1
|
Rana TS, Bansode RR, Williams LL. Anti-Allergic and Anti-Inflammatory Signaling Mechanisms of Natural Compounds/Extracts in In Vitro System of RBL-2H3 Cell: A Systematic Review. Cells 2024; 13:1389. [PMID: 39195277 PMCID: PMC11353167 DOI: 10.3390/cells13161389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/13/2024] [Accepted: 08/20/2024] [Indexed: 08/29/2024] Open
Abstract
Various extracts are tested for anti-allergic or anti-inflammatory properties on in vitro models. RBL-2H3 cells are widely used in allergic or immunological studies. FCεRI and its downstream signaling cascades, such as MAPK, NF-κB, and JAK/STAT signaling pathways, are important allergic or inflammatory signaling mechanisms in mast and basophil cells. This systematic review aims to study common signaling pathways of the anti-allergic or anti-inflammatory compounds on RBL-2H3 cells. We selected the relevant research articles published after 2015 from the PubMed, Scopus, Science Direct and Web of Science databases. The risk of bias of the studies was assessed based on the modified CONSORT checklist for in vitro studies. The cell lines, treatments, assay, primary findings, and signaling pathways on RBL-2H3 cells were extracted to synthesize the results. Thirty-eight articles were included, and FCεRI and its downstream pathways, such as Lyn, Sky, PLCγ, and MAPK, were commonly studied. Moreover, the JAK/STAT pathway was a potential signaling mechanism in RBL-2H3 cells. However, the findings based on RBL-2H3 cells needed to be tested along with human mast cells to confirm its relevance to human health. In conclusion, a single plant extract may act as an anti-inflammatory reagent in RBL-2H3 cells via multiple signaling pathways besides the MAPK signaling pathway.
Collapse
Affiliation(s)
| | | | - Leonard L. Williams
- Center for Excellence in Post-Harvest Technologies, North Carolina Agricultural and Technical State University, North Carolina Research Campus, Kannapolis, NC 28081, USA; (T.S.R.); (R.R.B.)
| |
Collapse
|
2
|
Al-Hussan R, Albadr NA, Alshammari GM, Almasri SA, Alfayez FF, Yahya MA. Phloretamide Protects against Diabetic Kidney Damage and Dysfunction in Diabetic Rats by Attenuating Hyperglycemia and Hyperlipidemia, Suppressing NF-κβ, and Upregulating Nrf2. Pharmaceutics 2024; 16:505. [PMID: 38675166 PMCID: PMC11053512 DOI: 10.3390/pharmaceutics16040505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/20/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Potent hypoglycemic and antioxidant effects were recently reported for the apple-derived phenolic compound phloretamide (PLTM). The renoprotective effects of this compound are yet to be shown. This study aimed to examine the potential of PLTM to prevent diabetic nephropathy in streptozotocin-induced diabetic rats and to examine the possible mechanisms of protection. Non-diabetic and STZ-diabetic male rats were treated orally by gavage with either the vehicle or with PTLM (200 mg/kg; twice/week) for 12 weeks. PTLM significantly increased urine volume and prevented glomerular and tubular damage and vacuolization in STZ-diabetic rats. It also increased creatinine excretion and reduced urinary albumin levels and the renal levels of kidney injury molecule-1 (KIM-1), 8-hydroxy-2'-deoxyguanosine (8-OHdG), neutrophil gelatinase-associated lipocalin (NGAL), and nephrin in the diabetic rats. PTLM also prevented an increase in the nuclear levels of NF-κβ, as well as the total levels of tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), caspase-3, and Bax in the kidneys of diabetic rats. These effects were associated with reduced serum levels of triglycerides, cholesterol, and low-density lipoprotein cholesterol. In both the control and diabetic rats, PTLM significantly reduced fasting plasma glucose and enhanced the renal mRNA and cytoplasmic levels of Nrf2, as well as the levels of Bcl2, superoxide dismutase (SOD), and glutathione (GSH). However, PTLM failed to alter the cytoplasmic levels of keap1 in diabetic rats. In conclusion, PTLM prevents renal damage and dysfunction in STZ-diabetic rats through its hypoglycemic and hypolipidemic activities, as well as through its antioxidant potential, which is mediated by activating the Nrf2/antioxidant axis.
Collapse
Affiliation(s)
- Rasha Al-Hussan
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawal A Albadr
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ghedeir M Alshammari
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Soheir A Almasri
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Farah Fayez Alfayez
- Department of Medicine and Surgery, College of Medicine, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammed Abdo Yahya
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Qiao X, Wang H, He Y, Song D, Altawil A, Wang Q, Yin Y. Grape Seed Proanthocyanidin Ameliorates LPS-induced Acute Lung Injury By Modulating M2a Macrophage Polarization Via the TREM2/PI3K/Akt Pathway. Inflammation 2023; 46:2147-2164. [PMID: 37566293 PMCID: PMC10673742 DOI: 10.1007/s10753-023-01868-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/30/2023] [Accepted: 06/29/2023] [Indexed: 08/12/2023]
Abstract
Acute lung injury (ALI) is an acute and progressive pulmonary inflammatory disease that is difficult to cure and has a poor prognosis. Macrophages, which have various phenotypes and diverse functions, play an essential role in the pathogenesis of ALI. Grape seed proanthocyanidin (GSP) has received much attention over several decades, and many biological activities such as anti-apoptotic, antioxidant, and anti-inflammatory have been identified. This study aimed to determine the effect of GSP on lipopolysaccharide (LPS)-induced ALI. In this study, we established an ALI mouse model by tracheal instillation of LPS, and by pre-injection of GSP into mice to examine the effect of GSP on the ALI mouse model. Using H&E staining, flow cytometry, and ELISA, we found that GSP attenuated LPS-induced lung pathological changes and decreased inflammatory cytokine expression in ALI mice. In addition, GSP reduced the recruitment of monocyte-derived macrophages to the lung and significantly promoted the polarization of primary mouse lung macrophages from M1 to M2a induced by LPS. In vitro, GSP also decreased the expression levels of inflammatory cytokines such as TNF-α, IL-6, IL-1β, and M1 macrophage marker iNOS induced by LPS in MH-S cells, while increasing the expression levels of M2a macrophage marker CD206. Bioinformatics analysis identified TREM2 and the PI3K/Akt pathway as candidate targets and signaling pathways that regulate M1/M2a macrophage polarization in ALI, respectively. Furthermore, GSP activated PI3K/Akt and increased TREM2 expression in vivo and in vitro. Meanwhile, GSP's impact on M2a polarization and inflammation suppression was attenuated by the PI3K inhibitor LY294002 or siRNA knockdown TREM2. In addition, GSP-enhanced PI3K/Akt activity was prevented by TREM2 siRNA. In conclusion, this study demonstrated that GSP could ameliorate LPS-induced ALI by modulating macrophage polarization from M1 to M2a via the TREM2/PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Hua Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yulin He
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Dongfang Song
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Abdullah Altawil
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Qiuyue Wang
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China
| | - Yan Yin
- Department of Pulmonary and Critical Care Medicine, The First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
4
|
Yuan L, Chu Q, Yang B, Zhang W, Sun Q, Gao R. Purification and identification of anti-inflammatory peptides from sturgeon (Acipenser schrenckii) cartilage. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
5
|
Summat T, Wangtueai S, You S, Rod-in W, Park WJ, Karnjanapratum S, Seesuriyachan P, Surayot U. In Vitro Anti-Inflammatory Activity and Structural Characteristics of Polysaccharides Extracted from Lobonema smithii Jellyfish. Mar Drugs 2023; 21:559. [PMID: 37999383 PMCID: PMC10672681 DOI: 10.3390/md21110559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/25/2023] Open
Abstract
Crude polysaccharides were extracted from the white jellyfish (Lobonema smithii) using water extraction and fractionated using ion-exchange chromatography to obtain three different fractions (JF1, JF2, and JF3). The chemical characteristics of four polysaccharides were investigated, along with their anti-inflammatory effect in LPS-stimulated RAW264.7 cells. All samples mainly consisted of neutral sugars with minor contents of proteins and sulphates in various proportions. Glucose, galactose, and mannose were the main constituents of the monosaccharides. The molecular weights of the crude polysaccharides and the JF1, JF2, and JF3 fractions were 865.0, 477.6, 524.1, and 293.0 kDa, respectively. All polysaccharides were able to decrease NO production, especially JF3, which showed inhibitory activity. JF3 effectively suppressed iNOS, COX-2, IL-1β, IL-6, and TNF-α expression, while IL-10 expression was induced. JF3 could inhibit phosphorylated ERK, JNK, p38, and NF-κB p65. Furthermore, flow cytometry showed the impact of JF3 on inhibiting CD11b and CD40 expression. These results suggest that JF3 could inhibit NF-κB and MAPK-related inflammatory pathways. The structural characterisation revealed that (1→3)-linked glucopyranosyl, (1→3,6)-linked galactopyranosyl, and (1→3,6)-linked glucopyranosyl residues comprised the main backbone of JF3. Therefore, L. smithii polysaccharides exhibit good anti-inflammatory activity and could thus be applied as an alternative therapeutic agent against inflammation.
Collapse
Affiliation(s)
- Thitikan Summat
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - Sutee Wangtueai
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| | - SangGuan You
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Weerawan Rod-in
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea; (S.Y.); (W.R.-i.); (W.J.P.)
- East Coast Life Sciences Institute, Gangneung-Wonju National University, Gangneung 25457, Gangwon, Republic of Korea
| | - Supatra Karnjanapratum
- Division of Marine Product Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand;
| | | | - Utoomporn Surayot
- College of Maritime Studies and Management, Chiang Mai University, Samut Sakhon 74000, Thailand; (T.S.); (S.W.)
| |
Collapse
|
6
|
Deng C, Zhai Y, Yang X, Chen Z, Li Q, Hao R. Effects of grape seed procyanidins on antioxidant function, barrier function, microbial community, and metabolites of cecum in geese. Poult Sci 2023; 102:102878. [PMID: 37413950 PMCID: PMC10466299 DOI: 10.1016/j.psj.2023.102878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
The gut is the first line of defense for body health and is essential to the overall health of geese. Grape seed procyanidins (GSPs) are proverbial for their antioxidant, anti-inflammatory, and microflora-regulating capabilities. This study aimed to inquire into the influences of dietary GSPs on the intestinal antioxidant function, barrier function, microflora, and metabolites of geese based on 16S rRNA sequencing and metabolomics. In total, 240 twenty-one-day-old Sichuan white geese were randomly divided into 4 groups, each of which was supplied with 1 of 4 diets: basal diet or a basal diet supplemented with 50, 100, or 150 mg/kg GSPs. Diets supplemented with GSPs at different concentrations significantly increased the total antioxidant capacity and superoxide dismutase activity in cecal mucosa (P < 0.001). Dietary supplementation with 50 or 100 mg/kg GSPs significantly increased catalase activity (P < 0.001). The serum diamine oxidase, D-lactic acid, and endotoxin concentrations were decreased by GSP supplementation in the goose diet. Dietary GSP supplementation increased microbial richness and diversity, enhanced the relative abundance of Firmicutes, and decreased that of Bacteroidetes in the cecum. Diets supplemented with 50 or 100 mg/kg GSPs enriched Eubacterium coprostanoligenes and Faecalibacterium. Dietary GSPs substantially raised the acetic and propionic acid concentrations in the cecum. The butyric acid concentration increased when the GSP dosage was 50 or 100 mg/kg. Additionally, dietary GSPs increased the levels of metabolites that belong to lipids and lipid-like molecules or organic acids and derivatives. Dietary GSP supplementation at 100 or 150 mg/kg reduced the levels of spermine (a source of cytotoxic metabolites) and N-acetylputrescine, which promotes in-vivo inflammation. In conclusion, dietary supplementation with GSPs was beneficial to gut health in geese. Dietary GSPs improved antioxidant activity; protected intestinal barrier integrity; increased the abundance and diversity of cecal microflora; promoted the proliferation of some beneficial bacteria; increased the production of acetic, propionic, and butyric acids in the cecum; and downregulated metabolites associated with cytotoxicity and inflammation. These results offer a strategy for promoting intestinal health in farmed geese.
