1
|
McKenna MC, Sonnewald U, Waageptersen HS, White HS. A tribute to Arne Schousboe's contributions to neurochemistry and his innovative and enduring research in GABA, glutamate, and brain energy metabolism. J Neurochem 2025; 169:e16207. [PMID: 39183580 DOI: 10.1111/jnc.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
This is a tribute to Arne Schousboe, Professor Emeritus at the University of Copenhagen, an eminent neurochemist and neuroscientist who was a leader in the fields of GABA, glutamate, and brain energy metabolism. Arne was known for his keen intellect, his wide-ranging expertise in neurochemistry and neuropharmacology of GABA and glutamate and brain energy metabolism. Arne was also known for his strong leadership, his warm and engaging personality and his enjoyment of fine wine and great food shared with friends, family, and colleagues. Sadly, Arne passed away on February 27, 2024, after a short illness. He is survived by his wife Inger Schousboe, his two children, and three wonderful grandchildren. His death is a tremendous loss to the neuroscience community. He will be greatly missed by his friends, family, and colleagues. Some of the highlights of Arne's career are described in this tribute.
Collapse
Affiliation(s)
- Mary C McKenna
- Department of Pediatrics and Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ursula Sonnewald
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - H Steve White
- Department of Pharmacy, University of Washington, Seattle, Washington, USA
| |
Collapse
|
2
|
McDonough J, Singhal NK, Getsy PM, Knies K, Knauss ZT, Mueller D, Bates JN, Damron DS, Lewis SJ. The epigenetic signatures of opioid addiction and physical dependence are prevented by D-cysteine ethyl ester and betaine. Front Pharmacol 2024; 15:1416701. [PMID: 39281282 PMCID: PMC11392886 DOI: 10.3389/fphar.2024.1416701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/29/2024] [Indexed: 09/18/2024] Open
Abstract
We have reported that D,L-thiol esters, including D-cysteine ethyl ester (D-CYSee), are effective at overcoming opioid-induced respiratory depression (OIRD) in rats. Our on-going studies reveal that co-injections of D-CYSee with multi-day morphine injections markedly diminish spontaneous withdrawal that usually occurs after cessation of multiple injections of morphine in rats. Chronically administered opioids are known (1) to alter cellular redox status, thus inducing an oxidative state, and (2) for an overall decrease in DNA methylation, therefore resulting in the transcriptional activation of previously silenced long interspersed elements (LINE-1) retrotransposon genes. The first objective of the present study was to determine whether D-CYSee and the one carbon metabolism with the methyl donor, betaine, would maintain redox control and normal DNA methylation levels in human neuroblastoma cell cultures (SH-SY5Y) under overnight challenge with morphine (100 nM). The second objective was to determine whether D-CYSee and/or betaine could diminish the degree of physical dependence to morphine in male Sprague Dawley rats. Our data showed that overnight treatment with morphine reduced cellular GSH levels, induced mitochondrial damage, decreased global DNA methylation, and increased LINE-1 mRNA expression. These adverse effects by morphine, which diminished the reducing capacity and compromised the maintenance of the membrane potential of SH-SY5Y cells, was prevented by concurrent application of D-CYSee (100 µM) or betaine (300 µM). Furthermore, our data demonstrated that co-injections of D-CYSee (250 μmol/kg, IV) and to a lesser extent, betaine (250 μmol/kg, IV), markedly diminished the development of physical dependence induced by multi-day morphine injections (escalating daily doses of 10-30 mg/kg, IV), as assessed by the lesser number of withdrawal phenomena elicited by the injection of the opioid receptor antagonist, naloxone (1.5 mg/kg, IV). These findings provide evidence that D-CYSee and betaine prevent the appearance of redox alterations and epigenetic signatures commonly seen in neural cells involved in opioid physical dependence/addiction, and lessen development of physical dependence to morphine.
Collapse
Affiliation(s)
- Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Naveen K Singhal
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Paulina M Getsy
- Department of Pediatrics, Case Western Reserve University, Cleveland, OH, United States
| | - Katherine Knies
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Zackery T Knauss
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Devin Mueller
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - James N Bates
- Department of Anesthesia, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Derek S Damron
- Department of Biological Sciences, Kent State University, Kent, OH, United States
| | - Stephen J Lewis
- Department of Biological Sciences, Kent State University, Kent, OH, United States
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, United States
- Functional Electrical Stimulation Center, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
3
|
Bhatt M, Di Iacovo A, Romanazzi T, Roseti C, Bossi E. Betaine-The dark knight of the brain. Basic Clin Pharmacol Toxicol 2023; 133:485-495. [PMID: 36735640 DOI: 10.1111/bcpt.13839] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/20/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023]
Abstract
The role of betaine in the liver and kidney has been well documented, even from the cellular and molecular point of view. Despite literature reporting positive effects of betaine supplementation in Alzheimer's, Parkinson's and schizophrenia, the role and function of betaine in the brain are little studied and reviewed. Beneficial effects of betaine in neurodegeneration, excitatory and inhibitory imbalance and against oxidative stress in the central nervous system (CNS) have been collected and analysed to understand the main role of betaine in the brain. There are many 'dark' aspects needed to complete the picture. The understanding of how this osmolyte is transported across neuron and glial cells is also controversial, as the expression levels and functioning of the known protein capable to transport betaine expressed in the brain, betaine-GABA transporter 1 (BGT-1), is itself not well clarified. The reported actions of betaine beyond BGT-1 related to neuronal degeneration and memory impairment are the focus of this work. With this review, we underline the scarcity of detailed molecular and cellular information about betaine action. Consequently, the requirement of detailed focus on and study of the interaction of this molecule with CNS components to sustain the therapeutic use of betaine.
Collapse
Affiliation(s)
- Manan Bhatt
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Angela Di Iacovo
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Tiziana Romanazzi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- School of Experimental and Translational Medicine, University of Insubria, Varese, Italy
| | - Cristina Roseti
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| | - Elena Bossi
- Department of Biotechnology and Life Sciences, Laboratory of Cellular and Molecular Physiology, University of Insubria, Varese, Italy
- Centre for Neuroscience, University of Insubria, Varese, Italy
| |
Collapse
|
4
|
Knight LS, Knight TA. Making the case for prophylactic use of betaine to promote brain health in young (15-24 year old) athletes at risk for concussion. Front Neurosci 2023; 17:1214976. [PMID: 37811321 PMCID: PMC10556504 DOI: 10.3389/fnins.2023.1214976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Betaine supplementation in the context of human nutrition, athletic performance, and clinical therapy demonstrate that the osmolyte and methyl donor, betaine, is cytoprotective and beneficial to human health. These studies also demonstrate that betaine supplementation in healthy humans is straight-forward with no reported adverse effects. Here, we explore betaine uptake in the central nervous system (CNS) and contribute to evidence that betaine may be uniquely protective to the brain. We specifically describe the therapeutic potential of betaine and explore the potential implications of betaine on inhibition mediated by GABA and glycine neurotransmission. The influence of betaine on neurophysiology complement betaine's role as an osmolyte and metabolite and is consistent with clinical evidence of betaine-mediated improvements to cognitive function (reported in elderly populations) and its anti-convulsant properties. Betaine's therapeutic potential in neurological disorders including epilepsy and neurodegenerative diseases combined with benefits of betaine supplementation on athletic performance support the unique application of betaine as a prophylaxis to concussion. As an example, we identify young athletes (15-24 years old), especially females, for prophylactic betaine supplementation to promote brain health and resilience in a cohort at high risk for concussion and for developing Alzheimer's disease.
Collapse
Affiliation(s)
| | - Thomas A. Knight
- Biology Department, Whitman College, Walla Walla, WA, United States
| |
Collapse
|
5
|
Danbolt NC, López-Corcuera B, Zhou Y. Reconstitution of GABA, Glycine and Glutamate Transporters. Neurochem Res 2022; 47:85-110. [PMID: 33905037 PMCID: PMC8763731 DOI: 10.1007/s11064-021-03331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 10/25/2022]
Abstract
In contrast to water soluble enzymes which can be purified and studied while in solution, studies of solute carrier (transporter) proteins require both that the protein of interest is situated in a phospholipid membrane and that this membrane forms a closed compartment. An additional challenge to the study of transporter proteins has been that the transport depends on the transmembrane electrochemical gradients. Baruch I. Kanner understood this early on and first developed techniques for studying plasma membrane vesicles. This advanced the field in that the experimenter could control the electrochemical gradients. Kanner, however, did not stop there, but started to solubilize the membranes so that the transporter proteins were taken out of their natural environment. In order to study them, Kanner then had to find a way to reconstitute them (reinsert them into phospholipid membranes). The scope of the present review is both to describe the reconstitution method in full detail as that has never been done, and also to reveal the scientific impact that this method has had. Kanner's later work is not reviewed here although that also deserves a review because it too has had a huge impact.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway.
