1
|
Naraki K, Keshavarzi M, Razavi BM, Hosseinzadeh H. The Protective Effects of Taurine, a Non-essential Amino Acid, Against Metals Toxicities: A Review Article. Biol Trace Elem Res 2025; 203:872-890. [PMID: 38735894 DOI: 10.1007/s12011-024-04191-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/16/2024] [Indexed: 05/14/2024]
Abstract
Taurine is a non-proteinogenic amino acid derived from cysteine. It is involved in several phenomena such as the regulation of growth and differentiation, osmoregulation, neurohormonal modulation, and lipid metabolism. Taurine is important because of its high levels in several tissues such as the central nervous system (CNS), heart, skeletal muscles, retinal membranes, and platelets. In this report, we present the functional properties of taurine indicating that it has potential effects on various metal toxicities. Therefore, a comprehensive literature review was performed using the Scopus, PubMed, and Web of Science databases. According to the search keywords, 61 articles were included in the study. The results indicate that taurine protects tissues against metal toxicity through enhancement of enzymatic and non-enzymatic antioxidant capacity, modulation of oxidative stress, anti-inflammatory and anti-apoptotic effects, involvement in different molecular pathways, and interference with the activity of various enzymes. Taken together, taurine is a natural supplement that presents antitoxic effects against many types of compounds, especially metals, suggesting public consumption of this amino acid as a prophylactic agent against the incidence of metal toxicity.
Collapse
Affiliation(s)
- Karim Naraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Keshavarzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Bishnolia M, Yadav P, Singh SK, Manhar N, Rajput S, Khurana A, Bhatti JS, Navik U. Methyl donor ameliorates CCl 4-induced liver fibrosis by inhibiting inflammation, and fibrosis through the downregulation of EGFR and DNMT-1 expression. Food Chem Toxicol 2025; 196:115230. [PMID: 39736447 DOI: 10.1016/j.fct.2024.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/26/2024] [Indexed: 01/01/2025]
Abstract
Methyl donors regulate the one-carbon metabolism and have significant potential to reduce oxidative stress and inflammation. Therefore, this study aims to investigate the protective effect of methyl donors against CCl4-induced liver fibrosis. Liver fibrosis was induced in male Sprague Dawley rats using CCl4 at a dose of 1 ml/kg (twice a week for a 4-week, via intraperitoneal route). Subsequently, methyl donor treatments were given orally for the next six weeks while continuing CCl4 administration. After 10 weeks, biochemical, histopathology, immunohistochemistry, western blotting, and qRT-PCR were performed. Methyl donor treatment significantly ameliorated ALT, AST, ALP levels, and oxidative stress associated with CCl4-induced liver injury. The histopathological investigation also demonstrated the hepatoprotective effect of methyl donors against CCl4-induced liver fibrosis, showing reduced tissue damage, collagen deposition, and attenuating the expression of the COL1A1 gene. Further, methyl donors inhibited the CCl4-induced increase in DNMT-1 and NF-κB p65 expression with an upregulation of AMPK. Methyl donor downregulated the CCl4-induced increase in inflammatory and fibrosis related gene expression and inhibited the apoptosis with a downregulation of EGFR expression. Here, we provide the first evidence that methyl donor combinations prevent liver fibrosis by attenuating oxidative stress, inflammation, and fibrosis through DNMT-1 and EGFR downregulation.
Collapse
Affiliation(s)
- Manish Bishnolia
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sumeet Kumar Singh
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Nirmal Manhar
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Sonu Rajput
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Amit Khurana
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India
| | - Jasvinder Singh Bhatti
- Laboratory of Translational Medicine and Nanotherapeutics, Department of Human Genetics and Molecular Medicine, School of Health Sciences, Central University of Punjab, Bathinda, India.
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Bathinda, Punjab, India.
| |
Collapse
|
3
|
Wang X, Zhang C, Li R, Qiu Y, Ma Y, Wang S, Li Y, Guo S, Li C. Down-regulation of miR-29 improves lipid metabolism in fatty liver of dairy cows. Anim Biotechnol 2024; 35:2396414. [PMID: 39205627 DOI: 10.1080/10495398.2024.2396414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
In this study, we conducted a thorough investigation into the mechanisms by which miR-29 influences lipid metabolism. Thirty-two cows were selected and categorized into distinct groups based on their liver triglyceride (TG) content: healthy, mild fatty liver, and moderate fatty liver groups. Dairy cows with moderate fatty liver showed higher levels of hepatic lipid accumulation, MDA content and serum AST, ALT and ALP contents and lower hepatic catalase CAT and SOD activities. Subsequently, hepatocytes isolated from healthy calves were exposed to sodium oleate (SO) in the presence or absence of pre-incubation with miR-29 inhibitor or inhibitor NC. Pre-transfection with miR-29 inhibitor resulted in reduced hepatocyte lipid accumulation and MDA levels, as well as decreased levels of AST, ALT, and ALP in the supernatant. In the miR-29 inhibitor + SO group, there was an increase in the expression of SREBP-1, FAS, SCD1, and Sirt1. Meanwhile, the expression of PPARα, CPT1, CPT2, PGC-1α, NRF-1, UCP2, and miR-29 were observed to be decreased. In comparison to the miR-29 inhibitor + SO group, some of the measured indicators showed partial reversal in the miR-29 inhibitor + siSirt1 + SO group. Collectively, these findings provide evidence that miR-29 may play a crucial role in the pathogenesis of fatty liver in dairy cows.
Collapse
Affiliation(s)
- Xueying Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Cai Zhang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Rishun Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yan Qiu
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yanbo Ma
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
- Longmen Laboratory, Innovative Research Team of Livestock Intelligent Breeding and Equipment, Luoyang, China
| | - Shuai Wang
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Yuanxiao Li
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Shuai Guo
- Henan International Joint Laboratory of Animal Welfare and Health Breeding, Henan University of Science and Technology, Luoyang, China
| | - Chenxu Li
- State Key Laboratory for Zoonotic Diseases, Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun Jilin, China
| |
Collapse
|
4
|
Zheng WV, Li Y, Cheng X, Xu Y, Zhou T, Li D, Xiong Y, Wang S, Chen Z. Uridine alleviates carbon tetrachloride-induced liver fibrosis by regulating the activity of liver-related cells. J Cell Mol Med 2021; 26:840-854. [PMID: 34970843 PMCID: PMC8817115 DOI: 10.1111/jcmm.17131] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/28/2021] [Accepted: 12/01/2021] [Indexed: 12/17/2022] Open
Abstract
At present, liver fibrosis is a major challenge of global health. When hepatocyte regeneration cannot compensate for hepatocyte death, it will develop into liver fibrosis in chronic liver disease. Initially, collagen produced by myofibroblasts plays a role in maintaining liver integrity, but excessive collagen accumulation can inhibit the residual liver function, leading to liver failure. At present, many scientists are actively looking for drugs to alleviate liver fibrosis. In the current study, we investigated the potential role of uridine in the treatment of liver fibrosis (uridine is a plant/animal‐derived pyrimidine nucleoside, therefore uridine can also be ingested and absorbed by the body, accompanied by the process of food intake). For this, we systematically studied the effect of uridine on CCl4‐induced liver fibrosis in vitro and in vivo through a series of technologies, such as Western blot, laser confocal scanning microscope, ELISA and immunohistochemistry. The experimental results showed that uridine can effectively reduce the accumulation of collagen in liver. Furthermore, uridine can improve the activity of liver cells and alleviate CCl4‐induced liver injury. Furthermore, uridine can significantly alleviate the risk factors caused by hepatic stellate cell activation, uridine treatment significantly down‐regulated the expression of α‐SMA, collagen type‐I and fibronectin. In conclusion, the current research shows that uridine can alleviate CCl4‐induced liver fibrosis, suggesting that uridine can be used as a potential drug to alleviate liver fibrosis.
