1
|
El Souda SS, Ahmed HH, Maamoun AA, Matloub AA, Aglan HA. Chemical Profile and Potential Application of Agri-food Waste Products for Counteracting Diabetes Induced Neuropathy in Rats. Chem Biodivers 2024; 21:e202400843. [PMID: 39140441 DOI: 10.1002/cbdv.202400843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to prepare defatted ethanol extract of Abelmoschus esculentus leaves, Morus nigra leaves and Punica granatum peel, to identify the chemical composition of these extracts and to explore their efficacy in counteracting diabetic neuropathy. LC-ESI-MS spectrometry was the hyphenated tool for component identification of these extracts. Behavioral, biochemical, and histopathological investigations were carried out after treatments of diabetic rats. The phenolic contents in the extracts are 16.38, 34.75 and 40.57 mg GAE/g extract regarding A. esculentus leaves, M. nigra leaves and P. granatum peel respectively. Chemodiversity of the phenolic contents was observed from the LC/Mass, where A. esculentus extract contained isoflavonoids and flavanones, M. nigra extract consisted of benzofurans, prenylated flavonoids, stilbenes, and xanthones, and P. granatum extract was rich in ellagitanins, condensed tannins, and anthocyanins. The extracts normalize of blood glucose levels, enhance the explorative behavior of the rats and their response time to thermal pain, restore the oxidant/antioxidant balance, attenuate inflammation, augment brain monoamines levels and modulate MAO-A and Ache enzyme activity. Furthermore, they recovered brain histopathological alterations. Conclusively, this study offers experimental evidence for the neuroprotective impact of studied defatted ethanol extracts against diabetic neuropathy via their hypoglycemic effect, antioxidant activity, and anti-inflammatory potential.
Collapse
Affiliation(s)
- Sahar S El Souda
- Chemistry of Natural Compounds Department, National Research Centre, 33 El Buhouth St, Giza, Dokki, P.O.12622 (ID: 60014618), Cairo, Egypt
| | - Hanaa H Ahmed
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| | - Amal A Maamoun
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Azza A Matloub
- Pharmacognosy Department, National Research Centre, 33 El Buhouth St, Cairo, Giza, Dokki, P.O.12622 (ID:60014618), Egypt
| | - Hadeer A Aglan
- Hormones Department, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Dokki, Egypt
| |
Collapse
|
2
|
Sial NT, Malik A, Iqbal U, Rehman MFU. Arbutin attenuates CFA-induced arthritis by modulating expression levels of 5-LOX, NF‑κB, IL-17, PGE-2 and TNF-α. Inflammopharmacology 2024; 32:2377-2394. [PMID: 38748385 DOI: 10.1007/s10787-024-01480-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 04/07/2024] [Indexed: 08/06/2024]
Abstract
Arbutin, a naturally soluble glycosylated phenol has antioxidant, antimicrobial, antitumor and anti-inflammatory properties. The current exploration appraises the treatment of arthritis by use of Arbutin (25, 50 and 100 mg/kg) orally in CFA-induced rat arthritis model. Body weight changes, paw size, and joint diameter were recorded till the 28th day in the arthritic-induced rats. Hematological, biochemical, oxidative and inflammatory biomarkers were measured through the blood samples of anesthetized rats. Arbutin markedly decreased paw volume, PGE-2, anti-CCP and 5-LOX levels, however, maintained metabolic and hematological balance and prevented weight loss. Radiology and histology changes improved significantly in the ankle joints of rats. Moreover, Arbutin increased gene pointers such as IL-10 and IL-4 while significantly reducing the levels of CRP and WBCs, whereas Hb, platelets and RBCs count markedly raised in post-treatments. Antioxidant levels of SOD, CAT and GSH were improved and MDA level was reduced in treated groups. Rt-PCR investigation showed a significant reduction of the interleukin-1β, TNF-α, interleukin-6, cyclooxygenase-2, NF-κB and IL-17 and increased expression of gene pointers like IL-4, and IL-10 in treated groups. Assessment of molecular docking revealed a strong binding interaction of Arbutin against 5-LOX, IL-17, TNF-alpha and interleukin-6, cyclooxygenase-2, nuclear factor-κB, IL-4 and iNOS providing a strong association between experimental and theoretical results. As a result, Arbutin has significantly reduced CFA-induced arthritis by modulation of anti-inflammatory cytokines, i.e., IL-10 and IL-4, the pro-inflammatory cytokines panel such as NF-κB, TNF-alpha, IL-1β, IL-6, PGE-2, 5-LOX and COX-2 and oxidative biomarkers.
Collapse
Affiliation(s)
- Nabeela Tabassum Sial
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
- Department of Pharmacology, Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Jail Road, Lahore, 54000, Pakistan
| | - Abdul Malik
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan.
| | - Urooj Iqbal
- Department of Pharmacology, College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | |
Collapse
|
3
|
Guesmi F, Tahri W, Mehrez A, Barkaoui T, Prasad S, Giuffrè AM, Landoulsi A. Colorectal carcinoma cell targeting aromatherapy with Teucrium ramosissimum essential oil to sensitize TRAIL/Apo2L-induced HCT-116 cell death. Int Immunopharmacol 2024; 136:112405. [PMID: 38850792 DOI: 10.1016/j.intimp.2024.112405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/14/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
This report drives insights for the investigation of the underlying mechanisms of antitumor effects of Teucrium ramosissimum (TrS) essential oil (EO) that elicits colon tumor protection via activation of cell death machinery. A study of the aerial part phytocomplex was performed by FTIR spectra and GC/MS. In vivo colon carcinogenesis induced by LPS was carried out using mouse model. HCT-116 cells were coincubated with TrS EO and TRAIL-resistant cancer cells, and then cell lysates were assessed using Western blotting technique for death and decoy receptor expression. TrS essential oil potentiates TRAIL-mediated apoptosis cell death of HCT-116 as detected by PARP cleavage and caspase activation. Further data suggest that TrS up-regulates DR 5/4 expression, and down-regulates DcRs expression. Additionally, TrS potentiates apoptosis in TRAIL-resistant tumor cells through induction of MAPK signalling components, including ERK, p38 kinase, JNK, and activation of CHOP, and SP1, involved in DR5 expression. Moreover, Teucrium EO phytoconstituents mediate HCT-116 cells apoptosis by evoking cell cycle arrest at the G1 and G2/M phase through diminishing the expression of cyclin D1 acting as a potent multitargeted factors of inhibition of JAK/STAT oncogenic signaling pathway. These results demonstrate that TRAIL-induced apoptosis enhancing effect of TrS mediated through proto-oncogene expression in HCT-116. TrS administered intragastrically is able to prevent tumor of colon by stopping carcinogenesis process and impede tumor cell growth in in vivo analysis promoted by LPS. On the whole, our results revealed that TrS is an effective antitcancer agent through the induction of transcription factor and kinases, either are needed to trigger Apo2L receptors.
Collapse
Affiliation(s)
- Fatma Guesmi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia; Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA.
| | - Wiem Tahri
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Amel Mehrez
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Taha Barkaoui
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| | - Sahdeo Prasad
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA; Research and Development, Noble Pharma LLC, Menomonie, WI 54751, USA
| | - Angelo Maria Giuffrè
- Department AGRARIA, University of Studies "Mediterranea" of Reggio Calabria, Via dell'Università, 25 - 89124 Reggio Calabria, Italy.
| | - Ahmed Landoulsi
- Laboratory of Risks Related to Environmental Stresses: Fight and Prevention, Unit UR03ES06, Faculty of Sciences of Bizerte, University of Carthage, Tunisia
| |
Collapse
|
4
|
Martínez-Lobos M, Tapia-Venegas E, Celis-Plá P, Villena J, Jara-Gutiérrez C, Lobos-Pessini A, Rigano D, Sirignano C, Madrid-Villegas A. Effect of the Proximity to the Quintero-Puchuncaví Industrial Zone on Compounds Isolated from Baccharis macraei Hook. & Arn: Their Antioxidant and Cytotoxic Activity. Int J Mol Sci 2024; 25:5993. [PMID: 38892183 PMCID: PMC11172710 DOI: 10.3390/ijms25115993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/23/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
Baccharis macraei Hook. & Arn (Asteraceae), commonly known as Vautro, is found in the coastal areas of central-southern Chile, including the industrial zone of Quintero-Puchuncaví, known for the contamination of its soils with heavy metals, which together with other factors generate abiotic stress in plant species, against which they present defensive mechanisms. For this reason, the objective was to evaluate the effect of abiotic stress generated by the proximity of B. macraei to the industrial complex by assessing the physiological and metabolic states reported by the extracts and compounds isolated from the species, as well as the photosynthetic capacity, metal content and production, and antioxidant activity and cytotoxicity against tumorigenic cell lines of the phytoconstituents. To this end, B. macraei was collected at two different distances from the industrial complex, observing that the closer the species is, the greater the concentration of copper in the soil, generating a decrease in the rate of electron transport in situ, but an increase in antioxidant activity with low cytotoxicity. This activity could be due to the presence of flavonoids such as Hispidulin, Cirsimaritina, and Isokaempferida, as well as monoterpenes, oxygenated and non-oxygenated sesquiterpenes identified in this study.
Collapse
Affiliation(s)
- Manuel Martínez-Lobos
- Programa de Doctorado Interdisciplinario en Ciencias Ambientales, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360004, Chile
- Laboratorio de Productos Naturales y Síntesis Orgánica, Universidad de Playa Ancha, Av. Leopoldo Carvallo 270, Valparaíso 2360004, Chile
- Departamento de Ciencias Naturales y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360004, Chile
| | - Estela Tapia-Venegas
- Departamento de Ciencias de la Ingeniería para la Sostenibilidad, Facultad de Ingeniería, Universidad de Playa Ancha, Valparaíso 2360004, Chile;
- Laboratorio de Bioprocesos, HUB Ambiental, Universidad de Playa Ancha, Valparaíso 2360004, Chile
| | - Paula Celis-Plá
- Departamento de Ciencias Naturales y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360004, Chile
- Laboratorio de Investigación Ambiental Acuática (LACER), HUB Ambiental, Universidad de Playa Ancha, Valparaíso 2360004, Chile
| | - Joan Villena
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería Para la Salud (MEDING), Escuela de Medicina, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2540064, Chile
| | - Carlos Jara-Gutiérrez
- Centro Interdisciplinario de Investigación Biomédica e Ingeniería Para la Salud (MEDING), Escuela de Kinesiología, Facultad de Medicina, Universidad de Valparaíso, Valparaíso 2540064, Chile
| | | | - Daniela Rigano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Carmina Sirignano
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Via Montesano 49, 80131 Naples, Italy
| | - Alejandro Madrid-Villegas
- Laboratorio de Productos Naturales y Síntesis Orgánica, Universidad de Playa Ancha, Av. Leopoldo Carvallo 270, Valparaíso 2360004, Chile
- Departamento de Ciencias Naturales y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso 2360004, Chile
| |
Collapse
|
5
|
Matera A, Dulak K, Werner H, Sordon S, Huszcza E, Popłoński J. Investigation on production and reaction conditions of sucrose synthase based glucosylation cascade towards flavonoid modification. Bioorg Chem 2024; 146:107287. [PMID: 38503024 DOI: 10.1016/j.bioorg.2024.107287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/11/2024] [Accepted: 03/13/2024] [Indexed: 03/21/2024]
Abstract
Enzyme-based glycosylation is of great interest in the context of natural products decoration. Yet, its industrial application is hindered by optimisation difficulties and hard-to-standardise productivities. In this study, five sugar nucleotide-dependent glucosyltransferases from different origins (bacterial, plant and fungal) were coupled with soy sucrose synthase (GmSuSy) to create a set of diverse cascade biocatalysts for flavonoid glucosylation, which evaluation brought new insights into the field. Investigations into co-expression conditions and reaction settings enabled to define optimal induction temperature (25 °C) and uridine diphosphate (UDP) concentration (0.5 mM) for all tested pairs of enzymes. Moreover, the influence of pH and substrate concentration on the monoglucosylated product distribution was detected and analysed. The utilisation of crude protein extracts as a cost-effective source of catalysts unveiled their glycosidase activity against flavonoid glucosides, resulting in decreased productivity, which, to our knowledge, has not previously been discussed in such a context. Additionally, examination of the commercially available EziG immobilisation resins showed that selection of suitable carrier for solid catalyst production can be problematic and not only enzyme's but also reagent's properties have to be considered. Flavonoids, due to their complexation and hydrophobic properties, can adsorb on different types of surfaces, including divalent metal ions required for IMAC based immobilisation, necessitating detailed examination of the resins while the catalysis design.