Collapse
Affiliation(s)
- Chao Deng
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Yan Zhai
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Xu Yang
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Zhexiu Chen
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Qinghong Li
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China
| | - Ruirong Hao
- College of Animal Science, Shanxi Agricultural University, Taigu 030800, China; Key Laboratory of Farm Animal Genetic Resources Exploration and Breeding of Shanxi Province, Taigu 030800, China.
| |
Collapse
|
7
|
Chen WC, Hossen M, Liu W, Yen CH, Huang CH, Hsu YC, Lee JC. Grape Seed Proanthocyanidins Inhibit Replication of the Dengue Virus by Targeting NF-kB and MAPK-Mediated Cyclooxygenase-2 Expression. Viruses 2023; 15:v15040884. [PMID: 37112864 PMCID: PMC10140912 DOI: 10.3390/v15040884] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/01/2023] Open
Abstract
Dengue virus (DENV) infection is a serious global health issue as it causes severe dengue hemorrhagic fever and dengue shock syndrome. Since no approved therapies are available to treat DENV infection, it is necessary to develop new agents or supplements that can do this. In this study, grape seed proanthocyanidins extract (GSPE), which is widely consumed as a dietary supplement, dose-dependently suppressed the replication of four DENV serotypes. The inhibitory mechanism demonstrated that GSPE downregulated DENV-induced aberrant cyclooxygenase-2 (COX-2) expression, revealing that the inhibitory effect of the GSPE on DENV replication involved targeting DENV-induced COX-2 expression. Mechanistic studies on signaling regulation have demonstrated that GSPE significantly reduced COX-2 expression by inactivating NF-κB and ERK/P38 MAPK signaling activities. Administrating GSPE to DENV-infected suckling mice reduced virus replication, mortality, and monocyte infiltration of the brain. In addition, GSPE substantially reduced the expression of DENV-induced inflammatory cytokines associated with severe dengue disease, including tumor necrosis factor-α, nitric oxide synthase, interleukin (IL)-1, IL-6, and IL-8, suggesting that GSPE has potential as a dietary supplement to attenuate DENV infection and severe dengue.
Collapse
|
8
|
Shao X, Li J, Zhang H, Zhang X, Sun C, Ouyang X, Wang Y, Wu X, Chen C. Anti-inflammatory effects and molecular mechanisms of bioactive small molecule garlic polysaccharide. Front Nutr 2023; 9:1092873. [PMID: 36698476 PMCID: PMC9868249 DOI: 10.3389/fnut.2022.1092873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023] Open
Abstract
Although garlic polysaccharides have been found to possess anti-inflammatory activities, anti-inflammatory study on small molecule water-soluble garlic polysaccharide (WSGP) is few. In this study, a novel WSGP with a molecular weight of 1853 Da was isolated by DEAE-52 and Sephadex G-100 column and the chemical composition was identified by monosaccharide composition and methylation analysis. Furthermore, the antioxidant effects of WSGP and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that WSGP has strong antioxidant activity, such as DPPH, hydroxyl, superoxide anion, ABTS radical scavenging capacity, Fe2+ chelating ability and reducing power. Meanwhile, WSGP could considerably suppress the manufacturing of NO and the mRNA and protein expression degrees of IL-6, TNF-α, and IL-1β in LPS inspired RAW264.7 macrophages WSGP could significantly suppress the production of NO and the mRNA and protein expression levels of IL-1β, IL-6, and TNF-α in LPS stimulated RAW264.7 macrophage cells (p < 0.05). In addition, the phosphorylated IκB-α, p65, and STAT3 proteins were significantly increased in LPS-induced macrophages, while this trend was significantly reversed by WSGP treatment in a concentration-dependent manner (p < 0.05). Consequently, WSGP supplementation might reduce LPS-induced inflammatory responses by suppressing proinflammatory cytokines and NF-κB and STAT3 pathway activation. The finding of this research would give scientific guidelines for the judicious use of small molecular garlic polysaccharide in anti-inflammatory treatments.
Collapse
Affiliation(s)
- Xin Shao
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China,Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Jialong Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Huidan Zhang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xuhui Zhang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Chongzhen Sun
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Xiyang Wu
- Department of Food Science and Engineering, Jinan University, Guangzhou, China,Xiyang Wu ✉
| | - Chunbo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, China,Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China,Department of Critical Care Medicine, Shenzhen People's Hospital, Shenzhen, China,*Correspondence: Chunbo Chen ✉
| |
Collapse
|
9
|
The Molecular Pharmacology of Phloretin: Anti-Inflammatory Mechanisms of Action. Biomedicines 2023; 11:biomedicines11010143. [PMID: 36672652 PMCID: PMC9855955 DOI: 10.3390/biomedicines11010143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
The isolation of phlorizin from the bark of an apple tree in 1835 led to a flurry of research on its inhibitory effect on glucose transporters in the intestine and kidney. Using phlorizin as a prototype drug, antidiabetic agents with more selective inhibitory activity towards glucose transport at the kidney have subsequently been developed. In contrast, its hydrolysis product in the body, phloretin, which is also found in the apple plant, has weak antidiabetic properties. Phloretin, however, displays a range of pharmacological effects including antibacterial, anticancer, and cellular and organ protective properties both in vitro and in vivo. In this communication, the molecular basis of its anti-inflammatory mechanisms that attribute to its pharmacological effects is scrutinised. These include inhibiting the signalling pathways of inflammatory mediators' expression that support its suppressive effect in immune cells overactivation, obesity-induced inflammation, arthritis, endothelial, myocardial, hepatic, renal and lung injury, and inflammation in the gut, skin, and nervous system, among others.
Collapse
|
10
|
Characterization of the improved functionality in soybean protein-proanthocyanidins conjugates prepared by the alkali treatment. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
11
|
Balance of Macrophage Activation by a Complex Coacervate-Based Adhesive Drug Carrier Facilitates Diabetic Wound Healing. Antioxidants (Basel) 2022; 11:antiox11122351. [PMID: 36552559 PMCID: PMC9774176 DOI: 10.3390/antiox11122351] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022] Open
Abstract
Uncontrolled and sustained inflammation disrupts the wound-healing process and produces excessive reactive oxygen species, resulting in chronic or impaired wound closure. Natural antioxidants such as plant-based extracts and natural polysaccharides have a long history in wound care. However, they are hard to apply to wound beds due to high levels of exudate or anatomical sites to which securing a dressing is difficult. Therefore, we developed a complex coacervate-based drug carrier with underwater adhesive properties that circumvents these challenges by enabling wet adhesion and controlling inflammatory responses. This resulted in significantly accelerated wound healing through balancing the pro- and anti-inflammatory responses in macrophages. In brief, we designed a complex coacervate-based drug carrier (ADC) comprising oligochitosan and inositol hexaphosphate to entrap and release antioxidant proanthocyanins (PA) in a sustained way. The results from in vitro experiments demonstrated that ADC is able to reduce LPS-stimulated pro-inflammatory responses in macrophages. The ability of ADC to reduce LPS-stimulated pro-inflammatory responses in macrophages is even more promising when ADC is encapsulated with PA (ADC-PA). Our results indicate that ADC-PA is able to polarize macrophages into an M2 tissue-healing phenotype via up-regulation of anti-inflammatory and resolution of inflammatory responses. Treatment with ADC-PA around the wound beds fine-tunes the balance between the numbers of inducible nitric oxide synthase-positive (iNOS+) and mannose receptor-negative (CD206-) M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment compared to controls. Achieving such a balance between the numbers of iNOS+CD206- M1 and iNOS-CD206+ M2 macrophages in the wound microenvironment has led to significantly improved wound closure in mouse models of diabetes, which exhibit severe impairments in wound healing. Together, our results demonstrate for the first time the use of a complex coacervate-based drug delivery system to promote timely resolution of the inflammatory responses for diabetic wound healing by fine-tuning the functions of macrophages.
Collapse
|
12
|
Ryyti R, Hämäläinen M, Leppänen T, Peltola R, Moilanen E. Phenolic Compounds Known to Be Present in Lingonberry ( Vaccinium vitis-idaea L.) Enhance Macrophage Polarization towards the Anti-Inflammatory M2 Phenotype. Biomedicines 2022; 10:3045. [PMID: 36551801 PMCID: PMC9776286 DOI: 10.3390/biomedicines10123045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophages are pleiotropic immune cells whose phenotype can polarize towards the pro-inflammatory M1 or anti-inflammatory M2 direction as a response to environmental changes. In obesity, the number of macrophages in adipose tissue is enhanced, and they shift towards the M1 phenotype. Activated M1 macrophages secrete pro-inflammatory cytokines and adipokines involved in the development of systemic low-grade inflammation, complicating obesity. Polyphenols are widely found in the vegetable kingdom and have anti-inflammatory properties. We and others have recently found that lingonberry (Vaccinium vitis-idaea L.) supplementation is able to prevent the development of low-grade inflammation and its metabolic consequences in experimentally induced obesity. In the present study, we investigated the effects of twelve phenolic compounds known to be present in lingonberry (resveratrol, piceid, quercetin, kaempferol, proanthocyanidins, delphinidin, cyanidin, benzoic acid, cinnamic acid, coumaric acid, caffeic acid, and ferulic acid) on macrophage polarization, which is a meaningful mechanism determining the low-grade inflammation in obesity. Mouse J774 and human U937 macrophages and commercially available phenolic compounds were used in the studies. Three of the twelve compounds investigated showed an effect on macrophage polarization. Resveratrol, kaempferol, and proanthocyanidins enhanced anti-inflammatory M2-type activation, evidenced as increased expression of Arg-1 and MRC-1 in murine macrophages and CCL-17 and MRC-1 in human macrophages. Resveratrol and kaempferol also inhibited pro-inflammatory M1-type activation, shown as decreased expression of IL-6, NO, and MCP-1 in murine macrophages and TNF-α and IL-6 in human macrophages. In the further mechanistic studies, the effects of the three active compounds were investigated on two transcription factors important in M2 activation, namely on PPARγ and STAT6. Resveratrol and kaempferol were found to enhance PPARγ expression, while proanthocyanidins increased the phosphorylation of STAT6. The results suggest proanthocyanidins, resveratrol, and kaempferol as active constituents that may be responsible for the positive anti-inflammatory effects of lingonberry supplementation in obesity models. These data also extend the previous knowledge on the anti-inflammatory effects of lingonberry and encourage further studies to support the use of lingonberry and lingonberry-based products as a part of a healthy diet.