Collapse
Affiliation(s)
- Wei V Zheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yaqin Li
- Department of Infectious Disease, Peking University Shenzhen Hospital, Shenzhen, China
| | - Xianyi Cheng
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yanwei Xu
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Tao Zhou
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Dezhi Li
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yu Xiong
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shaobin Wang
- Health Management Center, Peking University Shenzhen Hospital, Shenzhen, China
| | - Zaizhong Chen
- Intervention and Cell Therapy Center, Peking University Shenzhen Hospital, Shenzhen, China.,Department of Minimally Invasion Intervention, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
5
|
Surai PF, Earle-Payne K, Kidd MT. Taurine as a Natural Antioxidant: From Direct Antioxidant Effects to Protective Action in Various Toxicological Models. Antioxidants (Basel) 2021; 10:1876. [PMID: 34942978 PMCID: PMC8698923 DOI: 10.3390/antiox10121876] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/18/2022] Open
Abstract
Natural antioxidants have received tremendous attention over the last 3 decades. At the same time, the attitude to free radicals is slowly changing, and their signalling role in adaptation to stress has recently received a lot of attention. Among many different antioxidants in the body, taurine (Tau), a sulphur-containing non-proteinogenic β-amino acid, is shown to have a special place as an important natural modulator of the antioxidant defence networks. Indeed, Tau is synthesised in most mammals and birds, and the Tau requirement is met by both synthesis and food/feed supply. From the analysis of recent data, it could be concluded that the direct antioxidant effect of Tau due to scavenging free radicals is limited and could be expected only in a few mammalian/avian tissues (e.g., heart and eye) with comparatively high (>15-20 mM) Tau concentrations. The stabilising effects of Tau on mitochondria, a prime site of free radical formation, are characterised and deserve more attention. Tau deficiency has been shown to compromise the electron transport chain in mitochondria and significantly increase free radical production. It seems likely that by maintaining the optimal Tau status of mitochondria, it is possible to control free radical production. Tau's antioxidant protective action is of great importance in various stress conditions in human life, and is related to commercial animal and poultry production. In various in vitro and in vivo toxicological models, Tau showed AO protective effects. The membrane-stabilizing effects, inhibiting effects on ROS-producing enzymes, as well as the indirect AO effects of Tau via redox balance maintenance associated with the modulation of various transcription factors (e.g., Nrf2 and NF-κB) and vitagenes could also contribute to its protective action in stress conditions, and thus deserve more attention.
Collapse
Affiliation(s)
- Peter F. Surai
- Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Biochemistry and Physiology Department, Saint-Petersburg State University of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Katie Earle-Payne
- NHS Greater Glasgow and Clyde, Renfrewshire Health and Social Care Centre, 10 Ferry Road, Renfrew PA4 8RU, UK;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
6
|
Taurine ameliorates thioacetamide induced liver fibrosis in rats via modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Sci Rep 2021; 11:12296. [PMID: 34112866 PMCID: PMC8192756 DOI: 10.1038/s41598-021-91666-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a significant health problem that can cause serious illness and death. Unfortunately, a standard treatment for liver fibrosis has not been approved yet due to its complicated pathogenesis. The current study aimed at assessing the anti-fibrotic effect of taurine against thioacetamide induced liver fibrosis in rats through the modulation of toll like receptor 4/nuclear factor kappa B signaling pathway. Both concomitant and late taurine treatment (100 mg/kg, IP, daily) significantly reduced the rise in serum ALT and AST activities and significantly reversed the decrease in serum albumin and total protein. These results were confirmed by histopathological examinations and immunehistochemical inspection of α-SMA, caspase-3 and NF-κB. The antioxidant potential of taurine was verified by a marked increase of GSH content and a reduction of MDA level in liver tissue. The anti-fibrotic effects of taurine were evaluated by investigating the expression of TLR4, NF-κB. The protein levels of IL-6, LPS, MyD88, MD2, CD14, TGF-β1 and TNF-α were determined. Docking studies were carried out to understand how taurine interacts inside TLR4-MD2 complex and it showed good binding with the hydrophobic binding site of MD2. We concluded that the anti-fibrotic effect of taurine was attributable to the modulation of the TLR4/NF-κB signaling.
Collapse
|
7
|
DiNicolantonio JJ, McCarty MF, Barroso-Aranda J, Assanga S, Lujan LML, O'Keefe JH. A nutraceutical strategy for downregulating TGFβ signalling: prospects for prevention of fibrotic disorders, including post-COVID-19 pulmonary fibrosis. Open Heart 2021; 8:openhrt-2021-001663. [PMID: 33879509 PMCID: PMC8061562 DOI: 10.1136/openhrt-2021-001663] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/30/2021] [Indexed: 12/14/2022] Open
Affiliation(s)
- James J DiNicolantonio
- Preventive Cardiology, Saint Luke's Mid America Heart Institute, Kansas City, Missouri, USA
| | | | | | - Simon Assanga
- Department of Research and Postgraduate Studies in Food, University of Sonora, Sonora, Mexico
| | | | - James H O'Keefe
- University of Missouri-Kansas City, Saint Lukes Mid America Heart Institute, Kansas City, Missouri, USA
| |
Collapse
|
8
|
Song Q, Guo J, Zhang Y, Chen W. The beneficial effects of taurine in alleviating fatty liver disease. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104351] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Ma X, Jiang Y, Wen J, Zhao Y, Zeng J, Guo Y. A comprehensive review of natural products to fight liver fibrosis: Alkaloids, terpenoids, glycosides, coumarins and other compounds. Eur J Pharmacol 2020; 888:173578. [PMID: 32976828 DOI: 10.1016/j.ejphar.2020.173578] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
The discovery of drugs to treat liver fibrosis has long been a challenge over the past decades due to its complicated pathogenesis. As a primary approach for drug development, natural products account for 30% of clinical drugs used for disease treatment. Therefore, natural products are increasingly important for their medicinal value in liver fibrosis therapy. In this part of the review, special focus is placed on the effect and mechanism of natural compounds, including alkaloids, terpenoids, glycosides, coumarins and others. A total of 36 kinds of natural compounds demonstrate significant antifibrotic effects in various liver fibrosis models in vivo and in hepatic stellate cells (HSCs) in vitro. Revealing the mechanism will provide further basis for clinical conversion, as well as accelerate drug discovery. The mechanism was further summarized with the finding of network regulation by several natural products, such as oxymatrine, paeoniflorin, ginsenoside Rg1 and taurine. Moreover, there are still improvements needed in investigating clinical efficacy, determining mechanisms, and combining applications, as well as semisynthesis and modification. Therefore, natural products area promising resource for agents that protect against liver fibrosis.
