiliproteins. Phycobiliproteins are photosynthetic light-harvesting and water-soluble proteins. In this work, the downstream processes being applied to recover fluorescent proteins from marine and freshwater biomass are reviewed. The various types of biomasses, namely macroalgae, microalgae, and cyanobacteria, are highlighted and the solvents and techniques applied in the extraction and purification of the fluorescent proteins, as well as their main applications while being fluorescent/luminescent are discussed. In the end, a critical perspective on how the phycobiliproteins business may benefit from the development of cost-effective downstream processes and their integration with the final application demands, namely regarding their stability, will be provided.
Collapse
Affiliation(s)
- Gabriela Kovaleski
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Mariam Kholany
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Lília M. S. Dias
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | | | - Rute A. S. Ferreira
- Department of Physics, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - João A. P. Coutinho
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| | - Sónia P. M. Ventura
- Department of Chemistry, CICECO—Aveiro Institute of Materials, University of Aveiro Campus Universitário de Santiago, Aveiro, Portugal
| |
Collapse
|
3
|
Improvement in the Sequential Extraction of Phycobiliproteins from Arthrospira platensis Using Green Technologies. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111896. [PMID: 36431030 PMCID: PMC9692409 DOI: 10.3390/life12111896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Arthrospira platensis (commercially known as Spirulina) is an excellent source of phycobiliproteins, especially C-phycocyanin. Phycobiliproteins are significant bioactive compounds with useful biological applications. The extraction process plays a significant role in downstream microalga production and utilisation. The important pigments found in A. platensis include chlorophyll and carotenoids as nonpolar pigments and phycobiliproteins as polar pigments. Supercritical fluid extraction (SFE) as a green extraction technology for the high-value metabolites of microalgae has potential for trends in food and human health. The nonpolar bioactive compounds, chlorophyll and carotenoids of A. platensis, were primarily separated using supercritical carbon dioxide (SC-CO2) solvent-free fluid extraction pressure; the temperature and ethanol as cosolvent conditions were compared. The residue from the A. platensis cells was subjected to phycobiliprotein extraction. The phosphate and water extraction of A. platensis SFE residue were compared to evaluate phycobiliprotein extraction. The SFE results exhibited higher pressure (350 bar) and temperature extraction (50 °C) with ethanol-free extraction and increased nonpolar pigment. Phycobiliprotein yield was obtained from A. platensis SFE residue by ethanol-free buffer extraction as a suitable process with antioxidant properties. The C-phycocyanin was isolated and enhanced to 0.7 purity as food grade. This developed method can be used as a guideline and applied as a sustainable process for important pigment extraction from Arthrospira microalgae.
Collapse
|
4
|
do Carmo Cesário C, Soares J, Cossolin JFS, Almeida AVM, Bermudez Sierra JJ, de Oliveira Leite M, Nunes MC, Serrão JE, Martins MA, Dos Reis Coimbra JS. Biochemical and morphological characterization of freshwater microalga Tetradesmus obliquus (Chlorophyta: Chlorophyceae). PROTOPLASMA 2022; 259:937-948. [PMID: 34643788 DOI: 10.1007/s00709-021-01712-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Tetradesmus is a microalgal genus with biotechnological potential due to its rapid production of biomass, which is plenty in proteins, carbohydrates, lipids, and bioactives. However, its morphology and physiology need to be determined to guide better research to optimize the species cultivation and biocompounds processing. Thus, this study describes the biochemistry and morphology of the strain Tetradesmus obliquus BR003, isolated from a sample of freshwater reservoirs in a Brazilian municipality. In the T. obliquus BR003 dry biomass, we identified 61.6% unsaturated fatty acids, and 3.4% saturated fatty acids. Regarding other compounds, 28.50 ± 1.47 g soluble proteins/100 g, 0.14 ± 0.009 g carotenoids/100 g, 0.76 ± 0.013 g chlorophyll a/100 g, and 0.42 ± 0.015 g chlorophyll b/100 g with a chlorophyll a/b ratio of 1.8 were detected. The main chemical elements found were S, Mg, and P. The cells of BR003 were elliptically curved at the ends and without appendages. Histochemical tests showed carbohydrates distributed in the cytoplasm and pyrenoids, some lipid droplets, and proteins. The cytoplasm is rich in vacuoles, rough endoplasmic reticulum, mitochondria, and chloroplasts. The nucleus has a predominance of decondensed chromatin, and the cell wall has three layers. Chloroplasts have many starch granules and may be associated with a spherical central pyrenoid. To the best of our knowledge, this was the first biochemical description combined with ultrastructural morphological characterization of the strain T. obliquus BR003, grown under standard conditions, to demonstrate specific characteristics of the species.