Collapse
Affiliation(s)
- Riitta Ryyti
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| | - Rainer Peltola
- Bioeconomy and Environment, Natural Resources Institute Finland, 96200 Rovaniemi, Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere University, 33014 Tampere, Finland
| |
Collapse
|
13
|
Cerquido AS, Vojtek M, Ribeiro-Oliveira R, Viegas O, Sousa JB, Ferreira IMPLVO, Diniz C. Unravelling Potential Health-Beneficial Properties of Corema album Phenolic Compounds: A Systematic Review. Pharmaceuticals (Basel) 2022; 15:ph15101231. [PMID: 36297345 PMCID: PMC9610266 DOI: 10.3390/ph15101231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Corema (C.) album belongs to the family Ericaceae and can be found in the Iberian Peninsula, especially on the coastal areas facing the Atlantic coast. C. album berries have been used for centuries in traditional medicine. Recent studies have revealed that not only the berries but also the leaves have relevant antioxidant, antiproliferative, and anti-inflammatory properties, bringing this plant to the forefront of discussion. A systematic review of the literature was carried out to summarize the phenolic compounds and bioactive properties identified in C. album berries and leaves and to search for research gaps on this topic. The search was conducted in three electronic databases (PubMed, SCOPUS, and Web of Science) using PRISMA methodology. The inclusion criteria were the chemical compositions of the berries, leaves, or their extracts and their bioactive properties. The exclusion criteria were agronomic and archaeological research. The number of studies concerning phenolic compounds' composition and the bioactive properties of C. album berries and leaves is still limited (11 articles). However, the variety of polyphenolic compounds identified make it possible to infer new insights into their putative mechanism of action towards the suppression of NF-kB transcription factor activation, the modulation of inflammatory mediators/enzymes, the induction of apoptosis, the modulation of mitogen activated protein kinase, cell cycle arrest, and the reduction of oxidative stress. These factors can be of major relevance concerning the future use of C. album as nutraceuticals, food supplements, or medicines. Nevertheless, more scientific evidence concerning C. album's bioactivity is required.
Collapse
Affiliation(s)
- Ana Sofia Cerquido
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Martin Vojtek
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rita Ribeiro-Oliveira
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Olga Viegas
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Faculty of Nutrition and Food Sciences, University of Porto, 4150-180 Porto, Portugal
| | - Joana Beatriz Sousa
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (J.B.S.); (I.M.P.L.V.O.F.); (C.D.)
| | - Isabel M. P. L. V. O. Ferreira
- LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (J.B.S.); (I.M.P.L.V.O.F.); (C.D.)
| | - Carmen Diniz
- LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
- Correspondence: (J.B.S.); (I.M.P.L.V.O.F.); (C.D.)
| |
Collapse
|
14
|
Jiang W, Chu H, Li Z, Ge J, Wang X, Jiang J, Xiao Q, Meng Q, Lou Y, Hao W, Wei X. Integrated proteomic analysis to explore the molecular regulation mechanism of IL-33 mRNA increased by black carbon in the human endothelial cell line EA.hy926. ENVIRONMENTAL TOXICOLOGY 2022; 37:2434-2444. [PMID: 35776887 DOI: 10.1002/tox.23608] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/08/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) correlates with the occurrence and progression of atherosclerosis and other cardiovascular diseases. Increasing evidence has demonstrated that BC could impair vascular endothelial cells, but the underlying mechanisms remain obscure. It is known that IL-33 exerts a significant biological role in cardiovascular disease, but little is known about the molecular regulation of IL-33 expression at present. We first found that BC significantly increased IL-33 mRNA in EA.hy926 cells in a concentration and time-dependent manner, and we conducted this study to explore its underlying mechanism. We identified that BC induced mitochondrial damage and suppressed autophagy function in EA.hy926 cells, as evidenced by elevation of the aspartate aminotransferase (GOT2), reactive oxygen species (ROS) and p62, and the reduction of mitochondrial membrane potential (ΔΨm). However, ROS cannot induce IL-33 mRNA-production in BC-exposed EA.hy926 cells. Further, experiments revealed that BC could promote IL-33 mRNA production through the PI3K/Akt/AP-1 and p38/AP-1 signaling pathways. It is concluded that BC could induce oxidative stress and suppress autophagy function in endothelial cells. This study also provided evidence that the pro-cardiovascular-diseases properties of BC may be due to its ability to stimulate the PI3K/AKT/AP-1 and p38/AP-1 pathway, further activate IL-33 and ultimately result in a local vascular inflammation.
Collapse
Affiliation(s)
- Wanyu Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, People's Republic of China
- Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, People's Republic of China
| | - Zekang Li
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xiaoyun Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Jianjun Jiang
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Qinghe Meng
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Yaxin Lou
- Medical and Health Analytical Center of Peking University, Beijing, People's Republic of China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, People's Republic of China
- Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, People's Republic of China
| |
Collapse
|
15
|
Wu Q, Li X, Jiang XW, Yao D, Zhou LJ, Xu ZH, Wang N, Zhao QC, Zhang Z. Yuan-Zhi decoction in the treatment of Alzheimer’s disease: An integrated approach based on chemical profiling, network pharmacology, molecular docking and experimental evaluation. Front Pharmacol 2022; 13:893244. [PMID: 36091836 PMCID: PMC9451491 DOI: 10.3389/fphar.2022.893244] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/19/2022] [Indexed: 11/14/2022] Open
Abstract
Yuan-Zhi Decoction (YZD) is a traditional Chinese medical formulation with demonstrated clinical benefits in Alzheimer’s disease (AD). We used liquid chromatography coupled with mass spectrometry to identify 27 unique chemical components of YZD. Analyzing these using network pharmacology and molecular docking models identified 34 potential interacting molecular targets involved in 26 biochemical pathways. When tested in an animal model of AD, the APP/PS1 transgenic mice showed measurable improvements in spatial orientation and memory after the administration of YZD. These improvements coincided with significantly reduced deposition of Aβ plaques and tau protein in the hippocampi in the treated animals. In addition, a decreased BACE1 and beta-amyloid levels, a downregulation of the p-GSK-3β/GSK-3β, and an upregulation of the PI3K and p-AKT/AKT pathway was seen in YZD treated animals. These in vivo changes validated the involvement of molecular targets and pathways predicted in silico analysis of the chemical components of YZD. This study provides scientific support for the clinical use of YZD and justifies further investigations into its effects in AD. Furthermore, it demonstrates the utility of network pharmacology in elucidating the biochemical mechanisms underlying the beneficial effects of traditional Chinese medicines (TCM).
Collapse
Affiliation(s)
- Qiong Wu
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiang Li
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Xiao-Wen Jiang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Dong Yao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Li-Jun Zhou
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
| | - Zi-Hua Xu
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Nan Wang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
| | - Qing-Chun Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| | - Zhou Zhang
- Department of Life Science and Biochemistry, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Zhou Zhang, ; Qing-Chun Zhao,
| |
Collapse
|
16
|
Anti-inflammatory effects of Torin2 on lipopolysaccharide-treated RAW264.7 murine macrophages and potential mechanisms. Heliyon 2022; 8:e09917. [PMID: 35874059 PMCID: PMC9304722 DOI: 10.1016/j.heliyon.2022.e09917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/24/2022] [Accepted: 07/05/2022] [Indexed: 11/25/2022] Open
Abstract
Context Torin2 has various pharmacological properties. However, its anti-inflammatory activity has not been reported. Objective This study focused on the potential anti-inflammatory properties of Torin2 in lipopolysaccharide (LPS)-evoked RAW264.7 murine macrophages. The study aimed to shed light on the molecular mechanisms that ameliorate these effects. Methods Torin2 was applied to 100 ng/mL lipopolysaccharide-induced RAW 264.7 macrophages in vitro. Nitric oxide (NO) levels were detected using the Griess reagent kit. Prostaglandin E2 (PGE2), pro-inflammatory cytokines interleukin (IL)-1β, interleukin (IL)-6, and tumor necrosis factor in the supernatant fraction were determined using enzyme-linked immunosorbent assay (ELISA). Gene expression of pro-inflammatory cytokines, cyclooxygenase-2 (COX-2), and inducible nitric oxide synthase (iNOS) were tested using real-time quantitative polymerase chain reaction (qPCR). Cyclooxygenase-2 and inducible nitric oxide synthase proteins, phosphorylation of mitogen-activated protein kinase (MAPK) subgroups, extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, I-kappa-B-alpha (IκBα), and nuclear factor-kappa-B (NF-κB), and activation in extracts were detected via western blotting. Nuclear factor-kappa-B/p65 nuclear translocation was tested using an immunofluorescence assay. Results The results demonstrated that pre-treatment with Torin2 profoundly attenuated the lipopolysaccharide-stimulated levels of nitric oxide and prostaglandin E2, pro-inflammatory cytokines, messenger ribonucleic acid (mRNA), and protein expression of cyclooxygenase-2 and inducible nitric oxide synthase. Collectively, Torin2 pre-treatment notably weakened lipopolysaccharide-induced damage by reducing the phosphorylation of nuclear factor-kappa-B, p38, c-Jun N-terminal kinase, extracellular signal-regulated kinase proteins, and nuclear factor-kappa-B/p65 nuclear translocation. Conclusion Numerous pieces of evidence indicated that Torin2 reversed inflammatory activation by regulating nuclear factor-kappa-B and mitogen-activated protein kinase signaling pathways and provided a tentative potential candidate for preventing and treating inflammatory diseases.
Collapse
|
17
|
Pi X, Sun Y, Cheng J, Fu G, Guo M. A review on polyphenols and their potential application to reduce food allergenicity. Crit Rev Food Sci Nutr 2022; 63:10014-10031. [PMID: 35603705 DOI: 10.1080/10408398.2022.2078273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review summarized recent studies about the effects of polyphenols on the allergenicity of allergenic proteins, involving epigallocatechin gallate (EGCG), caffeic acid, chlorogenic acid, proanthocyanidins, quercetin, ferulic acid and rosmarinic acid, etc. Besides, the mechanism of polyphenols for reducing allergenicity was discussed and concluded. It was found that polyphenols could noncovalently (mainly hydrophobic interactions and hydrogen bonding) and covalently (mainly alkaline, free-radical grafting, and enzymatic method) react with allergens to induce the structural changes, resulting in the masking or/and destruction of epitopes and the reduction of allergenicity. Oral administration in murine models showed that the allergic reaction might be suppressed by regulating immune cell function, changing the levels of cytokines, suppressing of MAPK, NF-κb and allergens-presentation pathway and improving intestine function, etc. The outcome of reduced allergenicity and suppressed allergic reaction was affected by many factors such as polyphenol types, polyphenol concentration, allergen types, pH, oral timing and dosage. Moreover, the physicochemical and functional properties of allergenic proteins were improved after treatment with polyphenols. Therefore, polyphenols have the potential to produce hypoallergenic food. Further studies should focus on active concentrations and bioavailability of polyphenols, confirming optimal intake and hypoallergenic of polyphenols based on clinical trials.
Collapse
Affiliation(s)
- Xiaowen Pi
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Mingruo Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
- Department of Nutrition and Food Sciences, College of Agriculture and Life Sciences, University of Vermont, Burlington, United States
| |
Collapse
|
18
|
Shen D, Wu C, Fan G, Li T, Dou J, Zhu J, Li C, Kou X. Jujube peel polyphenols synergistically inhibit lipopolysaccharide-induced inflammation through multiple signaling pathways in RAW 264.7 cells. Food Chem Toxicol 2022; 164:113062. [PMID: 35460827 DOI: 10.1016/j.fct.2022.113062] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 04/17/2022] [Indexed: 12/11/2022]
Abstract
Jujube has great potential as food and traditional drugs in several countries. To study the anti-inflammatory influence of jujube peel polyphenols in lipopolysaccharide (LPS) induced RAW 264.7 cells through mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB) and nuclear erythroid 2-related factor 2 (Nrf2) signaling pathways. In this study, the phenolic composition of polyphenols in jujube peel was analyzed using LC-MS/MS, and which was confirmed that the main polyphenols were p-coumaric acid, catechin and rutin. Meanwhile, jujube peel polyphenols attenuated the generation of TNF-α, IL-1β, IL-6, NO and PGE2 by inhibiting MAPK and NF-κB signaling pathways. Additionally, jujube peel polyphenol activate Nrf2 from the cytoplasm to the nucleus, regulate antioxidant enzymes and pro-inflammatory cytokines, and reduce oxidative stress and inflammatory responses. Results obtained from this study suggest that jujube peel polyphenols may alleviate oxidative stress and inflammation by inhibiting MAPK and NF-κB and activating Nrf2 signaling pathways. Furthermore, jujube peel polyphenols have a synergistic effect in the treatment of LPS-induced inflammatory in RAW 264.7 cells. In conclusion, this study not only reveals the mechanism by which jujube peel polyphenols inhibit LPS-induced inflammation in RAW 264.7 cells, but also provides guidance for the development of new anti-inflammatory drugs.