Collapse
Affiliation(s)
- Agata Matera
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Hanna Werner
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland.
| |
Collapse
|
6
|
Aydemir E, Odabaş Köse E, Yavuz M, Kilit AC, Korkut A, Özkaya Gül S, Sarikurkcu C, Celep ME, Göktürk RS. Phenolic Compound Profiles, Cytotoxic, Antioxidant, Antimicrobial Potentials and Molecular Docking Studies of Astragalus gymnolobus Methanolic Extracts. PLANTS (BASEL, SWITZERLAND) 2024; 13:658. [PMID: 38475504 DOI: 10.3390/plants13050658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024]
Abstract
Since Astragalus is a genus with many important medicinal plant species, the present work aimed to investigate the phytochemical composition and some biological activities of Astragalus gymnolobus. The methanolic fractions of four organs (stems, flowers, leaves, root and whole plant) were quantified and identified by Liquid Chromatography Electrospray Ionization Tandem Mass Spectrometry (LC-ESI-MS/MS) analysis. Hesperidin, hyperoside, p-hydroxybenzoic acid, protocatechuic acid and p-coumaric acid were identified as main compounds among the extracts. Among all cells, leaf methanol (Lm) extract had the highest cytotoxic effect on HeLa cells (IC50 = 0.069 μg/mL). Hesperidin, the most abundant compound in A. gymnolobus extract, was found to show a strong negative correlation with the cytotoxic effect observed in HeLa cells according to Pearson correlation test results and to have the best binding affinity to targeted proteins by docking studies. The antimicrobial activity results indicated that the most susceptible bacterium against all extracts was identified as Streptococcus pyogenes with 9-11 mm inhibition zone and 8192 mg/mL MIC value. As a result of the research, it was suggested that A. gymnolobus could be considered as a promising source that contributes to the fight against cancer.
Collapse
Affiliation(s)
- Esra Aydemir
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Elif Odabaş Köse
- Medical Laboratory Program, Vocational School of Health Services, Akdeniz University, Antalya TR-07058, Turkey
| | - Mustafa Yavuz
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - A Cansu Kilit
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Alaaddin Korkut
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Serap Özkaya Gül
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| | - Cengiz Sarikurkcu
- Department of Analytical Chemistry, Faculty of Pharmacy, Afyonkarahisar Health Sciences University, Afyonkarahisar TR-03100, Turkey
| | - Mehmet Engin Celep
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, Atasehir, Istanbul TR-34755, Turkey
| | - R Süleyman Göktürk
- Department of Biology, Faculty of Science, Akdeniz University, Antalya TR-07058, Turkey
| |
Collapse
|
7
|
El Menyiy N, Aboulaghras S, Bakrim S, Moubachir R, Taha D, Khalid A, Abdalla AN, Algarni AS, Hermansyah A, Ming LC, Rusu ME, Bouyahya A. Genkwanin: An emerging natural compound with multifaceted pharmacological effects. Biomed Pharmacother 2023; 165:115159. [PMID: 37481929 DOI: 10.1016/j.biopha.2023.115159] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023] Open
Abstract
Plant bioactive molecules could play key preventive and therapeutic roles in chronological aging and the pathogenesis of many chronic diseases, often accompanied by increased oxidative stress and low-grade inflammation. Dietary antioxidants, including genkwanin, could decrease oxidative stress and the expression of pro-inflammatory cytokines or pathways. The present study is the first comprehensive review of genkwanin, a methoxyflavone found in several plant species. Indeed, natural sources, and pharmacokinetics of genkwanin, the biological properties were discussed and highlighted in detail. This review analyzed and considered all original studies related to identification, isolation, quantification, investigation of the biological and pharmacological properties of genkwanin. We consulted all published papers in peer-reviewed journals in the English language from the inception of each database to 12 May 2023. Different phytochemical demonstrated that genkwanin is a non-glycosylated flavone found and isolated from several medicinal plants such as Genkwa Flos, Rosmarinus officinalis, Salvia officinalis, and Leonurus sibiricus. In vitro and in vivo biological and pharmacological investigations showed that Genkwanin exhibits remarkable antioxidant and anti-inflammatory activities, genkwanin, via activation of glucokinase, has shown antihyperglycemic activity with a potential role against metabolic syndrome and diabetes. Additionally, it revealed cardioprotective and neuroprotective properties, thus reducing the risk of cardiovascular diseases and assisting against neurodegenerative diseases. Furthermore, genkwanin showed other biological properties like antitumor capability, antibacterial, antiviral, and dermato-protective effects. The involved mechanisms include sub-cellular, cellular and molecular actions at different levels such as inducing apoptosis and inhibiting the growth and proliferation of cancer cells. Despite the findings from preclinical studies that have demonstrated the effects of genkwanin and its diverse mechanisms of action, additional research is required to comprehensively explore its therapeutic potential. Primarily, extensive studies should be carried out to enhance our understanding of the molecule's pharmacodynamic actions and pharmacokinetic pathways. Moreover, toxicological and clinical investigations should be undertaken to assess the safety and clinical efficacy of genkwanin. These forthcoming studies are of utmost importance in fully unlocking the potential of this molecule in the realm of therapeutic applications.
Collapse
Affiliation(s)
- Naoual El Menyiy
- Laboratory of Pharmacology, National Agency of Medicinal and Aromatic Plants, Taounate 34025, Morocco.
| | - Sara Aboulaghras
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Saad Bakrim
- Geo-Bio-Environment Engineering and Innovation Laboratory, Molecular Engineering, Biotechnology and Innovation Team, Polydisciplinary Faculty of Taroudant, Ibn Zohr University, Agadir 80000, Morocco.
| | - Rania Moubachir
- Bioactives and Environmental Health Laboratory, Faculty of Sciences, Moulay Ismail University, Meknes, Morocco.
| | - Doaue Taha
- Molecular Modeling, Materials, Nanomaterials, Water and Environment Laboratory, CERNE2D, Department of Chemistry, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, Jazan 45142, Saudi Arabia.
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Alanood S Algarni
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia.
| | - Andi Hermansyah
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia.
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia; School of Medical and Life Sciences, Sunway University, Sunway City, Malaysia; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei Darussalam.
| | - Marius Emil Rusu
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Iuliu Hatieganu University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania.
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat 10106, Morocco.
| |
Collapse
|
8
|
Tesfaye O. Evaluating the Antioxidant Properties of Unifloral Honey ( Apis mellifera L.) from Ethiopia. INTERNATIONAL JOURNAL OF FOOD SCIENCE 2023; 2023:7664957. [PMID: 37484116 PMCID: PMC10362986 DOI: 10.1155/2023/7664957] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/01/2023] [Accepted: 06/28/2023] [Indexed: 07/25/2023]
Abstract
The antioxidant properties of natural honey primarily rely on the floral origin from which nectar is collected by bees. Thus, the current activity evaluated the antioxidant properties of honey based on its floral type. The honey floral origin was verified by the melissopalynological technique. Antioxidant properties were determined by using standard procedures and analyzed by SAS. Six unifloral honey types with their harvesting month were identified. Accordingly, Guizotia (74% of pollen frequency), Coffea arabica (68%), Vernonia (90%), Croton macrostachyus (64%), Schefflera abyssinica (100%), and Eucalyptus (100%) were cropped in November, February, February, May, April, and June separately. Statistically, a variation (p < 0.05) in antioxidant parameters was displayed between unifloral honeys. Vernonia honey exhibited the maximum total phenol (77.2 ± 0.7), total flavonoid (65.0 ± 3.8), and total antioxidant content (65.4 ± 0.3). On the other hand, S. abyssinica honey recorded the least total phenol content (24.1 ± 0.4), total flavonoid content (18.6 ± 2.7), and total antioxidant content (5.6 ± 0.5). Statistical analysis showed a positive correlation between all the tested antioxidant parameters. Thus, the current study indicated that all the tested Ethiopian unifloral honey had good sources of antioxidants with the most Vernonia honey followed by C. macrostachyus whereas S. abyssinica honey had the least followed by Eucalyptus.
Collapse
Affiliation(s)
- Ofijan Tesfaye
- Oromia Agricultural Research Institute, Haro Sebu Agricultural Research Center, Oromia, Ethiopia
| |
Collapse
|
9
|
Wu A, Fang Z, Qin J, Huang Z, Wu Z. Characterization and adsorption-release property of fermented porous starch as well as its bioactivity protection for guava leaf polyphenols. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
10
|
Pinto AA, Ruano-González A, Ezzanad A, Pinedo-Rivilla C, Sánchez-Maestre R, Amaro-Luis JM. Bio-Guided Isolation of New Compounds from Baccharis spp. as Antifungal against Botrytis cinerea. Metabolites 2022; 12:1292. [PMID: 36557330 PMCID: PMC9781812 DOI: 10.3390/metabo12121292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Baccharis genus Asteraceae is widely used in traditional treatment against fever, headache, hepatobiliary disorders, skin ulcers, diabetes, and rheumatism, as well as an antispasmodic and diuretic. Its phytochemistry mainly shows the presence of flavonoids and terpenoids such as monoterpenes, sesquiterpenes, diterpenes, and triterpenes. Some of them have been evaluated for biological activities presenting allelopathic, antimicrobial, cytotoxic, and anti-inflammatory properties. In this paper, our research group reported the isolation, characterization, and antifungal evaluation of several molecules isolated from the dichloromethane extract from Baccharis prunifolia, Baccharis trinervis, and Baccharis zumbadorensis against the phytopathogen fungus Botrytis cinerea. The isolated compounds have not previously been tested against Botrytis, revealing an important source of antifungals in the genus Baccharis. Six known flavones were isolated from B. prunifolia. The dichloromethane extracts of B. trinervis and B. zumbadorensis were subjected to a bio-guided isolation, obtaining three known flavones, an α-hydroxidihydrochalcone mixture, one labdane, one triterpene, and two norbisabolenes from the most active fractions. The compounds 4'-methoxy-α-hydroxydihydrochalcone (7A), 3β,15-dihydroxylabdan-7-en-17-al (8), and 13-nor-11,12-dihydroxybisabol-2-enone (11) are novel. The most active compounds were the Salvigenin (5) and 1,2-dihydrosenedigital-2-one (10) with an IC50 of 13.5 and 3.1 μg/mL, respectively.
Collapse
Affiliation(s)
- Ana A. Pinto
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida C.P. 5101, Venezuela
| | - Antonio Ruano-González
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Abdellah Ezzanad
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Cristina Pinedo-Rivilla
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Rosario Sánchez-Maestre
- Departamento de Química Orgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, 11510 Puerto Real, Spain
| | - Juan Manuel Amaro-Luis
- Laboratorio de Productos Naturales, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes (ULA), Mérida C.P. 5101, Venezuela
| |
Collapse
|
11
|
Benali T, Jaouadi I, Ghchime R, El Omari N, Harboul K, Hammani K, Rebezov M, Shariati MA, Mubarak MS, Simal-Gandara J, Zengin G, Park MN, Kim B, Mahmud S, Lee LH, Bouyahya A. The Current State of Knowledge in Biological Properties of Cirsimaritin. Antioxidants (Basel) 2022; 11:1842. [PMID: 36139916 PMCID: PMC9495358 DOI: 10.3390/antiox11091842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
The search for natural plant-based products as new pharmacological alternatives to treat various human pathologies has taken on great importance for researchers and research laboratories. In this context, research has intensified to extract and identify natural molecules endowed with biological effects. The objective of this study is to review the source and pharmacological properties of cirsimaritin. The identification and isolation of this flavonoid from various natural sources, including medicinal plants such as Artemisia judaica, Cirsium japonicum, Lithocarpus dealbatus, Microtea debilis, and Ocimum sanctum, has been carried out and verified using different spectral techniques. Biological effect investigations are carried out with a wide variety of experimental models in vitro and in vivo and laboratory techniques. The results of these research works showed the biological properties of cirsimaritin including anticancer, antimicrobial, antidiabetic, antiparasitic, antioxidant, and anti-inflammatory effects. The mechanisms involved in the multiple activities of this molecule are diverse and include sub-cellular, cellular, and molecular levels. Indeed, this bioactive induces anti-inflammatory and antiproliferative effects by inhibiting cell membrane receptors, interference with signaling pathways, and inhibiting transcriptional factors such as Nf-κB involved in cell promotion and proliferation. In the light of these results, cirsimaritin appears as a promising and viable alternative natural bioactive drug to treat many pathological conditions.