Collapse
Affiliation(s)
- Xiao Ma
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yinxiao Jiang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Jianxia Wen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China
| | - Yanling Zhao
- Department of Pharmacy, Fifth Medical Center of PLA General Hospital, Beijing, 100039, China.
| | - Jinhao Zeng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| | - Yaoguang Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, China.
| |
Collapse
|
10
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020; 18:13. [PMID: 32363509 PMCID: PMC7196577 DOI: 10.1186/s43141-020-00027-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- grid.462079.e0000 0004 4699 2981Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Zeinab M. Geba
- grid.462079.e0000 0004 4699 2981Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A. Tabll
- grid.419725.c0000 0001 2151 8157Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622 Egypt
| | - Mohammad M. Mashaly
- grid.462079.e0000 0004 4699 2981Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
11
|
Zahran RF, Geba ZM, Tabll AA, Mashaly MM. Therapeutic potential of a novel combination of Curcumin with Sulfamethoxazole against carbon tetrachloride-induced acute liver injury in Swiss albino mice. J Genet Eng Biotechnol 2020. [PMID: 32363509 DOI: 10.1186/s43141-020-00027-9.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
BACKGROUND In the current study, we have investigated the effect of each of curcumin (CUR) and sulfamethoxazole (SMX) either separate or mixed together (CUR + SMX) on biochemical, hematological and histological alternations associated with carbon tetrachloride (CCl4)-induced liver fibrosis in mice. RESULTS CCl4, caused changes of several biomarkers, proving its hepatotoxic effects, such as an increase in aminotransferases liver enzymes alanine and aspartate transaminases (ALT, AST), malondialdehyde (MDA), and nitric oxide (NO) formation, with a decrease in superoxide dismutase (SOD), glutathione reductase (GSSG), total antioxidant capacity (TAO), glutathione (GSH), total protein, and albumin, compared to a negative control mice group. Compared to the CCl4 group of mice, the CUR and SMX separate and/or together (CUR + SMX) treatments showed significance in (p < 0.001), ameliorated liver injury (characterized by an elevation of (ALT, AST) and a decrease (p < 0.001) in serum albumin and total protein), antioxidant (characterized by a decrease in (p < 0.001) MDA, NO; an increase (p < 0.001) SOD, GSSG, TAO; and reducing GSH), hematological changes (characterized by a decrease (p < 0.001) in white blood cells count and an increase (p < 0.001) in platelets count, hematocrit levels, hemoglobin concentration, and (p < 0.05) red blood cells count), SDS-PAGE electrophoresis with a decrease in protein synthesis and changes in histological examinations. CONCLUSIONS CUR and SMX either separate or together (SUR + SMX) may be considered promising candidates in the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Rasha Fekry Zahran
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt.
| | - Zeinab M Geba
- Department of Chemistry (Biochemistry division), Faculty of Science, Damietta University, New Damietta, Egypt
| | - Ashraf A Tabll
- Department of Microbial Biotechnology, Division of Genetic Engineering and Biotechnology, National Research Centre, Cairo, 12622, Egypt
| | - Mohammad M Mashaly
- Department of Chemistry, Faculty of Science, Damietta University, New Damietta, Egypt
| |
Collapse
|
12
|
|
13
|
Park J, Lee HH, Jung H, Seo YS. Transcriptome analysis to understand the effects of the toxoflavin and tropolone produced by phytopathogenic Burkholderia on Escherichia coli. J Microbiol 2019; 57:781-794. [DOI: 10.1007/s12275-019-9330-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/18/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022]
|
14
|
Huo X, Yang S, Sun X, Meng X, Zhao Y. Protective Effect of Glycyrrhizic Acid on Alcoholic Liver Injury in Rats by Modulating Lipid Metabolism. Molecules 2018; 23:molecules23071623. [PMID: 29973492 PMCID: PMC6100631 DOI: 10.3390/molecules23071623] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/18/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022] Open
Abstract
Glycyrrhhizic acid (GA), including 18α-glycyrrhizic acid (18α-GA) and 18β-glycyrrhizic acid (18β-GA), is the main active ingredient of licorice. GA is generally considered an effective pharmacological strategy protecting against hepatic disease; however, the optimal compatibility proportion of 18α-GA and 18β-GA against alcoholic liver disease (ALD) and the underlying mechanism are not well established. Hence, this study was designed to explore the optimal compatibility proportion of 18α-GA and 18β-GA against ALD, followed by investigating the underlying mechanisms. SD rats were administered 40% ethanol once a day, accompanied by treatment with different proportions of 18α-GA and 18β-GA for four weeks. Then all rats were anesthetized with chloral hydrate and blood samples were taken from the abdominal aorta for biochemical assay. Livers were also collected and the liver function, lipid profile, ROS production, and mRNA and protein levels of related genes involved in lipid metabolism were assessed. The results showed that 18α-GA and 18β-GA, particularly at a proportion of 4:6, significantly reduced liver damage, lipid accumulation, and oxidative stress in ethanol-induced rats, as indicated by the decreased levels of alanine aminotransferase (ALT) and aminotransferase (AST) in serum, improvement of liver histopathological changes, regulation of total cholesterol (TC), total triglyceride (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C), and modulation of superoxide dismutase (SOD), glutathione (GSH), and malonaldehyde (MDA). Moreover, the combination treatment with 18α-GA and 18β-GA substantially reduced the mRNA and protein levels of sterol regulatory element-binding protein-1c (SREBP-1c) and acetyl-coal carboxylase (ACC); meanwhile, increased levels of peroxisome proliferators activated receptor-α (PPAR-α) and carnitine palmitoy transferase-1 (CTP-1) in the liver tissues of ethanol-induced rats. In conclusion, our results indicated that the optimal compatibility proportion of 18α-GA and 18β-GA protecting against ALD was 4:6, and the mechanism was associated with the regulation of oxidative stress and lipid metabolism.