Collapse
Affiliation(s)
- Dongbei Shen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Caie Wu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China.
| | - Gongjian Fan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Tingting Li
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinfeng Dou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Jinpeng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, PR China
| | - Chunmei Li
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Xiuying Kou
- Infinitus (China) Company Ltd. Guangzhou, Guangdong, 510663, PR China
| |
Collapse
|
19
|
Andersen-Civil AIS, Myhill LJ, Büdeyri Gökgöz N, Engström MT, Mejer H, Zhu L, Zeller WE, Salminen JP, Krych L, Lauridsen C, Nielsen DS, Thamsborg SM, Williams AR. Dietary proanthocyanidins promote localized antioxidant responses in porcine pulmonary and gastrointestinal tissues during Ascaris suum-induced type 2 inflammation. FASEB J 2022; 36:e22256. [PMID: 35333423 DOI: 10.1096/fj.202101603rr] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/07/2022] [Indexed: 11/11/2022]
Abstract
Proanthocyanidins (PAC) are dietary polyphenols with putative anti-inflammatory and immunomodulatory effects. However, whether dietary PAC can regulate type-2 immune function and inflammation at mucosal surfaces remains unclear. Here, we investigated if diets supplemented with purified PAC modulated pulmonary and intestinal mucosal immune responses during infection with the helminth parasite Ascaris suum in pigs. A. suum infection induced a type-2 biased immune response in lung and intestinal tissues, characterized by pulmonary granulocytosis, increased Th2/Th1 T cell ratios in tracheal-bronchial lymph nodes, intestinal eosinophilia, and modulation of genes involved in mucosal barrier function and immunity. Whilst PAC had only minor effects on pulmonary immune responses, RNA-sequencing of intestinal tissues revealed that dietary PAC significantly enhanced transcriptional responses related to immune function and antioxidant responses in the gut of both naïve and A. suum-infected animals. A. suum infection and dietary PAC induced distinct changes in gut microbiota composition, primarily in the jejunum and colon, respectively. Notably, PAC consumption substantially increased the abundance of Limosilactobacillus reuteri. In vitro experiments with porcine macrophages and intestinal epithelial cells supported a role for both PAC polymers and PAC-derived microbial metabolites in regulating oxidative stress responses in host tissues. Thus, dietary PAC may have distinct beneficial effects on intestinal health during infection with mucosal pathogens, while having a limited activity to modulate naturally-induced type-2 pulmonary inflammation. Our results shed further light on the mechanisms underlying the health-promoting properties of PAC-rich foods, and may aid in the design of novel dietary supplements to regulate mucosal inflammatory responses in the gastrointestinal tract.
Collapse
Affiliation(s)
| | - Laura J Myhill
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Marica T Engström
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Helena Mejer
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Ling Zhu
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Wayne E Zeller
- USDA-ARS, U.S. Dairy Forage Research Center, Madison, Wisconsin, USA
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Lukasz Krych
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Dennis S Nielsen
- Department of Food Science, University of Copenhagen, Frederiksberg, Denmark
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
20
|
Abdou HM, Abd Elkader HTAE, El-Gendy AH, Eweda SM. Neurotoxicity and neuroinflammatory effects of bisphenol A in male rats: the neuroprotective role of grape seed proanthocyanidins. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:9257-9268. [PMID: 34505250 DOI: 10.1007/s11356-021-16311-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Exposure to bisphenol A (BPA) contributes to neurological disorders, but the underlying mechanisms are still not completely understood. We studied the neurotoxic effect of BPA and how it promotes inflammation and alteration in the neurotransmission synthesis, release, and transmission. This study was also designed to investigate the neuroprotective effect of grape seed proanthocyanidins (GSPE) against BPA-induced neurotoxicity in rats. Rats were equally divided into 4 groups with 7 rats in each: control group, BPA group, GSPE + BPA group, and GSPE group. Rats were orally treated with their respective doses (50 mg BPA/kg BW and/or 200 mg GSPE/kg BW) daily for 70 days. BPA elicits significant elevation in malondialdehyde (MDA) and nitric oxide (NO) associated with a significant reduction in glutathione (GSH), total thiols, glutathione peroxidase (GPx), superoxide dismutase (SOD), and glutathione-S-transferase (GST). BPA exposure results in increased dopamine and serotonin levels, elevation in acetylcholinesterase (AChE) activity, and reduction in Na/K-ATPase and total ATPase activities in the brain. Also, BPA induces upregulation in the gene expression of the inflammatory markers, tumor necrosis factor-α (TNF-α) and cyclooxygenase-2 (COX-2), and in the tumor suppressor and pro-oxidant p53 protein. The pretreatment with GSPE attenuates or ameliorate all the oxidative and neurotoxic parameters induced by BPA. Our results suggest that GSPE has a promising role in modulating BPA-induced neuroinflammation and neurotoxicity and its antioxidant and free radical scavenging activities may in part be responsible for such effects.
Collapse
Affiliation(s)
- Heba M Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt
| | | | - Amel H El-Gendy
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt
| | - Saber Mohamed Eweda
- Department of Biochemistry, Faculty of Science, Alexandria University, Alexandria, 21561, Egypt.
- Medical Laboratories Technology Department, College of Applied Medical Sciences, Taibah University, Madinah, Kingdom of Saudi Arabia.
| |
Collapse
|
21
|
Lokman MS, Zaafar D, Althagafi HA, Abdel Daim MM, Theyab A, Hasan Mufti A, Algahtani M, Habotta OA, Alghamdi AAA, Alsharif KF, Albrakati A, Oyouni AAA, Bauomy AA, Baty RS, Zhery AS, Hassan KE, Abdel Moneim AE, Kassab RB. Antiulcer activity of proanthocyanidins is mediated via suppression of oxidative, inflammatory, and apoptotic machineries. J Food Biochem 2022; 46:e14070. [PMID: 35034361 DOI: 10.1111/jfbc.14070] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/24/2022]
Abstract
Gastric ulcer (GU) is a lesion in the gastric mucosa associated with excessive oxidative damage, inflammatory response, apoptotic events, and irritation which may develop into cancer. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Proanthocyanidins (PAs) are dietary flavonoids with numerous biological and pharmacological activities. In the current investigation, we studied the potential anti-ulcerative activity of PAs against acidified ethanol (HCl/ethanol)-caused gastric ulceration. Fifty male albino Wistar rats were allocated into five equal groups: control, HCl/ethanol (3 mL/kg), lansoprazole (LPZ, 30 mg/kg) + HCl/ethanol, and PAs (100 and 250 mg/kg) + HCl/ethanol. LPZ and PAs were applied one week before gastric ulcer induction. PAs pretreatment notably reduced gastric mucosal macroscopic and microscopic pathological changes in a dose-dependent manner. Additionally, PAs activated the innate antioxidant molecules including glutathione and its derived antioxidants (glutathione peroxidase and glutathione reductase), along with superoxide dismutase and catalase, while attenuating pro-oxidant formation, including malondialdehyde and nitric oxide. Interestingly, PAs supplementation at a higher dose suppressed gastric inflammatory and apoptotic responses, as demonstrated by the reduced levels of interleukin-1β, interleukin-6, tumor necrosis factor alpha, high-mobility group box 1, cyclooxygenase 2, prostaglandin E2, nuclear factor kappa-B, Bcl-2-associated X protein, and caspase-3, while B cell lymphoma 2 was elevated. Hence, PAs could exhibit antiulcer activity by protecting gastric tissue from the development of oxidative damage, inflammatory responses, and apoptosis events associated with ulceration. PRACTICAL IMPLICATIONS: Gastric ulcer is a lesion in the gastric mucosal layer associated with excessive inflammatory response, apoptotic events, oxidative damage, and irritation, and may develop into cancer with about 5%-10% morbidity rate. However, medications commonly used in GU treatment cannot normalize gastric mucosa, while causing several adverse effects. Therefore, new therapeutic approaches are needed to treat or prevent gastric ulceration. Proanthocyanidins (PAs, condensed tannins) are dietary flavonoids found in abundance in different plant species, including their fruits, bark, and seeds. Due to their potent antioxidative activity, PAs have been applied to prevent or treat oxidative stress-related diseases, including cancer, as well as metabolic, neurodegenerative, cardiovascular, and inflammatory disorders. Here, we examine the potential therapeutic role of proanthocyanidins (PAs) against acidified ethanol-induced gastric ulcer in rats through evaluating oxidative challenge, inflammatory response, apoptotic events, and histopathological changes in the gastric tissue.
Collapse
Affiliation(s)
- Maha S Lokman
- Biology Department, College of Science and Humanities, Prince Sattam bin Abdul Aziz University, Alkharj, Saudi Arabia.,Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Dalia Zaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| | - Hussam A Althagafi
- Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Saudi Arabia
| | - Mohamed M Abdel Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Abdulrahman Theyab
- Department of Laboratory Medicine, Security Forces Hospital, Mecca, Saudi Arabia
| | - Ahmad Hasan Mufti
- Medical Genetics Department, Faculty of Medicine, Umm Al-Qura University, Saudi Arabia
| | - Mohammad Algahtani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ola A Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | | | - Khalaf F Alsharif
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif, Saudi Arabia
| | - Ashraf Albrakati
- Department of Human Anatomy, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Atif Abdulwahab A Oyouni
- Department of Biology, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia.,Genome and Biotechnology Unit, Faculty of Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Amira A Bauomy
- Department of Science Laboratories, College of Science and Arts, Qassim University, Saudi Arabia
| | - Roua S Baty
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Ahmed S Zhery
- Kasr Al-Eini School of Medicine, Cairo University, Cairo, Egypt
| | - Khalid E Hassan
- Department of Pathology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Rami B Kassab
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt.,Department of Biology, Faculty of Science and Arts, Al-Baha University, Almakhwah, Saudi Arabia
| |
Collapse
|
22
|
Yang M, Wang Y, Fan Z, Xue Q, Njateng GSS, Liu Y, Cao J, Khan A, Cheng G. Chemical constituents and anti-inflammatory activity of the total alkaloid extract from Melodinus cochinchinensis (Lour.) Merr. and its inhibition of the NF-κB and MAPK signaling pathways. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 91:153684. [PMID: 34400050 DOI: 10.1016/j.phymed.2021.153684] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/29/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Melodinus cochinchinensis (Lour.) Merr. is a medicinal plant, which is used as a folk medicine for treating meningitis and fractures. However, the anti-inflammatory activity of total alkaloid extract from M. cochinchinensis (MCTA) and its molecular mechanism are still not studied. PURPOSE The aim of this study is to investigate the main chemical constituents of MCTA and explore its anti-inflammatory potential in both in vitro and in vivo assessments. METHODS UHPLC-ESI-HRMS/MS was applied to analyze the chemical profiling. The anti-inflammatory efficacy of MCTA was evaluated on lipopolysaccharide (LPS) induced RAW 264.7 cells and two common inflammation models in mice. The production of pro-inflammatory mediator and cytokine was tested using the ELISA method. The pathological change was analyzed by histological assessment. The expression of NF-κB, MAPKs and PPAR-γ proteins was evaluated using western blot analysis. RESULTS A total of 21 monoterpenoid indole alkaloids (MIAs) were characterized by UHPLC-ESI-HRMS/MS. Aspidospermine- and quinolone-type alkaloids were found to be the major compounds. MCTA significantly decreased the production of NO, IL-1β, IL-6 and TNF-α in LPS-induced RAW 264.7 macrophages. MCTA significantly inhibited the phosphorylation of ERK1/2, JNK and p38 MAPK, suppressed the NF-κB transcriptional activation and improved the PPAR-γ expression. Moreover, the in vivo experiment exhibited that MCTA pretreatment markedly alleviated the xylene-induced ear edema and carrageenan-induced paw edema in mice and decreased the IL-1β, IL-6 and TNF-α expressions. CONCLUSION MCTA is rich in MIAs and exhibited a significant inhibitory effect on the production proinflammatory cytokines. The mechanism might be related to the inhibition of activation of NF-κB and MAPK pathways.