| | - Beatriz López-Corcuera
- Departamento de Biología Molecular, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Biología Molecular "Severo Ochoa" Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
- IdiPAZ, Hospital Universitario La Paz, Madrid, Spain
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0317, Oslo, Norway
| |
Collapse
|
6
|
Kickinger S, Lie MEK, Suemasa A, Al-Khawaja A, Fujiwara K, Watanabe M, Wilhelmsen KS, Falk-Petersen CB, Frølund B, Shuto S, Ecker GF, Wellendorph P. Molecular Determinants and Pharmacological Analysis for a Class of Competitive Non-transported Bicyclic Inhibitors of the Betaine/GABA Transporter BGT1. Front Chem 2021; 9:736457. [PMID: 34595152 PMCID: PMC8476755 DOI: 10.3389/fchem.2021.736457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
The betaine/GABA transporter 1 (BGT1) is a member of the GABA transporter (GAT) family with still elusive function, largely due to a lack of potent and selective tool compounds. Based on modeling, we here present the design, synthesis and pharmacological evaluation of five novel conformationally restricted cyclic GABA analogs related to the previously reported highly potent and selective BGT1 inhibitor (1S,2S,5R)-5-aminobicyclo[3.1.0]hexane-2-carboxylic acid (bicyclo-GABA). Using [3H]GABA radioligand uptake assays at the four human GATs recombinantly expressed in mammalian cell lines, we identified bicyclo-GABA and its N-methylated analog (2) as the most potent and selective BGT1 inhibitors. Additional pharmacological characterization in a fluorescence-based membrane potential assay showed that bicyclo-GABA and 2 are competitive inhibitors, not substrates, at BGT1, which was validated by a Schild analysis for bicyclo-GABA (pKB value of 6.4). To further elaborate on the selectivity profile both compounds were tested at recombinant α1β2γ2 GABAA receptors. Whereas bicyclo-GABA showed low micromolar agonistic activity, the N-methylated 2 was completely devoid of activity at GABAA receptors. To further reveal the binding mode of bicyclo-GABA and 2 binding hypotheses of the compounds were obtained from in silico-guided mutagenesis studies followed by pharmacological evaluation at selected BGT1 mutants. This identified the non-conserved BGT1 residues Q299 and E52 as the molecular determinants driving BGT1 activity and selectivity. The binding mode of bicyclo-GABA was further validated by the introduction of activity into the corresponding GAT3 mutant L314Q (38 times potency increase cf. wildtype). Altogether, our data reveal the molecular determinants for the activity of bicyclic GABA analogs, that despite their small size act as competitive inhibitors of BGT1. These compounds may serve as valuable tools to selectively and potently target BGT1 in order to decipher its elusive pharmacological role in the brain and periphery such as the liver and kidneys.
Collapse
Affiliation(s)
- Stefanie Kickinger
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, University of Vienna, Vienna, Austria
| | - Maria E K Lie
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Akihiro Suemasa
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Anas Al-Khawaja
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Koichi Fujiwara
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Mizuki Watanabe
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Kristine S Wilhelmsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Gerhard F Ecker
- Department of Pharmaceutical Science, University of Vienna, Vienna, Austria
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Zhao X, Yao H, Li X. Unearthing of Key Genes Driving the Pathogenesis of Alzheimer's Disease via Bioinformatics. Front Genet 2021; 12:641100. [PMID: 33936168 PMCID: PMC8085575 DOI: 10.3389/fgene.2021.641100] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/15/2021] [Indexed: 01/23/2023] Open
Abstract
Alzheimer’s disease (AD) is a neurodegenerative disease with unelucidated molecular pathogenesis. Herein, we aimed to identify potential hub genes governing the pathogenesis of AD. The AD datasets of GSE118553 and GSE131617 were collected from the NCBI GEO database. The weighted gene coexpression network analysis (WGCNA), differential gene expression analysis, and functional enrichment analysis were performed to reveal the hub genes and verify their role in AD. Hub genes were validated by machine learning algorithms. We identified modules and their corresponding hub genes from the temporal cortex (TC), frontal cortex (FC), entorhinal cortex (EC), and cerebellum (CE). We obtained 33, 42, 42, and 41 hub genes in modules associated with AD in TC, FC, EC, and CE tissues, respectively. Significant differences were recorded in the expression levels of hub genes between AD and the control group in the TC and EC tissues (P < 0.05). The differences in the expressions of FCGRT, SLC1A3, PTN, PTPRZ1, and PON2 in the FC and CE tissues among the AD and control groups were significant (P < 0.05). The expression levels of PLXNB1, GRAMD3, and GJA1 were statistically significant between the Braak NFT stages of AD. Overall, our study uncovered genes that may be involved in AD pathogenesis and revealed their potential for the development of AD biomarkers and appropriate AD therapeutics targets.
Collapse
Affiliation(s)
- Xingxing Zhao
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China.,Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Hongmei Yao
- Department of Cardiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinyi Li
- Department of Neurology, Bethune Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
8
|
Sears SM, Hewett SJ. Influence of glutamate and GABA transport on brain excitatory/inhibitory balance. Exp Biol Med (Maywood) 2021; 246:1069-1083. [PMID: 33554649 DOI: 10.1177/1535370221989263] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An optimally functional brain requires both excitatory and inhibitory inputs that are regulated and balanced. A perturbation in the excitatory/inhibitory balance-as is the case in some neurological disorders/diseases (e.g. traumatic brain injury Alzheimer's disease, stroke, epilepsy and substance abuse) and disorders of development (e.g. schizophrenia, Rhett syndrome and autism spectrum disorder)-leads to dysfunctional signaling, which can result in impaired cognitive and motor function, if not frank neuronal injury. At the cellular level, transmission of glutamate and GABA, the principle excitatory and inhibitory neurotransmitters in the central nervous system control excitatory/inhibitory balance. Herein, we review the synthesis, release, and signaling of GABA and glutamate followed by a focused discussion on the importance of their transport systems to the maintenance of excitatory/inhibitory balance.
Collapse
Affiliation(s)
- Sheila Ms Sears
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, 2029Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
9
|
Hu QX, Klatt GM, Gudmundsrud R, Ottestad-Hansen S, Verbruggen L, Massie A, Danbolt NC, Zhou Y. Semi-quantitative distribution of excitatory amino acid (glutamate) transporters 1–3 (EAAT1-3) and the cystine-glutamate exchanger (xCT) in the adult murine spinal cord. Neurochem Int 2020; 140:104811. [DOI: 10.1016/j.neuint.2020.104811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/21/2020] [Accepted: 07/09/2020] [Indexed: 01/01/2023]
|
10
|
Exploring the molecular determinants for subtype-selectivity of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid analogs as betaine/GABA transporter 1 (BGT1) substrate-inhibitors. Sci Rep 2020; 10:12992. [PMID: 32747622 PMCID: PMC7400577 DOI: 10.1038/s41598-020-69908-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously identified 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA) as the most potent substrate-inhibitor of the betaine/GABA transporter 1 (BGT1) (IC50 2.5 µM) reported to date. Herein, we characterize the binding mode of 20 novel analogs and propose the molecular determinants driving BGT1-selectivity. A series of N1-, exocyclic-N-, and C4-substituted analogs was synthesized and pharmacologically characterized in radioligand-based uptake assays at the four human GABA transporters (hGATs) recombinantly expressed in mammalian cells. Overall, the analogs retained subtype-selectivity for hBGT1, though with lower inhibitory activities (mid to high micromolar IC50 values) compared to ATPCA. Further characterization of five of these BGT1-active analogs in a fluorescence-based FMP assay revealed that the compounds are substrates for hBGT1, suggesting they interact with the orthosteric site of the transporter. In silico-guided mutagenesis experiments showed that the non-conserved residues Q299 and E52 in hBGT1 as well as the conformational flexibility of the compounds potentially contribute to the subtype-selectivity of ATPCA and its analogs. Overall, this study provides new insights into the molecular interactions governing the subtype-selectivity of BGT1 substrate-inhibitors. The findings may guide the rational design of BGT1-selective pharmacological tool compounds for future drug discovery.
Collapse
|
11
|
Łątka K, Jończyk J, Bajda M. γ-Aminobutyric acid transporters as relevant biological target: Their function, structure, inhibitors and role in the therapy of different diseases. Int J Biol Macromol 2020; 158:S0141-8130(20)32987-1. [PMID: 32360967 DOI: 10.1016/j.ijbiomac.2020.04.126] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 12/13/2022]
Abstract
γ-Aminobutyric acid (GABA) is a major inhibitory neurotransmitter in the nervous system. It plays a crucial role in many physiological processes. Upon release from the presynaptic element, it is removed from the synaptic cleft by reuptake due to the action of GABA transporters (GATs). GATs belong to a large SLC6 protein family whose characteristic feature is sodium-dependent relocation of neurotransmitters through the cell membrane. GABA transporters are characterized in many contexts, but their spatial structure is not fully known. They are divided into four types, which differ in occurrence and role. Herein, the special attention was paid to these transporting proteins. This comprehensive review presents the current knowledge about GABA transporters. Their distribution in the body, physiological functions and possible utilization in the therapy of different diseases were fully discussed. The important structural features were described based on published data, including sequence analysis, mutagenesis studies, and comparison with known SLC6 transporters for leucine (LeuT), dopamine (DAT) and serotonin (SERT). Moreover, the most important inhibitors of GABA transporters of various basic scaffolds, diverse selectivity and potency were presented.
Collapse
Affiliation(s)
- Kamil Łątka
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Jakub Jończyk
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland
| | - Marek Bajda
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Physicochemical Drug Analysis, 30-688 Cracow, Medyczna 9, Poland.
| |
Collapse
|
12
|
Lie MEK, Kickinger S, Skovgaard-Petersen J, Ecker GF, Clausen RP, Schousboe A, White HS, Wellendorph P. Pharmacological Characterization of a Betaine/GABA Transporter 1 (BGT1) Inhibitor Displaying an Unusual Biphasic Inhibition Profile and Anti-seizure Effects. Neurochem Res 2020; 45:1551-1565. [PMID: 32248400 PMCID: PMC7297817 DOI: 10.1007/s11064-020-03017-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/09/2020] [Accepted: 03/18/2020] [Indexed: 12/01/2022]
Abstract
Focal epileptic seizures can in some patients be managed by inhibiting γ-aminobutyric acid (GABA) uptake via the GABA transporter 1 (GAT1) using tiagabine (Gabitril®). Synergistic anti-seizure effects achieved by inhibition of both GAT1 and the betaine/GABA transporter (BGT1) by tiagabine and EF1502, compared to tiagabine alone, suggest BGT1 as a target in epilepsy. Yet, selective BGT1 inhibitors are needed for validation of this hypothesis. In that search, a series of BGT1 inhibitors typified by (1R,2S)-2-((4,4-bis(3-methylthiophen-2-yl)but-3-en-yl)(methyl)amino)cyclohexanecarboxylic acid (SBV2-114) was developed. A thorough pharmacological characterization of SBV2-114 using a cell-based [3H]GABA uptake assay at heterologously expressed BGT1, revealed an elusive biphasic inhibition profile with two IC50 values (4.7 and 556 μM). The biphasic profile was common for this structural class of compounds, including EF1502, and was confirmed in the MDCK II cell line endogenously expressing BGT1. The possibility of two binding sites for SBV2-114 at BGT1 was assessed by computational docking studies and examined by mutational studies. These investigations confirmed that the conserved residue Q299 in BGT1 is involved in, but not solely responsible for the biphasic inhibition profile of SBV2-114. Animal studies revealed anti-seizure effects of SBV2-114 in two mouse models, supporting a function of BGT1 in epilepsy. However, as SBV2-114 is apparent to be rather non-selective for BGT1, the translational relevance of this observation is unknown. Nevertheless, SBV2-114 constitutes a valuable tool compound to study the molecular mechanism of an emerging biphasic profile of BGT1-mediated GABA transport and the putative involvement of two binding sites for this class of compounds.