Collapse
Affiliation(s)
- Xiaowei Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| | - Sa Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| | - Xiaoke Sun
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| | - Xiangbo Meng
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| | - Yanyan Zhao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Science, Hebei University, Baoding 071002, China.
| |
Collapse
|
15
|
Martinez-Hurtado J, Calo-Fernandez B, Vazquez-Padin J. Preventing and Mitigating Alcohol Toxicity: A Review on Protective Substances. BEVERAGES 2018; 4:39. [DOI: 10.3390/beverages4020039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
This review covers three fundamental aspects of alcohol consumption and research efforts around the prevention and mitigation of its toxic effects in the human body. First, the sociocultural aspects of alcohol consumption are analysed, including drinking habits and strategies to combat intoxication. Second, we briefly introduce the biochemical aspects of ethanol metabolism and the biochemical pathways leading to its degradation, particularly the activation of toxic response pathways. Finally, we review current evidence and research efforts for finding compounds and substances able to prevent and mitigate the toxic effects of alcohol when over-indulgence has occurred. The toxic effects appear as a time-evolution process based on the stage of intoxication. We explore different compounds and formulations traditionally used to combat alcohol toxicity, as well as state-of-the-art research in the topic for novel molecules and formulations. Although we aimed to categorise which compounds are more effective for a particular level of alcohol intoxication, it is impossible to fully prevent or mitigate toxicity effects by only the compounds in isolation, further research is required to establish the long-term prevention and mitigation from the clinical point of view.
Collapse
|
16
|
Taurine prevents ethanol-induced apoptosis mediated by mitochondrial or death receptor pathways in liver cells. Amino Acids 2018; 50:863-875. [DOI: 10.1007/s00726-018-2561-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 03/26/2018] [Indexed: 12/11/2022]
|
17
|
Gao W, Zhao J, Gao Z, Li H. Synergistic Interaction of Light Alcohol Administration in the Presence of Mild Iron Overload in a Mouse Model of Liver Injury: Involvement of Triosephosphate Isomerase Nitration and Inactivation. PLoS One 2017; 12:e0170350. [PMID: 28103293 PMCID: PMC5245837 DOI: 10.1371/journal.pone.0170350] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 01/03/2017] [Indexed: 12/24/2022] Open
Abstract
It is well known that iron overload promotes alcoholic liver injury, but the doses of iron or alcohol used in studies are usually able to induce liver injury independently. Little attention has been paid to the coexistence of low alcohol consumption and mild iron overload when either of them is insufficient to cause obvious liver damage, although this situation is very common among some people. We studied the interactive effects and the underlining mechanism of mild doses of iron and alcohol on liver injury in a mouse model. Forty eight male Kunming mice were randomly divided into four groups: control, iron (300 mg/kg iron dextran, i.p.), alcohol (2 g/kg/day ethanol for four weeks i.g.), and iron plus alcohol group. After 4 weeks of treatment, mice were sacrificed and blood and livers were collected for biochemical analysis. Protein nitration level in liver tissue was determined by immunoprecipitation and Western blot analysis. Although neither iron overload nor alcohol consumption at our tested doses can cause severe liver injury, it was found that co-administration of the same doses of alcohol and iron resulted in liver injury and hepatic dysfunction, accompanied with elevated ratio of NADH/NAD+, reduced antioxidant ability, increased oxidative stress, and subsequent elevated protein nitration level. Further study revealed that triosephosphate isomerase, an important glycolytic enzyme, was one of the targets to be oxidized and nitrated, which was responsible for its inactivation. These data indicate that even under low alcohol intake, a certain amount of iron overload can cause significant liver oxidative damage, and the modification of triosephosphate isomerasemight be the important underlining mechanism of hepatic dysfunction.
Collapse
Affiliation(s)
- Wanxia Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Basis medical college, Hubei University of Science and Technology, Xianning, P. R. China
| | - Jie Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
| | - Zhonghong Gao
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, P. R. China
| | - Hailing Li
- School of Chemistry and Chemical Engineering, Huazhong University of Science & Technology, Wuhan, P. R. China
- Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, Wuhan, P. R. China
- * E-mail:
| |
Collapse
|
18
|
Li L, Wang M, Chen S, Zhao W, Zhao Y, Wang X, Zhang Y. A urinary metabonomics analysis of long-term effect of acetochlor exposure on rats by ultra-performance liquid chromatography/mass spectrometry. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:82-88. [PMID: 26969444 DOI: 10.1016/j.pestbp.2015.09.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The study was to assess the long-term toxic effects of acetochlor on rats. Two different doses (42.96 and 107.4 mg/kg body weight/day) of acetochlor were administered to Wistar rats through their food for over 24 weeks. Rat urine samples were collected at two time-points for the measurements of the metabonomics profiles with ultra-performance liquid chromatography-mass spectrometry (UPLC-MSMS). The results of clinical chemistry and histopathology suggested that long-term use of acetochlor in rats caused liver and kidney damage, and dysfunction of antioxidant system. The urinary metabonomics analysis indicated that the high and low-dose exposure of acetochlor could cause alterations of these metabonomics in urine in the rat. Significant changes of the levels of hippuric acid (0.403-fold decrease), citric acid (0.430-fold decrease), pantothenic acid (0.486-fold decrease), uracil (0.419-fold decrease), β-Alanine (0.325-fold decrease), nonanedioic acid (0.445-fold decrease), L-tyrosine (0.410-fold decrease), D-glucuronic acid (8.389-fold increase) and 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide in urine were observed. In addition, it may interfere with the fatty acid synthesis, the pyrimidine degradation and pantothenate biosynthesis. The level of 2-ethyl-6-methyl-N-methyl-2-chloro-acetanilide is detected in all treated groups which is not found in the control groups, indicating which can be used as an early, sensitive marker of acetochlor exposure in rat. This study illustrates the important utility of metabonomics approaches to understand the toxicity of long-term exposure of acetochlor.