Collapse
Affiliation(s)
| | - Jimmy Soares
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | | | | | | | | - Maria Clara Nunes
- Department of Veterinary Medicine, Universidade Federal de Viçosa, Viçosa, Brazil
| | - José Eduardo Serrão
- Department of General Biology, Universidade Federal de Viçosa, Viçosa, Brazil.
| | - Marcio Arêdes Martins
- Department of Agricultural Engineering, Universidade Federal de Viçosa, Viçosa, Brazil
| | | |
Collapse
|
5
|
Ramu Ganesan A, Kannan M, Karthick Rajan D, Pillay AA, Shanmugam M, Sathishkumar P, Johansen J, Tiwari BK. Phycoerythrin: a pink pigment from red sources (rhodophyta) for a greener biorefining approach to food applications. Crit Rev Food Sci Nutr 2022; 63:10928-10946. [PMID: 35648055 DOI: 10.1080/10408398.2022.2081962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Phycoerythrin (PE) is a photosensitive red pigment from phycobiliprotein family predominantly present in the red algae. The concentration of PE depends on photon flux density (PFD) and the quality of light absorbed by the algae tissue. This necessitates robust techniques to extract PE from the embedded cell-wall matrix of the algal frond. Similarly, PE is sensitive to various factors which influence its stability and purity of PE. The PE is extracted from Red algae through different extraction techniques. This review explores an integrative approach of fractionating PE for the scaling-up process and commercialization. The mechanism for stabilizing PE pigment in food was critically evaluated for further retaining this pigment within the food system. The challenges and possibilities of employing efficient extraction for industrial adoption are meticulously estimated. The techniques involved in the sustainable way of extracting PE pigments improved at a laboratory scale in the past decade. Although, the complexity of industrial-scale biorefining was found to be a bottleneck. The extraction of PE using benign chemicals would be safe for food applications to promote health benefits. The precise selection of encapsulation technique with enhanced sensitivity and selectivity of the membrane would bring better stability of PE in the food matrix.
Collapse
Affiliation(s)
- Abirami Ramu Ganesan
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Mohan Kannan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu, India
| | - Durairaj Karthick Rajan
- Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai, Tamil Nadu, India
| | - Arti A Pillay
- School of Applied Sciences, College of Engineering, Science and Technology (CEST), Fiji National University, Nasinu, Fiji
| | - Munisamy Shanmugam
- Research and Development Division (DSIR- Lab), Aquagri Processing Private Limited, Tamil Nadu, India
| | - Palanivel Sathishkumar
- Department of Biomaterials, Saveetha Dental College and Hospital, SIMATS, Saveetha University, Chennai, Tamil Nadu, India
| | - Johan Johansen
- Division of Food Production and Society, Biomarine Resource Valorisation, Norwegian Institute of Bioeconomy Research, Torggården, Bodø, Norway
| | - Brijesh K Tiwari
- Food Chemistry & Technology, Teagasc Food Research Centre, Dublin, Ireland
- School of Biosystems and Food Engineering, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Hidane T, Demura M, Morisada S, Ohto K, Kawakita H. Mathematical analysis of cake layer formation in an ultrafiltration membrane of a phycobiliprotein-containing solution extracted from Nostoc commune. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Rodas-Zuluaga LI, Castillo-Zacarías C, Núñez-Goitia G, Martínez-Prado MA, Rodríguez-Rodríguez J, López-Pacheco IY, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R. Implementation of k La-Based Strategy for Scaling Up Porphyridium purpureum (Red Marine Microalga) to Produce High-Value Phycoerythrin, Fatty Acids, and Proteins. Mar Drugs 2021; 19:md19060290. [PMID: 34064032 PMCID: PMC8224092 DOI: 10.3390/md19060290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 02/05/2023] Open
Abstract
