1
|
Li P, Liu B, He SW, Liu L, Li ZH. Transgenerational neurotoxic effects of triphenyltin on marine medaka: Impaired dopaminergic system function. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125456. [PMID: 39631653 DOI: 10.1016/j.envpol.2024.125456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/11/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Triphenyltin (TPT), a widely used environmental contaminant in antifouling paints, is known for its neurotoxic effects. To investigate the multigenerational impacts of long-term exposure (6 weeks) to environmental concentrations of TPT (100 ng/L) on either parent, we performed mixed mating between control and exposed groups (males or females). Although there was no direct contact with TPT in the subsequent generations, both the first and second generations displayed behavioral abnormalities, including reduced activity and impaired cognitive function, with pronounced gender differences and anxiety-like behaviors. Females were more susceptible than males, displaying a significantly increased time spent in the mirror-proximal zone in both F1 and F2 generations. Additionally, F0 females exhibited a marked reduction in the time spent in the bright area, further supporting the role of sex differences in behavioral responses. Notably, the maternal contribution of marine medaka (Oryzias melastigma) played a more significant role in the inheritance of TPT-induced cognitive deficits. A reduction in DA levels and AChE activity was observed across generations, regardless of gender, underscoring the critical role of DA-AChE balance in maintaining cognitive function. Additionally, gender differences and the hereditary effects of TPT exposure on anxiety-like behaviors were strongly associated with the transcriptional regulation of pparγ and gst. Impaired transcription of key genes in the dopaminergic system resulted in reduced DA levels, with the intergenerational transmission of mao being closely linked to behavioral impairments. In summary, TPT-induced neurotoxicity presents both hereditary effects and gender-specific differences, emphasizing the maternal influence in the inheritance of cognitive abilities and shedding light on the genetic impact of parental exposure.
Collapse
Affiliation(s)
- Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Bin Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Shu-Wen He
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
2
|
Zhao S, Ling Y, Zhang B, Wang D, Sun L. Integrated multi-omics analysis reveals the underlying molecular mechanism for the neurotoxicity of triclosan in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 290:117537. [PMID: 39671762 DOI: 10.1016/j.ecoenv.2024.117537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 11/25/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Triclosan (TCS) is a primary broad-spectrum antibacterial agent commonly present in the environment. As a new type of environmental endocrine disruptor, it causes range of toxicities, including hepatotoxicity and reproductive toxicity. However, few research has examined the toxicity of long-term TCS-induced exposure in zebrafish at ambient concentrations, in contrast to the early life stage investigations. In the present study, we investigated the behavioral effects of TCS at environmental concentrations (300 μg/L) during constant exposure in zebrafish adults;An integrated transcriptomic and metabolomic analysis was performed to analyze the molecular mechanism underlying behavioral effects of TCS. Our results show that TCS exposure significantly induces behavioral disruptions such as anxiety-like behavior, memory problems, and altered social preferences. Histopathological investigations and neural ultrastructural observations demonstrated that TCS could induce variable levels of pyknosis and vacuolation in the cytoplasm of neurons as well as torn mitochondrial membranes, shrinkage and broken or absent cristae. Transcriptomics indicated that immune- and metabolism-related gene expression patterns were severely disturbed by TCS. Metabolomic analysis revealed 82 distinct metabolites in adult zebrafish exposed to TCS. Lipid metabolism, especially glycerophospholipid metabolism, and amino acid regulation pathways were co-enriched by multi-omics combinatorial analysis. Hence, this study highlights a number of biomarkers for the risk assessment of TCS against non-target organisms, offering a reference dataset for the behavioral toxicity of TCS to zebrafish, and strengthening the early warning, management, and control of TCS pollution.