Collapse
Affiliation(s)
- Longxue Li
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Shuhong Chen
- Heilongjiang Center for Disease Control and Prevention, 40 Youfang Street, XiangFang District, Harbin, Heilongjiang Province, China
| | - Wei Zhao
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Yue Zhao
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Xu Wang
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China
| | - Yang Zhang
- Department of Toxicology, Public Health College, Harbin Medical University, 157 Baojian Road, NanGang District, Harbin, Heilongjiang Province, China.
| |
Collapse
|
19
|
Yu YR, Ni XQ, Huang J, Zhu YH, Qi YF. Taurine drinking ameliorates hepatic granuloma and fibrosis in mice infected with Schistosoma japonicum. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2016; 6:35-43. [PMID: 27054062 PMCID: PMC4805782 DOI: 10.1016/j.ijpddr.2016.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2015] [Revised: 01/12/2016] [Accepted: 01/12/2016] [Indexed: 02/08/2023]
Abstract
In schistosomiasis, egg-induced hepatic granuloma formation is a cytokine-mediated, predominantly CD4+ Th2 immune response that can give rise to hepatic fibrosis. Hepatic fibrosis is the main cause of increased morbidity and mortality in humans with schistosome infection. Taurine has various physiological functions and hepatoprotective properties as well as anti-inflammatory and immunomodulatory activity. However, little is known about the role of taurine in schistosome egg-induced granuloma formation and fibrosis. We aimed to evaluate the therapeutic potential of taurine as preventative treatment for Schistosoma japonicum infection. Mice infected with S. japonicum cercariae were supplied with taurine drinking water (1% w/v) for 4 weeks starting at 4 weeks post-infection. Taurine supplementation significantly improved the liver pathologic findings, reduced the serum levels of aminotransferases and area of hepatic granuloma, and prevented fibrosis progression. In addition, taurine decreased the expression of the granulomatous and fibrogenic mediators transforming growth factor β1, tumor necrosis factor α, monocyte chemotactic protein 1α and macrophage inflammatory protein 1α as well as the endoplasmic reticulum stress marker glucose-regulated protein 78. Thus, taurine can significantly attenuate S. japonicum egg-induced hepatic granuloma and fibrosis, which may depend in part on the downregulation of some relevant cytokine/chemokines and reducing the endoplasmic reticulum stress response. Taurine has potential as preventative & therapeutic treatment for schistosomiasis. Taurine reduced the development of liver pathology caused by S. japonicum infection. Taurine attenuated S. japonicum egg-induced hepatic granuloma and fibrosis.
Collapse
Affiliation(s)
- Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China.
| | - Xian-Qiang Ni
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jie Huang
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong-Hong Zhu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yong-Fen Qi
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China; Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Beijing 100191, China.
| |
Collapse
|
20
|
Ananchaipatana-Auitragoon P, Ananchaipatana-Auitragoon Y, Siripornpanich V, Kotchabhakdi N. Protective role of taurine in developing offspring affected by maternal alcohol consumption. EXCLI JOURNAL 2015; 14:660-71. [PMID: 26648819 PMCID: PMC4669913 DOI: 10.17179/excli2015-240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/20/2015] [Indexed: 12/27/2022]
Abstract
Maternal alcohol consumption is known to affect offspring growth and development, including growth deficits, physical anomalies, impaired brain functions and behavioral disturbances. Taurine, a sulfur-containing amino acid, is essential during development, and continually found to be protective against neurotoxicity and various tissue damages including those from alcohol exposure. However, it is still unknown whether taurine can exert its protection during development of central nervous system and whether it can reverse alcohol damages on developed brain later in life. This study aims to investigate protective roles of taurine against maternal alcohol consumption on growth and development of offspring. The experimental protocol was conducted using ICR-outbred pregnant mice given 10 % alcohol, with or without maternal taurine supplementation during gestation and lactation. Pregnancy outcomes, offspring mortality and successive bodyweight until adult were monitored. Adult offspring is supplemented taurine to verify its ability to reverse damages on learning and memory through a water maze task performance. Our results demonstrate that offspring of maternal alcohol exposure, together with maternal taurine supplementation show conserved learning and memory, while that of offspring treated taurine later in life are disturbed. Taurine provides neuroprotective effects and preserves learning and memory processes when given together with maternal alcohol consumption, but not shown such effects when given exclusively in offspring.
Collapse
Affiliation(s)
- Pilant Ananchaipatana-Auitragoon
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| | | | - Vorasith Siripornpanich
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| | - Naiphinich Kotchabhakdi
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya Campus, Nakhonpathom 73170, Thailand
| |
Collapse
|
21
|
Akande MG, Aliu YO, Ambali SF, Ayo JO. Co-treatment of chlorpyrifos and lead induce serum lipid disorders in rats. Toxicol Ind Health 2014; 32:1328-34. [DOI: 10.1177/0748233714560394] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of this study was to investigate the effects of taurine (TA) on serum lipid profiles following chronic coadministration of chlorpyrifos (CP) and lead acetate (Pb) in male Wistar rats. Fifty rats randomly distributed into five groups served as subjects. Distilled water (DW) was given to DW group, while soya oil (SO; 1 mL kg−1) was given to SO group. The TA group was treated with TA (50 mg kg−1). The CP + Pb group was administered sequentially with CP (4.25 mg kg−1; 1/20th median lethal dose (LD50)) and Pb at 233.25 mg kg−1 (1/20th LD50), while the TA + CP + Pb group received TA (50 mg kg−1), CP (4.25 mg kg−1), and Pb (233.25 mg kg−1) sequentially. The treatments were administered once daily by oral gavage for 16 weeks. The rats were euthanised, and the blood samples were collected at the termination of the study. Sera obtained from the blood samples were analyzed for total cholesterol, high-density lipoprotein cholesterol, triglycerides, and malondialdehyde, and also the activities of serum antioxidant enzymes including superoxide dismutase, catalase and glutathione peroxidase were analyzed. The low-density lipoprotein cholesterol, very-low-density lipoprotein cholesterol, and atherogenic index were calculated. The results showed that CP and Pb induced alterations in the serum lipid profiles and evoked oxidative stress. TA alleviated the disruptions in the serum lipid profiles of the rats partially by mitigating oxidative stress. It was concluded that TA may be used for prophylaxis against serum lipid disorders in animals that were constantly co-exposed to CP and Pb in the environment.