Collapse
Affiliation(s)
- Meilian Yang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Yudan Wang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Zhifeng Fan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Qingwang Xue
- Department of Chemistry, Liaocheng University, Liaocheng 252059 Shandong, China
| | - Guy Sedar Singor Njateng
- Department of Biochemistry, Faculty of science, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Yaping Liu
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Jianxin Cao
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan
| | - Guiguang Cheng
- Faculty of Agriculture and Food, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
23
|
Andersen-Civil AIS, Leppä MM, Thamsborg SM, Salminen JP, Williams AR. Structure-function analysis of purified proanthocyanidins reveals a role for polymer size in suppressing inflammatory responses. Commun Biol 2021; 4:896. [PMID: 34290357 PMCID: PMC8295316 DOI: 10.1038/s42003-021-02408-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/30/2021] [Indexed: 02/06/2023] Open
Abstract
Proanthocyanidins (PAC) are dietary compounds that have been extensively studied for beneficial health effects due to their anti-inflammatory properties. However, the structure-function relationships of PAC and their mode-of-action remain obscure. Here, we isolated a wide range of diverse PAC polymer mixtures of high purity from plant material. Polymer size was a key factor in determining the ability of PAC to regulate inflammatory cytokine responses in murine macrophages. PAC polymers with a medium (9.1) mean degree of polymerization (mDP) induced substantial transcriptomic changes, whereas PAC with either low (2.6) or high (12.3) mDP were significantly less active. Short-term oral treatment of mice with PAC modulated gene pathways connected to nutrient metabolism and inflammation in ileal tissue in a polymerization-dependent manner. Mechanistically, the bioactive PAC polymers modulated autophagic flux and inhibited lipopolysaccharide-induced autophagy in macrophages. Collectively, our results highlight the importance of defined structural features in the health-promoting effects of PAC-rich foods.
Collapse
Affiliation(s)
| | - Milla Marleena Leppä
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Stig M Thamsborg
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Juha-Pekka Salminen
- Natural Chemistry Research Group, Department of Chemistry, University of Turku, Turku, Finland
| | - Andrew R Williams
- Department of Veterinary and Animal Sciences, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
24
|
Borik RM, Hussein MA. Synthesis, Molecular Docking, biological potentials, and Structure-Activity Relationship of new quinazoline & quinazoline-4-one derivatives. Curr Pharm Biotechnol 2021; 23:1179-1203. [PMID: 34077343 DOI: 10.2174/1389201022666210601170650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 11/22/2022]
Abstract
CONTEXT Quinazolines are a common class of nitrogen-containing heterocyclic scaffolds exhibiting a broad spectrum of pharmacological activities. OBJECTIVE In the present study, quinazoline and quinazolin-4-one derivatives were prepared, characterized to evaluate their biological which may pave the way for possible therapeutic applications. MATERIALS & METHODS A new derivative of quinazoline and quinazolin-4-one derivatives was prepared and tested for antiulcerogenic, anti-inflammatory and hepatoprotective activity. RESULTS The synthesized compounds were characterized by elemental analysis and spectral data. Also, the median lethal doses (LD50s) of compounds 1-3 in rats were 1125, 835 and 1785 mg/kg b.w., respectively. IC50 values of compounds (1-3) as measured by ABTS+ radical method was 0.8, 0.92 and 0.08 mg/mL, respectively. Antiulcerogenic activities at dose 1/20 LD50 in albino rats were 47.94, 24.60 and 56.45%, respectively. Anti-inflammatory effect at dose 1/20 LD50 of compounds (1-3) induced edema model after 120 min. The prepared compounds possess hepato gastric mucosa protective activity against ibuprofen-induced ulceration and LPS-induced liver toxicity, respectively in rats via normalization of oxidative stress biomarkers and inflammatory mediators were inhibited in peritoneal macrophage cells at concentration of 100 µg/L. Molecular docking suggested that the most active compounds 1 and 2 can be positioned within the active sites of COX-2 at Arg121 & Tyr356 similar to ibuprofen (Arg-120, Glu-524, and Tyr-355). The compound 3-COX-2 complex generated by docking revealed intricate interactions with a COX-2 channel. CONCLUSION These findings suggest that compounds 1-3 exhibited good antioxidant, antiulcer, anti-inflammatory activity and safe on liver enzymes in rats.
Collapse
Affiliation(s)
- Rita M Borik
- Chemistry Department, Faculty of Science (Female Section), Jazan University, Jazan 82621, Saudi Arabia
| | - Mohammed Abdalla Hussein
- Biochemistry Department, Faculty of Applied Medical Sciences, October 6 University, Sixth of October City, Egypt
| |
Collapse
|
25
|
Tian D, Yang Y, Yu M, Han ZZ, Wei M, Zhang HW, Jia HM, Zou ZM. Anti-inflammatory chemical constituents of Flos Chrysanthemi Indici determined by UPLC-MS/MS integrated with network pharmacology. Food Funct 2021; 11:6340-6351. [PMID: 32608438 DOI: 10.1039/d0fo01000f] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Flos Chrysanthemi Indici (FCI), the flower of Chrysanthemum indicum L., is a common functional food and a well-known traditional Chinese medicine (TCM) for the treatment of inflammatory diseases. Previous studies have revealed that FCI has anti-inflammatory activity, but little is known about its anti-inflammatory chemical profile. In this study, the potential anti-inflammatory constituents of FCI were investigated by ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF/MS) combined with the network pharmacology approach, and further confirmed on a LPS activated RAW264.7 macrophage model. As a result, a total of forty-two compounds, including thirty-two flavonoids, nine phenolic acids and one sesquiterpene, were identified. Among them, fourteen compounds including eight flavonoids (11, 17, 24, 28, 32, 39, 41 and 42) and six caffeoylquinic acids (3, 4, 5, 13, 15 and 20) were recognized as potential key anti-inflammatory constituents of FCI through network pharmacology analysis, because they accounted for 92% of the relative peak area in the UPLC-Q-TOF/MS chromatogram and acted on 87 of 97 the inflammatory targets of FCI. However, only 16 targets were shared between the flavonoids and caffeoylquinic acids, indicative of both acting on more different targets. Further the anti-inflammatory effects of the fourteen constituents were validated with the decreased levels of NO, TNF-α, IL-6 and PGE2 in RAW264.7 macrophage cells treated with LPS. Our results indicated that both flavonoids and caffeoylquinic acids were responsible for the anti-inflammatory effect of FCI through synergetic actions on multi-targets. Moreover, 3,5-dicaffeoylquinic acid (15), luteolin (24) and linarin (28) were the most important active constituents of FCI and could be selected as chemical markers for quality control of FCI. Overall, the findings not only explore the anti-inflammatory chemical constituents of FCI, but also provide novel insights into the effective constituents and mechanism of TCMs.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Yong Yang
- Guizhou University of Traditional Chinese Medicine, Huaxi District, Guiyang City, Guizhou 563000, China
| | - Meng Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zheng-Zhou Han
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Min Wei
- China Resources Sanjiu Medical & Pharmaceutical Co., Ltd, Shenzhen 518110, China
| | - Hong-Wu Zhang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Hong-Mei Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| | - Zhong-Mei Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
26
|
Fu K, Chen L, Hu S, Guo Y, Zhang W, Bai Y. Grape seed proanthocyanidins attenuate apoptosis in ischemic stroke. Acta Neurol Belg 2021; 121:357-364. [PMID: 30835051 DOI: 10.1007/s13760-019-01111-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 02/27/2019] [Indexed: 12/24/2022]
Abstract
Grape seed proanthocyanidins (GSP) has been reported to attenuate endoplasmic reticulum (ER) stress-induced apoptosis, which is associated with ischemic stroke. However, whether GSP pays crucial roles in ischemic stroke still remains unclear. The purpose of this study is to explore the role of GSP in ischemic stroke and the underlying mechanism. The ischemic stroke mouse model was established by middle cerebral artery occlusion. GSP administration was performed intragastrically. Long-term neurological outcome was assessed by the foot fault test after reperfusion. Brain injury was identified by infarct volume from 2,3,5-triphenyltetrazolium chloride staining. Neuronal apoptosis was detected by terminal deoxynucleotidyl transferase dUTP nick end labeling. The expression levels of Bax, Bcl-2, Cleaved Caspase-3, phosphorylated ERK (p-ERK), ERK, Glucose-regulated protein 78 kDa (GRP78), Caspase-12 were detected by western blotting. In mice with ischemia stroke, GSP administration improved long-term neurological outcomes by attenuating ischemia-reperfusion induced neuronal apoptosis and brain injury. Mechanically, GSP performance inhibited the expression levels of ER stress-associated genes. GSP protects mice against ischemic stroke via attenuating neuronal apoptosis. Moreover, GSP attenuated ER stress-associated apoptosis by inhibiting GRP78 and Caspase-12. Our study indicates that GSP attenuates neuronal apoptosis in ischemic stroke, which shows the potential for ischemic stroke treatment.
Collapse
Affiliation(s)
- Kun Fu
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Liqiang Chen
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Shuai Hu
- Department of Neurology, Qingdao West Coast New Area Central Hospital, Qingdao, 266000, Shandong, China
| | - Yan Guo
- Department of Internal Medicine, Qingzhoushi People's Hospital, Qingzhou, 262500, Shandong, China
| | - Wei Zhang
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China
| | - Yunan Bai
- Department of Neurosurgery, Yidu Central Hospital of Weifang, No 4138 Linglongshan Road, Qingzhou, 262500, Shandong, China.
| |
Collapse
|
27
|
Grape seed extract ameliorates PhIP-induced colonic injury by modulating gut microbiota, lipid metabolism, and NF-κB signaling pathway in rats. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104362] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
28
|
Immunomodulatory Effects of Dietary Polyphenols. Nutrients 2021; 13:nu13030728. [PMID: 33668814 PMCID: PMC7996139 DOI: 10.3390/nu13030728] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 02/08/2023] Open
Abstract
Functional and nutraceutical foods provide an alternative way to improve immune function to aid in the management of various diseases. Traditionally, many medicinal products have been derived from natural compounds with healing properties. With the development of research into nutraceuticals, it is becoming apparent that many of the beneficial properties of these compounds are at least partly due to the presence of polyphenols. There is evidence that dietary polyphenols can influence dendritic cells, have an immunomodulatory effect on macrophages, increase proliferation of B cells, T cells and suppress Type 1 T helper (Th1), Th2, Th17 and Th9 cells. Polyphenols reduce inflammation by suppressing the pro-inflammatory cytokines in inflammatory bowel disease by inducing Treg cells in the intestine, inhibition of tumor necrosis factor-alpha (TNF-α) and induction of apoptosis, decreasing DNA damage. Polyphenols have a potential role in prevention/treatment of auto-immune diseases like type 1 diabetes, rheumatoid arthritis and multiple sclerosis by regulating signaling pathways, suppressing inflammation and limiting demyelination. In addition, polyphenols cause immunomodulatory effects against allergic reaction and autoimmune disease by inhibition of autoimmune T cell proliferation and downregulation of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-1, interferon-γ (IFN-γ)). Herein, we summarize the immunomodulatory effects of polyphenols and the underlying mechanisms involved in the stimulation of immune responses.