Collapse
Affiliation(s)
- Maria E K Lie
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark.
| | - Stefanie Kickinger
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | | | - Gerhard F Ecker
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Rasmus P Clausen
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - Arne Schousboe
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | - H Steve White
- Department of Pharmacy, University of Washington, Washington, USA
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Liu Z, Li Q, Shen R, Ci L, Wan Z, Shi J, Huang Q, Yang X, Zhang M, Yang H, Sun R, Wang Z, Huang F, Lu T, Fei J. Betaine/GABA transporter-1 (BGT-1) deficiency in mouse prevents acute liver failure in vivo and hepatocytes apoptosis in vitro. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165634. [PMID: 31830527 DOI: 10.1016/j.bbadis.2019.165634] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 09/06/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023]
Abstract
Betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT-1 or Slc6a12) is a transporter for the neurotransmitter GABA and osmolyte betaine. To date, most studies on BGT-1 have focused on its functions in the nervous system and renal osmotic homeostasis. Despite its dominant distribution in the liver, the function of BGT-1 in hepatic physiology or disease remains unknown. Here, we report that BGT-1 was significantly downregulated in patients with liver failure as well as in mice with experimental acute liver failure (ALF). Furthermore, mice deficient in BGT-1 showed significant resistance to ALF compared with wild type (WT) mice, manifesting as improved survival rate, reduced alanine transaminase/aspartate aminotransferase levels, better histopathological symptoms and fewer apoptotic cells in the liver. Similarly, in primary hepatocytes, BGT-1 deficiency or treatment with a BGT-1 inhibitor, NNC 05-2090, attenuated TNF-α mediated apoptosis. In addition, BGT-1 deficiency or dosing with NNC 05-2090 stimulated the expression of the anti-apoptotic gene, c-Met in the liver, suggesting the involvement of c-Met in the function on hepatocytes of BGT-1 apoptosis. Our findings suggest BGT-1 is a promising candidate drug target to prevent and treat hepatocyte apoptosis related diseases, such as ALF.
Collapse
Affiliation(s)
- Zhenze Liu
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Qing Li
- School of Life Science and Technology, Tongji University. Shanghai, China; Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Ruling Shen
- Shanghai Laboratory Animal Research Center, Shanghai, China; Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University
| | - Lei Ci
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Zhipeng Wan
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Jiahao Shi
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Qin Huang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Xu Yang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Mengjie Zhang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Hua Yang
- School of Life Science and Technology, Tongji University. Shanghai, China
| | - Ruilin Sun
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Zhugang Wang
- Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China
| | - Fang Huang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology & Institutes of Brain Science, Fudan University, Shanghai, China
| | - Tianfei Lu
- Department of Liver Surgery and Liver Transplantation Center, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jian Fei
- School of Life Science and Technology, Tongji University. Shanghai, China; Shanghai Engineering Research Center for Model Organisms, SMOC, Shanghai, China; Joint Laboratory for Model Organism, Shanghai Laboratory Animal Research Center and School of Life Science and Technology, Tongji University.
| |
Collapse
|
14
|
Kickinger S, Hellsberg E, Frølund B, Schousboe A, Ecker GF, Wellendorph P. Structural and molecular aspects of betaine-GABA transporter 1 (BGT1) and its relation to brain function. Neuropharmacology 2019; 161:107644. [PMID: 31108110 DOI: 10.1016/j.neuropharm.2019.05.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 04/14/2019] [Accepted: 05/16/2019] [Indexed: 01/09/2023]
Abstract
ɣ-aminobutyric-acid (GABA) functions as the principal inhibitory neurotransmitter in the central nervous system. Imbalances in GABAergic neurotransmission are involved in the pathophysiology of various neurological diseases such as epilepsy, Alzheimer's disease and stroke. GABA transporters (GATs) facilitate the termination of GABAergic signaling by transporting GABA together with sodium and chloride from the synaptic cleft into presynaptic neurons and surrounding glial cells. Four different GATs have been identified that all belong to the solute carrier 6 (SLC6) transporter family: GAT1-3 (SLC6A1, SLC6A13, SLC6A11) and betaine/GABA transporter 1 (BGT1, SLC6A12). BGT1 has emerged as an interesting target for treating epilepsy due to animal studies that reported anticonvulsant effects for the GAT1/BGT1 selective inhibitor EF1502 and the BGT1 selective inhibitor RPC-425. However, the precise involvement of BGT1 in epilepsy remains elusive because of its controversial expression levels in the brain and the lack of highly selective and potent tool compounds. This review gathers the current structural and functional knowledge on BGT1 with emphasis on brain relevance, discusses all available compounds, and tries to shed light on the molecular determinants driving BGT1 selectivity. This article is part of the issue entitled 'Special Issue on Neurotransmitter Transporters'.
Collapse
Affiliation(s)
- Stefanie Kickinger
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Eva Hellsberg
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Bente Frølund
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Arne Schousboe
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark
| | - Gerhard F Ecker
- University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090, Vienna, Austria
| | - Petrine Wellendorph
- University of Copenhagen, Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, 2 Universitetsparken, 2100, Copenhagen, Denmark.
| |
Collapse
|
15
|
Schaarschmidt M, Höfner G, Wanner KT. Synthesis and Biological Evaluation of Nipecotic Acid and Guvacine Derived 1,3-Disubstituted Allenes as Inhibitors of Murine GABA Transporter mGAT1. ChemMedChem 2019; 14:1135-1151. [PMID: 30957949 DOI: 10.1002/cmdc.201900170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 12/18/2022]
Abstract
A new class of nipecotic acid and guvacine derivatives has been synthesized and characterized for their inhibitory potency at mGAT1-4 and binding affinity for mGAT1. Compounds of the described class are defined by a four-carbon-atom allenyl spacer connecting the nitrogen atom of the nipecotic acid or guvacine head with an aromatic residue. Among the compounds investigated, the mixture of nipecotic acid derivatives rac-{(Ra )-1-[4-([1,1':2',1''-terphenyl]-2-yl)buta-2,3-dien-1-yl](3R)-piperidine-3-carboxylic acid} and rac-{(Sa )-1-[4-([1,1':2',1''-terphenyl]-2-yl)buta-2,3-dien-1-yl](3R)-piperidine-3-carboxylic acid} (21 p), possessing an o-terphenyl residue, was identified as highly selective and the most potent mGAT1 inhibitor in this study. For the (R)-nipecotic acid derived form of 21 p, the inhibitory potency in [3 H]GABA uptake assays was determined as pIC50 =6.78±0.08, and the binding affinity in MS Binding Assays as pKi =7.10±0.12. The synthesis of the designed compounds was carried out by a two-step procedure, generating the allene moiety via allenylation of terminal alkynes which allows broad variation of the terminal phenyl and biphenyl subunit.
Collapse
Affiliation(s)
- Maren Schaarschmidt
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| | - Georg Höfner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| | - Klaus T Wanner
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstr. 7-13, 81377, Munich, Germany
| |
Collapse
|
16
|
Zhang Y, Dong HT, Duan L, Niu L, Yuan GQ, Dai JQ, Hou BR, Pan YW. HDAC4 gene silencing alleviates epilepsy by inhibition of GABA in a rat model. Neuropsychiatr Dis Treat 2019; 15:405-416. [PMID: 30787615 PMCID: PMC6366349 DOI: 10.2147/ndt.s181669] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVES Despite the availability of effective antiepileptic drugs, epileptic patients still suffer from intractable seizures and adverse events. Better control of both seizures and fewer side effects is needed in order to enhance the patient's quality of life. We performed the present study with an attempt to explore the effect that HDAC4 gene silencing would have on epilepsy simulated by model rats. Furthermore, the study made additional analysis on the relativity of the HDAC4 gene in regard to its relationship with the gamma-aminobutyric acid (GABA) signaling pathway. MATERIALS AND METHODS Tremor rats were prepared in order to establish the epilepsy model. The rats would go on to be treated with si-HDAC4 in order to identify roles of the HDAC4 in levels of GABAARα1, GABAARα4, GAD65, GAT-1, and GAT-3. Finally, both electroencephalogram behavior and cognitive function of the rats following the treatment of si-HDAC4 were observed. RESULTS Levels of the GABAARα1 and GABAARα4 showed an evident increase, while GAD65, GAT-1, and GAT-3 displayed a decline in the epilepsy rats treated with the aforementioned si-HDAC4 when compared with the epilepsy rats. After injection of si-HDAC4, the epilepsy rats presented with a reduction in seizure degree, latency and duration of seizure, amount of scattered epileptic waves, and occurrence of epilepsy, with an improvement in their cognitive function. CONCLUSION The study highlighted the role that HDAC4 gene silencing played in easing the cases of epilepsy found in the model rats. This was shown to have occurred through the upregulation of both GABAARα1 and GABAARα4 levels, as well as in the downregulation of GAD65, GAT-1, and GAT-3 levels. The evidence provided shows that the HDAC4 gene is likely to present as a new objective in further experimentation in the treatment of epilepsy.