Porphyridium purpureum is a well-known Rhodophyta that recently has attracted enormous attention because of its capacity to produce many high-value metabolites such as the pigment phycoerythrin and several high-value fatty acids. Phycoerythrin is a fluorescent red protein-pigment commercially relevant with antioxidant, antimicrobial activity, and fluorescent properties. The volumetric mass transfer coefficient (kLa) was kept constant within the different scaling-up stages in the present study. This scaling-up strategy was sought to maintain phycoerythrin production and other high-value metabolites by Porphyridium purpureum, using hanging-bag photobioreactors. The kLa was monitored to ensure the appropriate mixing and CO2 diffusion in the entire culture during the scaling process (16, 80, and 400 L). Then, biomass concentration, proteins, fatty acids, carbohydrates, and phycoerythrin were determined in each step of the scaling-up process. The kLa at 16 L reached a level of 0.0052 s-1, while at 80 L, a value of 0.0024 s-1 was achieved. This work result indicated that at 400 L, 1.22 g L-1 of biomass was obtained, and total carbohydrates (117.24 mg L-1), proteins (240.63 mg L-1), and lipids (17.75% DW) were accumulated. Regarding fatty acids production, 46.03% palmitic, 8.03% linoleic, 22.67% arachidonic, and 2.55% eicosapentaenoic acid were identified, principally. The phycoerythrin production was 20.88 mg L-1 with a purity of 2.75, making it viable for food-related applications. The results of these experiments provide insight into the high-scale production of phycoerythrin via the cultivation of P. purpureum in an inexpensive and straightforward culture system.
Collapse
Affiliation(s)
- Laura Isabel Rodas-Zuluaga
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Carlos Castillo-Zacarías
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Gabriela Núñez-Goitia
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - María Adriana Martínez-Prado
- Chemical & Biochemical Engineering Department, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Blvd. Felipe Pescador 1830 Ote. Durango, Durango 34080, Mexico; (G.N.-G.); (M.A.M.-P.)
| | - José Rodríguez-Rodríguez
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Itzel Y. López-Pacheco
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Juan Eduardo Sosa-Hernández
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
| | - Hafiz M. N. Iqbal
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| | - Roberto Parra-Saldívar
- School of Engineering and Sciences, Tecnologico de Monterrey, Monterrey 64849, Mexico; (L.I.R.-Z.); (C.C.-Z.); (J.R.-R.); (I.Y.L.-P.); (J.E.S.-H.)
- Correspondence: (H.M.N.I.); (R.P.-S.)
| |
Collapse
|
8
|
García AB, Longo E, Murillo MC, Bermejo R. Using a B-Phycoerythrin Extract as a Natural Colorant: Application in Milk-Based Products. Molecules 2021; 26:E297. [PMID: 33435541 PMCID: PMC7826896 DOI: 10.3390/molecules26020297] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 01/11/2023] Open
Abstract
Nowadays, there is a growing interest in finding new coloring molecules of natural origin that can increase and diversify the offer of natural food dyes already present in the market. In the present work, a B-phycoerythrin extract from the microalgae Porphyridium cruentum was tested as a food colorant in milk-based products. Using spectroscopy and colorimetry, the extract was characterized and gave evidence of good properties and good stability in the pH range between 4.0 and 9.0. Coloring studies were conducted to demonstrate that samples carrying the pink extract could be used for simulating the pink color of marketed milk-based products. The staining factors, representing the amount of pink protein to be added to reproduce the color of strawberry commercial products, ranged between 1.6 mg/L and 49.5 mg/L, being sufficiently low in all samples. Additionally, color stability during a short period of cold storage was studied: it demonstrated that the three tested types of dairy products remained stable throughout the 11-day analysis period with no significant changes. These results prove the potential of the B-phycoerythrin extract as a natural colorant and alternative ingredient to synthetic coloring molecules.