Collapse
Affiliation(s)
- Shasha Zhao
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Yuhang Ling
- First Affiliated Hospital of Huzhou University, Huzhou, Zhejiang 313000, China
| | - Baohua Zhang
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China
| | - Danting Wang
- Department of Transfusion, The West China Hospital, Sichuan University, 37 Guoxue Lane, Wuhou District, Chengdu 610041, China.
| | - Limei Sun
- Department of Clinical Laboratory, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang L, Liu J, Gui W, Zhang R, Li X, Fang L, Li H, Pan D, Ye W. Molecular interaction mechanisms on (-)-epigallocatechin-3-gallate improving activities of inhibited acetylcholinesterase by selected organophosphorus pesticides in vitro & vivo. Sci Rep 2024; 14:22296. [PMID: 39333189 PMCID: PMC11436701 DOI: 10.1038/s41598-024-72637-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 09/09/2024] [Indexed: 09/29/2024] Open
Abstract
(-)-Epigallocatechin-3-gallate (EGCG) is reported to have benefits for the treatment of Alzheimer's disease by binding with acetylcholinesterase (AChE) to enhance the cholinergic neurotransmission. Organophosphorus pesticides (OPs) inhibited AChE and damaged the nervous system. This study investigated the combined effects of EGCG and OPs on AChE activities in vitro & vivo. The results indicated that EGCG significantly reversed the inhibition of AChE caused by OPs. In vitro, EGCG reactived AChE in three group tubes incubated for 110 min, and in vivo, it increased the relative activities of AChE from less than 20% to over 70% in brain and vertebral of zebrafish during the exposure of 34 h. The study also proposed the molecular interaction mechanisms through the reactive kinetics and computational analyses of density functional theory, molecular docking, and dynamic modeling. These analyses suggested that EGCG occupied the key residues, preventing OPs from binding to the catalytic center of AChE, and interfering with the initial affinity of OPs to the central active site. Hydrogen bonding, conjugation, and steric interactions were identified as playing important roles in the molecular interactions. The work suggests that EGCG antagonized the inhibitions of OPs on AChE activities and potentially offered the neuroprotection against the induced damage.
Collapse
Affiliation(s)
- Lijun Wang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Jian Liu
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenqian Gui
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Rong Zhang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China.
| | - Xinmei Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Liancheng Fang
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Hui Li
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Dandan Pan
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| | - Wenling Ye
- School of Resources and Environment, Anhui Agricultural University, No. 130 West Changjiang Road, Hefei, 230036, China
| |
Collapse
|
4
|
Cui H, Shu C, Peng Y, Wei Z, Ni X, Zheng L, Shang J, Liu F, Liu J. Long-life triclosan exposure induces ADHD-like behavior in rats via prefrontal cortex dopaminergic deficiency. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116766. [PMID: 39047361 DOI: 10.1016/j.ecoenv.2024.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
In recent years, exposure to triclosan (TCS) has been linked to an increase in psychiatric disorders. Nonetheless, the precise mechanisms of this occurrence remain elusive. Therefore, this study developed a long-life TCS-exposed rat model, an SH-SY5Y cell model, and an atomoxetine hydrochloride (ATX) treatment model to explore and validate the neurobehavioral mechanisms of TCS from multiple perspectives. In the long-life TCS-exposed model, pregnant rats received either 0 mg/kg (control) or 50 mg/kg TCS by oral gavage throughout pregnancy, lactation, and weaning of their offspring (up to 8 weeks old). In the ATX treatment model, weanling rats received daily injections of either 0 mg/kg (control) or 3 mg/kg ATX via intraperitoneal injection until they reached 8 weeks old. Unlike the TCS model, ATX exposure only occurred after the pups were weaned. The results indicated that long-life TCS exposure led to attention-deficit hyperactivity disorder (ADHD)-like behaviors in male offspring rats accompanied by dopamine-related mRNA and protein expression imbalances in the prefrontal cortex (PFC). Moreover, in vitro experiments also confirmed these findings. Mechanistically, TCS reduced dopamine (DA) synthesis, release, and transmission, and increased reuptake in PFC, thereby reducing synaptic gap DA levels and causing dopaminergic deficits. Additional experiments revealed that increased DA concentration in PFC by ATX effectively alleviated TCS-induced ADHD-like behavior in male offspring rats. These findings suggest that long-life TCS exposure causes ADHD-like behavior in male offspring rats through dopaminergic deficits. Furthermore, ATX treatment not only reduce symptoms in the rats, but also reveals valuable insights into the neurotoxic mechanisms induced by TCS.