Collapse
Affiliation(s)
- Taoufiq Benali
- Environment and Health Team, Polydisciplinary Faculty of Safi, Cadi Ayyad University, Sidi Bouzid B.P. 4162, Morocco
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Imane Jaouadi
- Laboratory of Organic Chemistry, Catalysis and Environment, Department of Chemistry, Faculty of Sciences, Ibn Tofail University, B.P. 133, Kenitra 14000, Morocco
| | - Rokia Ghchime
- Department of Clinical Neurophysiology, Hospital of Specialities, Rabat Institute, Ibn Sina University Hospital, Rabat 10056, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat 10100, Morocco
| | - Kaoutar Harboul
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Khalil Hammani
- Laboratory of Natural Resources and Environment, Polydisciplinary Faculty of Taza, Sidi Mohamed Ben Abdellah University, Taza-Gare, Taza B.P. 1223, Morocco
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, 109316 Moscow, Russia
- Biophotonics Center, Prokhorov General Physics Institute of the Russian Academy of Science, 119991 Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, Russian State Agrarian University—Moscow Timiryazev Agricultural Academy, 49 Timiryazevskaya St., 127550 Moscow, Russia
| | | | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain
| | - Gokhan Zengin
- Department of Biology, Faculty of Science, Selcuk Universtiy, 42130 Konya, Turkey
| | - Moon-Nyeo Park
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Bonglee Kim
- College of Korean Medicine, Kyung Hee University, Hoigidong, Dongdaemungu, Seoul 02447, Korea
| | - Shafi Mahmud
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, and The Shine-Dalgarno Centre for RNA Innovation, The Australian National University, Canberra, ACT 2601, Australia
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat 10106, Morocco
| |
Collapse
|
12
|
Akhter S, Irfan HM, Alamgeer, Jahan S, Shahzad M, Latif MB. Nerolidol: a potential approach in rheumatoid arthritis through reduction of TNF-α, IL-1β, IL-6, NF-kB, COX-2 and antioxidant effect in CFA-induced arthritic model. Inflammopharmacology 2022; 30:537-548. [PMID: 35212850 DOI: 10.1007/s10787-022-00930-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 02/01/2022] [Indexed: 11/05/2022]
Abstract
Rheumatoid arthritis is primarily associated with inflammation and increased level of proinflammatory cytokines which are released by immune cells, macrophages or activation of arachidonic acid metabolism. The expression of these cytokines, oxidative free radicals and the activation of COX-2 enzymes are crucial targets for chronic inflammation. On the basis of established anti-inflammatory efficacy of nerolidol, the primary study was further appraised to determine its approach against Freund's complete adjuvant (CFA) rheumatoid model. Arthritis was induced by inoculation of 0.1 mL CFA injection into the left hind footpad of rats. Anti-arthritic potential of nerolidol (at 200, 400 and 800 mg/kg doses) was assessed by measuring the paw volume, body weight, serum analysis, histopathological and radiographs of ankle joints. Expressions of cytokine's panels such as IL-10, IL-4, COX-2, NF-kB, TNF-α, IL-6, PGE-2 and IL-1β were determined by real-time qPCR. Antioxidant enzyme analyses were conducted by measuring the SOD, POD and catalase activity from serum and equated with arthritic control group. Nerolidol prevented body weight loss, stabilized biochemical and haematological homeostasis and significantly reduced the paw volume. Furthermore, X-ray and histopathological assessment of ankle joints showed an improvement in the joint structure of rats treated with nerolidol. Besides that, overexpression of gene pointers like TNF-α, IL-1β, IL-6, NF-kB, PGE-2 and COX-2 in CFA-treated control rats were also reversed with nerolidol. This anti-arthritic mechanism was further supported by the increased level of IL-10, IL-4 and serum antioxidant activity. The present findings demonstrate that nerolidol reduced adjuvant arthritis by downregulating the proinflammatory cytokines and upregulating the aforementioned anti-inflammatory cytokines and may be used as a therapeutic substance for the management of human rheumatoid arthritis.
Collapse
Affiliation(s)
- Shanila Akhter
- College of Pharmacy, University of Sargodha, Sargodha, 40100, Pakistan
| | | | - Alamgeer
- Department of Pharmacology, Punjab University College of Pharmacy, University of the Punjab, Lahore, 54000, Pakistan
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Muhammad Shahzad
- Department of Pharmacology, University of Health Sciences, Lahore, 54000, Pakistan
| | - Muhammad Bilal Latif
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| |
Collapse
|
13
|
Effect of Hydroxyl Groups Esterification with Fatty Acids on the Cytotoxicity and Antioxidant Activity of Flavones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27020420. [PMID: 35056733 PMCID: PMC8777613 DOI: 10.3390/molecules27020420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022]
Abstract
Flavonoids and polyunsaturated fatty acids due to low cytotoxicity in vitro studies are suggested as potential substances in the prevention of diseases associated with oxidative stress. We examined novel 6-hydroxy-flavanone and 7-hydroxy-flavone conjugates with selected fatty acids (FA) of different length and saturation and examined their cytotoxic and antioxidant potential. Our findings indicate that the conjugation with FA affects the biological activity of both the original flavonoids. The conjugation of 6-hydroxy-flavanone increased its cytotoxicity towards prostate cancer PC3 cells. The most noticeable effect was found for oleate conjugate. A similar trend was observed for 7-hydroxy-flavone conjugates with the most evident effect for oleate and stearate. The cytotoxic potential of all tested conjugates was not specific towards PC3 because the viability of human keratinocytes HaCaT cells decreased after exposure to all conjugates. Additionally, we showed that esterification of the two flavonoids decreased their antioxidant activity compared to that of the original compounds. Of all the tested compounds, only 6-sorbic flavanone showed a slight increase in antioxidant potential compared to that of the original compound. Our data show that conjugated flavonoids are better absorbed and enhance cytotoxic effects, but the presence of FA lowered the antioxidant potential.
Collapse
|
14
|
Reviana R, Usman AN, Raya I, Dirpan A, Arsyad A, Fendi F. Analysis of antioxidant activity on cocktail honey products as female pre-conception supplements. GACETA SANITARIA 2021; 35 Suppl 2:S202-S205. [PMID: 34929812 DOI: 10.1016/j.gaceta.2021.10.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/30/2021] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Cocktail honey is derived from a mixture of honey (trigona sp.), bee bread, and homogeneous royal jelly. The material has a phenolic content rich in antioxidants that are beneficial for women's reproductive health, especially for pre-conception, because it can suppress the content of free radicals in the body. Antioxidants are useful to overcome oxidative damage due to free radicals in the body that prevent various diseases from increasing fertility during pre-conception. METHOD This study used the DPPH (2,2-diphenyl-1-picrylhydrazyl) test method using UV-vis spectrophotometry to express the value of free radical reduction activity as IC50 (inhibitory concentration) values. RESULTS The DPPH test on cocktail honey products obtained an average yield of 4577.7μg/mL, which was included in the product category was very weak in the antioxidant activity content. CONCLUSION The content contained in the honey cocktail contains weak bioactive content by assessing the antioxidant content using DPPH. The difference in the results of antioxidant activity tests using DPPH is caused by the test method and the conditions used in processing, homogeneous ingredients, solvent volume, extraction time, temperature, and pressure in product management.
Collapse
Affiliation(s)
- Riska Reviana
- Midwifery Study Program, Graduate School, Hasanuddin University, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia
| | - Andi Nilawati Usman
- Midwifery Study Program, Graduate School, Hasanuddin University, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia.
| | - Indah Raya
- Department of Chemistry, Faculty of Science, Hasanuddin University, Makassar, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia
| | - Andi Dirpan
- Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia
| | - Aryadi Arsyad
- Midwifery Study Program, Graduate School, Hasanuddin University, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia
| | - Fendi Fendi
- Midwifery Study Program, Graduate School, Hasanuddin University, Indonesia; Department of Chemistry, Faculty of Science, Hasanuddin University, Makassar, Indonesia; Hasanuddin University, Makassar, Indonesia; Department of Agricultural Technology, Faculty of Agriculture, Hasanuddin University, Makassar, Indonesia; Research and Community Service, Wuna Agricultural Science University, Indonesia
| |
Collapse
|
15
|
Szoka L, Nazaruk J, Stocki M, Isidorov V. Santin and cirsimaritin from Betula pubescens and Betula pendula buds induce apoptosis in human digestive system cancer cells. J Cell Mol Med 2021; 25:11085-11096. [PMID: 34755444 PMCID: PMC8650031 DOI: 10.1111/jcmm.17031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/07/2021] [Accepted: 10/19/2021] [Indexed: 11/29/2022] Open
Abstract
Flavonoids are bioactive secondary metabolites of plants, which exert anti‐cancer effects. However, metabolism in enterocytes and the liver can influence the biological activity of flavonoids contained in the diet. Therefore, results from in vitro studies on cancer cells from the digestive tract and liver may reflect the real effects in the human body. Previously, we have found that the extract from birch buds exerts antiproliferative activity in a panel of cancer cells. In the present study, the anti‐cancer activity of ten flavonoids isolated from the buds of Betula pubescens and Betula pendula was characterized. Among them, santin and cirsimaritin significantly reduced viability, proliferation and clonogenicity of gastric (AGS), colon (DLD‐1) and liver (HepG2) cancer cells. Both flavonoids induced apoptosis, accompanied by activation of caspase‐3, caspase‐7, caspase‐8 and caspase‐9. Moreover, upregulation of p53 was detected only in wild‐type p53 harbouring cells. Together, our results suggest that santin and cirsimaritin exhibit promising anti‐cancer activity in cultures of digestive system cancer cells.
Collapse
Affiliation(s)
- Lukasz Szoka
- Department of Medicinal Chemistry, Medical University of Bialystok, Białystok, Poland
| | - Jolanta Nazaruk
- Department of Pharmacognosy, Medical University of Bialystok, Białystok, Poland
| | - Marcin Stocki
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| | - Valery Isidorov
- Institute of Forest Sciences, Białystok University of Technology, Białystok, Poland
| |
Collapse
|
16
|
Colpan RD, Erdemir A. Co-delivery of quercetin and caffeic-acid phenethyl ester by polymeric nanoparticles for improved antitumor efficacy in colon cancer cells. J Microencapsul 2021; 38:381-393. [PMID: 34189998 DOI: 10.1080/02652048.2021.1948623] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AIM This study aimed to synthesise quercetin- caffeic-acid phenethyl ester (CAPE)-co-loaded poly(lactic-co-glycolic-acid) (PLGA) nanoparticles (QuCaNP) and investigate their anti-cancer activity on human colorectal carcinoma HT-29 cells. METHODS QuCaNPs were synthesised using single-emulsion (o/w) solvent evaporation method. Particle size, zeta potential, polydispersity index, in vitro release profile, and surface morphology of QuCaNPs were determined. Cytotoxicity, anti-migration, anti-proliferation and apoptotic activities of QuCaNPs were studied. RESULTS Mean diameter of QuCaNP was 237.8 ± 9.670 nm, with a polydispersity index (PDI) of 0.340 ± 0.027. Encapsulation efficiency was 74.28% (quercetin) and 65.24% (CAPE). Particle size and drug content of QuCaNP remained stable for 30 days at -20 °C. The half-maximal inhibitory concentration (IC50) values of QuCaNP-treated HT-29 cells were calculated as 11.2 µg/mL (24 h) and 8.2 µg/mL (48 h). QuCaNP treatment increased mRNA levels of caspase-3 (2.38 fold) and caspase-9 (2-fold) and expressions of key proteins in the intrinsic apoptosis pathway in HT-29 cells. CONCLUSION Overall, our results demonstrated QuCaNPs exhibits improved anti-cancer activity on HT-29 cells.