Collapse
Affiliation(s)
- Ana Belén García
- Department of Physical and Analytical Chemistry, High Engineering Polytechnic School of Linares, University of Jaen, 23700 Linares, Spain; (A.B.G.); (M.C.M.)
| | - Eleonora Longo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy;
| | - Mª Carmen Murillo
- Department of Physical and Analytical Chemistry, High Engineering Polytechnic School of Linares, University of Jaen, 23700 Linares, Spain; (A.B.G.); (M.C.M.)
| | - Ruperto Bermejo
- Department of Physical and Analytical Chemistry, High Engineering Polytechnic School of Linares, University of Jaen, 23700 Linares, Spain; (A.B.G.); (M.C.M.)
| |
Collapse
|
9
|
Dagnino-Leone J, Figueroa M, Uribe E, Hinrichs MV, Ortiz-López D, Martínez-Oyanedel J, Bunster M. Biosynthesis and characterization of a recombinant eukaryotic allophycocyanin using prokaryotic accessory enzymes. Microbiologyopen 2020; 9:e989. [PMID: 31970933 PMCID: PMC7066465 DOI: 10.1002/mbo3.989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/03/2022] Open
Abstract
Phycobiliproteins (PBPs) are colored fluorescent proteins present in cyanobacteria, red alga, and cryptophyta. These proteins have many potential uses in biotechnology going from food colorants to medical applications. Allophycocyanin, the simplest PBP, is a heterodimer of αβ subunits that oligomerizes as a trimer (αβ)3. Each subunit contains a phycocyanobilin, bound to a cysteine residue, which is responsible for its spectroscopic properties. In this article, we are reporting the expression of recombinant allophycocyanin (rAPC) from the eukaryotic red algae Agarophyton chilensis in Escherichia coli, using prokaryotic accessory enzymes to obtain a fully functional rAPC. Three duet vectors were used to include coding sequences of α and β subunits from A. chilensis and accessorial enzymes (heterodimeric lyase cpc S/U, heme oxygenase 1, phycocyanobilin oxidoreductase) from cyanobacteria Arthrospira maxima. rAPC was purified using several chromatographic steps. The characterization of the pure rAPC indicates very similar spectroscopic properties, λmaxAbs, λmaxEm, fluorescence lifetime, and chromophorylation degree, with native allophycocyanin (nAPC) from A. chilensis. This method, to produce high‐quality recombinant allophycocyanin, can be used to express and characterize other macroalga phycobiliproteins, to be used for biotechnological or biomedical purposes.
Collapse
Affiliation(s)
- Jorge Dagnino-Leone
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Maximiliano Figueroa
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Elena Uribe
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - María Victoria Hinrichs
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Diego Ortiz-López
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - José Martínez-Oyanedel
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| | - Marta Bunster
- Departamento de Bioquímica y Biología Molecular, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
10
|
Li S, Ji L, Shi Q, Wu H, Fan J. Advances in the production of bioactive substances from marine unicellular microalgae Porphyridium spp. BIORESOURCE TECHNOLOGY 2019; 292:122048. [PMID: 31455551 DOI: 10.1016/j.biortech.2019.122048] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 05/18/2023]
Abstract
Porphyridium spp. are a group of unicellular marine microalgae belonging to the Rhodophyta, which evolved over one billion years and are a source of a variety of natural active components. They can naturally and efficiently accumulate phycobilin, sulfated polysaccharides, polyunsaturated fatty acids and other bioactive substances. At present, numerous attempts have been made to explore the species Porphyridium spp., whereas mainly focused on cultivation methods, metabolism regulation and the function and application of bioactive products. There is a lack of systematic summary of the existing research conclusions. In this paper, we summarized the representative results related to culture and metabolism, analyzed and discussed the existing bottleneck restrictions for their large scale application, and proposed the potential industrial development and research direction in the future. This paper is expected to provide reference and thread for research and application of Porphyridium spp..
Collapse
Affiliation(s)
- Shaohua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Liang Ji
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qianwen Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jianhua Fan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China; State Key Laboratory of South China Sea Marine Resource Utilization, Hainan University, Haikou 570228, PR China; Department of Applied Biology, East China University of Science and Technology, Shanghai 200237, PR China.