Collapse
Affiliation(s)
- He Cui
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Chang Shu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Yuxuan Peng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Ziyun Wei
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Xiao Ni
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Linlin Zheng
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jianing Shang
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Fu Liu
- Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jieyu Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Health Laboratory Technology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
5
|
Sanchez-Aceves LM, Pérez-Alvarez I, Onofre-Camarena DB, Gutiérrez-Noya VM, Rosales-Pérez KE, Orozco-Hernández JM, Hernández-Navarro MD, Flores HI, Gómez-Olivan LM. Prolonged exposure to the synthetic glucocorticoid dexamethasone induces brain damage via oxidative stress and apoptotic response in adult Daniorerio. CHEMOSPHERE 2024; 364:143012. [PMID: 39103101 DOI: 10.1016/j.chemosphere.2024.143012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/11/2024] [Accepted: 08/02/2024] [Indexed: 08/07/2024]
Abstract
Due to its extensive use as a painkiller, anti-inflammatory, and immune modulatory agent, as well as its effectiveness in treating severe COVID-19, dexamethasone, a synthetic glucocorticoid, has gained attention not only for its impact on public health but also for its environmental implications. Various studies have reported its presence in aquatic environments, including urban waters, surface samples, sediments, drinking water, and wastewater effluents. However, limited information is available regarding its toxic effects on nontarget aquatic organisms. Therefore, this study aimed to investigate the mechanism of toxicity underlying dexamethasone-induced brain damage in the bioindicator Danio rerio following long-term exposure. Adult zebrafish were treated with environmentally relevant concentrations of dexamethasone (20, 40, and 60 ng L-1) for 28 days. To elucidate the possible mechanisms involved in the toxicity of the pharmaceutical compound, we conducted a behavioral test battery (Novel Tank and Light and Dark tests), oxidative stress biomarkers, acetylcholinesterase enzyme activity quantification, histopathological analysis, and gene expression analysis using qRT-PCR (p53, bcl-2, bax, caspase-3, nrf1, and nrf2).The results revealed that the pharmaceutical compound could produce anxiety-like symptoms, increase the oxidative-induced stress response, decrease the activity of acetylcholinesterase enzyme, and cause histopathological alterations, including perineuronal vacuolization, granular and molecular layers deterioration, cell swallowing and intracellular spaces. The expression of genes involved in the apoptotic process (p53, bax, and casp-3) and antioxidant defense (nrf1 and nrf2) was upregulated in response to oxidative damage, while the expression of the anti-apoptotic gene bcl-2 was down-regulated indicating that the environmental presence of dexamethasone may pose a threat to wildlife and human health.
Collapse
Affiliation(s)
- Livier M Sanchez-Aceves
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Itzayana Pérez-Alvarez
- Facultad de Medicina, Universidad Autónoma del Estado de México. Paseo Tollocan /Jesús Carranza s/n. Toluca, 50120, Toluca, Estado de México, Mexico
| | - Diana Belén Onofre-Camarena
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Verónica Margarita Gutiérrez-Noya
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - María Dolores Hernández-Navarro
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Hariz Islas Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Olivan
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan s/n, Col. Residencial Colón, 50120, Toluca, Estado de México, Mexico.
| |
Collapse
|
6
|
Kumar G, Kumar S, Paul T, Pal P, Shukla SP, Kumar K, Jha AK, Pradeep S. Ecotoxicological risk assessment of triclosan, an emerging pollutant in a riverine and estuarine ecosystems: A comparative study. MARINE POLLUTION BULLETIN 2024; 205:116667. [PMID: 38972216 DOI: 10.1016/j.marpolbul.2024.116667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/09/2024]
Abstract
Triclosan (TCS), an antibacterial biocide, pervades water and sediment matrices globally, posing a threat to aquatic life. In densely populated cities like Mumbai, rivers and coastal bodies demand baseline TCS data for ecotoxicological assessment due to the excessive use of personal care products comprising TCS. This pioneering study compares spatiotemporal TCS variations and risks in freshwater and marine ecosystems employing multivariate analysis of physicochemical parameters. Over five months (January to May 2022), Mithi River exhibited higher TCS concentrations (water: 1.68 μg/L, sediment: 3.19 μg/kg) than Versova Creek (water: 0.49 μg/L, sediment: 0.69 μg/kg). Principal component analysis revealed positive correlations between TCS and physicochemical parameters. High-risk quotients (>1) underscore TCS threats in both water bodies. This study furnishes crucial baseline data, emphasizing the need for effective treatment plans for TCS in effluent waters released into the adjacent aquatic systems.