Collapse
Affiliation(s)
- Reyhan Dilsu Colpan
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| | - Aysegul Erdemir
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Yildiz Technical University, Istanbul, Turkey
| |
Collapse
|
17
|
Tu F, Xie C, Li H, Lei S, Li J, Huang X, Yang F. Effect of in vitro digestion on chestnut outer-skin and inner-skin bioaccessibility: The relationship between biotransformation and antioxidant activity of polyphenols by metabolomics. Food Chem 2021; 363:130277. [PMID: 34303061 DOI: 10.1016/j.foodchem.2021.130277] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 12/17/2022]
Abstract
Chestnut skin is rich in polyphenols that have been linked to health for their antioxidant activity. However, chestnut outer-skin extract (COE), chestnut inner-skin extract (CIE), and their digested products have different compositions of polyphenols, and therefore their antioxidant activities might differ as well. Here, we study the effect of in vitro digestion on their total phenol content, antioxidant capacity, and individual phenolic profile to clarify the relationship between biotransformation and antioxidant activity. Compared to undigested samples, total phenol content and antioxidant activity of digested chestnut outer-skin extract (DCOE) and digested chestnut inner-skin extract (DCIE) had significantly higher values. The changes of phenolic composition and antioxidant activity after digestion were mainly due to the anthocyanin biosynthesis involving glycosylation, acylation, methoxylation and their reverse processes. All these data suggest that as chestnut processing by-products, COE and CIE are raw material sources of antioxidant-rich active substances and need more sufficient utilization.
Collapse
Affiliation(s)
- Fen Tu
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Chenyang Xie
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Haonan Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Sichao Lei
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jie Li
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Xuewei Huang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Fang Yang
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430205, China; Key Laboratory for Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China; Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|
18
|
Advances in 3D peptide hydrogel models in cancer research. NPJ Sci Food 2021; 5:14. [PMID: 34075054 PMCID: PMC8169659 DOI: 10.1038/s41538-021-00096-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/19/2021] [Indexed: 12/20/2022] Open
Abstract
In vitro cell culture models on monolayer surfaces (2D) have been widely adapted for identification of chemopreventive food compounds and food safety evaluation. However, the low correlation between 2D models and in vivo animal models has always been a concern; this gap is mainly caused by the lack of a three-dimensional (3D) extracellular microenvironment. In 2D models, cell behaviors and functionalities are altered, resulting in varied responses to external conditions (i.e., antioxidants) and hence leading to low predictability. Peptide hydrogel 3D scaffolding technologies, such as PGmatrix for cell culture, have been recently reported to grow organoid-like spheroids physiologically mimicking the 3D microenvironment that can be used as an in vitro 3D model for investigating cell activities, which is anticipated to improve the prediction rate. Thus, this review focuses on advances in 3D peptide hydrogels aiming to introduce 3D cell culture tools as in vitro 3D models for cancer-related research regarding food safety and nutraceuticals.
Collapse
|
19
|
Wu F, Zhao H, Sun J, Guo J, Wu L, Xue X, Cao W. ICP-MS-based ionomics method for discriminating the geographical origin of honey of Apis cerana Fabricius. Food Chem 2021; 354:129568. [PMID: 33799063 DOI: 10.1016/j.foodchem.2021.129568] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/19/2021] [Accepted: 03/06/2021] [Indexed: 12/12/2022]
Abstract
The identification of geographical origin is an important factor in evaluating the authenticity of honey. However, at present, there are few studies concerning the honey of Apis cerana Fabricius (A. cerana, Asiatic honeybee). To identify geographical origin, we used two common methods (multi-physicochemical parameters and phenolic chromatographic fingerprints) but achieved only poor identification. To compensate for this shortcoming, we established an ICP-MS-based ionomics method using 18 elements in 27 A. cerana honey samples from three different areas in Shaanxi Province, China. Multivariate analysis showed that significant differences in contents can be used to discriminate the geographical origin of A. cerana honey. The method was further validated using an independent test set of 11 samples with 90.91% accuracy, demonstrating its potential for the identification and prediction of the geographical origin of honey.
Collapse
Affiliation(s)
- Fanhua Wu
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Haoan Zhao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jing Sun
- College of Food Science and Technology, Northwest University, Xi'an 710069, China
| | - Jianbo Guo
- Shaanxi Institute for Food and Drug Control, Keji Rd 5, Xi'an 710065, China
| | - Liming Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xiaofeng Xue
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Wei Cao
- College of Food Science and Technology, Northwest University, Xi'an 710069, China.
| |
Collapse
|
20
|
Cavalcanti BC, Neto JBDA, Silva AADS, Barreto FS, Ferreira JRDO, Magalhães HIF, Silva CRD, Vieira ÍGP, Ricardo NMPS, Nobre Júnior HV, Moraes MO. Chemopreventive effect of troxerutin against hydrogen peroxide-induced oxidative stress in human leukocytes through modulation of glutathione-dependent enzymes. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2021; 84:137-151. [PMID: 33103637 DOI: 10.1080/15287394.2020.1836541] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Troxerutin is a natural flavonoid present abundantly in tea, coffee, olives, wheat, and a variety of fruits and vegetables. Due to its diverse pharmacological properties, this flavonoid has aroused interest for treatment of various diseases, and consequently prompted investigation into its toxicological characteristics. The aim of this study was to evaluate the genotoxic and mutagenic effects and chemoprotective activity attributed to troxerutin using human peripheral blood leukocytes (PBLs) through several well-established experimental protocols based upon different parameters. Data demonstrated that troxerutin (100 to 1000 µM) induced no marked cytotoxic effect on PBLs after 24 hr, and did not produce strand breaks and mutagenicity. Regarding chemoprevention, this flavonoid attenuated cytotoxicity, genotoxicity, and mutagenicity initiated by hydrogen peroxide (H2O2) in human PBLs. Further, troxerutin demonstrated no marked cytotoxic effect on PBLs and exerted a protective effect against oxidative stress induced by H2O2 through modulation of GSH-dependent enzymes.
Collapse
Affiliation(s)
- Bruno Coêlho Cavalcanti
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará , Fortaleza, CE, Brazil
| | - João Batista de Andrade Neto
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
- Christus University Center (UNICHRISTUS) , Fortaleza, Brazil
| | | | | | | | | | - Cecília Rocha da Silva
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
| | | | | | - Hélio Vitoriano Nobre Júnior
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- School of Pharmacy, Laboratory for Bioprospection of Antimicrobial Molecules, Federal University of Ceará , Fortaleza, Brazil
| | - Manoel Odorico Moraes
- Drug Research and Development Center, Federal University of Ceará , Fortaleza, Brazil
- Department of Physiology and Pharmacology, Federal University of Ceará , Fortaleza, CE, Brazil
| |
Collapse
|
21
|
GREGÓRIO A, GALHARDO D, SEREIA MJ, WIELEWSKI P, GAVAZZONI L, SANTOS IFD, SANGALETI GSSGMG, CARDOSO EC, BORTOTI TL, ZANATTA LA, GONÇALVES LM, SUZIN MA, SANTOS AA, TOLEDO VDAAD. Antimicrobial activity, physical-chemical and activity antioxidant of honey samples of Apis mellifera from different regions of Paraná, Southern Brazil. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.32820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
22
|
Boudreau A, Richard AJ, Harvey I, Stephens JM. Artemisia scoparia and Metabolic Health: Untapped Potential of an Ancient Remedy for Modern Use. Front Endocrinol (Lausanne) 2021; 12:727061. [PMID: 35211087 PMCID: PMC8861327 DOI: 10.3389/fendo.2021.727061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Botanicals have a long history of medicinal use for a multitude of ailments, and many modern pharmaceuticals were originally isolated from plants or derived from phytochemicals. Among these, artemisinin, first isolated from Artemisia annua, is the foundation for standard anti-malarial therapies. Plants of the genus Artemisia are among the most common herbal remedies across Asia and Central Europe. The species Artemisia scoparia (SCOPA) is widely used in traditional folk medicine for various liver diseases and inflammatory conditions, as well as for infections, fever, pain, cancer, and diabetes. Modern in vivo and in vitro studies have now investigated SCOPA's effects on these pathologies and its ability to mitigate hepatotoxicity, oxidative stress, obesity, diabetes, and other disease states. This review focuses on the effects of SCOPA that are particularly relevant to metabolic health. Indeed, in recent years, an ethanolic extract of SCOPA has been shown to enhance differentiation of cultured adipocytes and to share some properties of thiazolidinediones (TZDs), a class of insulin-sensitizing agonists of the adipogenic transcription factor PPARγ. In a mouse model of diet-induced obesity, SCOPA diet supplementation lowered fasting insulin and glucose levels, while inducing metabolically favorable changes in adipose tissue and liver. These observations are consistent with many lines of evidence from various tissues and cell types known to contribute to metabolic homeostasis, including immune cells, hepatocytes, and pancreatic beta-cells. Compounds belonging to several classes of phytochemicals have been implicated in these effects, and we provide an overview of these bioactives. The ongoing global epidemics of obesity and metabolic disease clearly require novel therapeutic approaches. While the mechanisms involved in SCOPA's effects on metabolic, anti-inflammatory, and oxidative stress pathways are not fully characterized, current data support further investigation of this plant and its bioactives as potential therapeutic agents in obesity-related metabolic dysfunction and many other conditions.
Collapse
Affiliation(s)
- Anik Boudreau
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Allison J. Richard
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Innocence Harvey
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Jacqueline M. Stephens
- Adipocyte Biology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
- *Correspondence: Jacqueline M. Stephens,
| |
Collapse
|
23
|
Hailu D, Belay A. Melissopalynology and antioxidant properties used to differentiate Schefflera abyssinica and polyfloral honey. PLoS One 2020; 15:e0240868. [PMID: 33112916 PMCID: PMC7592792 DOI: 10.1371/journal.pone.0240868] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/03/2020] [Indexed: 01/20/2023] Open
Abstract
Honey can be categorized as monofloral and polyfloral honey. There is a strong interest in science and commerce, to further differentiate honey. In the present study, Schefflera abyssinica and polyfloral honey from Sheka Forest, Ethiopia was investigated. Botanical origin was determined based on Melissopalynology. Refractive index, moisture, sugars, ash, pH, free acidity, hydroxymethylfurfural, optical density, diastase activity, protein, and color were determined based on the standard method of the international honey commission (IHC) and AOAC. Antioxidant activity and Antioxidant content were determined using UV- visible spectroscopy. The level of pollen dominancy for monofloral honey (Schefflera abyssinica) ranged from 76.2 to 85.8%. The polyfloral honey stuffed with a variety of pollen grain ranged from 2.2% (Coffea arabica) to 23.2% (Schefflera abyssinica). Schefflera abyssinica honey contained more total phenolic compounds (75.08 ± 2.40 mg GAE/100g), and total flavonoids (42.03 ± 1.49 mg QE/100 g), as well as had stronger DPPH (44.43 ± 0.97%) and hydrogen peroxide (78.00 ± 4.82%) scavenging activity. The principal component analysis revealed that Schefflera abyssinica honey associated with the antioxidant properties of total phenolic, total flavonoids, DPPH, and H2O2., which revealed that floral honey sources can essentially differentiated by antioxidant patterns. The higher electrical conductivity (0.42 ± 0.02 mS/cm), ash (0.41 ± 0.05 g/100g), pH (4.01 ± 0.08), optical density (0.26 ± 0.03) and diastase activity (5.21 ± 0.17 Schade units) were recorded in polyfloral honey. Schefflera abyssinica and polyfloral honey satisfy the requirement of national and international standards. The pollen analysis in combination with antioxidant properties distinguishes Schefflera abyssinica from polyfloral honeys.