Collapse
|
29
|
Ge J, Chu H, Xiao Q, Hao W, Shang J, Zhu T, Sun Z, Wei X. BC and 1,4NQ-BC up-regulate the cytokines and enhance IL-33 expression in LPS pretreatment of human bronchial epithelial cells ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 273:116452. [PMID: 33486252 DOI: 10.1016/j.envpol.2021.116452] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
Black carbon (BC) reacts with different substances to form secondary pollutants called aged black carbon, which causes inflammation and lung damage. BC and aged BC may enhance IL-33 in vivo, which may be derived from macrophages. The pro-inflammatory effect of IL-33 makes it essential to determine the source of IL-33, so it guides us to explore how to alleviate lung injury. In this study, a human bronchial epithelial cell line of 16HBE cells was selected, and aged BC (1,4-NQ coated BC and ozone oxidized BC) was used. We found that both BC and aged BC were able to up-regulate the mRNA expression of IL-1β, IL-6, and IL-8 except IL-33. However, the Mitogen-activated protein kinases (MAPKs) and Phosphatidylinositol 3-kinase (PI3K)/Protein kinase B (AKTs) pathways remained inactive. After pretreatment with Lipopolysaccharide (LPS), IL-33 mRNA expression was significantly increased in 16HBE cells and MAPKs and PI3K/AKT were activated. These results suggested that MAPKs and PI3K/AKT pathways were involved in the elevation of IL-33. Furthermore, epithelial cells are unlikely to be the source of lung inflammation caused by elevated IL-33 in BC and aged BC.
Collapse
Affiliation(s)
- Jianhong Ge
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Hongqian Chu
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Jing Shang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Tong Zhu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhaogang Sun
- Translational Medicine Center, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, PR China; Beijing Key Laboratory in Drug Resistant Tuberculosis Research, Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, 101149, PR China
| | - Xuetao Wei
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
30
|
Anti-inflammatory effects of three selenium-enriched brown rice protein hydrolysates in LPS-induced RAW264.7 macrophages via NF-κB/MAPKs signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2020.104320] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
31
|
Yan F, Chen L, Chen W, Zhao L, Lu Q, Liu R. Protective effect of procyanidin A-type dimers against H 2O 2-induced oxidative stress in prostate DU145 cells through the MAPKs signaling pathway. Life Sci 2020; 266:118908. [PMID: 33333048 DOI: 10.1016/j.lfs.2020.118908] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022]
Abstract
It has been reported that B-type procyanidins can alleviate oxidative damage of prostatic cells, but there has been limited information on the similar role of A-type procyanidins. This study investigated the protective effect of procyanidin A-type dimers from peanut skin against H2O2-induced oxidative stress damage in prostate cancer DU145 cells. According to the UPLC-Q-TOF-MS/MS analysis and comparison with standards, the fourth fraction of peanut skin procyanidin (PSP-4) was identified as procyanidin A-type dimers, namely, procyanidin A1 and A2. Results revealed that PSP-4 treatment prior H2O2 exposure increased cell activity and attenuated the cell cycle arrest and apoptosis rate. The H2O2-induced increase in intracellular reactive oxygen species (ROS) was remarkably inhibited by PSP-4. PSP-4 treatment enhanced the activity of catalase (CAT) and total super oxide dismutase (T-SOD) and restored glutathione (GSH) content, compared with the H2O2 treatment. Furthermore, the results indicated that PSP-4 protected DU145 cells by attenuating phosphorylation of the mitogen-activated protein kinases (MAPKs), by increasing the Bcl-2/Bax ratio, and by reducing the activation of caspase-3 and caspase-9 by cascade reactions. This study reveals that procyanidin A-type dimers from peanut skin have the potential function in preventing oxidative stress damage of prostatic cells.
Collapse
Affiliation(s)
- Fangfang Yan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liang Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wanbing Chen
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Li Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, China.
| |
Collapse
|
32
|
Zhang L, Chen J, Liao H, Li C, Chen M. Anti-inflammatory effect of lipophilic grape seed proanthocyanidin in RAW 264.7 cells and a zebrafish model. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104217] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
33
|
Cheng X, Zhang J, Jing H, Qi Y, Yan T, Wu B, Du Y, Xiao F, Jia Y. Pharmacokinetic Differences of Grape Seed Procyanidins According to the Gavage Administration Between Normal Rats and Alzheimer's Disease Rats. CURR PHARM ANAL 2020. [DOI: 10.2174/1573412915666190916161225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Grape Seed Procyanidins (GSP) refers to a type of natural polyphenols
that have to roust antioxidant capacity. Studies have shed light on the fact that GSP significantly
impacts the alleviation of Alzheimer's Disease (AD).
Objective:
This study aimed at investigating whether there exists a pharmacokinetics difference in
GSP between normal and AD rats, a rapid UPLC-MS/MS methodology, for the detection of its
content in plasma samples was put forward. We carried out an analysis of the plasma concentrations
of procyanidin B2, procyanidin B3, catechin and epicatechin in normal and AD rats over time
for determining the plasma concentration of GSP.
Methods:
We made use of 400 μL of methanol for the protein precipitation solvent in the plasma
treatment. The chromatographic separation was carried out on a C18 column at a temperature of 20 °C.
The mobile phase was a gradient of 0.1% formic acid in water and methanol within 15 min.
Results:
: In the current research work, the plasma concentrations of procyanidin B2, procyanidin
B3, catechin and epicatechin in AD rats were significantly higher as compared with those in normal
rats (P < 0.05) and the content of epicatechin constituted the highest as compared with catechin,
procyanidin B2 and procyanidin B3 following the administration of GSP.
Conclusion:
We discovered the better absorptions of these analytes in the AD group as compared
with that in the normal group, providing an analytical basis for treating the AD with procyanidins.
Collapse
Affiliation(s)
- Xinhui Cheng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Jingying Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Huiting Jing
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yu Qi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Tingxu Yan
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Bo Wu
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Yiyang Du
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Feng Xiao
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| | - Ying Jia
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016, China
| |
Collapse
|
34
|
Effective utilization of food wastes: Bioactivity of grape seed extraction and its application in food industry. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104113] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
35
|
Kadri S, El Ayed M, Limam F, Aouani E, Mokni M. Protective effect of (Xenical+GSF) against I/R-induced blood brain barrier disruption, ionic edema, lipid deregulation and neuroinflammation. Microvasc Res 2020; 132:104054. [PMID: 32768464 DOI: 10.1016/j.mvr.2020.104054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/09/2022]
Abstract
Ischemic stroke is a leading cause of mortality worldwide that occurs following the reduction or interruption of blood brain supply, characterized by a cascade of early events as oxidative stress and ensuing neuro-inflammation, energy failure and the burst of intracellular Ca++ resulting in activation of phospholipases and large increase in FFA including arachidonic acid, ultimately leading to nervous cell death. Grape Seed Flour (GSF) is a complex polyphenolic mixture harboring antioxidant, anti-inflammatory and neuroprotective properties. Orlistat (Xenical ™,Xe) is a gastro-intestinal lipase inhibitor and an anti-obesity agent. In an earlier study we reported the higher efficiency in neuroprotection against HFD-induced brain lipotoxicity when combining the two drugs (GSF + Xe). As a result repurposing Xe as an adjunct to GSF therapy against stroke appeared relevant and worthy of investigation. I/R insult disrupted the blood brain barrier (BBB) as assessed by EB dye extravasation, increased water and Na+ within the brain. Ultrastructurally I/R altered the brain blood capillaries at the vicinity of hippocampus dentate gyrus area as assessed by transmission and scanning electron microscopy. I/R altered lipid metabolism as revealed by LDL/HDL ratio, lipase activity, and FFA profiles. Moreover, I/R induced neuro-inflammation as assessed by down-regulation of anti-inflammatory CD 56 and up-regulation of pro-inflammatory CD 68 antigen. Importantly almost all I/R-induced disturbances were retrieved partially upon Xe or GSF on their own, and optimally when combining the two drugs. Xe per se is protective against I/R injury and the best neuroprotection was obtained when associating low dosage Xe with high dosage GSF, enabling neuroprevention and cell survival within hippocampus dentate gyrus area as revealed by increased staining of Ki 67 proliferation biomarker.
Collapse
Affiliation(s)
- Safwen Kadri
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia.
| | - Mohamed El Ayed
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Ferid Limam
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Ezzedine Aouani
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| | - Meherzia Mokni
- Bioactive Substances Laboratory, Biotechnology Centre, Technopolis Borj-Cedria, BP-901, 2050 Hammam-Lif, Tunis, Tunisia
| |
Collapse
|
36
|
Wang J, Fang X, Wu T, Fang L, Liu C, Min W. In vitro immunomodulatory effects of acidic exopolysaccharide produced by Lactobacillus planetarium JLAU103 on RAW264.7 macrophages. Int J Biol Macromol 2020; 156:1308-1315. [DOI: 10.1016/j.ijbiomac.2019.11.169] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/08/2019] [Accepted: 11/19/2019] [Indexed: 12/20/2022]
|
37
|
Caracci F, Harary J, Simkovic S, Pasinetti GM. Grape-Derived Polyphenols Ameliorate Stress-Induced Depression by Regulating Synaptic Plasticity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1808-1815. [PMID: 31532659 DOI: 10.1021/acs.jafc.9b01970] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Major depressive disorder (MDD) is associated with stress-induced immune dysregulation and reduced brain-derived neurotrophic factor (BDNF) levels in sensitive brain regions associated with depression. Elevated levels of proinflammatory cytokines and reduced BDNF levels lead to impaired synaptic plasticity mechanisms that contribute to the pathophysiology of MDD. There is accumulating evidence that the administration of polyphenols at doses ranging from 5 to 180 mg/kg of body weight can normalize elevated levels of proinflammatory cytokines and abnormal levels of BDNF and, thus, restore impaired synaptic plasticity mechanisms that mediate depressive behavior in animal models of stress. This review will focus on the mechanisms by which grape-derived polyphenols normalize impaired synaptic plasticity and reduce depressive behavior in animal models of stress.
Collapse
Affiliation(s)
- Francesca Caracci
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Joyce Harary
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Sherry Simkovic
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
| | - Giulio Maria Pasinetti
- Department of Neurology , Icahn School of Medicine at Mount Sinai , 1 Gustave L. Levy Place , Box 1137, New York , New York 10029 , United States
- Geriatrics Research, Education and Clinical Center , JJ Peters VA Medical Center , Bronx , New York 10468 , United States
| |
Collapse
|
38
|
Proanthocyanidins Promote Osteogenic Differentiation of Human Periodontal Ligament Fibroblasts in Inflammatory Environment Via Suppressing NF-κB Signal Pathway. Inflammation 2020; 43:892-902. [DOI: 10.1007/s10753-019-01175-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
39
|
Yan H, Gao W, Li Q, Li H, Hao R. Effect of grapeseed procyanidins on small intestinal mucosa morphology and small intestinal development in weaned piglets. ANIMAL PRODUCTION SCIENCE 2020. [DOI: 10.1071/an18638] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Context
Grapeseed procyanidins (GSP) are widely recognised to have potential biological properties, and dietary supplementation with GSP could reduce diarrhoea incidence in weaned piglets.