Collapse
Affiliation(s)
- Yinian Zhang
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Hua-Teng Dong
- Department of Pediatric Neurology, Gansu Provincial Maternity and Child-Care Hospital, Lanzhou 730050, People's Republic of China
| | - Lei Duan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Liang Niu
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Guo-Qiang Yuan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Jun-Qiang Dai
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Bo-Ru Hou
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| | - Ya-Wen Pan
- Department of Neurosurgery and Laboratory of Neurosurgery, Lanzhou University Second Hospital, Lanzhou 730030, People's Republic of China, .,Institute of Neurology, Lanzhou University, Lanzhou 730030, People's Republic of China,
| |
Collapse
|
17
|
De Paepe B, Zschüntzsch J, Šokčević T, Weis J, Schmidt J, De Bleecker JL. Induction of Osmolyte Pathways in Skeletal Muscle Inflammation: Novel Biomarkers for Myositis. Front Neurol 2018; 9:846. [PMID: 30364257 PMCID: PMC6193116 DOI: 10.3389/fneur.2018.00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 09/20/2018] [Indexed: 12/28/2022] Open
Abstract
We recently identified osmolyte accumulators as novel biomarkers for chronic skeletal muscle inflammation and weakness, but their precise involvement in inflammatory myopathies remains elusive. In the current study, we demonstrate in vitro that, in myoblasts and myotubes exposed to pro-inflammatory cytokines or increased salt concentration, mRNA levels of the osmolyte carriers SLC5A3, SLC6A6, SLC6A12, and AKR1B1 enzyme can be upregulated. Induction of SLC6A12 and AKR1B1 was confirmed at the protein level using immunofluorescence and Western blotting. Gene silencing by specific siRNAs revealed that these factors were vital for muscle cells under hyperosmotic conditions. Pro-inflammatory cytokines activated mitogen-activated protein kinases, nuclear factor κB as well as nuclear factor of activated T-cells 5 mRNA expression. In muscle biopsies from patients with polymyositis or sporadic inclusion body myositis, osmolyte pathway activation was observed in regenerating muscle fibers. In addition, the osmolyte carriers SLC5A3 and SLC6A12 localized to subsets of immune cells, most notably to the endomysial macrophages and T-cells. Collectively, this study unveiled that muscle cells respond to osmotic and inflammatory stress by osmolyte pathway activation, likely orchestrating general protection of the tissue. Moreover, pro-inflammatory properties are attributed to SLC5A3 and SLC6A12 in auto-aggressive macrophages and T-cells in inflamed skeletal muscle.
Collapse
Affiliation(s)
- Boel De Paepe
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Jana Zschüntzsch
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Tea Šokčević
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| | - Joachim Weis
- Institute for Neuropathology, Reinisch-Westfälische Technische Hochschule Aachen University Hospital, Aachen, Germany
| | - Jens Schmidt
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Jan L De Bleecker
- Department of Neurology and Neuromuscular Reference Center, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
18
|
Lutz T, Wein T, Höfner G, Pabel J, Eder M, Dine J, Wanner KT. Development of New Photoswitchable Azobenzene Based γ-Aminobutyric Acid (GABA) Uptake Inhibitors with Distinctly Enhanced Potency upon Photoactivation. J Med Chem 2018; 61:6211-6235. [DOI: 10.1021/acs.jmedchem.8b00629] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Toni Lutz
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Thomas Wein
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Georg Höfner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Jörg Pabel
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| | - Matthias Eder
- Scientific Core Unit Electrophysiology, Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Julien Dine
- Scientific Core Unit Electrophysiology, Department of Stress Neurobiology and Neurogenetics, Max-Planck-Institut für Psychiatrie, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | - Klaus T. Wanner
- Department of Pharmacy, Center for Drug Research, Ludwig-Maximilians-University Munich, Butenandtstrasse 5-13, D-81377 Munich, Germany
| |
Collapse
|
19
|
Al-Khawaja A, Haugaard AS, Marek A, Löffler R, Thiesen L, Santiveri M, Damgaard M, Bundgaard C, Frølund B, Wellendorph P. Pharmacological Characterization of [ 3H]ATPCA as a Substrate for Studying the Functional Role of the Betaine/GABA Transporter 1 and the Creatine Transporter. ACS Chem Neurosci 2018; 9:545-554. [PMID: 29131576 DOI: 10.1021/acschemneuro.7b00351] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The betaine/γ-aminobutyric acid (GABA) transporter 1 (BGT1) is one of the four GABA transporters (GATs) involved in the termination of GABAergic neurotransmission. Although suggested to be implicated in seizure management, the exact functional importance of BGT1 in the brain is still elusive. This is partly owing to the lack of potent and selective pharmacological tool compounds that can be used to probe its function. We previously reported the identification of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA), a selective substrate for BGT1 over GAT1/GAT3, but also an agonist for GABAA receptors. With the aim of providing new functional insight into BGT1, we here present the synthesis and pharmacological characterization of the tritiated analogue, [3H]ATPCA. Using traditional uptake assays at recombinant transporters expressed in cell lines, [3H]ATPCA displayed a striking selectivity for BGT1 among the four GATs ( Km and Vmax values of 21 μM and 3.6 nmol ATPCA/(min × mg protein), respectively), but was also found to be a substrate for the creatine transporter (CreaT). In experiments with mouse cortical cell cultures, we observed a Na+-dependent [3H]ATPCA uptake in neurons, but not in astrocytes. The neuronal uptake could be inhibited by GABA, ATPCA, and a noncompetitive BGT1-selective inhibitor, indicating functional BGT1 in neurons. In conclusion, we report [3H]ATPCA as a novel radioactive substrate for both BGT1 and CreaT. The dual activity of the radioligand makes it most suitable for use in recombinant studies.
Collapse
Affiliation(s)
- Anas Al-Khawaja
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Anne S. Haugaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ales Marek
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Flemingovo nam 542/2, 16610 Prague 6, Czech Republic
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Louise Thiesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mònica Santiveri
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Maria Damgaard
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Axon-terminals expressing EAAT2 (GLT-1; Slc1a2) are common in the forebrain and not limited to the hippocampus. Neurochem Int 2018. [PMID: 29530756 DOI: 10.1016/j.neuint.2018.03.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The excitatory amino acid transporter type 2 (EAAT2) represents the major mechanism for removal of extracellular glutamate. In the hippocampus, there is some EAAT2 in axon-terminals, whereas most of the protein is found in astroglia. The functional importance of the neuronal EAAT2 is unknown, and it is debated whether EAAT2-expressing nerve terminals are present in other parts of the brain. Here we selectively deleted the EAAT2 gene in neurons (by crossing EAAT2-flox mice with synapsin 1-Cre mice in the C57B6 background). To reduce interference from astroglial EAAT2, we measured glutamate accumulation in crude tissue homogenates. EAAT2 proteins levels were measured by immunoblotting. Although synapsin 1-Cre mediated gene deletion only reduced the forebrain tissue content of EAAT2 protein to 95.5 ± 3.4% of wild-type (littermate) controls, the glutamate accumulation in homogenates of neocortex, hippocampus, striatum and thalamus were nevertheless diminished to, respectively, 54 ± 4, 46 ± 3, 46 ± 2 and 65 ± 7% of controls (average ± SEM, n = 3 pairs of littermates). GABA uptake was unaffected. After injection of U-13C-glucose, lack of neuronal EAAT2 resulted in higher 13C-labeling of glutamine and GABA in the hippocampus suggesting that neuronal EAAT2 is partly short-circuiting the glutamate-glutamine cycle in wild-type mice. Crossing synapsin 1-Cre mice with Ai9 reporter mice revealed that Cre-mediated excision occurred efficiently in hippocampus CA3, but less efficiently in other regions and hardly at all in the cerebellum. Conclusions: (1) EAAT2 is expressed in nerve terminals in multiple brain regions. (2) The uptake catalyzed by neuronal EAAT2 plays a role in glutamate metabolism, at least in the hippocampus. (3) Synapsin 1-Cre does not delete floxed genes in all neurons, and the contribution of neuronal EAAT2 is therefore likely to be larger than revealed in the present study.
Collapse
|
21
|
Wilson CS, Mongin AA. The signaling role for chloride in the bidirectional communication between neurons and astrocytes. Neurosci Lett 2018; 689:33-44. [PMID: 29329909 DOI: 10.1016/j.neulet.2018.01.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
It is well known that the electrical signaling in neuronal networks is modulated by chloride (Cl-) fluxes via the inhibitory GABAA and glycine receptors. Here, we discuss the putative contribution of Cl- fluxes and intracellular Cl- to other forms of information transfer in the CNS, namely the bidirectional communication between neurons and astrocytes. The manuscript (i) summarizes the generic functions of Cl- in cellular physiology, (ii) recaps molecular identities and properties of Cl- transporters and channels in neurons and astrocytes, and (iii) analyzes emerging studies implicating Cl- in the modulation of neuroglial communication. The existing literature suggests that neurons can alter astrocytic Cl- levels in a number of ways; via (a) the release of neurotransmitters and activation of glial transporters that have intrinsic Cl- conductance, (b) the metabotropic receptor-driven changes in activity of the electroneutral cation-Cl- cotransporter NKCC1, and (c) the transient, activity-dependent changes in glial cell volume which open the volume-regulated Cl-/anion channel VRAC. Reciprocally, astrocytes are thought to alter neuronal [Cl-]i through either (a) VRAC-mediated release of the inhibitory gliotransmitters, GABA and taurine, which open neuronal GABAA and glycine receptor/Cl- channels, or (b) the gliotransmitter-driven stimulation of NKCC1. The most important recent developments in this area are the identification of the molecular composition and functional heterogeneity of brain VRAC channels, and the discovery of a new cytosolic [Cl-] sensor - the Wnk family protein kinases. With new work in the field, our understanding of the role of Cl- in information processing within the CNS is expected to be significantly updated.