Collapse
Affiliation(s)
- Ganesh Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India.
| | - Tapas Paul
- College of Fisheries, Bihar Animal Sciences University, Kishanganj, Bihar 855107, India
| | - Prasenjit Pal
- College of Fisheries, Central Agricultural University (I), Lembucherra, Tripura 799210, India
| | - Satya Prakash Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| | - Ashish Kumar Jha
- ICAR-Central Institute of Fisheries Technology, Veraval Research Centre, Gujarat 362265, India
| | - Shilpa Pradeep
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra 400061, India
| |
Collapse
|
7
|
Schenk S, Horsfield JA, Dwoskin L, Johnson SL. Methamphetamine effects in zebrafish (Danio rerio) depend on behavioral endpoint, dose and test session duration. Pharmacol Biochem Behav 2024; 240:173777. [PMID: 38670467 DOI: 10.1016/j.pbb.2024.173777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 04/28/2024]
Abstract
Research using zebrafish (Danio rerio) has begun to provide novel information in many fields, including the behavioral pharmacology of drug use and misuse. There have been limited studies on the effects of methamphetamine in adult zebrafish and the parameters of exposure (dose, test session length) have not been well-documented. Behavior following drug exposure is generally measured during relatively short sessions (6-10 min is common) in a novel tank environment. Many procedural variables (isolation, netting, novel tank) elicit anxiety-like behavior that is most apparent during the initial portion of a test session. This anxiety-like behavior might mask the initial effects of methamphetamine. During longer test sessions, these anxiety-like responses would be expected to habituate and drug effects should become more apparent. To test this idea, we measured several locomotor activity responses for 50-min following a range of methamphetamine doses (0.1-3.0 mg/L via immersion in methamphetamine solution). Methamphetamine failed to alter swimming velocity, distance travelled, or freezing time. In contrast, methamphetamine produced a dose-dependent decrease in time spent in the bottom of the tank, an increase in the number of visits to the top of the tank, and an increase in the number of transitions along the sides of the tank. The effects of methamphetamine were apparent 10-20 min following exposure and generally persisted throughout the session. These findings indicate that longer test sessions are required to measure methamphetamine-induced changes in behavior in zebrafish, as has been shown in other laboratory animals. The results also suggest that anxiety-like responses associated with various procedural aspects (netting, isolation, novel test apparatus) likely interfere with the ability to observe many behavioral effects of methamphetamine in zebrafish. Based on the current results, habituation to testing procedures to reduce anxiety-like behaviors is recommended in determining the effects of methamphetamine in zebrafish.