Collapse
Affiliation(s)
- Demelash Hailu
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| | - Abera Belay
- Department of Food Science and Applied Nutrition, Addis Ababa Science and Technology University, Addis Ababa, Ethiopia
| |
Collapse
|
24
|
Pathak G, Singh S, Kumari P, Raza W, Hussain Y, Meena A. Cirsimaritin, a lung squamous carcinoma cells (NCIH-520) proliferation inhibitor. J Biomol Struct Dyn 2020; 39:3312-3323. [PMID: 32362196 DOI: 10.1080/07391102.2020.1763198] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cirsimaritin is a dimethoxy flavone, which is present in Ocimum sanctum, Microtea debilis, Artemisia judaica, Cirsium japonicum, and Lithocarpus dealbatus. Its antiproliferative potential has been explored in breast and gall bladder cancer cell lines. However, no reports are available on skin and squamous lung carcinoma. Also, the complete mode of action is unknown. Therefore, in the present study, the anticancer potential of cirsimaritin is explored in organ-specific cell lines by using MTT assay. Further, the inhibitory potential and binding interaction with the selected targets were analyzed through in vitro and in-silico analysis. Cirsimaritin showed selective anticancer activity against NCIH-520 cell-line (IC50 23.29 µM), also inhibited the proliferation of other cell-lines up to 48% at 100 µM. In NCIH-520 cell-line, cirsimaritin significantly increased the apoptosis of the cells at both the tested concentrations (10 and 100 µM), which was confirmed by Annexin-V signifying the induction of late apoptosis. Besides, an increase in the ROS levels of 1.6 fold (10 µM) and 1.8 fold (100 µM), circimaritin also inhibits the activity of ODC and CATD with the IC50 57.30 and 68.22 µM respectively. It exhibited a good binding score with the selected targets, follow Lipinski's rule of five and non-mutagenic. Hence, cirsimaritin is a potent molecule, which inhibits the proliferation of lung squamous cell lines by inducing apoptosis. It also inhibited the activity of ODC and CATD responsible for the progression phase in the cancer cells. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gauri Pathak
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shilpi Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Priyanka Kumari
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Waseem Raza
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Jawaharlal Nehru University, New Delhi, India
| | - Yusuf Hussain
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Abha Meena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
25
|
Li S, Lv Q, Sun X, Tang T, Deng X, Yin Y, Li L. Acacetin inhibits Streptococcus pneumoniae virulence by targeting pneumolysin. ACTA ACUST UNITED AC 2020; 72:1092-1100. [PMID: 32390150 DOI: 10.1111/jphp.13279] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/04/2020] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Streptococcus pneumoniae (S. pneumoniae) is an important commensal and pathogenic bacterium responsible for pneumonia, meningitis and other invasive diseases. Pneumolysin (PLY) is the major virulence factor that contributes significantly to the interaction between S. pneumoniae and the host. KEY FINDINGS In this study, the results of antibacterial analysis, the haemolysis test and the Western blotting assay showed that acacetin inhibited PLY-mediated pore-forming activity caused by S. pneumoniae culture precipitates and purified PLY without anti-S. pneumoniae activity. In addition, acacetin treatment inhibited PLY oligomerization without affecting the expression of PLY in S. pneumoniae culture supernatants. Live/dead cells and cytotoxicity assays suggested that acacetin significantly enhanced the survival rate of injured cells by inhibiting the biological toxicity of PLY without cytotoxicity in the coculture system. The in vivo mouse model of S. pneumoniae infection further demonstrated that acacetin treatment could significantly reduce the levels of inflammatory factors (INF-γ and IL-β) in bronchoalveolar lavage fluid (BALF) and alleviate the pathological damage of lung injury. CONCLUSIONS Taken together, the results presented in this study indicated that acacetin inhibited the pore-forming activity of PLY and reduced the virulence of S. pneumoniae in vivo and in vitro, which may provide a leading compound for the treatment of S. pneumoniae infection.
Collapse
Affiliation(s)
- Shufang Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Qianghua Lv
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaodi Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Tianzhong Tang
- Hubei Wudang Animal Pharmaceutical Co., Ltd, Shiyan, Hubei, China
| | - Xuming Deng
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhou Yin
- School of Communication, GuizhouMinzu University, Guiyang, China
| | - Li Li
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
26
|
Influence of the Phenological State of in the Antioxidant Potential and Chemical Composition of Ageratina havanensis. Effects on the P-Glycoprotein Function. Molecules 2020; 25:molecules25092134. [PMID: 32370149 PMCID: PMC7248889 DOI: 10.3390/molecules25092134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/19/2020] [Accepted: 04/30/2020] [Indexed: 11/20/2022] Open
Abstract
Ageratina havanensis (Kunth) R. M. King & H. Robinson is a species of flowering shrub in the family Asteraceae, native to the Caribbean and Texas. The aim of this work was to compare the quantitative chemical composition of extracts obtained from Ageratina havanensis in its flowering and vegetative stages with the antioxidant potential and to determine the effects on P-glycoprotein (P-gp) function. The quantitative chemical composition of the extracts was determined quantifying their major flavonoids by UPLC-ESI-MS/MS and by PCA analysis. The effects of the extracts on P-gp activity was evaluated by Rhodamine 123 assay; antioxidant properties were determined by DPPH, FRAP and inhibition of lipid peroxidation methods. The obtained results show that major flavonoids were present in higher concentrations in vegetative stage than flowering stage. In particular, the extracts obtained in the flowering season showed a significantly higher ability to sequester free radicals compared to those of the vegetative season, meanwhile, the extracts obtained during the vegetative stage showed a significant inhibitory effect against brain lipid peroxidation and a strong reductive capacity. This study also showed the inhibitory effects of all ethanolic extracts on P-gp function in 4T1 cell line; these effects were unrelated to the phenological stage. This work shows, therefore, the first evidence on: the inhibition of P-gp function, the antioxidant effects and the content of major flavonoids of Ageratina havanensis. According to the obtained results, the species Ageratina havanensis (Kunth) R. M. King & H. Robinson could be a source of new potential inhibitors of drug efflux mediated by P-gp. A special focus on all these aspects must be taking into account for future studies.
Collapse
|
27
|
Palani V, Shanmugasundaram M, Maluventhen V, Chinnaraj S, Liu W, Balasubramanian B, Arumugam M. Phytoconstituents and Their Potential Antimicrobial, Antioxidant and Mosquito Larvicidal Activities of Goniothalamus wightii Hook. F. & Thomson. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04507-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
28
|
Arslan ME, Türkez H, Mardinoğlu A. In vitro neuroprotective effects of farnesene sesquiterpene on alzheimer's disease model of differentiated neuroblastoma cell line. Int J Neurosci 2020; 131:745-754. [PMID: 32308094 DOI: 10.1080/00207454.2020.1754211] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVE To investigate neuroprotective properties of the farnesene sesquiterpene on the experimental Alzheimer's disease model in vitro. METHODS Human neuroblastoma cell line (SHSY-5Y) was differentiated into neuron-like cells by using retinoic acid to constitute the in vitro Alzheimer's Disease model. β-amyloid 1-42 protein was applied to the transformed cells for 24 and 48 hours in a wide dose ranges (3.125-200 μM) to establish AD cytotoxicity. Then, farnesene was applied to cell cultures in a wide spectrum dose interval (1.625-100 μg/ml) to investigate neuroprotective effect against β-amyloid for 24 and 48 hours. 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT) and lactate dehydrogenase (LDH) release tests were executed to determine cytotoxicity in the Alzheimer model. Nuclear DNA integrity of cells was examined under the fluorescent microscope using the Hoechst 33258 staining method. Furthermore, acetylcholinesterase (AChE) activity, total antioxidant capacity (TAC) and total oxidative status (TOS) levels were analyzed to understand the protection mechanism of the farnesene application on the cell culture model. Finally, flow cytometry analysis was used to find out the cell death mechanism after beta-amyloid and farnesene application to the cell culture. RESULTS Cell viability tests revealed significant neuroprotection against β-amyloid toxicity in both 24 and 48 hours and the Hoechst 33258 fluorescence staining method showed a significant decrease in necrotic deaths after farnesene application in the cell cultures. Finally, flow cytometry analysis put forth that farnesene could decrease necrotic cell death up to 3-fold resulted from beta-amyloid exposure. CONCLUSION According to the investigations, farnesene can potentially be a safe, anti-necrotic and neuroprotective agents against Alzheimer's disease.
Collapse
Affiliation(s)
- Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey.,Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Chieti Scalo (CH), Italy
| | - Adil Mardinoğlu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| |
Collapse
|
29
|
Pak F, Oztopcu-Vatan P. Fisetin effects on cell proliferation and apoptosis in glioma cells. ACTA ACUST UNITED AC 2020; 74:295-302. [PMID: 31421049 DOI: 10.1515/znc-2019-0098] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/26/2022]
Abstract
This research investigated the antiproliferative effects of 1-500 μM fisetin in T98G and BEAS-2B cells by MTT assay. The IC50 of fisetin in T98G cells for 24 and 48 h were 93 and 75 μM, respectively. Apoptotic alterations of fisetin-treated T98G cells were observed by transmission electron microscopy. BEAS-2B was then used in comparison to T98G cells to determine the cytotoxic effects of fisetin. The IC50 of fisetin for 24 and 48 h were recorded as 270 and 90 μM in BEAS-2B cells, respectively. Different concentrations of fisetin were selected to determine the apoptotic and necrotic effects. Consequently, fisetin was determined to have more apoptotic effects in T98G than BEAS-2B cells, dose- and time-dependently. Moreover, fisetin was found to have cytotoxicity at lower doses in T98G cells compared to carmustine, as positive control. CASPASE 3, CASPASE 9, CASPASE 8, and BAX expressions were increased by the selected fisetin doses of 25 and 50 μM, while that of BCL-2 and survivin was reduced in T98G cells. These results will serve as an essential basis of future in vitro and in vivo studies, in the continuous search for alternative treatment agents for gliomas.
Collapse
Affiliation(s)
- Fulya Pak
- Graduated School of Natural and Applied Sciences, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Pinar Oztopcu-Vatan
- Faculty of Arts and Sciences, Department of Biology, Eskisehir Osmangazi University, 26480 Eskisehir, Turkey, Phone: +90 222 239 37 50
| |
Collapse
|
30
|
Chaurasiya ND, Zhao J, Pandey P, Doerksen RJ, Muhammad I, Tekwani BL. Selective Inhibition of Human Monoamine Oxidase B by Acacetin 7-Methyl Ether Isolated from Turnera diffusa (Damiana). Molecules 2019; 24:molecules24040810. [PMID: 30813423 PMCID: PMC6412401 DOI: 10.3390/molecules24040810] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 12/15/2022] Open
Abstract
The investigation of the constituents that were isolated from Turnera diffusa (damiana) for their inhibitory activities against recombinant human monoamine oxidases (MAO-A and MAO-B) in vitro identified acacetin 7-methyl ether as a potent selective inhibitor of MAO-B (IC50 = 198 nM). Acacetin 7-methyl ether (also known as 5-hydroxy-4′, 7-dimethoxyflavone) is a naturally occurring flavone that is present in many plants and vegetables. Acacetin 7-methyl ether was four-fold less potent as an inhibitor of MAO-B when compared to acacetin (IC50 = 50 nM). However, acacetin 7-methyl ether was >500-fold selective against MAO-B over MAO-A as compared to only two-fold selectivity shown by acacetin. Even though the IC50 for inhibition of MAO-B by acacetin 7-methyl ether was ~four-fold higher than that of the standard drug deprenyl (i.e., SelegilineTM or ZelaparTM, a selective MAO-B inhibitor), acacetin 7-methyl ether’s selectivity for MAO-B over MAO-A inhibition was greater than that of deprenyl (>500- vs. 450-fold). The binding of acacetin 7-methyl ether to MAO-B was reversible and time-independent, as revealed by enzyme-inhibitor complex equilibrium dialysis assays. The investigation on the enzyme inhibition-kinetics analysis with varying concentrations of acacetin 7-methyl ether and the substrate (kynuramine) suggested a competitive mechanism of inhibition of MAO-B by acacetin 7-methyl ether with Ki value of 45 nM. The docking scores and binding-free energies of acacetin 7-methyl ether to the X-ray crystal structures of MAO-A and MAO-B confirmed the selectivity of binding of this molecule to MAO-B over MAO-A. In addition, molecular dynamics results also revealed that acacetin 7-methyl ether formed a stable and strong complex with MAO-B. The selective inhibition of MAO-B suggests further investigations on acacetin 7-methyl as a potential new drug lead for the treatment of neurodegenerative disorders, including Parkinson’s disease.