Collapse
Affiliation(s)
- Motunrayo G Akande
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, University of Abuja, Abuja, Nigeria
| | - Yusuf O Aliu
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| | - Suleiman F Ambali
- Department of Physiology and Pharmacology, Faculty of Veterinary Medicine, University of Ilorin, Ilorin, Nigeria
| | - Joseph O Ayo
- Department of Physiology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Kaduna, Nigeria
| |
Collapse
|
22
|
Zhao Y, Ma X, Wang J, Zhu Y, Li R, Wang J, He X, Shan L, Wang R, Wang L, Li Y, Xiao X. Paeoniflorin alleviates liver fibrosis by inhibiting HIF-1α through mTOR-dependent pathway. Fitoterapia 2014; 99:318-27. [DOI: 10.1016/j.fitote.2014.10.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/07/2014] [Accepted: 10/12/2014] [Indexed: 12/18/2022]
|
23
|
Curcumin protects against CCl4-induced liver fibrosis in rats by inhibiting HIF-1α through an ERK-dependent pathway. Molecules 2014; 19:18767-80. [PMID: 25407718 PMCID: PMC6270950 DOI: 10.3390/molecules191118767] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 10/21/2014] [Accepted: 10/27/2014] [Indexed: 02/05/2023] Open
Abstract
The ERK/HIF-1α signaling pathway is believed to play an important role in the genesis of progressive fibrosis. An increasing expression of HIF-1α and ERK accompanies CCl4-induced liver fibrosis in rats. Curcumin is verified to have antifibrotic effects in several kinds of liver fibrosis models. There is no specific evidence illustrating a connection between curcumin and the HIF-1α/ERK pathway in rat liver fibrosis induced by CCl4. In this study, liver fibrosis was induced by CCl4 in treated rats. The data demonstrated that curcumin was able to attenuate liver fibrosis and inhibit the proliferation of HSC. Moreover, curcumin could remarkably elevate the hepatic function by decreasing serum levels of ALT, AST and ALP, and increasing levels of ALB, TP and α-SMA, Col III mRNA expression. Meanwhile, ECM status could also be reflected by curcumin treatment. The alleviation with curcumin treatment was associated with inhibition of HIF-1α and phosphor-ERK. This study indicates that curcumin alleviates fibrosis by reducing the expression of HIF-1α partly through the ERK pathway.
Collapse
|
24
|
Li S, Gan LQ, Li SK, Zheng JC, Xu DP, Li HB. Effects of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity. Food Funct 2014; 5:42-9. [PMID: 24162728 DOI: 10.1039/c3fo60282f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Various alcoholic beverages containing different concentrations of ethanol are widely consumed, and excessive alcohol consumption may result in serious health problems. The consumption of alcoholic beverages is often accompanied by non-alcoholic beverages, such as herbal infusions, tea and carbonated beverages to relieve drunk symptoms. The aim of this study was to supply new information on the effects of these beverages on alcohol metabolism for nutritionists and the general public, in order to reduce problems associated with excessive alcohol consumption. The effects of 57 kinds of herbal infusions, tea and carbonated beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity were evaluated. Generally, the effects of these beverages on alcohol dehydrogenase and aldehyde dehydrogenase activity are very different. The results suggested that some beverages should not be drank after excessive alcohol consumption, and several beverages may be potential dietary supplements for the prevention and treatment of problems related to excessive alcohol consumption.
Collapse
Affiliation(s)
- Sha Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China.
| | | | | | | | | | | |
Collapse
|
25
|
Cho HJ, You JS, Chang KJ, Kim KS, Kim SH. Anti-adipogenic Effect of Taurine-Carbohydrate Derivatives. B KOREAN CHEM SOC 2014. [DOI: 10.5012/bkcs.2014.35.6.1863] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
26
|
Latchoumycandane C, Nagy LE, McIntyre TM. Chronic ethanol ingestion induces oxidative kidney injury through taurine-inhibitable inflammation. Free Radic Biol Med 2014; 69:403-16. [PMID: 24412858 PMCID: PMC3960325 DOI: 10.1016/j.freeradbiomed.2014.01.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 12/30/2013] [Accepted: 01/02/2014] [Indexed: 12/20/2022]
Abstract
Chronic ethanol ingestion mildly damages liver through oxidative stress and lipid oxidation, which is ameliorated by dietary supplementation with the anti-inflammatory β-amino acid taurine. Kidney, like liver, expresses cytochrome P450 2E1 that catabolizes ethanol with free radical formation, and so also may be damaged by ethanol catabolism. Sudden loss of kidney function, and not liver disease itself, foreshadows mortality in patients with alcoholic hepatitis [J. Altamirano, Clin. Gastroenterol. Hepatol. 2012, 10:65]. We found that ethanol ingestion in the Lieber-deCarli rat model increased kidney lipid oxidation, 4-hydroxynonenal protein adduction, and oxidatively truncated phospholipids that attract and activate leukocytes. Chronic ethanol ingestion increased myeloperoxidase-expressing cells in kidney and induced an inflammatory cell infiltrate. Apoptotic terminal deoxynucleotidyl transferase nick-end labeling-positive cells and active caspase-3 increased in kidney after ethanol ingestion, with reduced filtration with increased circulating blood urea nitrogen (BUN) and creatinine. These events were accompanied by release of albumin, myeloperoxidase, and the acute kidney injury biomarkers kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin, and cystatin c into urine. Taurine sequesters HOCl from myeloperoxidase of activated leukocytes, and taurine supplementation reduced renal lipid oxidation, reduced leukocyte infiltration, and reduced the increase in myeloperoxidase-positive cells during ethanol feeding. Taurine supplementation also normalized circulating BUN and creatinine levels and suppressed enhanced myeloperoxidase, albumin, KIM-1, and cystatin c in urine. Thus, chronic ethanol ingestion oxidatively damages kidney lipids and proteins, damages renal function, and induces acute kidney injury through an inflammatory cell infiltrate. The anti-inflammatory nutraceutical taurine effectively interrupts this ethanol-induced inflammatory cycle in kidney.
Collapse
Affiliation(s)
| | - Laura E Nagy
- Pathobiology, Lerner Research Institute, Cleveland Clinic Lerner College of Medicine, Cleveland, OH 44195, USA
| | | |
Collapse
|
27
|
McCarty MF. Nutraceutical strategies for ameliorating the toxic effects of alcohol. Med Hypotheses 2013; 80:456-62. [PMID: 23380360 DOI: 10.1016/j.mehy.2012.12.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 12/29/2012] [Indexed: 12/26/2022]
Abstract
Rodent studies reveal that oxidative stress, much of it generated via induction/activation of NADPH oxidase, is a key mediator of a number of the pathogenic effects of chronic ethanol overconsumption. The highly reactive ethanol metabolite acetaldehyde is a key driver of this oxidative stress, and doubtless works in other ways to promote alcohol-induced pathology. Effective antioxidant measure may therefore be useful for mitigating the adverse health consequences of alcohol consumption; spirulina may have particular utility in this regard, as its chief phycochemical phycocyanobilin has recently been shown to function as an inhibitor of certain NADPH oxidase complexes, mimicking the physiological role of its chemical relatives biliverdin/bilirubin in this respect. Moreover, certain nutraceuticals, including taurine, pantethine, and lipoic acid, may have the potential to boost the activity of the mitochondrial isoform of aldehyde dehydrogenase, ALDH-2, accelerating conversion of acetaldehyde to acetate (which arguably has protective health effects). Little noticed clinical studies conducted nearly three decades ago reported that pre-ingestion of either taurine or pantethine could blunt the rise in blood acetaldehyde following ethanol consumption. Other evidence suggests that lipoic acid may function within mitochondria to maintain aldehyde dehydrogenase in a reduced active conformation; the impact of this agent on ethanol metabolism has however received little or no study. Studies evaluating the impact of nutracetical strategies on prevention of hangovers - which likely are mediated by acetaldehyde - may represent a quick, low-cost way to identify nutraceutical regimens that merit further attention for their potential impact on alcohol-induced pathology. Measures which boost or preserve ALDH-2 activity may also have important antioxidant potential, as this enzyme functions physiologically to protect cells from toxic aldehydes generated by oxidant stress.