Collapse
Affiliation(s)
- Susan Schenk
- Department of Zoology, University of Otago, Dunedin, New Zealand
| | | | - Linda Dwoskin
- Department of Pharmaceutical Sciences, University of Kentucky, Lexington, KY, USA
| | - Sheri L Johnson
- Department of Zoology, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
8
|
Birgersson L, Odenlund S, Sturve J. Effects of Environmental Enrichment on Exposure to Human-Relevant Mixtures of Endocrine Disrupting Chemicals in Zebrafish. Animals (Basel) 2024; 14:1296. [PMID: 38731300 PMCID: PMC11083384 DOI: 10.3390/ani14091296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/27/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024] Open
Abstract
Fish models used for chemical exposure in toxicological studies are normally kept in barren tanks without any structural environmental enrichment. Here, we tested the combined effects of environmental enrichment and exposure to two mixtures of endocrine disrupting chemicals (EDCs) in zebrafish. Firstly, we assessed whether developmental exposure to an EDC mixture (MIX G1) combined with rearing the fish in an enriched environment influenced behaviour later in life. This was evaluated using locomotion tracking one month after exposure, showing a significant interaction effect between enrichment and the MIX G1 exposure on the measured locomotion parameters. After three months, we assessed behaviour using custom-made behaviour tanks, and found that enrichment influenced swimming activity. Control fish from the enriched environment were more active than control fish from the barren environment. Secondly, we exposed adult zebrafish to a separate EDC mixture (MIX G0) after rearing them in a barren or enriched environment. Behaviour and hepatic mRNA expression for thyroid-related genes were assessed. There was a significant interaction effect between exposure and enrichment on swimming activity and an effect of environment on latency to approach the group of conspecifics, where enriched fish took more time to approach the group, possibly indicating that they were less anxious. Hepatic gene expression of a thyroid-related gene (thrb) was significantly affected by EDC exposure, while enrichment had no discernible impact on the expression of the measured genes. In conclusion, environmental enrichment is important to consider when studying the effects of EDCs in fish.
Collapse
Affiliation(s)
| | | | - Joachim Sturve
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, SE-405 30 Gothenburg, Sweden; (L.B.); (S.O.)
| |
Collapse
|
9
|
Sousa B, Domingues I, Nunes B. Biological responses in Danio rerio by the disinfectant SDBS in SARS-CoV-2 pandemic. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104431. [PMID: 38554987 DOI: 10.1016/j.etap.2024.104431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/20/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The use of disinfectants, such as Sodium Dodecylbenzene Sulfonic acid salt (SDBS), has grown since the SARS-CoV-2 pandemic, with environmentally unknown consequences. The present study analyzed SDBS effects in the fish species Danio rerio, using a combination of biomarkers. Our data reported that larvae had their total locomotor activity increased when exposed to 1 mg/L of SDBS, but this parameter was decreased in fish exposed to 5 mg/L. A significant increment of erratic movements was reported in fish exposed to 1 and 5 mg/L of SDBS. These concentrations inhibited CYP1A1/CYP1A2, and of GSTs inhibition, suggesting SDBS is not preferentially biotransformed by these routes. Results concerning the antioxidant defense biomarkers (CAT and GPx) showed no straightforward pattern, suggesting SDBS exposure may have resulted in changes in redox balance. Finally, acetylcholinesterase activity increased. In summary, increased use of SDBS in a near future may result in deleterious effects in environmentally exposed fish.
Collapse
Affiliation(s)
- Beatriz Sousa
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Inês Domingues
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal
| | - Bruno Nunes
- Centro de Estudos do Ambiente e do Mar (CESAM), Universidade de Aveiro, Campus Universitário, Aveiro 3810-193, Portugal; Departamento de Biologia, Universidade de Aveiro, Campus Universitário de Santiago, Aveiro 3810-193, Portugal.
| |
Collapse
|
10
|
Yoon HS, Hyun KT, Hong S, Park S, Han E, Baek HW, Lee YK, Lim KH, Rah YC, Choi J. Exploring Embryo-Ototoxic Effects: Insights into Deodorant-Induced Hair Cell Damage in Zebrafish. Int J Mol Sci 2024; 25:948. [PMID: 38256022 PMCID: PMC10815967 DOI: 10.3390/ijms25020948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/06/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Our study investigated the embryo-ototoxic effects of deodorant2 (DA2) on zebrafish embryos, which serve as valuable model organisms due to genetic and physiological similarities to humans. We focused on understanding DA2's impact on zebrafish hair cells, which are vital for sensory perception and balance regulation. DA2, provided by the Ministry of Environment, Republic of Korea, was used at 460 μg/mL in dimethyl sulfoxide (DMSO), with a 0.43% DMSO solvent control group. Three experiments, each using 10 zebrafish specimens from each group, showed an initial 13% hair cell count reduction in the DA2-exposed group. Subsequent experiments demonstrated reductions of 37% and 22%, each with one mortality case. Statistical analysis revealed a significant 24% hair cell count reduction in the DA2-exposed group. We also assessed DA2's impact on zebrafish behavior. Although not statistically significant, differences in distances traveled (0.33-0.39, 95% confidence interval: -0.46-1.1, p = 0.2033) and latencies (-0.016-0.018, 95% confidence interval: -0.052-0.021, p = 0.1917) hinted at negative effects. These results highlight DA2's ototoxic properties affecting zebrafish auditory systems and behavior. Further investigation into DA2's effects on aquatic organisms and potential mitigation strategies are essential. These findings contribute to understanding DA2's safety profile, benefiting aquatic ecosystems and human health assessments.