Collapse
Affiliation(s)
- Narayan D Chaurasiya
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Jianping Zhao
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Pankaj Pandey
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Robert J Doerksen
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Ilias Muhammad
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| | - Babu L Tekwani
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
- Department of BioMolecular Sciences, Division of Medicinal Chemistry and Research Institute of Pharmaceutical Sciences, School of Pharmacy, The University of Mississippi, Oxford, MS 38677, USA.
| |
Collapse
|
31
|
Danışman Kalındemirtaş F, Birman H, Candöken E, Bilgiş Gazioğlu S, Melikoğlu G, Kuruca S. Cytotoxic Effects of Some Flavonoids and Imatinib on the K562 Chronic Myeloid Leukemia Cell Line: Data Analysis Using the Combination Index Method. Balkan Med J 2018; 36:96-105. [PMID: 30396879 PMCID: PMC6409953 DOI: 10.4274/balkanmedj.galenos.2018.2017.1244] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Flavonoids are natural compounds with antioxidant, anticarcinogenic, and anti-inflammatory effects. Aims: To determine the cytotoxic effects of flavonoids and drug resistance related to P-gp on K562 human chronic myeloid leukemia cells. We also aimed to evaluate the therapeutic potential of imatinib and flavonoid combinations. Study Design: Cell culture study. Methods: In this study, K562 cells were treated with apigenin, luteolin, 5-desmethyl sinensetin and the anticancer drug imatinib mesylate. The effect of flavonoids on K562 cell proliferation was detected using the 3-(4,5-dimethylthiazolyl)2,5‑diphenyl‑tetrazolium bromide assay. Concentrations of apigenin, luteolin, and 5-desmethyl sinensetin ranging from 25 to 200 μM and of imatinib from 5 to 50 μM administered for 72 h were studied. Apoptosis/necrosis and P-gp activity were measured using flow cytometry. The combined effects of different concentrations of flavonoids with imatinib were evaluated according to combination index values calculated using CompuSyn software. Results: In our study, the IC50 values for apigenin, luteolin, and 5-desmethyl sinensetin were found to be 140 μM, 100 μM, and >200 μM, respectively. Luteolin (100 μM) had the highest cytotoxic activity of these flavonoids. These results were statistically significant (p<0.05). Among the flavonoids studied, the combination of luteolin and imatinib was the most effective and is therefore recommended for its cytotoxic activity in the K562 cell line. After 72 h of incubation at their respective IC50 concentrations, all flavonoids were associated with an apoptosis rate of approximately 50%. P-glycoprotein activity was increased in all groups. Combination treatment may provide better outcomes in terms of cytotoxicity and thus reduce the dosages of imatinib used. Conclusion: The combination of some flavonoids and imatinib mesylate may increase the cytotoxic effect; However, the antagonistic effect should be considered in combined use on k562 cells.
Collapse
Affiliation(s)
| | - Hüsniye Birman
- Department of Physiology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| | - Eda Candöken
- Department of Biochemistry, İstanbul University İstanbul School of Pharmacy, İstanbul, Turkey
| | - Sema Bilgiş Gazioğlu
- Department of Immunology, İstanbul University Institute of Experimental Medicine, İstanbul, Turkey
| | - Gülay Melikoğlu
- Department of Pharmacognosy, İstanbul University İstanbul School of Pharmacy, İstanbul, Turkey
| | - Serap Kuruca
- Department of Physiology, İstanbul University İstanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
32
|
Carmona V, Martín-Aragón S, Goldberg J, Schubert D, Bermejo-Bescós P. Several targets involved in Alzheimer’s disease amyloidogenesis are affected by morin and isoquercitrin. Nutr Neurosci 2018; 23:575-590. [DOI: 10.1080/1028415x.2018.1534793] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Vanesa Carmona
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Sagrario Martín-Aragón
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Joshua Goldberg
- Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - David Schubert
- Cellular Neurobiology, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Paloma Bermejo-Bescós
- Departamento de Farmacología, Facultad de Farmacia, Universidad Complutense, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| |
Collapse
|
33
|
Quickly verifying the antioxidant contribution of the individual composition in natural antioxidants by HPLC-free radical scavenging detection. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.06.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Mahmoudabady M, Talebian FS, Zabihi NA, Rezaee SA, Niazmand S. Teucrium polium L. Improved Heart Function and Inhibited Myocardial Apoptosis in Isolated Rat Heart Following Ischemia-Reperfusion Injury. J Pharmacopuncture 2018; 21:159-167. [PMID: 30283703 PMCID: PMC6168185 DOI: 10.3831/kpi.2018.21.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 08/02/2018] [Accepted: 08/14/2018] [Indexed: 12/02/2022] Open
Abstract
OBJECTIVES Myocardial reperfusion is the only logical cure for ischemic heart disease. However, ischemic-reperfusion (I/R) injury is one of the underlying factors facilitating and accelerating the apoptosis in the myocardium. This study set to investigate the impact of Teucrium polium (TP) hydro-alcoholic extract on I/R induced apoptosis in the isolated rat heart. METHODS Isolated rat hearts were classified into six groups. The control samples were subjected to 80 min of perfusion with Krebs-Henseleit bicarbonate (KHB) buffer; in control-ischemia group, after primary perfusion (20 min) the hearts were exposed to global ischemia (20 min) and reperfusion (40 min). Pretreated groups were perfused with 500 μM of vitamin C and various TP concentrations (0.5, 1, 2 mg/ml) for 20 min, and then the hearts were exposed to ischemia and reperfusion for 20 min and 40 min, respectively. Cardiodynamic parameters including rate pressure product (RPP), heart rate (HR), the maximum up/down rate of left ventricular pressure (±dp/dt), left ventricular developed pressure (LVDP), and coronary artery flow (CF) were achieved from Lab Chart software data. The Bax and BCl-2 gene expressions were measured in heart samples. RESULTS Hearts treated with TP extract and vit C represented a meaningful improvement in cardiac contractile function and CF. The overexpression of Bcl-2, downregulation of Bax, and improvement of apoptotic index (Bax/Bcl-2) were observed in pretreated TP extract and vit C hearts. CONCLUSION The TP extract was found to ameliorate the cardiac function in the reperfused myocardium. Also, it can hinder apoptotic pathways causing cardioprotection.
Collapse
Affiliation(s)
- Maryam Mahmoudabady
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Faezeh Sadat Talebian
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| | - Narges Amel Zabihi
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| | | | - Saeed Niazmand
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad,
Iran
| |
Collapse
|
35
|
Characterization of New Polyphenolic Glycosidic Constituents and Evaluation of Cytotoxicity on a Macrophage Cell Line and Allelopathic Activities of Oryza sativa. Molecules 2018; 23:molecules23081933. [PMID: 30072644 PMCID: PMC6222760 DOI: 10.3390/molecules23081933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 07/26/2018] [Accepted: 07/28/2018] [Indexed: 11/27/2022] Open
Abstract
Four new constituents, as 5, 7-dihydroxy-4′-methoxyflavonol-3-O-β-d-arabinopyranosyl-(2′′→1′′′)-O-β-d-arabinopyrnosyl-2′′′-O-3′′′′, 7′′′′-dimethylnonan-1′′′′-oate (1), 5-hydroxy-7, 4′-dimethoxyflavone-5-O-α-d-arabinopyranosyl-(2"→1′′′)-O-α-d-arabinopyranosyl-2′′′-O-3′′′′, 7′′′′-dimethylnonan-1′′′′-oate (2), 5-hydroxy-7, 4′-dimethoxyflavone-5-O-β-d-arabinofuranosyl-(2"→1′′′)-O-β-d-arabinopyranosyl-2′′′-O-lanost-5-ene (3) and 4′,4′′-diferuloxy feruloyl-O-α-d-arabinopyranosyl-(2a→1b)-O-α-d-arabinopyranosyl-(2b→1c)-O-α-d-arabinopyranosyl-(2c→1d)-O-α-d-arabinopyranosyl-(2d→1e)-O-α-d-arabinopyranosyl-2e-3′′′, 7′′′-dimethylnonan-1′′′-oate (4), along with three known compounds (5–7) were isolated from Oryza sativa leaves and straw. The structures of new and known compounds were elucidated by 1D (1H and 13C NMR) and 2D NMR spectral methods, viz: COSY, HMBC, and HSQC aided by mass techniques and IR spectroscopy. The cytotoxicity of these constituents was assessed by using (RAW 264.7) mouse macrophage cell line, and allelopathic effects of compounds (1–7) on the germination and seedling growth characteristics such as seedling length and root length of barnyardgrass (Echinochloa oryzicola) were evaluated. Significant inhibitory activity was exhibited by compounds comprising flavone derivatives such as (1–3) on all of seed germination characteristics. The allelopathic effect of flavone derivatives were more pronounced on seedling length and root length than the germination characteristics. The higher concentration of flavone derivatives showed stronger inhibitory effects, whereas the lower concentrations showed stimulatory effects in some cases.
Collapse
|
36
|
Azizi S, Mahdavi Shahri M, Rahman HS, Rahim RA, Rasedee A, Mohamad R. Green synthesis palladium nanoparticles mediated by white tea ( Camellia sinensis) extract with antioxidant, antibacterial, and antiproliferative activities toward the human leukemia (MOLT-4) cell line. Int J Nanomedicine 2017; 12:8841-8853. [PMID: 29276385 PMCID: PMC5734231 DOI: 10.2147/ijn.s149371] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Among nanoparticles used for medical applications, palladium nanoparticles (PdNPs) are among the least investigated. This study was undertaken to develop PdNPs by green synthesis using white tea (W.tea; Camellia sinensis) extract to produce the Pd@W.tea NPs. The Pd@W.tea NPs were characterized by UV–vis spectroscopy and X-ray diffractometry, and evaluated with transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The Pd@W.tea NPs were spherical (size 6–18 nm) and contained phenols and flavonoids acquired from the W.tea extract. Pd@W.tea NPs has good 1-diphenyl-2-picrylhydrazyl (DPPH), OH, and NO-scavenging properties as well as antibacterial effects toward Staphylococcus epidermidis and Escherichia coli. MTT assay showed that Pd@W.tea NPs (IC50 =0.006 μM) were more antiproliferative toward the human leukemia (MOLT-4) cells than the W.tea extract (IC50 =0.894 μM), doxorubicin (IC50 =2.133 μM), or cisplatin (IC50 =0.013 μM), whereas they were relatively innocuous for normal human fibroblast (HDF-a) cells. The anticancer cell effects of Pd@W.tea NPs are mediated through the induction of apoptosis and G2/M cell-cycle arrest.