Aims
This trial was conducted to investigate the effect of GSP on small intestinal mucosa morphology and small intestinal development in weaned piglets.
Methods
Seventy-two weaned piglets were randomly allocated into four dietary groups with three replicate pens per group and six piglets per pen. Each group received one of the following diets: a basal maize–soybean meal diet; or basal diet supplemented with 50, 100 or 150 mg GSP/kg. Small intestinal mucosa morphology and the expression of genes involved in improving small intestinal development were determined.
Key results
Morphological observations obtained by optical microscopy showed that the villus height of the duodenum and ileum increased in all groups receiving GSP, significantly (P < 0.05) so in the group receiving 100 mg GSP/kg compared with the control group. Crypt depth of the duodenum and ileum in the groups receiving 100 and 150 mg GSP/kg decreased compared with the control group. Similarly, the crypt depth of the jejunum in the group receiving 100 mg GSP/kg was significantly (P < 0.05) lowered. Moreover, the villus height/crypt depth ratio of each small intestinal segment in the group receiving 100 mg GSP/kg increased significantly (P < 0.01). Morphological observations obtained by scanning electron microscopy indicated that dietary supplementation with GSP was favourable for growth of small intestinal villi. Specifically, the villi of the small intestine in the group receiving 100 mg GSP/kg were most closely aligned, most uniform in size and clearest in structure. Furthermore, dietary supplementation with GSP increased the expression of genes encoding epidermal growth factor receptor, insulin-like growth factor 1 (IGF-1) and IGF-1 receptor in the duodenum, the group receiving 100 mg GSP/kg showing a significant (P < 0.05) increase.
Conclusions
Dietary supplementation with GSP could improve small intestinal mucosa morphology and promote small intestinal development. Dietary supplementation of 100 mg GSP/kg could be recommended for weaned piglets.
Implications
Dietary supplementation with GSP generated a beneficial role in small intestinal health in weaned piglets.
Collapse
|
40
|
El Gizawy HAEH, Hussein MA, Abdel-Sattar E. Biological activities, isolated compounds and HPLC profile of Verbascum nubicum. PHARMACEUTICAL BIOLOGY 2019; 57:485-497. [PMID: 31401911 PMCID: PMC6713102 DOI: 10.1080/13880209.2019.1643378] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 05/06/2019] [Accepted: 06/08/2019] [Indexed: 06/01/2023]
Abstract
Context: Genus Verbascum (Scrophulariaceae) comprises about 360 species of flowering plants. Verbascum has been used in traditional medicine as an astringent, antitussive, analgesic and anti-inflammatory. Objective: Nothing was found in the available literature concerning Verbascum nubicum Murb; therefore, the study evaluates the biological activities, isolated compounds and HPLC profile. Materials and methods: Methanol extract (VME) and butanol fraction (VBF) of air-dried powdered V. nubicum were obtained. Four compounds were isolated from VBE and identified by 1H- and 13C-NMR. High-performance liquid chromatography (HPLC) profile was determined for (VME). LD50, in vitro antioxidant, in vivo antiulcerogenic and anti-inflammatory activities as well as hepatoprotective activity were assessed. Anti-ulcerogenic and hepatoprotective activities were supported by histopathological examinations. Results: HPLC analysis of VME revealed the presence of luteolin 7-glucoside (2215.43 mg/100 g), hesperidin (954.51 mg/100 g) and apigenin (233.15 mg/100 g) as major compounds. Four compounds were isolated and confirmed by NMR data, were identified as gentiopicroside, luteolin, aucubin and gallic acid. The LD50 of VME and VBF extracts were calculated to be 8200 and 4225 mg/kg b.w., respectively. IC50 values of VBE and VMF as measured by DPPH·method were 43.6 and 50 µg/mL, respectively. Also, anti-inflammatory effect of VME (400 mg/kg b.w.) and VBF (200 mg/kg b.w.) induced edema model after 120 min were 61.93 and 56.13%, respectively. Antiulcerogenic activity of VME (400 mg/kg b.w.) and VBF (200 mg/kg b.w.) in albino rats were 65.14 and 84.57%, respectively. Conclusions: The V. nubicum extracts displayed safe and promising antioxidant, anti-inflammatory and hepatoprotective properties. It can be also applied in the pharmacy industry, food industry and healthcare.
Collapse
Affiliation(s)
| | - Mohammed Abdalla Hussein
- Biochemistry Department, Faculty of Applied
Medical Sciences, October 6 University, Sixth of October City,
Egypt
| | - Essam Abdel-Sattar
- Pharmacognosy Department, Faculty of Pharmacy,
Cairo University, Giza, Egypt
| |
Collapse
|
41
|
Arie H, Nozu T, Miyagishi S, Ida M, Izumo T, Shibata H. Grape Seed Extract Eliminates Visceral Allodynia and Colonic Hyperpermeability Induced by Repeated Water Avoidance Stress in Rats. Nutrients 2019; 11:E2646. [PMID: 31689935 PMCID: PMC6893525 DOI: 10.3390/nu11112646] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 10/17/2019] [Accepted: 10/28/2019] [Indexed: 12/12/2022] Open
Abstract
Grape seed extract (GSE) is rich in polyphenols composed mainly of proanthocyanidins, which are known to attenuate proinflammatory cytokine production. Repeated water avoidance stress (WAS) induces visceral allodynia and colonic hyperpermeability via toll-like receptor 4 (TLR4) and proinflammatory cytokine pathways, which is a rat irritable bowel syndrome (IBS) model. Thus, we explored the effects of GSE on repeated WAS (1 h for 3 days)-induced visceral allodynia and colonic hyperpermeability in Sprague-Dawley rats. Paracellular permeability, as evaluated by transepithelial electrical resistance and flux of carboxyfluorescein, was analyzed in Caco-2 cell monolayers treated with interleukin-6 (IL-6) and IL-1β. WAS caused visceral allodynia and colonic hyperpermeability, and intragastric administration of GSE (100 mg/kg, once daily for 11 days) inhibited these changes. Furthermore, GSE also suppressed the elevated colonic levels of IL-6, TLR4, and claudin-2 caused by WAS. Paracellular permeability was increased in Caco-2 cell monolayers in the presence of IL-6 and IL-1β, which was inhibited by GSE. Additionally, GSE suppressed the claudin-2 expression elevated by cytokine stimulation. The effects of GSE on visceral changes appear to be evoked by suppressing colonic TLR4-cytokine signaling and maintaining tight junction integrity. GSE may be useful for treating IBS.
Collapse
Affiliation(s)
- Hideyuki Arie
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Tsukasa Nozu
- Department of Regional Medicine and Education, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Saori Miyagishi
- Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, Midorigaoka Higashi 2-1-1-1, Asahikawa 078-8510, Japan.
| | - Masayuki Ida
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Takayuki Izumo
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| | - Hiroshi Shibata
- Institute for Health Care Science, Suntory Wellness Limited, Seikadai 8-1-1, Seika-cho, Soraku-gun, Kyoto 619-0284, Japan.
| |
Collapse
|
42
|
Effects of dietary supplementation with grape seed procyanidins on nutrient utilisation and gut function in weaned piglets. Animal 2019; 14:491-498. [PMID: 31588892 DOI: 10.1017/s1751731119002234] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Grape seed procyanidins (GSPs), widely known for their beneficial health properties, fail to bring about the expected improvement in piglets' growth performance. The effects of dietary supplementation with GSPs on nutrient utilisation may be a critical influencing factor. Hence, the purpose of this study was to investigate the effects of dietary supplementation with GSPs on nutrient utilisation and gut function in weaned piglets. One hundred and twenty crossbred piglets were allocated randomly to four treatment groups, with three replicate pens per treatment and 10 piglets per pen. Each group was given one of the four dietary treatments: the basal diet (control group) or the basal diet with the addition of 50-, 100- or 150-mg/kg GSPs. The trial lasted 28 days. Faeces were collected from d 12 to 14 and from d 26 to 28 for measuring the coefficient of total tract apparent digestibility (CTTAD) of the nutrients. Blood samples were collected on d 14 and 28 for detecting the blood biochemical parameters. Two piglets per pen were slaughtered to collect the pancreas and intestinal digesta for evaluating the digestive enzyme activity and the coefficient of ileal apparent digestibility (CIAD) of the nutrients. On d 14 and 28, supplementation with 150-mg/kg GSPs significantly decreased the CTTAD of DM and CP in piglets. On d 14, GSPs supplementation at a concentration of 150 mg/kg led to a remarkable decrease in the CIAD of CP and gross energy (GE). On d 28, GSPs supplementation at a dose of 150 mg/kg generated a marked decline in the CIAD of DM, GE, CP and ether extract. Grape seed procyanidins supplementation at concentrations of 100 or 150 mg/kg inhibited the activities of lipase and amylase. In contrast, the jejunum mucosa maltase and sucrase activities increased due to the inclusion of GSPs at a concentration of 100 mg/kg in the piglet diet. Compared with the levels of the control group, the serum glucose and total protein levels were enhanced significantly by supplementation with GSPs at 100 mg/kg and reduced dramatically at 150 mg/kg. The serum diamine oxidase activity and endotoxin levels were decreased by GSPs supplementation in piglet diets. In conclusion, higher concentrations of GSPs in weaned piglet diets attenuated nutrient digestion and inhibited digestive enzyme activity; however, suitable concentrations of GSPs could promote brush-border enzyme activity, enhance serum glucose and total protein concentrations and decrease epithelial permeability.
Collapse
|
43
|
Hu M, Li X, Zhang J, Yuan Z, Fu Y, Ma X, Ren N. GEN-27 exhibits anti-inflammatory effects by suppressing the activation of NLRP3 inflammasome and NF-κB pathway. Cell Biol Int 2019; 43:1184-1192. [PMID: 30632647 DOI: 10.1002/cbin.11101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Prolonged inflammation and deregulated cytokine production are associated with diversified inflammatory diseases. Genistein (GEN), the active and predominant isoflavonoid in dietary soybean, possesses anti-inflammatory activity. Our study aimed to assess the anti-inflammatory effects of GEN-27, a derivative of GEN, as well as explore the potential molecular mechanisms using lipopolysaccharide (LPS)-induced RAW264.7 cells. In our study, we demonstrated that GEN-27 administration (1, 5, or 10 μM) dose-dependently inhibited nitrite and nitric oxide (NO) levels in LPS-stimulated RAW264.7 cells. Also, GEN-27 suppressed the release of LPS-induced pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and IL-18. Moreover, GEN-27 attenuated LPS-induced inducible NO synthase (iNOS), and cyclooxygenase-2 (COX-2) expressions at messenger RNA and protein levels, and reversed the promoter activity of iNOS in RAW264.7 cells. Mechanistically, GEN-27 abated LPS-induced reactive oxygen species production, as well as mitigated LPS-induced increase of caspase 1 activity and the protein levels of NOD-like receptor 3 (NLRP3), anti-apoptosis-associated speck-like protein-containing a CRAD (ASC), and caspase 1 in RAW264.7 cells in a dose-dependent manner. Similarly, GEN-27 dose-dependently weakened adenosine triphosphate-induced NLRP3 and IL-1β in RAW264.7 cells. In addition, GEN-27 treatment significantly suppressed LPS-induced phosphorylation of nuclear factor-κB (NF-κB) p65 and alleviated LPS-induced increase of transcriptional activity of NF-κB in RAW264.7 cells. In summary, these results revealed that GEN-27 exhibited anti-inflammatory effects by suppressing the activation of NLRP3 inflammasome and NF-κB pathway, suggesting that GEN-27 may be served as a promising therapeutic agent for the prevention and therapy of inflammatory-associated diseases.