Collapse
Affiliation(s)
- Corinne S Wilson
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States
| | - Alexander A Mongin
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, United States; Department of Biophysics and Functional Diagnostics, Siberian State Medical University, Tomsk, Russian Federation.
| |
Collapse
|
22
|
Aggarwal S, Ahuja V, Paul J. Attenuated GABAergic Signaling in Intestinal Epithelium Contributes to Pathogenesis of Ulcerative Colitis. Dig Dis Sci 2017; 62:2768-2779. [PMID: 28667430 DOI: 10.1007/s10620-017-4662-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/21/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Neuromediators produced by enteric nervous system regulate inflammatory processes via interacting with enteric immune system. Role of γ-aminobutyric acid (GABA), which is also a neuromediator, has been implicated in autoimmune diseases like multiple sclerosis, type 1 diabetes, and rheumatoid arthritis, where they modulate the immune responses. However, its role in ulcerative colitis (UC) has not been defined. AIMS This study was carried out to investigate the role of GABA and its signaling components in pathogenesis of UC. METHODS Peripheral blood, colon mucosal biopsy, and fecal specimens were collected from UC and control groups. Quantification of GABA was done using ELISA. Expression of GABAergic signal system components was analyzed through RT-PCR analysis. Enumeration of GABA-producing bacteria was done by qPCR analysis. Activity of p38 MAPK and expression of proinflammatory cytokines were determined by immunohistochemistry and RT-PCR analysis, respectively. RESULTS GABA levels were significantly reduced in patients with UC as compared to control group when measured in serum and colon biopsy. Altered expression of GABAergic signal system was observed in UC patients. Reduced abundance of selected GABA-producing bacteria was detected in stool samples of UC patients as compared to control. p38 MAPK activity and expression of its downstream effector cytokines were found to be increased in UC patients as compared to control. CONCLUSIONS Reduced levels of GABA were observed in patients with UC, and this leads to hyperactivation of p38 MAPK and overexpression of downstream effector cytokines suggesting a role of GABA in pathogenesis of UC.
Collapse
Affiliation(s)
- Surbhi Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Vineet Ahuja
- Department of Gastroenterology, All India Institute of Medical Sciences, New Delhi, 110067, India
| | - Jaishree Paul
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
23
|
Betaine in the Brain: Characterization of Betaine Uptake, its Influence on Other Osmolytes and its Potential Role in Neuroprotection from Osmotic Stress. Neurochem Res 2017; 42:3490-3503. [PMID: 28918494 DOI: 10.1007/s11064-017-2397-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/15/2017] [Accepted: 08/29/2017] [Indexed: 01/17/2023]
Abstract
Betaine (N-trimethylglycine), a common osmolyte, has received attention because of the number of clinical reports associating betaine supplementation with improved cognition, neuroprotection and exercise physiology. However, tissue analyses report little accumulation of betaine in brain tissue despite the presence of betaine/GABA transporters (BGT1) at the blood brain barrier and in nervous tissue, calling into question whether betaine influences neuronal function directly or indirectly. Therefore, the focus of this study was to determine what capacity nervous tissue has to accumulate betaine, specifically in the hippocampus, a region of the brain associated with learning and memory and one that is particularly susceptible to damage (e.g., seizure activity). Here we report that hippocampal slices actively accumulate betaine in a time, dose and osmolality dependent manner, resulting in peak intracellular concentrations four times extracellular concentrations within 8 h. Our data also indicate that betaine uptake differentially influences the accumulation of other osmolytes. Under isosmotic conditions, betaine uptake minimally impacted some osmolytes (e.g., glycerylphosphorylcholine and glutamate) while significantly reducing others (taurine, creatine, and myo-inositol). Under osmotic stress (hyperosmotic) conditions, we observed dramatic changes in osmolytes like glycine and glutamine-key players in inhibitory neurotransmission-and little change in osmolytes such as taurine, creatine and myo-inositol when betaine was available. These data suggest that betaine may influence pathways of inhibitory neurotransmitter production/recycling in addition to serving as an osmolyte and metabolic intermediate. In sum, our data provide detailed characterization of betaine uptake in the hippocampus that implicates betaine in the modulation of hippocampal neurophysiology and neuroprotection.
Collapse
|
24
|
Towards a Better Understanding of GABAergic Remodeling in Alzheimer's Disease. Int J Mol Sci 2017; 18:ijms18081813. [PMID: 28825683 PMCID: PMC5578199 DOI: 10.3390/ijms18081813] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
γ-aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the vertebrate brain. In the past, there has been a major research drive focused on the dysfunction of the glutamatergic and cholinergic neurotransmitter systems in Alzheimer’s disease (AD). However, there is now growing evidence in support of a GABAergic contribution to the pathogenesis of this neurodegenerative disease. Previous studies paint a complex, convoluted and often inconsistent picture of AD-associated GABAergic remodeling. Given the importance of the GABAergic system in neuronal function and homeostasis, in the maintenance of the excitatory/inhibitory balance, and in the processes of learning and memory, such changes in GABAergic function could be an important factor in both early and later stages of AD pathogenesis. Given the limited scope of currently available therapies in modifying the course of the disease, a better understanding of GABAergic remodeling in AD could open up innovative and novel therapeutic opportunities.
Collapse
|
25
|
Wellendorph P, Jacobsen J, Skovgaard-Petersen J, Jurik A, Vogensen SB, Ecker G, Schousboe A, Krogsgaard-Larsen P, Clausen RP. γ-Aminobutyric Acid and Glycine Neurotransmitter Transporters. METHODS AND PRINCIPLES IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1002/9783527679430.ch4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Petrine Wellendorph
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Julie Jacobsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Jonas Skovgaard-Petersen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Andreas Jurik
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Stine B. Vogensen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Gerhard Ecker
- University of Vienna; Department of Pharmaceutical Chemistry; Althanstrasse 14, A-1090 Vienna Austria
| | - Arne Schousboe
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Povl Krogsgaard-Larsen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| | - Rasmus P. Clausen
- University of Copenhagen; Faculty of Health and Medical Sciences, Department of Drug Design and Pharmacology; Universitetsparken 2, DK-2100 Copenhagen Denmark
| |
Collapse
|
26
|
Delineation of the Role of Astroglial GABA Transporters in Seizure Control. Neurochem Res 2017; 42:2019-2023. [PMID: 28190226 DOI: 10.1007/s11064-017-2188-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 02/06/2023]
Abstract
Studies of GABA transport in neurons and astrocytes have provided evidence that termination of GABA as neurotransmitter is brought about primarily by active transport into the presynaptic, GABAergic nerve endings. There is, however, a considerable transport capacity in the astrocytes surrounding the synaptic terminals, a transport which may limit the availability of transmitter GABA leading to a higher probability of seizure activity governed by the balance of excitatory and inhibitory neurotransmission. Based on this it was hypothesized that selective inhibition of astrocytic GABA transport might prevent such seizure activity. A series of GABA analogs of restricted conformation were synthesized and in a number of collaborative investigations between Prof. Steve White at the University of Utah and medicinal chemists and pharmacologists at the School of Pharmacy and the University of Copenhagen, Denmark, GABA analogs with exactly this pharmacological property were identified. The most important analogs identified were N-methyl-exo-THPO (N-methyl-3-hydroxy-4-amino-4,5,6,7-tetrahydro-1,2-benzisoxazole) and its lipophilic analog EF-1502 ((RS)-4-[N-[1,1-bis(3-methyl-2-thienyl)but-1-en-4-yl]-N-methylamino]-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol) both of which turned out to be potent anticonvulsants in animal models of epilepsy.
Collapse
|
27
|
Lutz T, Wein T, Höfner G, Wanner KT. Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives withN-Arylalkynyl Substituents. ChemMedChem 2017; 12:362-371. [DOI: 10.1002/cmdc.201600599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 01/20/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Toni Lutz
- Department for Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 7-13 81377 Munich Germany
| | - Thomas Wein
- Department for Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 7-13 81377 Munich Germany
| | - Georg Höfner
- Department for Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 7-13 81377 Munich Germany
| | - Klaus T. Wanner
- Department for Pharmacy, Center for Drug Research; Ludwig-Maximilians-Universität München; Butenandtstr. 7-13 81377 Munich Germany
| |
Collapse
|
28
|
Astrocytic GABA Transporters: Pharmacological Properties and Targets for Antiepileptic Drugs. ADVANCES IN NEUROBIOLOGY 2017; 16:283-296. [PMID: 28828616 DOI: 10.1007/978-3-319-55769-4_14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inactivation of GABA-mediated neurotransmission is achieved by high-affinity transporters located at both GABAergic neurons and the surrounding astrocytes. Early studies of the pharmacological properties of neuronal and glial GABA transporters suggested that different types of transporters might be expressed in the two cell types, and such a scenario was confirmed by the cloning of four distinctly different GABA transporters from a number of different species. These GABA-transport entities have been extensively characterized using a large number of GABA analogues of restricted conformation, and several of these compounds have been shown to exhibit pronounced anticonvulsant activity in a variety of animal seizure models. As proof of concept of the validity of this drug development approach, one GABA-transport inhibitor, tiagabine, has been developed as a clinically active antiepileptic drug. This review provides a detailed account of efforts to design new subtype-selective GABA-transport inhibitors aiming at identifying novel antiepileptic drug candidates.