Collapse
Affiliation(s)
- Susan Azizi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| | | | - Heshu Sulaiman Rahman
- College of Veterinary Medicine, University of Sulaimani, Sulaimani Nwe.,College of Health Science, Komar University of Science and Technology (KUST), Chaq-Chaq Qularaise, Sulaimani City, Iraq.,Faculty of Veterinary Medicine
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences
| | | | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia.,Laboratory of Biopolymer and Derivatives, Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Sen A, Ozbas Turan S, Bitis L. Bioactivity-guided isolation of anti-proliferative compounds from endemic Centaurea kilaea. PHARMACEUTICAL BIOLOGY 2017; 55:541-546. [PMID: 27938087 PMCID: PMC6130618 DOI: 10.1080/13880209.2016.1255980] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 09/24/2016] [Accepted: 10/29/2016] [Indexed: 05/15/2023]
Abstract
CONTEXT The genus Centaurea L. (Asteraceae) is one of the largest genera in Turkey. Compounds and extracts obtained from different Centaurea species have significant anti-cancer activity against various cancer cell lines. OBJECTIVE To determine the anti-proliferative activity of isolates from the chloroform extract of C. kilaea Boiss. MATERIALS AND METHODS Eleven compounds were isolated using column chromatography and preparative TLC from the chloroform extract of aerial parts of endemic C. kilaea. The structures of the isolated compounds were elucidated by various spectroscopic methods, including UV, lH-NMR and 13C-NMR. Anti-proliferative activity of compounds (0.5-50 μg/mL) were measured against one normal cell line (L-929, mouse fibroblast) and three human cancer cell lines (Hela, cervix carcinoma; MCF-7, breast carcinoma; PC-3, prostate carcinoma) using MTT assay. Results were expressed as IC50 values. RESULTS None of the 11 compounds displayed activity against L-929 and HeLa. Two of these compounds, cnicin and cirsimaritin, showed fairly strong activity against MCF-7 and PC-3 with IC50 values of 3.25 and 4.3 μg/mL, respectively. DISCUSSION AND CONCLUSION This is the first report on cirsimaritin. Cirsimaritin and cnicin could serve as potential anti-cancer drug candidates against breast and prostate cancer, respectively.
Collapse
Affiliation(s)
- Ali Sen
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Suna Ozbas Turan
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - Leyla Bitis
- Department of Pharmacognosy, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
38
|
Mohamed TA, Hegazy MEF, Abd El Aty AA, Ghabbour HA, Alsaid MS, Shahat AA, Paré PW. Antimicrobial sesquiterpene lactones from Artemisia sieberi. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2017; 19:1093-1101. [PMID: 28361549 DOI: 10.1080/10286020.2017.1302939] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 03/02/2017] [Indexed: 06/07/2023]
Abstract
Two new sesquiterpene lactones 3R, 8R-dihydroxygermacr-4(15),9(10)-dien-6S,7S,11RH,12,6-olide (1) and 1R, 8S-dihydroxy-11R,13-dihydrobalchanin(2), together with two known compounds 11-epiartapshin (3) and 3'-hydroxygenkwanin (4), were isolated from Artemisia sieberi. Their structures were elucidated by 1D, 2D NMR, MS, and X-ray diffraction. Compound 4 inhibited Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus with Minimal inhibitory concentration values of 50 and 25 μg/disk, respectively. All the isolated compounds exhibited moderate antifungal activities.
Collapse
Affiliation(s)
- Tarik A Mohamed
- a Phytochemistry Department , National Research Centre , Giza 12622 , Egypt
| | | | - Abeer A Abd El Aty
- b Chemistry of Natural and Microbial Products Department , National Research Centre , Giza 12622 , Egypt
| | - Hazem A Ghabbour
- c Department of Pharmaceutical Chemistry , College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
- d Faculty of Pharmacy, Department of Medicinal Chemistry , University of Mansoura , Mansoura 35516 , Egypt
| | - Mansour S Alsaid
- e Pharmacognosy Department , College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Abdelaaty A Shahat
- a Phytochemistry Department , National Research Centre , Giza 12622 , Egypt
- e Pharmacognosy Department , College of Pharmacy, King Saud University , Riyadh 11451 , Saudi Arabia
| | - Paul W Paré
- f Chemistry & Biochemistry Department , Texas Tech University , Lubbock , TX 79409 , USA
| |
Collapse
|
39
|
Soares JMD, Pereira Leal AEB, Silva JC, Almeida JRGS, de Oliveira HP. Influence of Flavonoids on Mechanism of Modulation of Insulin Secretion. Pharmacogn Mag 2017; 13:639-646. [PMID: 29200726 PMCID: PMC5701404 DOI: 10.4103/pm.pm_87_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/31/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The development of alternatives for insulin secretion control in vivo or in vitro represents an important aspect to be investigated. In this direction, natural products have been progressively explored with this aim. In particular, flavonoids are potential candidates to act as insulin secretagogue. OBJECTIVE To study the influence of flavonoid on overall modulation mechanisms of insulin secretion. METHODS The research was conducted in the following databases and platforms: PubMed, Scopus, ISI Web of Knowledge, SciELO, LILACS, and ScienceDirect, and the MeSH terms used for the search were flavonoids, flavones, islets of Langerhans, and insulin-secreting cells. RESULTS Twelve articles were included and represent the basis of discussion on mechanisms of insulin secretion of flavonoids. Papers in ISI Web of Knowledge were in number of 1, Scopus 44, PubMed 264, ScienceDirect 511, and no papers from LILACS and SciELO databases. CONCLUSION According to the literature, the majority of flavonoid subclasses can modulate insulin secretion through several pathways, in an indication that corresponding molecule is a potential candidate for active materials to be applied in the treatment of diabetes. SUMMARY The action of natural products on insulin secretion represents an important investigation topic due to their importance in the diabetes controlIn addition to their typical antioxidant properties, flavonoids contribute to the insulin secretionThe modulation of insulin secretion is induced by flavonoids according to different mechanisms. Abbreviations used: KATP channels: ATP-sensitive K+ channels, GLUT4: Glucose transporter 4, ERK1/2: Extracellular signal-regulated protein kinases 1 and 2, L-VDCCs: L-type voltage-dependent Ca+2 channels, GLUT1: Glucose transporter 1, AMPK: Adenosine monophosphate-activated protein kinase, PTP1B: Protein tyrosine phosphatase 1B, GLUT2: Glucose transporter 2, cAMP: Cyclic adenosine monophosphate, PKA: Protein kinase A, PTK: Protein tyrosine kinase, CaMK II: Ca2+/calmodulin-dependent protein kinase II, GSIS: Glucose-stimulated insulin secretion, Insig-1: Insulin-induced gene 1, IRS-2: Insulin receptor substrate 2, PDX-1: Pancreatic and duodenal homeobox 1, SREBP-1c: Sterol regulatory element binding protein-1c, DMC: Dihydroxy-6'-methoxy-3',5'-dimethylchalcone, GLP-1: Glucagon-like peptide-1, GLP-1R: Glucagon-like peptide 1 receptor.
Collapse
Affiliation(s)
| | | | - Juliane Cabral Silva
- Department of Physiology, Federal University of Sergipe, São Cristóvão, SE, Brazil
| | | | | |
Collapse
|
40
|
Processing, Valorization and Application of Bio-Waste Derived Compounds from Potato, Tomato, Olive and Cereals: A Review. SUSTAINABILITY 2017. [DOI: 10.3390/su9081492] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Zhao Y, Wang Y, Jiang ZT, Li R. Screening and evaluation of active compounds in polyphenol mixtures by HPLC coupled with chemical methodology and its application. Food Chem 2017; 227:187-193. [PMID: 28274421 DOI: 10.1016/j.foodchem.2017.01.085] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 01/16/2017] [Accepted: 01/16/2017] [Indexed: 12/11/2022]
Abstract
An off-line high performance liquid chromatography (HPLC) coupled with chemical methods has been developed to evaluate antioxidant activity of 11 standard polyphenol compounds (SPCs) and vitamin C (Vc) in terms of radical scavenging abilities. The structure-activity relationships of each SPC were also discussed. SPCs showed different abilities in scavenging 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-3-ethyl-benzthiazoline-6-sulphonate (ABTS+) and hydroxyl (OH) free radicals. Among SPCs, quercetin and kaempferol, as typical flavonoids, displayed the greatest radical-scavenging activities and even exhibited higher activity in OH radical removal ability than that of Vc. Furthermore, the proposed method was also applied to screening polyphenolic antioxidant components from Cichorium endivia L. (C. endivia) seed extract. The results indicated that cynarin in the extract was a more active compound to scavenge DPPH and ABTS+ radicals than chlorogenic acid, while chlorogenic acid had stronger capacity in scavenging OH free radicals.
Collapse
Affiliation(s)
- Yue Zhao
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Ying Wang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Zi-Tao Jiang
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| | - Rong Li
- Tianjin Key Laboratory of Food Biotechnology, College of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin 300134, People's Republic of China.
| |
Collapse
|
42
|
Miguel MG, Antunes MD, Faleiro ML. Honey as a Complementary Medicine. INTEGRATIVE MEDICINE INSIGHTS 2017; 12:1178633717702869. [PMID: 28469409 PMCID: PMC5406168 DOI: 10.1177/1178633717702869] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/19/2017] [Indexed: 12/13/2022]
Abstract
The beneficial effects of honey on human health have long been recognized. Today, many of those positive effects have been studied to elucidate its mode of action. This review briefly summarizes the best studied features of honey, highlighting it as an appealing alternative medicine. In these reports, the health benefits of honey range from antioxidant, immunomodulatory, and anti-inflammatory activity to anticancer action, metabolic and cardiovascular benefits, prebiotic properties, human pathogen control, and antiviral activity. These studies also support that the honey's biological activity is mainly dependent on its floral or geographic origin. In addition, some promising synergies between honey and antibiotics have been found, as well as some antiviral properties that require further investigation. Altogether, these studies show that honey is effectively a nutraceutical foodstuff.
Collapse
Affiliation(s)
- MG Miguel
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - MD Antunes
- MeditBio, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
- CEOT, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| | - ML Faleiro
- CBMR, Faculdade de Ciências e Tecnologia, Universidade do Algarve, Faro, Portugal
| |
Collapse
|
43
|
Lee D, Kim KH, Lee J, Hwang GS, Lee HL, Hahm DH, Huh CK, Lee SC, Lee S, Kang KS. Protective effect of cirsimaritin against streptozotocin-induced apoptosis in pancreatic beta cells. J Pharm Pharmacol 2017; 69:875-883. [DOI: 10.1111/jphp.12719] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
Abstract
Abstract
Objectives
Maintaining glucose homoeostasis is essential for the survival of cells. Despite the various health benefits of Korean thistle (Cirsium japonicum var. maackii), their effects on pancreatic β-cell apoptosis in type 1 diabetes mellitus and the underlying mechanisms remain unclear, and experimentally investigated in this study.
Methods
The effects of C. japonicum var. maackii and its active component cirsimaritin against streptozotocin (STZ)-induced cytotoxicity were assessed in INS-1 cells. By Western blotting analysis, protein expressions related to apoptosis were evaluated. The involvement of apoptosis was also confirmed with image-based cytometric assay and caspase activity tests.
Key findings
Cirsium japonicum var. maackii extract and cirsimaritin in non-toxic concentrations improved cell viability to near normal levels and protected INS-1 cells against STZ-induced damage. In addition, cirsimaritin reduced the intracellular oxidative stress induced by STZ. Cirsimaritin effectively suppressed apoptosis in pancreatic β cells by decreasing the activation of caspase-8 and caspase-3, BID and the DNA repair protein poly (ADP-ribose) polymerase (PARP) and increasing anti-apoptotic BCL-2 protein expression.
Conclusions
This study demonstrates the therapeutic potential and action mechanism of cirsimaritin for the prevention and treatment of type 1 diabetes mellitus.