Collapse
Affiliation(s)
- Miao Hu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiangping Li
- Clinical Laboratory, Henan Luoyang Orthopedic Hospital, Henan Provincial Orthopedic Hospital, Zhengzhou, 450000, China
| | - Junli Zhang
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Zengyan Yuan
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Yuping Fu
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Xiaojuan Ma
- Sanquan College of Xinxiang Medical University, Xinxiang, 453003, China
| | - Nannan Ren
- Clinical Laboratory, Xi'an No. 4 Hospital, Xi'an, 710004, China
| |
Collapse
|
44
|
Wan P, Xie M, Chen G, Dai Z, Hu B, Zeng X, Sun Y. Anti-inflammatory effects of dicaffeoylquinic acids from Ilex kudingcha on lipopolysaccharide-treated RAW264.7 macrophages and potential mechanisms. Food Chem Toxicol 2019; 126:332-342. [PMID: 30654100 DOI: 10.1016/j.fct.2019.01.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 01/08/2019] [Accepted: 01/11/2019] [Indexed: 01/05/2023]
Abstract
Increasing evidence has shown that dicaffeoylquinic acids (DiCQAs) have anti-inflammatory activity. However, the underlying molecular mechanisms of the anti-inflammatory effects of DiCQAs are still unclear. In the present study, the anti-inflammatory effects of DiCQAs from the leaves of Ilex kudingcha and the potential molecular mechanisms on LPS-induced inflammatory responses in RAW264.7 macrophage cells were investigated. The results showed that pretreatment with DiCQAs could suppress the production of NO, PGE2 and also pro-inflammatory cytokines TNF-α, IL-1β and IL-6, and the mRNA expression of two major inflammatory mediators of COX-2 and iNOS. The phosphorylated IκBα, ERK, JNK and p38 proteins in LPS-treated cells were significantly increased, which could be reversed by pretreatment with DiCQAs in a concentration-dependent manner. Taken together, the results suggest that DiCQAs from I. kudingcha have potent anti-inflammatory effects on LPS-induced inflammatory responses by inhibiting the NF-κB and MAPKs pathways and may be a prophylactic for inflammation.
Collapse
Affiliation(s)
- Peng Wan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Minhao Xie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Guijie Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhuqing Dai
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Bing Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoxiong Zeng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yi Sun
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
45
|
Wang W, Zhan L, Guo D, Xiang Y, Zhang Y, Tian M, Han Z. Transcriptome analysis of pancreatic cancer cell response to treatment with grape seed proanthocyanidins. Oncol Lett 2018; 17:1741-1749. [PMID: 30675233 PMCID: PMC6341838 DOI: 10.3892/ol.2018.9807] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/25/2018] [Indexed: 01/09/2023] Open
Abstract
Grape seed proanthocyanidins (GSPs) have been demonstrated to exhibit potential chemotherapeutic efficacy against various cancer types. To determine the underlying molecular mechanisms involved in GSP-induced apoptosis, the present study prepared pancreatic cancer (PC) cells samples, S3, S12 and S24, which were treated with 20 µg/ml GSPs for 3, 12 and 24 h, respectively. Control cell samples, C3, C12 and C24, were also prepared. Using RNA-sequencing, transcriptome comparisons were performed, which identified 966, 3,543 and 4,944 differentially-expressed genes (DEGs) in S3 vs. C3, S12 vs. C12 and S24 vs. C24, respectively. Gene Ontology analysis of the DEGs, revealed that treatment with GSPs is associated with disruption of the cell cycle (CC) in PC cells. Additionally, disruption of transcription, DNA replication and DNA repair were associated with GSP-treatment in PC cells. Network analysis demonstrated that the common DEGs involved in the CC, transcription, DNA replication and DNA repair were integrated, and served essential roles in the control of CC progression in cancer cells. In summary, GSPs may exhibit a potential chemotherapeutic effect on PC cell proliferation.
Collapse
Affiliation(s)
- Weihua Wang
- Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China.,Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang 843300, P.R. China
| | - Leilei Zhan
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, P.R. China
| | - Dongqi Guo
- Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China.,Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang 843300, P.R. China
| | - Yanju Xiang
- Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China.,Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang 843300, P.R. China
| | - Yu Zhang
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei 430075, P.R. China
| | - Muxing Tian
- Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China.,Xinjiang Production and Construction Corps Key Laboratory of Deep Processing of Agricultural Products in South Xinjiang, Alar, Xinjiang 843300, P.R. China
| | - Zhanjiang Han
- Department of Food Science, College of Life Sciences, Tarim University, Alar, Xinjiang 843300, P.R. China.,Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Alar, Xinjiang 843300, P.R. China
| |
Collapse
|
46
|
Lai R, Xian D, Xiong X, Yang L, Song J, Zhong J. Proanthocyanidins: novel treatment for psoriasis that reduces oxidative stress and modulates Th17 and Treg cells. Redox Rep 2018; 23:130-135. [PMID: 29630472 PMCID: PMC6748681 DOI: 10.1080/13510002.2018.1462027] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Psoriasis is a common, chronic, inflammatory skin disease that affects 2%-4% of the global population. Recent studies have shown that increased oxidative stress (OS) and T-cell abnormalities are central to the pathogenesis of this disease. The resulting reactive oxygen species (ROS) induces proliferation and differentiation of Th17/Th1/Th22 cells and inhibits the anti-inflammatory activities of regulatory T lymphocytes (Treg). Subsequent secretions of inflammatory cytokines, such as interleukin (IL)-17, IL-22, tumor necrosis factor alpha (TNF-α), and interferon-gamma (IFN-γ), and vascular endothelial growth factor (VEGF), stimulate keratinocyte proliferation and angiogenesis. Proanthocyanidins are a class of flavonoids from plants and fruits, and have various antioxidant, anti-inflammatory, and anti-angiogenic properties. Numerous reports have demonstrated therapeutic effects of proanthocyanidins for various diseases. Among clinical activities, proanthocyanidins suppress cell proliferation, prevent OS, and regulate Th17/Treg cells. Because the pathogenesis of psoriasis involves OS and T cells dysregulation, we reviewed the effects of proanthocyanidins on OS, Th17 and Treg cell activities, and keratinocyte proliferation and angiogenesis. Data from multiple previous studies warrant consideration of proanthocyanidins as a promising strategy for the treatment of psoriasis.
Collapse
Affiliation(s)
- Rui Lai
- Department of Dermatology, the Affiliated
Hospital of Southwest Medical University, Luzhou,
People's Republic of China
| | - Dehai Xian
- Department of Anatomy, Southwest Medical
University, Luzhou, People's Republic of
China
| | - Xia Xiong
- Department of Dermatology, the Affiliated
Hospital of Southwest Medical University, Luzhou,
People's Republic of China
| | - Lingyu Yang
- Department of Dermatology, the Affiliated
Hospital of Southwest Medical University, Luzhou,
People's Republic of China
| | - Jing Song
- Department of Dermatology, the Affiliated
Hospital of Southwest Medical University, Luzhou,
People's Republic of China
| | - Jianqiao Zhong
- Department of Dermatology, the Affiliated
Hospital of Southwest Medical University, Luzhou,
People's Republic of China
| |
Collapse
|
47
|
de Camargo AC, Schwember AR, Parada R, Garcia S, Maróstica MR, Franchin M, Regitano-d'Arce MAB, Shahidi F. Opinion on the Hurdles and Potential Health Benefits in Value-Added Use of Plant Food Processing By-Products as Sources of Phenolic Compounds. Int J Mol Sci 2018; 19:E3498. [PMID: 30404239 PMCID: PMC6275048 DOI: 10.3390/ijms19113498] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 12/23/2022] Open
Abstract
Plant foods, their products and processing by-products are well recognized as important sources of phenolic compounds. Recent studies in this field have demonstrated that food processing by-products are often richer sources of bioactive compounds as compared with their original feedstock. However, their final application as a source of nutraceuticals and bioactives requires addressing certain hurdles and challenges. This review discusses recent knowledge advances in the use of plant food processing by-products as sources of phenolic compounds with special attention to the role of genetics on the distribution and biosynthesis of plant phenolics, as well as their profiling and screening, potential health benefits, and safety issues. The potentialities in health improvement from food phenolics in animal models and in humans is well substantiated, however, considering the emerging market of plant food by-products as potential sources of phenolic bioactives, more research in humans is deemed necessary.
Collapse
Affiliation(s)
- Adriano Costa de Camargo
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| | - Andrés R Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Roberto Parada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Casilla 306-22, Santiago, Chile.
| | - Sandra Garcia
- Department of Food Science and Technology, Londrina State University, Londrina 86051-990, Parana State, Brazil.
| | - Mário Roberto Maróstica
- Department of Food and Nutrition, University of Campinas-UNICAMP, Campinas 13083-862, São Paulo State, Brazil.
| | - Marcelo Franchin
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, São Paulo State, Brazil.
| | - Marisa Aparecida Bismara Regitano-d'Arce
- Department of Agri-Food Industry, Food & Nutrition, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba 13418-900, São Paulo State, Brazil.
| | - Fereidoon Shahidi
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
48
|
Tabeshpour J, Mehri S, Shaebani Behbahani F, Hosseinzadeh H. Protective effects of Vitis vinifera
(grapes) and one of its biologically active constituents, resveratrol, against natural and chemical toxicities: A comprehensive review. Phytother Res 2018; 32:2164-2190. [DOI: 10.1002/ptr.6168] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 06/12/2018] [Accepted: 07/03/2018] [Indexed: 01/09/2023]
Affiliation(s)
- Jamshid Tabeshpour
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Student Research Committee; Mashhad University of Medical Sciences; Mashhad Iran
| | - Soghra Mehri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
- Neurocognitive Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| | - Fatemeh Shaebani Behbahani
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy; Mashhad University of Medical Sciences; Mashhad Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
49
|
Ren D, Wang P, Liu C, Wang J, Liu X, Liu J, Min W. Hazelnut protein-derived peptide LDAPGHR shows anti-inflammatory activity on LPS-induced RAW264.7 macrophage. J Funct Foods 2018. [DOI: 10.1016/j.jff.2018.04.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
50
|
Proanthocyanidins prevent ethanol-induced cognitive impairment by suppressing oxidative and inflammatory stress in adult rat brain. Neuroreport 2018; 28:980-986. [PMID: 28877101 DOI: 10.1097/wnr.0000000000000867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Excessive chronic alcohol consumption enhances brain oxidative and inflammatory stress, resulting in cognitive deficit. This study investigated the potential alleviating effects of proanthocyanidins (PACs) on ethanol-induced cognitive impairment and stress in brain regions including the prefrontal cortex, hippocampus, and amygdala. Adult male rats were administered saline, PACs, ethanol, or combinations of ethanol with different doses of PACs for 8 weeks. Then, the Morris water-maze test was performed. Thiobarbituric acid-reactive substances, superoxide dismutase activity, total antioxidant capacity, and nitric oxide were chosen as parameters of oxidative stress, whereas tumor necrosis factor-α and interleukin-1β chosen as parameters of inflammatory stress. The results indicated that ethanol led to cognitive impairment along with enhanced oxidative and inflammatory stress in brain regions, whereas PACs per se had no significant effects. Moreover, coadministration with PACs in ethanol-treated rats dose dependently rescued cognitive impairment accompanied by suppressed oxidative and inflammatory stress in brain regions. Thus, the protective effects of PACs on ethanol-induced cognitive impairments may be because of their antioxidant and anti-inflammatory activities.
Collapse
|