Collapse
|
29
|
Glial GABA Transporters as Modulators of Inhibitory Signalling in Epilepsy and Stroke. ADVANCES IN NEUROBIOLOGY 2017; 16:137-167. [PMID: 28828609 DOI: 10.1007/978-3-319-55769-4_7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Imbalances in GABA-mediated tonic inhibition are involved in several pathophysiological conditions. A classical way of controlling tonic inhibition is through pharmacological intervention with extrasynaptic GABAA receptors that sense ambient GABA and mediate a persistent GABAergic conductance. An increase in tonic inhibition may, however, also be obtained indirectly by inhibiting glial GABA transporters (GATs). These are sodium-coupled membrane transport proteins that normally act to terminate GABA neurotransmitter action by taking up GABA into surrounding astrocytes. The aim of the review is to provide an overview of glial GATs in regulating tonic inhibition, especially in epilepsy and stroke. This entails a comprehensive summary of changes known to occur in GAT expression levels and signalling following epileptic and ischemic insults. Further, we discuss the accumulating pharmacological evidence for targeting GATs in these diseases.
Collapse
|
30
|
Danbolt NC, Zhou Y, Furness DN, Holmseth S. Strategies for immunohistochemical protein localization using antibodies: What did we learn from neurotransmitter transporters in glial cells and neurons. Glia 2016; 64:2045-2064. [PMID: 27458697 DOI: 10.1002/glia.23027] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 06/19/2016] [Accepted: 06/21/2016] [Indexed: 12/11/2022]
Abstract
Immunocytochemistry and Western blotting are still major methods for protein localization, but they rely on the specificity of the antibodies. Validation of antibody specificity remains challenging mostly because ideal negative controls are often unavailable. Further, immunochemical labeling patterns are also influenced by a number of other factors such as postmortem changes, fixation procedures and blocking agents as well as the general assay conditions (e.g., buffers, temperature, etc.). Western blotting similarly depends on tissue collection and sample preparation as well as the electrophoretic separation, transfer to blotting membranes and the immunochemical probing of immobilized molecules. Publication of inaccurate information on protein distribution has downstream consequences for other researchers because the interpretation of physiological and pharmacological observations depends on information on where ion channels, receptors, enzymes or transporters are located. Despite numerous reports, some of which are strongly worded, erroneous localization data are being published. Here we describe the extent of the problem and illustrate the nature of the pitfalls with examples from studies of neurotransmitter transporters. We explain the importance of supplementing immunochemical observations with other measurements (e.g., mRNA levels and distribution, protein activity, mass spectrometry, electrophysiological recordings, etc.) and why quantitative considerations are integral parts of the quality control. Further, we propose a practical strategy for researchers who plan to embark on a localization study. We also share our thoughts about guidelines for quality control. GLIA 2016;64:2045-2064.
Collapse
Affiliation(s)
- Niels Christian Danbolt
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| | - Yun Zhou
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - David N Furness
- School of Life Sciences, Keele University, Keele, Staffs, United Kingdom
| | - Silvia Holmseth
- Neurotransporter Group, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
31
|
Eid T, Gruenbaum SE, Dhaher R, Lee TSW, Zhou Y, Danbolt NC. The Glutamate-Glutamine Cycle in Epilepsy. ADVANCES IN NEUROBIOLOGY 2016; 13:351-400. [PMID: 27885637 DOI: 10.1007/978-3-319-45096-4_14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Epilepsy is a complex, multifactorial disease characterized by spontaneous recurrent seizures and an increased incidence of comorbid conditions such as anxiety, depression, cognitive dysfunction, and sudden unexpected death. About 70 million people worldwide are estimated to suffer from epilepsy, and up to one-third of all people with epilepsy are expected to be refractory to current medications. Development of more effective and specific antiepileptic interventions is therefore requisite. Perturbations in the brain's glutamate-glutamine cycle, such as increased extracellular levels of glutamate, loss of astroglial glutamine synthetase, and changes in glutaminase and glutamate dehydrogenase, are frequently encountered in patients with epilepsy. Hence, manipulations of discrete glutamate-glutamine cycle components may represent novel approaches to treat the disease. The goal of his review is to discuss some of the glutamate-glutamine cycle components that are altered in epilepsy, particularly neurotransmitters and metabolites, enzymes, amino acid transporters, and glutamate receptors. We will also review approaches that potentially could be used in humans to target the glutamate-glutamine cycle. Examples of such approaches are treatment with glutamate receptor blockers, glutamate scavenging, dietary intervention, and hypothermia.
Collapse
Affiliation(s)
- Tore Eid
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA.
| | - Shaun E Gruenbaum
- Department of Anesthesiology, Yale School of Medicine, New Haven, CT, USA
| | - Roni Dhaher
- Department of Laboratory Medicine, Yale School of Medicine, 330 Cedar Street, 208035, New Haven, CT, 06520-8035, USA
| | - Tih-Shih W Lee
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Yun Zhou
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- Department of Molecular Medicine, Institute for Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
32
|
Petrera M, Wein T, Allmendinger L, Sindelar M, Pabel J, Höfner G, Wanner KT. Development of Highly Potent GAT1 Inhibitors: Synthesis of Nipecotic Acid Derivatives by Suzuki-Miyaura Cross-Coupling Reactions. ChemMedChem 2015; 11:519-38. [DOI: 10.1002/cmdc.201500490] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Indexed: 12/29/2022]
Affiliation(s)
| | - Thomas Wein
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Lars Allmendinger
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Miriam Sindelar
- Department Pharmacology; Weill Cornell Medical College; LC-428 1300 York Avenue New York NY 10021 USA
| | - Jörg Pabel
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Georg Höfner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| | - Klaus T. Wanner
- Department of Pharmacy; Center for Drug Research; Ludwigs-Maximilians-Universität München; Butenandtstr. 5-13 81377 Munich Germany
| |
Collapse
|
33
|
Kunisawa K, Nakashima N, Nagao M, Nomura T, Kinoshita S, Hiramatsu M. Betaine prevents homocysteine-induced memory impairment via matrix metalloproteinase-9 in the frontal cortex. Behav Brain Res 2015; 292:36-43. [DOI: 10.1016/j.bbr.2015.06.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/29/2015] [Accepted: 06/03/2015] [Indexed: 12/01/2022]
|
34
|
Damgaard M, Al-Khawaja A, Vogensen SB, Jurik A, Sijm M, Lie MEK, Bæk MI, Rosenthal E, Jensen AA, Ecker GF, Frølund B, Wellendorph P, Clausen RP. Identification of the First Highly Subtype-Selective Inhibitor of Human GABA Transporter GAT3. ACS Chem Neurosci 2015; 6:1591-9. [PMID: 26154082 DOI: 10.1021/acschemneuro.5b00150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Screening a library of small-molecule compounds using a cell line expressing human GABA transporter 3 (hGAT3) in a [(3)H]GABA uptake assay identified isatin derivatives as a new class of hGAT3 inhibitors. A subsequent structure-activity relationship (SAR) study led to the identification of hGAT3-selective inhibitors (i.e., compounds 20 and 34) that were superior to the reference hGAT3 inhibitor, (S)-SNAP-5114, in terms of potency (low micromolar IC50 values) and selectivity (>30-fold selective for hGAT3 over hGAT1/hGAT2/hBGT1). Further pharmacological characterization of compound 20 (5-(thiophen-2-yl)indoline-2,3-dione) revealed a noncompetitive mode of inhibition at hGAT3. This suggests that this compound class, which has no structural resemblance to GABA, has a binding site different from the substrate, GABA. This was supported by a molecular modeling study that suggested a unique binding site that matched the observed selectivity, inhibition kinetics, and SAR of the compound series. These compounds are the most potent GAT3 inhibitors reported to date that provide selectivity for GAT3 over other GABA transporter subtypes.
Collapse
Affiliation(s)
| | | | | | - Andreas Jurik
- Department
of Pharmaceutical Chemistry, University of Vienna, Althanstrasse
14, A-1090 Vienna, Austria
| | | | | | | | | | | | - Gerhard F. Ecker
- Department
of Pharmaceutical Chemistry, University of Vienna, Althanstrasse
14, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
35
|
Schmitt S, Höfner G, Wanner KT. Application of MS Transport Assays to the Four Human γ-Aminobutyric Acid Transporters. ChemMedChem 2015. [DOI: 10.1002/cmdc.201500254] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
36
|
EAAT2 (GLT-1; slc1a2) glutamate transporters reconstituted in liposomes argues against heteroexchange being substantially faster than net uptake. J Neurosci 2015; 34:13472-85. [PMID: 25274824 DOI: 10.1523/jneurosci.2282-14.2014] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The EAAT2 glutamate transporter, accounts for >90% of hippocampal glutamate uptake. Although EAAT2 is predominantly expressed in astrocytes, ∼10% of EAAT2 molecules are found in axon terminals. Despite the lower level of EAAT2 expression in glutamatergic terminals, when hippocampal slices are incubated with low concentration of d-aspartate (an EAAT2 substrate), axon terminals accumulate d-aspartate as quickly as astroglia. This implies an unexplained mismatch between the distribution of EAAT2 protein and of EAAT2-mediated transport activity. One hypothesis is that (1) heteroexchange of internal substrate with external substrate is considerably faster than net uptake and (2) terminals favor heteroexchange because of high levels of internal glutamate. However, it is currently unknown whether heteroexchange and uptake have similar or different rates. To address this issue, we used a reconstituted system to compare the relative rates of the two processes in rat and mice. Net uptake was sensitive to changes in the membrane potential and was stimulated by external permeable anions in agreement with the existence of an uncoupled anion conductance. By using the latter, we also demonstrate that the rate of heteroexchange also depends on the membrane potential. Additionally, our data further suggest the presence of a sodium leak in EAAT2. By incorporating the new findings in our previous model of glutamate uptake by EAAT2, we predict that the voltage sensitivity of exchange is caused by the voltage-dependent third Na(+) binding. Further, both our experiments and simulations suggest that the relative rates of net uptake and heteroexchange are comparable in EAAT2.