Collapse
Affiliation(s)
- Dahae Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, Korea
| | - Jaemin Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Gwi Seo Hwang
- College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Hye Lim Lee
- College of Korean Medicine, Gachon University, Seongnam, Korea
| | - Dae-Hyun Hahm
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, Korea
| | - Chang Ki Huh
- Imsil Research Institute of Cheese Science, Imsil, Korea
| | - Sang Cheon Lee
- Imsil Research Institute of Cheese Science, Imsil, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University, Seongnam, Korea
| |
Collapse
|
44
|
Sak K, Everaus H. Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids. Curr Genomics 2017; 18:3-26. [PMID: 28503087 PMCID: PMC5321770 DOI: 10.2174/1389202917666160803165447] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 12/19/2022] Open
Abstract
Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of patients. In this comprehensive review article, the current knowledge about the anticancer activities of flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differentiation inducing effects for certain compounds. Considering the low toxicity of these substances in normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Katrin Sak
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| | - Hele Everaus
- Department of Hematology and Oncology, University of Tartu, Tartu, Estonia
| |
Collapse
|
45
|
Wang Q, Cai WJ, Yu L, Ding J, Feng YQ. Comprehensive Profiling of Phytohormones in Honey by Sequential Liquid-Liquid Extraction Coupled with Liquid Chromatography-Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:575-585. [PMID: 28032995 DOI: 10.1021/acs.jafc.6b04234] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Honey exhibits various nutritional and medicinal functions, which are highly related to the active components; thus, the exploration of new compounds in honey is of great importance. Because honey is a byproduct of flower nectar, which is rich in phytohormones, the existence of phytohormones in honey is anticipated. In this research, a method for comprehensive profiling of 49 phytohormones in honey was developed by sequential liquid-liquid extraction (LLE) coupled with liquid chromatography-tandem mass spectrometry (LC-MS/MS). Good linearities for 49 phytohormones were obtained with correlation coefficients (R) larger than 0.9913. The limits of detection (LODs) were in the range of 0.2-628.2 pg/mL. Satisfied reproducibility and reliability were achieved by evaluation of the intra- and interday precisions with relative standard deviations (RSDs) less than 15.8% and relative recoveries ranging from 80.4 to 123.7%. The method was further applied to analyze the phytohormones in 14 monofloral raw honey samples and 3 commercial honey samples. The existence of 34 phytohormones was confirmed, including 14 cytokinins (CKs), 8 gibberellins (GAs), 5 brassinosteroids (BRs), indole-3-acetic acid (IAA), indole-3-butyric acid (IBA), abscisic acid (ABA), salicylic acid (SA), jasmonic acid (JA), jasmonoyl-leucine (JA-Leu), and jasmonoyl-phenylalanine (JA-Phe). In addition, the content and species of phytohormones varies in different kinds of honey. The study is beneficial to fully illustrate the phytohormone profile of honey and contributive to elucidate the mechanism of its nutritional and medicinal functions.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Wen-Jing Cai
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Lei Yu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Jun Ding
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| | - Yu-Qi Feng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Department of Chemistry, Wuhan University , Wuhan, Hubei 430072, People's Republic of China
| |
Collapse
|
46
|
Ahmed H, Moawad A, Owis A, AbouZid S, Ahmed O. Flavonoids of Calligonum polygonoides and their cytotoxicity. PHARMACEUTICAL BIOLOGY 2016; 54:2119-2126. [PMID: 26922854 DOI: 10.3109/13880209.2016.1146778] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Context Calligonum polygonoides L. subsp. comosum L' Hér. (Polygonaceae), locally known as "arta", is a slow-growing small leafless desert shrub. Objective Isolation, structure elucidation and evaluation of cytotoxic activity of flavonoids from C. polygonoides aerial parts. Materials and methods Flavonoids in the hydroalcoholic extract of the of C. polygonoides were isolated and purified using column chromatography and preparative HPLC. The structures of the isolated flavonoids were elucidated on the basis of spectroscopic data including 2D NMR techniques. The cytotoxic activity of the isolated flavonoids (6.25, 25, 50 and 100 μg/mL) was evaluated against liver HepG2 and breast MCF-7 cancer cell lines using sulphorhodamine-B assay. Results A new flavonoid, kaempferol-3-O-β-D-(6″-n-butyl glucuronide) (1), and 13 known flavonoids, quercetin 3-O-β-D-(6″-n-butyl glucuronide) (2), kaempferol-3-O-β-D-(6″-methyl glucuronide) (3), quercetin-3-O-β-D-(6″-methyl glucuronide) (4), quercetin-3-O-glucuronide (5), kaempferol-3-O-glucuronide (6), quercetin-3-O-α-rhamnopyranoside (7), astragalin (8), quercetin-3-O-glucopyranoside (9), taxifolin (10), (+)-catechin (11), dehydrodicatechin A (12), quercetin (13), and kaempferol (14), were isolated from the aerial parts of C. polygonoides. Quercetin showed significant cytotoxic activity against HepG2 and MCF-7 cell lines with IC50 values of 4.88 and 0.87 μg/mL, respectively. Structure-activity relationships were analyzed by comparing IC50 values of several pairs of flavonoids differing in one structural element. Discussion and conclusion The activity against breast cancer cell lines decreased by glycosylation at C-3. The presence of 2,3-double bond in ring C, carbonyl group at C-4 and 3',4'-dihydroxy substituents in ring B are essential structural requirements for the cytotoxic activity against breast cancer cells.
Collapse
Affiliation(s)
- Hayam Ahmed
- a Department of Pharmacognosy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Abeer Moawad
- a Department of Pharmacognosy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Asmaa Owis
- a Department of Pharmacognosy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Sameh AbouZid
- a Department of Pharmacognosy, Faculty of Pharmacy , Beni-Suef University , Beni-Suef , Egypt
| | - Osama Ahmed
- b Division of Physiology, Department of Zoology, Faculty of Science , Beni-Suef University , BeniSuef , Egypt
| |
Collapse
|
47
|
Ben Sghaier M, Mousslim M, Pagano A, Ammari Y, Luis J, Kovacic H. β-eudesmol, a sesquiterpene from Teucrium ramosissimum, inhibits superoxide production, proliferation, adhesion and migration of human tumor cell. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2016; 46:227-233. [PMID: 27497729 DOI: 10.1016/j.etap.2016.07.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 07/14/2016] [Accepted: 07/29/2016] [Indexed: 06/06/2023]
Abstract
Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non phagocytic cells. These new homologues (Nox1-Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. In this study we examined the effect of β-eudesmol, a sesquiterpenoid alcohol isolated from Teucrium ramosissimum leaves, on proliferation, superoxide anion production, adhesion and migration of human lung (A549) and colon (HT29 and Caco-2) cancer cell lines. Proliferation of tumor cells was inhibited by β-eudesmol. It also significantly inhibited superoxide production in A549 cells. Furthermore, β-eudesmol inhibited adhesion and migration of A549 and HT29 cell. These results demonstrate that β-eudesmol may be a novel anticancer agent for the treatment of lung and colon cancer by different ways: by inhibition of superoxide production or by blocking proliferation, adhesion and migration.
Collapse
Affiliation(s)
- Mohamed Ben Sghaier
- Laboratory for Forest Ecology, National Institute for Research in Rural Engineering, Water and Forests, University of carthage, BP 10, 2080 Ariana, Tunisie.
| | - Mohamed Mousslim
- Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), INSERM UMR 911, Faculté de Pharmacie, Marseille, France; Aix-Marseille Université, France
| | - Alessandra Pagano
- Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), INSERM UMR 911, Faculté de Pharmacie, Marseille, France; Aix-Marseille Université, France
| | - Youssef Ammari
- Laboratory for Forest Ecology, National Institute for Research in Rural Engineering, Water and Forests, University of carthage, BP 10, 2080 Ariana, Tunisie
| | - José Luis
- Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), INSERM UMR 911, Faculté de Pharmacie, Marseille, France; Aix-Marseille Université, France
| | - Hervé Kovacic
- Centre de Recherche en Oncologie Biologique et Oncopharmacologie (CRO2), INSERM UMR 911, Faculté de Pharmacie, Marseille, France; Aix-Marseille Université, France
| |
Collapse
|
48
|
Afsar T, Razak S, Khan MR, Mawash S, Almajwal A, Shabir M, Haq IU. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:258. [PMID: 27473625 PMCID: PMC4966721 DOI: 10.1186/s12906-016-1240-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 07/23/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Acacia hydaspica R. Parker, family leguminosae, is a medicinally important plant. Different plant parts are used in various ailments in folk medicine. The current study aimed at investigating the in vitro antioxidant, anti-hemolytic and anticancer activity of A. hydaspica. METHODS Antioxidant potential was assessed using DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching inhibition assays. Anti-hemolytic activity was assessed using H2O2 induced hemolysis of RBCs. Anticancer potential was assessed using MTT assay. Spectrometric methods and HPLC-DAD analysis was performed for phytochemical screening. RESULTS EC50 values based on reduction of DPPH, ABTS and •OH, scavenging of H2O2, inhibition of lipid peroxidation and β-carotene bleaching for AHB, AHE and AHM were generally lower manifesting potential antiradical capacities. The fractions also exhibited significant (P <0.001) anti-hemolytic potential. Regarding IC50 values for anticancer activity against HCC-38 and MDA-MB-361 cancer cell lines; AHB, AHE and AHM exhibited significant (P <0.001) cyto-selection indices. Plant extracts showed no cytotoxicity against normal Vero cells (IC50 > 250 μg/ml). While significant (P <0.001) cytotoxicity was elicited by these extract/fractions against cancer cell lines. AHE was the most effective and IC50 was found to be 29.9 ± 0.909 μg/ml (SI = 9.83) and 39.5 ± 0.872 μg/ml (SI = 7.44) against MDA-MB-361 and HCC-38 cancer cells respectively. Higher amounts of TPC and TFC were exhibited by AHE and AHB as compared to other fractions. Gallic acid, catechin and myricetin were identified in AHE whereas gallic acid and catechin were identified in AHB by HPLC. CONCLUSION The presence of bioactive constituents in AHE and AHB might be responsible for antioxidant, anti-hemolytic and anticancer activities.
Collapse
Affiliation(s)
- Tayyaba Afsar
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Suhail Razak
- Department of Animal Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia.
| | - Muhammad Rashid Khan
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saadia Mawash
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ali Almajwal
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, Riyadh, Kingdom of Saudi Arabia
| | - Maria Shabir
- Department of Biochemistry, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
49
|
Afsar T, Razak S, Khan MR, Mawash S, Almajwal A, Shabir M, Haq IU. Evaluation of antioxidant, anti-hemolytic and anticancer activity of various solvent extracts of Acacia hydaspica R. Parker aerial parts. Altern Ther Health Med 2016. [DOI: 10.1186/s12906-016-1240-8
https://bmccomplementalternmed.biomedcentral.com/articles/10.1186/s12906-016-1240-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Yuan H, Lu X, Ma Q, Li D, Xu G, Piao G. Flavonoids from Artemisia sacrorum Ledeb. and their cytotoxic activities against human cancer cell lines. Exp Ther Med 2016; 12:1873-1878. [PMID: 27602097 DOI: 10.3892/etm.2016.3556] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 06/01/2016] [Indexed: 12/11/2022] Open
Abstract
Flavonoids have been demonstrated to have cytotoxic activities toward numerous human cancer cells, whereas they have little or no effect on normal cells. The numerous flavonoids in traditional Chinese herbs may be promising candidates for the development of novel anti-cancer drugs. Our previous study demonstrated that CH2Cl2 and 95% ethanol eluate (EE) fractions have the strongest cytotoxic activities against human cancer cell lines of the 9 fractions separated from Artemisia sacrorum Ledeb., which is widely used to prevent and treat diverse diseases in Northeast China. In the present study, 8 flavonoids were isolated from the 95% EE fraction of Artemisia sacrorum Ledeb. The chemical structures of the compounds were elucidated by extensive spectroscopic analyses. The following 5 flavonoids were isolated for the first time from this plant: Jaceosidin, kaempferol, quercetin, luteolin and quercitrin. A total of 2 flavonoids from the CH2Cl2 fraction and 8 flavonoids from the 95% EE fraction were examined to evaluate their cytotoxic activities against human SK-HEP-1 hepatoma cancer cells and human HeLa cervical cancer cells, respectively. The results revealed that 2 flavonoids had marked cytotoxic activities against HeLa cells.
Collapse
Affiliation(s)
- Haidan Yuan
- Department of Pharmacognosy, College of Pharmacy, Yanbian University, Yanji, Jilin 133000, P.R. China; Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Xuyang Lu
- Department of Pharmacy, Jilin Central Hospital, Jilin, Jilin 132000, P.R. China
| | - Qianqian Ma
- Department of Pharmacognosy, College of Pharmacy, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Di Li
- Department of Pharmacognosy, College of Pharmacy, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Guanghua Xu
- Department of Pharmacognosy, College of Pharmacy, Yanbian University, Yanji, Jilin 133000, P.R. China
| | - Guangchun Piao
- Department of Pharmacognosy, College of Pharmacy, Yanbian University, Yanji, Jilin 133000, P.R. China; Key Laboratory of Natural Resources of Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian University, Yanji, Jilin 133000, P.R. China
| |
Collapse
|