Collapse
Affiliation(s)
- Mark F McCarty
- NutriGuard Research, 1051 Hermes Ave., Encinitas, CA 92024, United States.
| |
Collapse
|
28
|
Tan F, Jin Y, Liu W, Quan X, Chen J, Liang Z. Global liver proteome analysis using iTRAQ labeling quantitative proteomic technology to reveal biomarkers in mice exposed to perfluorooctane sulfonate (PFOS). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:12170-12177. [PMID: 23046066 DOI: 10.1021/es3027715] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Proteomic analysis allows detection of changes of proteins expression in organisms exposed to environmental pollutants, leading to the discovery of biomarkers of exposure and understanding of the action mechanism of toxicity. In the present study, we applied iTRAQ labeling quantitative proteomic technology for global characterization of the liver proteome in mice exposed to perfluorooctane sulfonate (PFOS). This successfully identified and quantified 1038 unique proteins. Seventy-one proteins showed a significant expression change in the treated groups (1.0, 2.5, 5.0 mg/kg of body weight) compared with the control group, and 16 proteins displayed strong dose-dependent changes. Gene ontology analysis showed that these differential proteins were significantly enriched and mainly involved in lipid metabolism, transport, biosynthetic processes, and response to stimulus. We detected significantly increased expression levels of enzymes regulating peroxisomal β-oxidation-including long-chain acyl-CoA synthetase, acyl-CoA oxidase 1, bifunctional enzyme, and 3-ketoacyl-CoA thiolase A. PFOS also significantly induced cytochrome P450s and glutathione S-transferases that are responsible for the metabolism of xenobiotic compounds. The expressions of several proteins with important biological functions-such as cysteine sulfinic acid decarboxylase, aldehyde dehydrogenase, and apolipoprotein A-I, also correlated with PFOS exposure. Together, the present results provide insight into the molecular mechanism and biomarkers for PFOS-induced effects.
Collapse
Affiliation(s)
- Feng Tan
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | |
Collapse
|
29
|
Lin X, Zhang S, Huang Q, Wei L, Zheng L, Chen Z, Jiao Y, Huang J, Fu S, Huang R. Protective effect of Fufang-Liu-Yue-Qing, a traditional Chinese herbal formula, on CCl4 induced liver fibrosis in rats. JOURNAL OF ETHNOPHARMACOLOGY 2012; 142:548-556. [PMID: 22658988 DOI: 10.1016/j.jep.2012.05.040] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 05/23/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Chinese prescription Fufang-Liu-Yue-Qing (FLYQ) has long been employed clinically to treat chronic hepatitis B, and we have reported its beneficial effects on liver fibrosis in vitro. The present study was investigated to verify protective effects of FLYQ on liver fibrosis in a rat model and to investigate the underlying mechanisms which have not been explored yet. MATERIALS AND METHODS Liver fibrosis was established by intragastric administration of 2 ml/kg CCl(4) twice a week for 12 weeks. During the experiment, the model group received CCl(4) only, and the normal control group received an equal volume of saline. Treatment groups received not only CCl(4) for 12 weeks, but also the corresponding drugs, colchicine (1.00 mg/kg/day) or FLYQ (300, 150, 75 mg/kg/day) from 5 to 12 weeks. RESULTS Analysis experiments showed that FLYQ could significantly alleviate liver injury, as indicated by decreasing levels of ALT, AST, ALP, GGT, IL-6 and TNF-α. Moreover, FLYQ could effectively inhibit collagen deposition and reduce the pathological tissue damage. Research on mechanism showed that FLYQ was able to markedly reduce lipid peroxidation, recruit the anti-oxidative defense system, promote ECM degradation by modulating the levels of TIMP-1 and MMP-2, and induce HSC apoptosis by down-regulating bcl-2 mRNA, as well as inhibit the expressions of α-SMA and TGF-β(1) proteins. CONCLUSIONS Our results show that FLYQ is effective in attenuating hepatic injury and fibrosis in the CCl(4)-induced rat model, which should be developed as a new drug for treatment of liver fibrosis and even cirrhosis.
Collapse
Affiliation(s)
- Xing Lin
- Guangxi Medical University, Nanning 530021, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Huang QF, Zhang SJ, Zheng L, Liao M, He M, Huang R, Zhuo L, Lin X. Protective effect of isoorientin-2″-O-α-l-arabinopyranosyl isolated from Gypsophila elegans on alcohol induced hepatic fibrosis in rats. Food Chem Toxicol 2012; 50:1992-2001. [DOI: 10.1016/j.fct.2012.03.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Revised: 03/02/2012] [Accepted: 03/08/2012] [Indexed: 01/08/2023]
|
31
|
Devi SL, Viswanathan P, Anuradha CV. Regression of liver fibrosis by taurine in rats fed alcohol: effects on collagen accumulation, selected cytokines and stellate cell activation. Eur J Pharmacol 2010; 647:161-70. [PMID: 20813107 DOI: 10.1016/j.ejphar.2010.08.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/21/2010] [Accepted: 08/12/2010] [Indexed: 01/27/2023]
Abstract
The antifibrogenic effect of taurine in experimental liver fibrosis has been shown. The role of taurine to abate fibrogenic mediators and collagen deposition during liver fibrosis induced by simultaneous administration of iron carbonyl (0.5% w/w) and alcohol (6 g/kg/day) was investigated in this study. Liver histology, the levels of inflammatory cytokines, stellate cell activation, oxidative stress and collagen content were assessed. Liver fibrosis and a rise in collagen content in ethanol plus iron-fed rat were evident from van Gieson and Masson's trichrome staining respectively. Hepatic myeloperoxidase activity and plasma levels of interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) were markedly elevated. This was associated with an imbalance in the oxidant-antioxidant system, increased expression of transforming growth factor-β(1) (TGF-β(1)) and stellate cell activation suggested by α-smooth muscle actin (α-SMA) localization. This condition was protected in the presence of taurine. Taurine lowered the levels of IL-6, TNF-α and peroxidation products and the expression of α-SMA, desmin and TGF-β(1) and improved the antioxidant status. A positive relationship between hepatic collagen with iron and lipid peroxides and an inverse relationship between collagen and glutathione were noted. It is concluded that taurine reduces iron-potentiated alcoholic liver fibrosis by curtailing oxidative stress, production of inflammatory and fibrogenic mediators and activation of stellate cells.