Collapse
|
37
|
Zhou Y, Danbolt NC. Glutamate as a neurotransmitter in the healthy brain. J Neural Transm (Vienna) 2014; 121:799-817. [PMID: 24578174 PMCID: PMC4133642 DOI: 10.1007/s00702-014-1180-8] [Citation(s) in RCA: 581] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 02/11/2014] [Indexed: 12/13/2022]
Abstract
Glutamate is the most abundant free amino acid in the brain and is at the crossroad between multiple metabolic pathways. Considering this, it was a surprise to discover that glutamate has excitatory effects on nerve cells, and that it can excite cells to their death in a process now referred to as "excitotoxicity". This effect is due to glutamate receptors present on the surface of brain cells. Powerful uptake systems (glutamate transporters) prevent excessive activation of these receptors by continuously removing glutamate from the extracellular fluid in the brain. Further, the blood-brain barrier shields the brain from glutamate in the blood. The highest concentrations of glutamate are found in synaptic vesicles in nerve terminals from where it can be released by exocytosis. In fact, glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. It took, however, a long time to realize that. The present review provides a brief historical description, gives a short overview of glutamate as a transmitter in the healthy brain, and comments on the so-called glutamate-glutamine cycle. The glutamate transporters responsible for the glutamate removal are described in some detail.
Collapse
Affiliation(s)
- Y. Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| | - N. C. Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Blindern, P.O. Box 1105, 0317 Oslo, Norway
| |
Collapse
|
38
|
Melone M, Ciappelloni S, Conti F. Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex. Front Neuroanat 2014; 8:72. [PMID: 25120439 PMCID: PMC4110517 DOI: 10.3389/fnana.2014.00072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 07/08/2014] [Indexed: 12/05/2022] Open
Abstract
Cortical GABAergic synapses exhibit a high degree of molecular, anatomical and functional heterogeneity of their neurons of origins, presynaptic mechanisms, receptors, and scaffolding proteins. GABA transporters (GATs) have an important role in regulating GABA levels; among them, GAT-1 and GAT-3 play a prominent role in modulating tonic and phasic GABAAR-mediated inhibition. We asked whether GAT-1 and GAT-3 contribute to generating heterogeneity by studying their ultrastructural localization at cortical symmetric synapses using pre- and post-embedding electron microcopy. GAT-1 and GAT-3 staining at symmetric synapses showed that in some cases the transporters were localized exclusively over axon terminals; in others they were in both axon terminals and perisynaptic astrocytic processes; and in some others GAT-1 and GAT-3 were in perisynaptic astrocytic processes only. Moreover, we showed that the organizational pattern of GAT-1, but not of GAT-3, exhibits a certain degree of specificity related to the post-synaptic target of GABAergic synapses. These findings show that symmetric synapses expressing GAT-1 or GAT-3 are heterogeneous, and indicate that plasma membrane transporters can contribute to synaptic heterogeneity.
Collapse
Affiliation(s)
- Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy ; Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy
| | - Silvia Ciappelloni
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche Ancona, Italy ; Center for Neurobiology of Aging, INRCA IRCCS Ancona, Italy ; Foundation for Molecular Medicine, Università Politecnica delle Marche Ancona, Italy
| |
Collapse
|
39
|
Schmitt S, Höfner G, Wanner KT. MS Transport Assays for γ-Aminobutyric Acid Transporters—An Efficient Alternative for Radiometric Assays. Anal Chem 2014; 86:7575-83. [DOI: 10.1021/ac501366r] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sebastian Schmitt
- Department of Pharmacy—Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße
7, 81377 München, Germany
| | - Georg Höfner
- Department of Pharmacy—Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße
7, 81377 München, Germany
| | - Klaus T. Wanner
- Department of Pharmacy—Center
for Drug Research, Ludwig-Maximilians-Universität München, Butenandtstraße
7, 81377 München, Germany
| |
Collapse
|
40
|
Jinzenji A, Sogawa C, Miyawaki T, Wen XF, Yi D, Ohyama K, Kitayama S, Sogawa N, Morita K. Antiallodynic action of 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), a betaine/GABA transporter inhibitor. J Pharmacol Sci 2014; 125:217-26. [PMID: 24881960 DOI: 10.1254/jphs.13146fp] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
The GABAergic system in the spinal cord has been shown to participate in neuropathic pain in various animal models. GABA transporters (GATs) play a role in controlling the synaptic clearance of GABA; however, their role in neuropathic pain remains unclear. In the present study, we compared the betaine/GABA transporter (BGT-1) with other GAT subtypes to determine its participation in neuropathic pain using a mouse model of sciatic nerve ligation. 1-(3-(9H-Carbazol-9-yl)-1-propyl)-4-(2-methyoxyphenyl)-4-piperidinol (NNC05-2090), an inhibitor that displays moderate selectivity for BGT-1, had an antiallodynic action on model mice treated through both intrathecally and intravenous administration routes. On the other hand, SKF89976A, a selective GAT-1 inhibitor, had a weak antiallodynic action, and (S)-SNAP5114, an inhibitor that displays selectivity for GAT-3, had no antiallodynic action. Systemic analysis of these compounds on GABA uptake in CHO cells stably expressing BGT-1 revealed that NNC05-2090 not only inhibited BGT-1, but also serotonin, noradrenaline, and dopamine transporters, using a substrate uptake assay in CHO cells stably expressing each transporter, with IC50: 5.29, 7.91, and 4.08 μM, respectively. These values were similar to the IC50 value at BGT-1 (10.6 μM). These results suggest that the antiallodynic action of NNC05-2090 is due to the inhibition of both BGT-1 and monoamine transporters.
Collapse
Affiliation(s)
- Ayako Jinzenji
- Department of Dental Anesthesiology and Special Care Dentistry, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pharmacological identification of a guanidine-containing β-alanine analogue with low micromolar potency and selectivity for the betaine/GABA transporter 1 (BGT1). Neurochem Res 2014; 39:1988-96. [PMID: 24852577 DOI: 10.1007/s11064-014-1336-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 10/25/2022]
Abstract
The γ-aminobutyric acid (GABA) transporters (GATs) are key membrane transporter proteins involved in the termination of GABAergic signaling at synapses in the mammalian brain and proposed drug targets in neurological disorders such as epilepsy. To date, four different GAT subtypes have been identified: GAT1, GAT2, GAT3 and the betaine/GABA transporter 1 (BGT1). Owing to the lack of potent and subtype selective inhibitors of the non-GAT1 GABA transporters, the physiological role and therapeutic potential of these transporters remain to be fully understood. Based on bioisosteric replacement of the amino group in β-alanine or GABA, a series of compounds was generated, and their pharmacological activity assessed at human GAT subtypes. Using a cell-based [(3)H]GABA uptake assay, several selective inhibitors at human BGT1 were identified. The guanidine-containing compound 9 (2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid hydrochloride) displayed more than 250 times greater potency than the parent compound β-alanine at BGT1 and is thus the most potent inhibitor reported to date for this subtype (IC50 value of 2.5 µM). In addition, compound 9 displayed about 400, 16 and 40 times lower inhibitory potency at GAT1, GAT2 and GAT3, respectively. Compound 9 was shown to be a substrate for BGT1 and to have an overall similar pharmacological profile at the mouse orthologue. Compound 9 constitutes an interesting pharmacological tool for specifically investigating the cellular pharmacology of BGT1 and is the first small-molecule substrate identified with such a high selectivity for BGT1 over the three other GAT subtypes.
Collapse
|
42
|
Kempson SA, Zhou Y, Danbolt NC. The betaine/GABA transporter and betaine: roles in brain, kidney, and liver. Front Physiol 2014; 5:159. [PMID: 24795654 PMCID: PMC4006062 DOI: 10.3389/fphys.2014.00159] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/04/2014] [Indexed: 12/18/2022] Open
Abstract
The physiological roles of the betaine/GABA transporter (BGT1; slc6a12) are still being debated. BGT1 is a member of the solute carrier family 6 (the neurotransmitter, sodium symporter transporter family) and mediates cellular uptake of betaine and GABA in a sodium- and chloride-dependent process. Most of the studies of BGT1 concern its function and regulation in the kidney medulla where its role is best understood. The conditions here are hostile due to hyperosmolarity and significant concentrations of NH4Cl and urea. To withstand the hyperosmolarity, cells trigger osmotic adaptation, involving concentration of a transcriptional factor TonEBP/NFAT5 in the nucleus, and accumulate betaine and other osmolytes. Data from renal cells in culture, primarily MDCK, revealed that transcriptional regulation of BGT1 by TonEBP/NFAT5 is relatively slow. To allow more acute control of the abundance of BGT1 protein in the plasma membrane, there is also post-translation regulation of BGT1 protein trafficking which is dependent on intracellular calcium and ATP. Further, betaine may be important in liver metabolism as a methyl donor. In fact, in the mouse the liver is the organ with the highest content of BGT1. Hepatocytes express high levels of both BGT1 and the only enzyme that can metabolize betaine, namely betaine:homocysteine –S-methyltransferase (BHMT1). The BHMT1 enzyme removes a methyl group from betaine and transfers it to homocysteine, a potential risk factor for cardiovascular disease. Finally, BGT1 has been proposed to play a role in controlling brain excitability and thereby represents a target for anticonvulsive drug development. The latter hypothesis is controversial due to very low expression levels of BGT1 relative to other GABA transporters in brain, and also the primary location of BGT1 at the surface of the brain in the leptomeninges. These issues are discussed in detail.