| |
Collapse
|
11
|
Tran T, Lafarge C, Winckler P, Pradelles R, Cayot N, Loupiac C. Ex situ and in situ investigation of protein/exopolysaccharide complex in Porphyridium cruentum biomass resuspension. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
12
|
Tran T, Denimal E, Lafarge C, Journaux L, Lee JA, Winckler P, Perrier-Cornet JM, Pradelles R, Loupiac C, Cayot N. Effect of high hydrostatic pressure on extraction of B-phycoerythrin from Porphyridium cruentum: Use of confocal microscopy and image processing. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
13
|
Enhanced B-phycoerythrin production by the red microalga Porphyridium marinum: A powerful agent in industrial applications. Int J Biol Macromol 2018; 120:2106-2114. [DOI: 10.1016/j.ijbiomac.2018.09.037] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 09/03/2018] [Accepted: 09/06/2018] [Indexed: 12/27/2022]
|
14
|
Torres-Acosta MA, Mayolo-Deloisa K, González-Valdez J, Rito-Palomares M. Aqueous Two-Phase Systems at Large Scale: Challenges and Opportunities. Biotechnol J 2018; 14:e1800117. [PMID: 29878648 DOI: 10.1002/biot.201800117] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 05/10/2018] [Indexed: 11/06/2022]
Abstract
Aqueous two-phase systems (ATPS) have proved to be an efficient and integrative operation to enhance recovery of industrially relevant bioproducts. After ATPS discovery, a variety of works have been published regarding their scaling from 10 to 1000 L. Although ATPS have achieved high recovery and purity yields, there is still a gap between their bench-scale use and potential industrial applications. In this context, this review paper critically analyzes ATPS scale-up strategies to enhance the potential industrial adoption. In particular, large-scale operation considerations, different phase separation procedures, the available optimization techniques (univariate, response surface methodology, and genetic algorithms) to maximize recovery and purity and economic modeling to predict large-scale costs, are discussed. ATPS intensification to increase the amount of sample to process at each system, developing recycling strategies and creating highly efficient predictive models, are still areas of great significance that can be further exploited with the use of high-throughput techniques. Moreover, the development of novel ATPS can maximize their specificity increasing the possibilities for the future industry adoption of ATPS. This review work attempts to present the areas of opportunity to increase ATPS attractiveness at industrial levels.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - José González-Valdez
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Marco Rito-Palomares
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México.,Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Av. Morones Prieto 3000 Pte, Col. Los Doctores, Monterrey, NL, 64710, México
| |
Collapse
|
15
|
Torres-Acosta MA, Ruiz-Ruiz F, Aguilar-Yáñez JM, Benavides J, Rito-Palomares M. Economic analysis of pilot-scale production of B-phycoerythrin. Biotechnol Prog 2016; 32:1472-1479. [PMID: 27556892 DOI: 10.1002/btpr.2344] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 07/27/2016] [Indexed: 11/07/2022]
Abstract
β-Phycoerythrin is a color protein with several applications, from food coloring to molecular labeling. Depending on the application, different purity is required, affecting production cost and price. Different production and purification strategies for B-phycoerythrin have been developed, the most studied are based on the production using Porphyridium cruentum and purified using chromatographic techniques or aqueous two-phase systems. The use of the latter can result in a less expensive and intensive recovery of the protein, but there is lack of a proper economic analysis to study the effect of using aqueous two-phase systems in a scaled-up process. This study analyzed the production of B-Phycoerythrin using real data obtained during the scale-up of a bioprocess using specialized software (BioSolve, Biopharm Services, UK). First, a sensitivity analysis was performed to identify critical parameters for the production cost, then a Monte Carlo analysis to emulate real processes by adding uncertainty to the identified parameters. Next, the bioprocess was analyzed to determine its financial attractiveness and possible optimization strategies were tested and discussed. Results show that aqueous two-phase systems retain their advantages of low cost and intensive recovery (54.56%); the costs of production per gram calculated (before titer optimization: US$15,709 and after optimization: US$2,374) allowed to obtain profit (in the range of US$millions in a 10-year period) for a potential company taking this production method by comparing the production cost against commercial prices. The bioprocess analyzed is a promising and profitable method for the generation of a highly purified B-phycoerythrin. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1472-1479, 2016.