Collapse
Affiliation(s)
- Shanmugam Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Tamil Nadu, India
| | | | | |
Collapse
|
32
|
Ennulat D, Walker D, Clemo F, Magid-Slav M, Ledieu D, Graham M, Botts S, Boone L. Effects of Hepatic Drug-metabolizing Enzyme Induction on Clinical Pathology Parameters in Animals and Man. Toxicol Pathol 2010; 38:810-28. [DOI: 10.1177/0192623310374332] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Hepatic drug-metabolizing enzyme (DME) induction is an adaptive response associated with changes in preclinical species; this response can include increases in liver weight, hepatocellular hyperplasia and hypertrophy, and upregulated tissue expression of DMEs. Effects of DME induction on clinical pathology markers of hepatobiliary injury and function in animals as well as humans are not well established. This component of a multipart review of the comparative pathology of xenobiotically mediated induction of hepatic metabolizing enzymes reviews pertinent data from retrospective and prospective preclinical and clinical studies. Particular attention is given to studies with confirmation of DME induction and concurrent evaluation of liver and/or serum hepatobiliary marker enzyme activities and histopathology. These results collectively indicate that in the rat, when histologic findings are limited to hepatocellular hypertrophy, DME induction is not expected to be associated with consistent or substantive changes in serum or plasma activity of hepatobiliary marker enzymes such as alanine aminotransferase, alkaline phosphatase, and gamma glutamyltransferase. In the dog and the monkey, published studies also do not demonstrate a consistent relationship across DME-inducing agents and changes in these clinical pathology parameters. However, increased liver alkaline phosphatase or gamma glutamyltransferase activity in dogs treated with phenobarbital or corticosteroids suggests that direct or indirect induction of select hepatobiliary injury markers can occur both in the absence of liver injury and independently of induction of DME activity. Although correlations between tissue and serum levels of these hepatobiliary markers are limited and inconsistent, increases in serum/plasma activities that are substantial or involve changes in other markers generally reflect hepatobiliary insult rather than DME induction. Extrahepatic effects, including disruption of the hypothalamic-pituitary-thyroid axis, can also occur as a direct outcome of hepatic DME induction in humans and animals. Importantly, hepatic DME induction and associated changes in preclinical species are not necessarily predictive of the occurrence, magnitude, or enzyme induction profile in humans.
Collapse
Affiliation(s)
| | - Dana Walker
- Bristol-Myers Squibb, East Syracuse, New York, USA
| | | | | | | | - Mark Graham
- AstraZeneca, Loughborough, Leicestershire, UK
| | | | - Laura Boone
- Covance Laboratories, Greenfield, Indiana, USA
| |
Collapse
|
33
|
Devi SL, Anuradha CV. Oxidative and nitrosative stress in experimental rat liver fibrosis: Protective effect of taurine. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2010; 29:104-110. [PMID: 21787590 DOI: 10.1016/j.etap.2009.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2009] [Revised: 09/30/2009] [Accepted: 11/18/2009] [Indexed: 05/31/2023]
Abstract
Taurine (TAU) has protective effects on experimental liver fibrosis. The present study investigates whether benefits of TAU are mediated through attenuation of oxidative and nitrosative stresses. Liver fibrosis was induced in male Wistar rats by simultaneous administration of iron (0.5%, w/w) and ethanol (6g/kg/day) for 60 days consecutively. Significant increases in thiobarbituric acid reactive substances (TBARS), lipid hydroperoxides, protein carbonyl content and loss of non-protein, protein and total thiols were observed in the liver of iron plus alcohol-fed rats. Nitrosative stress was marked by increased levels of S-nitrosothiols and decreased nitrite content. Accumulation of nitrated and oxidatively modified proteins in liver was further evidenced by immunohistochemical localization with specific antibodies for 4-hydroxynonenol (4-HNE), 3-nitrotyrosine (3-NT) and dinitrophenol (DNP). Decrease in mitochondrial ion-transport enzymes and disturbances in calcium and iron levels were also observed in these rats. TAU administration (2% (w/v) in drinking water) significantly reduced the levels of lipid hydroperoxides, TBARS, protein carbonyl with concomitant elevation in thiol levels. The presence of 4-HNE, 3-NT and DNP-protein adducts was minimal. TAU also improved mitochondrial enzyme activities and regulated iron and calcium levels. These results show that the restorative effect of taurine in fibrosis involves amelioration of protein and lipid damage by decreasing oxidative and nitrosative stresses.
Collapse
Affiliation(s)
- Shanmugam Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar 608002, Chidambaram, Tamil Nadu, India
| | | |
Collapse
|
34
|
Lakshmi Devi S, Anuradha CV. Mitochondrial damage, cytotoxicity and apoptosis in iron-potentiated alcoholic liver fibrosis: amelioration by taurine. Amino Acids 2009; 38:869-79. [PMID: 19381777 DOI: 10.1007/s00726-009-0293-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Accepted: 04/03/2009] [Indexed: 12/20/2022]
Abstract
Taurine effectively prevents ischemia-induced apoptosis in the cardiomyocytes and hypothalamic nuclei. The present study explores the influence of taurine on mitochondrial damage, oxidative stress and apoptosis in experimental liver fibrosis. Male albino Wistar rats were divided into six groups and maintained for a period of 60 days as follows: Group I, control; Group II, ethanol treatment [6 g/(kg/day)]; Group III, fibrosis induced by ethanol and iron (0.5% w/w); Group IV, ethanol + iron + taurine (2% w/v); Group V, ethanol + taurine treatment and Group VI, control + taurine treatment. Hepatocytes isolated from ethanol plus iron-treated rats showed decreased cell viability and redox ratio, increased reactive oxygen species formation, lipid peroxidation, DNA fragmentation, and formation of apoptotic bodies. Liver mitochondria showed increased susceptibility to swell, diminished activities of mitochondrial respiratory chain complexes and antioxidants. Taurine administration to fibrotic rats restored mitochondrial function, reduced reactive oxygen species formation, prevented DNA damage, and apoptosis. Thus taurine might contribute to the amelioration of the disease process.
Collapse
Affiliation(s)
- S Lakshmi Devi
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalai Nagar, Chidambaram 608 002, Tamil Nadu, India
| | | |
Collapse
|