Collapse
Affiliation(s)
- Stephen A Kempson
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine Indianapolis, IN, USA
| | - Yun Zhou
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| | - Niels C Danbolt
- Department of Anatomy, Centre of Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo Oslo, Norway
| |
Collapse
|
43
|
Hiramatsu M. [Functional role for GABA transporters in the CNS]. Nihon Yakurigaku Zasshi 2014; 143:187-192. [PMID: 24717607 DOI: 10.1254/fpj.143.187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
|
44
|
Schousboe A, Madsen KK, Barker-Haliski ML, White HS. The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters. Neurochem Res 2014; 39:1980-7. [DOI: 10.1007/s11064-014-1263-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
|
45
|
Zhou Y, Waanders LF, Holmseth S, Guo C, Berger UV, Li Y, Lehre AC, Lehre KP, Danbolt NC. Proteome analysis and conditional deletion of the EAAT2 glutamate transporter provide evidence against a role of EAAT2 in pancreatic insulin secretion in mice. J Biol Chem 2013; 289:1329-44. [PMID: 24280215 DOI: 10.1074/jbc.m113.529065] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Islet function is incompletely understood in part because key steps in glutamate handling remain undetermined. The glutamate (excitatory amino acid) transporter 2 (EAAT2; Slc1a2) has been hypothesized to (a) provide islet cells with glutamate, (b) protect islet cells against high extracellular glutamate concentrations, (c) mediate glutamate release, or (d) control the pH inside insulin secretory granules. Here we floxed the EAAT2 gene to produce the first conditional EAAT2 knock-out mice. Crossing with Nestin-cyclization recombinase (Cre) eliminated EAAT2 from the brain, resulting in epilepsy and premature death, confirming the importance of EAAT2 for brain function and validating the genetic construction. Crossing with insulin-Cre lines (RIP-Cre and IPF1-Cre) to obtain pancreas-selective deletion did not appear to affect survival, growth, glucose tolerance, or β-cell number. We found (using TaqMan RT-PCR, immunoblotting, immunocytochemistry, and proteome analysis) that the EAAT2 levels were too low to support any of the four hypothesized functions. The proteome analysis detected more than 7,000 islet proteins of which more than 100 were transporters. Although mitochondrial glutamate transporters and transporters for neutral amino acids were present at high levels, all other transporters with known ability to transport glutamate were strikingly absent. Glutamate-metabolizing enzymes were abundant. The level of glutamine synthetase was 2 orders of magnitude higher than that of glutaminase. Taken together this suggests that the uptake of glutamate by islets from the extracellular fluid is insignificant and that glutamate is intracellularly produced. Glutamine synthetase may be more important for islets than assumed previously.
Collapse
Affiliation(s)
- Yun Zhou
- From The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, 0317 Oslo, Norway
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Bjørnsen LP, Hadera MG, Zhou Y, Danbolt NC, Sonnewald U. The GLT-1 (EAAT2; slc1a2) glutamate transporter is essential for glutamate homeostasis in the neocortex of the mouse. J Neurochem 2013; 128:641-9. [PMID: 24224925 DOI: 10.1111/jnc.12509] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/18/2013] [Accepted: 10/21/2013] [Indexed: 12/24/2022]
Abstract
Glutamate is the major excitatory neurotransmitter, and is inactivated by cellular uptake catalyzed mostly by the glutamate transporter subtypes GLT-1 (EAAT2) and GLAST (EAAT1). Astrocytes express both GLT-1 and GLAST, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we injected GLT-1 knockout (KO) mice and wild-type littermates with [1-(13)C]glucose and [1,2-(13)C]acetate 15 min before euthanization. Metabolite levels were analyzed in extracts from neocortex and cerebellum and (13)C labeling in neocortex. Whereas the cerebellum in GLT-1-deficient mice had normal levels of glutamate, glutamine, and (13)C labeling of metabolites, glutamate level was decreased but labeling from [1-(13)C] glucose was unchanged in the neocortex. The contribution from pyruvate carboxylation toward labeling of these metabolites was unchanged. Labeling from [1,2-(13)C] acetate, originating in astrocytes, was decreased in glutamate and glutamine in the neocortex indicating reduced mitochondrial metabolism in astrocytes. The decreased amount of glutamate in the cortex indicates that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the cortex. Glutamate is the major excitatory neurotransmitter, and is inactivated by uptake via GLT-1 (EAAT2) and GLAST (EAAT1) transporters, while axon terminals in the neocortex only express GLT-1. To evaluate the role of GLT-1 in glutamate homeostasis, we used [1-(13)C]glucose and [1,2-(13)C]acetate injection and NMR spectroscopy. The results indicate that glutamine transport into neurons is not sufficient to replenish glutamate lost because of neurotransmission and that GLT-1 plays a role in glutamate homeostasis in the neocortex.
Collapse
Affiliation(s)
- Lars Petter Bjørnsen
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | | | | | | |
Collapse
|
47
|
Sitka I, Allmendinger L, Fülep G, Höfner G, Wanner KT. Synthesis of N-substituted acyclic β-amino acids and their investigation as GABA uptake inhibitors. Eur J Med Chem 2013; 65:487-99. [PMID: 23770450 DOI: 10.1016/j.ejmech.2013.04.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Revised: 03/28/2013] [Accepted: 04/25/2013] [Indexed: 11/19/2022]
Abstract
In this publication, we describe the synthesis of new inhibitors for the GABA transporter subtypes GAT1 and especially GAT3. We started with 3-aminopropanoic acid possessing a distinct preference for GAT3 in comparison to GAT1 and furthermore its homolog 3-aminobutanoic acid. A series of respective N-substituted amino acids was synthesized by selective N-monoalkylation of these parent structures with 6 different arylalkyl alcohols via a Mitsunobu-type reaction. The resulting compounds were investigated for their inhibitory potency GABA transporter subtypes. Among all tested compounds the 4,4-diphenylbut-3-enyl substituted 3-aminobutanoic acid (rac)-6b showed highest potency with a pIC50 value of 5.34 at GAT1. Unfortunately, the expected GAT3 potency for 2-[tris(4-methoxyphenyl)methoxy]ethyl substituted derivatives was not as high as observed for the respective nipecotic acid derivatives.
Collapse
Affiliation(s)
- Ingolf Sitka
- Department Pharmazie, Zentrum für Pharmaforschung, LMU München, Butenandtstr. 5-13, D-81377 München, Germany
| | | | | | | | | |
Collapse
|
48
|
Vogensen SB, Jørgensen L, Madsen KK, Borkar N, Wellendorph P, Skovgaard-Petersen J, Schousboe A, White HS, Krogsgaard-Larsen P, Clausen RP. Selective mGAT2 (BGT-1) GABA uptake inhibitors: design, synthesis, and pharmacological characterization. J Med Chem 2013; 56:2160-4. [PMID: 23398473 DOI: 10.1021/jm301872x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
β-Amino acids sharing a lipophilic diaromatic side chain were synthesized and characterized pharmacologically on mouse GABA transporter subtypes mGAT1-4. The parent amino acids were also characterized. Compounds 13a, 13b, and 17b displayed more than 6-fold selectivity for mGAT2 over mGAT1. Compound 17b displayed anticonvulsive properties inferring a role of mGAT2 in epileptic disorders. These results provide new neuropharmacological tools and a strategy for designing subtype selective GABA transport inhibitors.
Collapse
Affiliation(s)
- Stine B Vogensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sindelar M, Lutz TA, Petrera M, Wanner KT. Focused Pseudostatic Hydrazone Libraries Screened by Mass Spectrometry Binding Assay: Optimizing Affinities toward γ-Aminobutyric Acid Transporter 1. J Med Chem 2013; 56:1323-40. [DOI: 10.1021/jm301800j] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Miriam Sindelar
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Toni A. Lutz
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Marilena Petrera
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| | - Klaus T. Wanner
- Center for Drug Research, Department
of Pharmacy, Ludwig Maximilians University at Munich, Butenandtstrasse
9-13, D-81377 Munich, Germany
| |
Collapse
|
50
|
Abstract
The mammalian genome contains four genes encoding GABA transporters (GAT1, slc6a1; GAT2, slc6a13; GAT3, slc6a11; BGT1, slc6a12) and five glutamate transporter genes (EAAT1, slc1a3; EAAT2, slc1a2; EAAT3, slc1a1; EAAT4, slc1a6; EAAT5, slc1a7). These transporters keep the extracellular levels of GABA and excitatory amino acids low and provide amino acids for metabolic purposes. The various transporters have different properties both with respect to their transport functions and with respect to their ability to act as ion channels. Further, they are differentially regulated. To understand the physiological roles of the individual transporter subtypes, it is necessary to obtain information on their distributions and expression levels. Quantitative data are important as the functional capacity is limited by the number of transporter molecules. The most important and most abundant transporters for removal of transmitter glutamate in the brain are EAAT2 (GLT-1) and EAAT1 (GLAST), while GAT1 and GAT3 are the major GABA transporters in the brain. EAAT3 (EAAC1) does not appear to play a role in signal transduction, but plays other roles. Due to their high uncoupled anion conductance, EAAT4 and EAAT5 seem to be acting more like inhibitory glutamate receptors than as glutamate transporters. GAT2 and BGT1 are primarily expressed in the liver and kidney, but are also found in the leptomeninges, while the levels in brain tissue proper are too low to have any impact on GABA removal, at least in normal young adult mice. The present review will provide summary of what is currently known and will also discuss some methodological pitfalls.
Collapse
Affiliation(s)
- Yun Zhou
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Niels Christian Danbolt
- The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- *Correspondence: Niels Christian Danbolt, The Neurotransporter Group, Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, P.O. Box 1105 Blindern, Oslo N-0317, Norway e-mail:
| |
Collapse
|