Collapse
Affiliation(s)
- Mario A Torres-Acosta
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Federico Ruiz-Ruiz
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - José M Aguilar-Yáñez
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Jorge Benavides
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| | - Marco Rito-Palomares
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501 Sur, Monterrey, NL, 64849, México
| |
Collapse
|
16
|
Tang Z, Jilu Zhao, Ju B, Li W, Wen S, Pu Y, Qin S. One-step chromatographic procedure for purification of B-phycoerythrin from Porphyridium cruentum. Protein Expr Purif 2016; 123:70-4. [PMID: 26851659 DOI: 10.1016/j.pep.2016.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 02/08/2023]
Abstract
B-phycoerythrin (B-PE) was separated and purified from microalga Porphyridium cruentum using one-step chromatographic method. Phycobiliproteins in P. cruentum was extracted by osmotic shock and initially purified by ultrafiltration. Further purification was carried out with a SOURCE 15Q exchange column and analytical grade B-PE was obtained with a purity ratio (A545/A280) of 5.1 and a yield of 68.5%. It showed a double absorption peaks at 545 nm and 565 nm and a shoulder peak at 498 nm, and displayed a fluorescence emission maximum at 580 nm. The analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) showed a bulky band between 18 and 20 kDa which could be assigned to subunits α and β and a low intensity band of 27 kDa assigned to γ subunit. Our protocol provides attractive alternative to consider for the purification procedure to obtain analytical grade B-PE at commercial level.
Collapse
Affiliation(s)
- Zhihong Tang
- College of Life Science, Yantai University, 30 Qingquan Street, Yantai 264005, China.
| | - Jilu Zhao
- College of Life Science, Yantai University, 30 Qingquan Street, Yantai 264005, China
| | - Bao Ju
- College of Life Science, Yantai University, 30 Qingquan Street, Yantai 264005, China
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Street, Yantai 264003, China
| | - Shaohong Wen
- College of Life Science, Yantai University, 30 Qingquan Street, Yantai 264005, China
| | - Yang Pu
- College of Agriculture, Ludong University, 186 Hongqizhong Street, Yantai 264025, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, 17 Chunhui Street, Yantai 264003, China
| |
Collapse
|
17
|
Francavilla M, Manara P, Kamaterou P, Monteleone M, Zabaniotou A. Cascade approach of red macroalgae Gracilaria gracilis sustainable valorization by extraction of phycobiliproteins and pyrolysis of residue. BIORESOURCE TECHNOLOGY 2015; 184:305-313. [PMID: 25465784 DOI: 10.1016/j.biortech.2014.10.147] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 10/27/2014] [Accepted: 10/29/2014] [Indexed: 05/27/2023]
Abstract
Phycobiliproteins extraction (primary refining) from Gracilaria gracilis seaweed, harvested in Lesina Lagoon (Italy) and further valorization of the residual algal via pyrolysis (secondary refining), were investigated with a cascade biorefinery approach. R-phycoerythrin (7 mg/g d.w.), allophycocyanin (3.5 mg/g d.w.) and phycocyanin (2 mg/g d.w.) were the main phycobiliproteins extracted. Pyrolysis of G.gracilis residue followed, aiming to investigate the production of bio-oil and biochar within a pyrolysis temperature range of 400-600 °C. Results showed that the bio-oil yield is high (∼65 wt%) at pyrolysis temperature ∼500 °C, but its high content in nitrogenous compounds prevents its use as a biofuel, unless some further de-nitrogenation takes place. Biochar yield ranged between 33 wt% (400 °C) and 26.5 wt% (600 °C). Interestingly, inorganic nutrients including P, K, Ca, Fe and Mg were detected in biochar, suggesting its potential use as recovering system of natural mineral resources from the oceanic reservoir.
Collapse
Affiliation(s)
- M Francavilla
- STAR∗AgroEnergy Research Group, University of Foggia, Foggia, Italy; National Research Council, Institute of Marine Science, Lesina, Italy
| | - P Manara
- Biomass Group, Dept of Chemical Engineering, Aristotle University of Thessaloniki, Greece
| | - P Kamaterou
- Biomass Group, Dept of Chemical Engineering, Aristotle University of Thessaloniki, Greece
| | - M Monteleone
- STAR∗AgroEnergy Research Group, University of Foggia, Foggia, Italy
| | - A Zabaniotou
- STAR∗AgroEnergy Research Group, University of Foggia, Foggia, Italy; Biomass Group, Dept of Chemical Engineering, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
18
|
Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Ornelas-Soto N, Romero-Ogawa MA, Parra-Saldivar R. Extraction and purification of high-value metabolites from microalgae: essential lipids, astaxanthin and phycobiliproteins. Microb Biotechnol 2015; 8:190-209. [PMID: 25223877 PMCID: PMC4353334 DOI: 10.1111/1751-7915.12167] [Citation(s) in RCA: 201] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/08/2014] [Accepted: 08/14/2014] [Indexed: 01/05/2023] Open
Abstract
The marked trend and consumers growing interest in natural and healthy products have forced researches and industry to develop novel products with functional ingredients. Microalgae have been recognized as source of functional ingredients with positive health effects since these microorganisms produce polyunsaturated fatty acids, polysaccharides, natural pigments, essential minerals, vitamins, enzymes and bioactive peptides. For this reason, the manuscript reviews two of the main high-value metabolites which can be obtained from microalgae: pigments and essential lipids. Therefore, the extraction and purification methods for polyunsaturated fatty acids, astaxanthin, phycoerythrin and phycocyanin are described. Also, the effect that environmental growth conditions have in the production of these metabolites is described. This review summarizes the existing methods to extract and purify such metabolites in order to develop a feasible and sustainable algae industry.