Collapse
Affiliation(s)
- Hee Soo Yoon
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Kyung Tae Hyun
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Sumin Hong
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Saemi Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Eunjung Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Hyun woo Baek
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Yun Kyoung Lee
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
- Biomedical Research Center, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea
| | - Kang Hyeon Lim
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - Yoon Chan Rah
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
| | - June Choi
- Department of Otorhinolaryngology-Head and Neck Surgery, Korea University College of Medicine, Ansan Hospital, Ansan 15355, Republic of Korea; (H.S.Y.); (K.T.H.); (S.H.); (S.P.); (E.H.); (H.w.B.); (Y.K.L.); (K.H.L.); (Y.C.R.)
- Zebrafish Translational Medical Research Center, Korea University, Ansan 15355, Republic of Korea
| |
Collapse
|
11
|
Colín-García K, Elizalde-Velázquez GA, Gómez-Oliván LM, García-Medina S. Influence of sucralose, acesulfame-k, and their mixture on brain's fish: A study of behavior, oxidative damage, and acetylcholinesterase activity in Daniorerio. CHEMOSPHERE 2023; 340:139928. [PMID: 37625490 DOI: 10.1016/j.chemosphere.2023.139928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Sucralose (SUC) and acesulfame-k (ACE-K) are widely used artificial sweeteners worldwide; however, they are frequently detected in aquatic environments due to their low metabolism and inadequate removal during wastewater treatment. The harmful effects of these compounds on hydrobionts have yet to be fully understood, as data on their toxicity is limited and inconclusive. This research aimed to determine the impact of SUC (50, 75, 125 μg/L) and ACE-K (50, 75, 125 μg/L), individually and in combination, on fish's swimming behavior, acetylcholinesterase activity, and oxidative stress response after four months of exposure. Following exposure, adult Danio rerio displayed anxiety-like behavior, as evidenced by increased freezing time and decreased swimming activity. Additionally, analysis of fish brain tissue revealed a disruption of REDOX homeostasis, leading to oxidative stress, which may be responsible for the observed inhibition of AChE activity. The results indicated that ACE-K was more toxic than SUC, and the mixture of both compounds produced a more detrimental effect than when each compound was administered alone. These findings highlight the hazardous impacts of SUC and ACE-K on fish in environmentally relevant concentrations, suggesting that these compounds should be added to the priority pollutant list.
Collapse
Affiliation(s)
- Karla Colín-García
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma Del Estado de México, Paseo Colón Intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120, Toluca, Estado de México, Mexico.