Collapse
Affiliation(s)
- Sara P Cuellar-Bermudez
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| | - Iris Aguilar-Hernandez
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| | - Diana L Cardenas-Chavez
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| | - Nancy Ornelas-Soto
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| | - Miguel A Romero-Ogawa
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| | - Roberto Parra-Saldivar
- Cátedra de Bioprocesos Ambientales, Centro del Agua Para América Latina y el Caribe, Instituto Tecnológico y de Estudios Superiores de MonterreyMonterrey, Nuevo Leon, 64849, Mexico
| |
Collapse
|
19
|
Characterization and evaluation of the novel agarose–nickel composite matrix for possible use in expanded bed adsorption of bio-products. J Chromatogr A 2014; 1331:61-8. [DOI: 10.1016/j.chroma.2014.01.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 12/22/2013] [Accepted: 01/12/2014] [Indexed: 11/21/2022]
|
20
|
The red seaweed Gracilaria gracilis as a multi products source. Mar Drugs 2013; 11:3754-76. [PMID: 24084791 PMCID: PMC3826134 DOI: 10.3390/md11103754] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 01/01/2023] Open
Abstract
In recent years seaweeds have increasingly attracted interest in the search for new drugs and have been shown to be a primary source of bioactive natural compounds and biomaterials. In the present investigation, the biochemical composition of the red seaweed Gracilaria gracilis, collected seasonally in the Lesina Lagoon (Southern Adriatic Sea, Lesina, Italy), was assayed by means of advanced analytical techniques, such as gas-chromatography coupled with mass spectrometry and spectrophotometric tests. In particular, analysis of lipids, fatty acids, sterols, proteins, phycobiliproteins and carbohydrates as well as phenolic content, antioxidant and radical scavenging activity were performed. In winter extracts of G. gracilis, a high content of R-phycoerythrin together with other valuable products such as arachidonic acid (PUFA ω-6), proteins and carbohydrates was observed. High antioxidant and radical scavenging activities were also detected in summer extracts of the seaweed together with a high content of total phenols. In conclusion, this study points out the possibility of using Gracilaria gracilis as a multi products source for biotechnological, nutraceutical and pharmaceutical applications even although more investigations are required for separating, purifying and characterizing these bioactive compounds.
Collapse
|
21
|
Bermejo R, Ruiz E, Ramos A, Acién FG. Pilot-Scale Recovery of Phycoerythrin fromPorphyridium cruentumusing Expanded Bed Adsorption Chromatography. SEP SCI TECHNOL 2013. [DOI: 10.1080/01496395.2013.791319] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
22
|
Purification of a novel protease enzyme from kesinai plant (Streblus asper) leaves using a surfactant–salt aqueous micellar two-phase system: a potential low cost source of enzyme and purification method. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2037-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
23
|
Ruiz-Ruiz F, Benavides J, Rito-Palomares M. Scaling-up of a B-phycoerythrin production and purification bioprocess involving aqueous two-phase systems: Practical experiences. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.02.010] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Bibi NS, Gavara PR, Espinosa SLS, Grasselli M, Fernández-Lahore M. Synthesis and performance of 3D-Megaporous structures for enzyme immobilization and protein capture. Biotechnol Prog 2011; 27:1329-38. [DOI: 10.1002/btpr.648] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Revised: 04/06/2011] [Indexed: 11/08/2022]
|
25
|
Guedes AC, Amaro HM, Malcata FX. Microalgae as sources of carotenoids. Mar Drugs 2011; 9:625-644. [PMID: 21731554 PMCID: PMC3124977 DOI: 10.3390/md9040625] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 04/14/2011] [Indexed: 01/28/2023] Open
Abstract
Marine microalgae constitute a natural source of a variety of drugs for pharmaceutical, food and cosmetic applications-which encompass carotenoids, among others. A growing body of experimental evidence has confirmed that these compounds can play important roles in prevention (and even treatment) of human diseases and health conditions, e.g., cancer, cardiovascular problems, atherosclerosis, rheumatoid arthritis, muscular dystrophy, cataracts and some neurological disorders. The underlying features that may account for such favorable biological activities are their intrinsic antioxidant, anti-inflammatory and antitumoral features. In this invited review, the most important issues regarding synthesis of carotenoids by microalgae are described and discussed-from both physiological and processing points of view. Current gaps of knowledge, as well as technological opportunities in the near future relating to this growing field of interest, are also put forward in a critical manner.
Collapse
Affiliation(s)
- Ana Catarina Guedes
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, P-4050-123 Porto, Portugal; E-Mails: (A.C.G.); (H.M.A.)
| | - Helena M. Amaro
- CIMAR/CIIMAR—Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Rua dos Bragas 177, P-4050-123 Porto, Portugal; E-Mails: (A.C.G.); (H.M.A.)
| | - Francisco Xavier Malcata
- ISMAI—Instituto Superior da Maia, Avenida Carlos Oliveira Campos, P-4475-690 Avioso S. Pedro, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, P-2780-157 Oeiras, Portugal
| |
Collapse
|
26
|
Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 2010; 86:27-40. [DOI: 10.1007/s00253-009-2420-y] [Citation(s) in RCA: 182] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Revised: 12/18/2009] [Accepted: 12/18/2009] [Indexed: 10/19/2022]
|
27
|
Plaza M, Herrero M, Cifuentes A, Ibáñez E. Innovative natural functional ingredients from microalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2009; 57:7159-70. [PMID: 19650628 DOI: 10.1021/jf901070g] [Citation(s) in RCA: 207] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nowadays, a wide variety of compounds such as polyphenols, polyunsaturated fatty acids (PUFA), or phytosterols obtained, for example, from wine, fish byproducts, or plants are employed to prepare new functional foods. However, unexplored natural sources of bioactive ingredients are gaining much attention since they can lead to the discovery of new compounds or bioactivities. Microalgae have been proposed as an interesting, almost unlimited, natural source in the search for novel natural functional ingredients, and several works have shown the possibility to find bioactive compounds in these organisms. Some advantages can be associated with the study of microalgae such as their huge diversity, the possibility of being used as natural reactors at controlled conditions, and their ability to produce active secondary metabolites to defend themselves from adverse or extreme conditions. In this contribution, an exhaustive revision is presented involving the research for innovative functional food ingredients from microalgae. The most interesting results in this promising field are discussed including new species composition and bioactivity and new processing and extraction methods. Moreover, the future research trends are critically commented.
Collapse
Affiliation(s)
- Merichel Plaza
- Instituto de Fermentaciones Industriales, CSIC, Juan de la Cierva 3, Madrid, Spain
| | | | | | | |
Collapse
|
28
|
Kim SK, Ravichandran YD, Khan SB, Kim YT. Prospective of the cosmeceuticals derived from marine organisms. BIOTECHNOL BIOPROC E 2008. [DOI: 10.1007/s12257-008-0113-5] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
29
|
Benavides J, Aguilar O, Lapizco-Encinas B, Rito-Palomares M. Extraction and Purification of Bioproducts and Nanoparticles using Aqueous Two-Phase Systems Strategies. Chem Eng Technol 2008. [DOI: 10.1002/ceat.200800068] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Titchener-Hooker NJ, Dunnill P, Hoare M. Micro biochemical engineering to accelerate the design of industrial-scale downstream processes for biopharmaceutical proteins. Biotechnol Bioeng 2008; 100:473-87. [PMID: 18438873 DOI: 10.1002/bit.21788] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- N J Titchener-Hooker
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | | | | |
Collapse
|