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu S/n y Cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP, 07700, Mexico
| |
Collapse
|
12
|
Ferreira RC, do Nascimento YM, de Araújo Loureiro PB, Martins RX, de Souza Maia ME, Farias DF, Tavares JF, Gonçalves JCR, da Silva MS, Sobral MV. Chemical Composition, In Vitro Antitumor Effect, and Toxicity in Zebrafish of the Essential Oil from Conyza bonariensis (L.) Cronquist (Asteraceae). Biomolecules 2023; 13:1439. [PMID: 37892120 PMCID: PMC10604947 DOI: 10.3390/biom13101439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 10/29/2023] Open
Abstract
The essential oil from Conyza bonariensis (Asteraceae) aerial parts (CBEO) was extracted by hydrodistillation in a Clevenger-type apparatus and was characterized by gas chromatography-mass spectrometry. The antitumor potential was evaluated against human tumor cell lines (melanoma, cervical, colorectal, and leukemias), as well as non-tumor keratinocyte lines using the MTT assay. The effect of CBEO on the production of Reactive Oxygen Species (ROS) was evaluated by DCFH-DA assay, and a protection assay using the antioxidant N-acetyl-L-cysteine (NAC) was also performed. Moreover, the CBEO toxicity in the zebrafish model was assessed. The majority of the CBEO compound was (Z)-2-lachnophyllum ester (57.24%). The CBEO exhibited selectivity towards SK-MEL-28 melanoma cells (half maximal inhibitory concentration, IC50 = 18.65 ± 1.16 µg/mL), and induced a significant increase in ROS production. In addition, the CBEO's cytotoxicity against SK-MEL-28 cells was reduced after pretreatment with NAC. Furthermore, after 96 h of exposure, 1.5 µg/mL CBEO induced death of all zebrafish embryos. Non-lethal effects were observed after exposure to 0.50-1.25 µg/mL CBEO. Additionally, significant alterations in the activity of enzymes associated with oxidative stress in zebrafish larvae were observed. These results provide evidence that CBEO has a significant in vitro antimelanoma effect by increasing ROS production and moderate embryotoxicity in zebrafish.
Collapse
Affiliation(s)
- Rafael Carlos Ferreira
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Yuri Mangueira do Nascimento
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Paulo Bruno de Araújo Loureiro
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Rafael Xavier Martins
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Maria Eduarda de Souza Maia
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Davi Felipe Farias
- Laboratory of Risk Assessment for Novel Technologies (LabRisk), Department of Molecular Biology, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Josean Fechine Tavares
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Juan Carlos Ramos Gonçalves
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marcelo Sobral da Silva
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| | - Marianna Vieira Sobral
- Postgraduate Program in Natural Products and Bioactive Synthetics, Federal University of Paraíba, João Pessoa 58051-970, PB, Brazil
| |
Collapse
|
13
|
Stachurski P, Świątkowski W, Ciszewski A, Sarna-Boś K, Michalak A. A Short Review of the Toxicity of Dentifrices-Zebrafish Model as a Useful Tool in Ecotoxicological Studies. Int J Mol Sci 2023; 24:14339. [PMID: 37762640 PMCID: PMC10531698 DOI: 10.3390/ijms241814339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
This review aims to summarize the literature data regarding the effects of different toothpaste compounds in the zebrafish model. Danio rerio provides an insight into the mechanisms of the ecotoxicity of chemicals as well as an assessment of their fate in the environment to determine long-term environmental impact. The regular use of adequate toothpaste with safe active ingredients possessing anti-bacterial, anti-inflammatory, anti-oxidant, and regenerative properties is one of the most effective strategies for oral healthcare. In addition to water, a typical toothpaste consists of a variety of components, among which three are of predominant importance, i.e., abrasive substances, fluoride, and detergents. These ingredients provide healthy teeth, but their environmental impact on living organisms are often not well-known. Each of them can influence a higher level of organization: subcellular, cellular, tissue, organ, individual, and population. Therefore, it is very important that the properties of a chemical are detected before it is released into the environment to minimize damage. An important part of a chemical risk assessment is the estimation of the ecotoxicity of a compound. The zebrafish model has unique advantages in environmental ecotoxicity research and has been used to study vertebrate developmental biology. Among others, the advantages of this model include its external, visually accessible development, which allows for providing many experimental manipulations. The zebrafish has a significant genetic similarity with other vertebrates. Nevertheless, translating findings from zebrafish studies to human risk assessment requires careful consideration of these differences.
Collapse
Affiliation(s)
- Piotr Stachurski
- Department of Paediatric Dentistry, Medical University of Lublin, 20-059 Lublin, Poland
| | - Wojciech Świątkowski
- Department of Oral Surgery, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Andrzej Ciszewski
- Department of Paediatric Orthopaedics and Rehabilitation, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Katarzyna Sarna-Boś
- Department of Dental Prosthetics, Medical University of Lublin, 20-059 Lublin, Poland;
| | - Agnieszka Michalak
- Independent Laboratory of Behavioral Studies, Medical University of Lublin, 20-059 Lublin, Poland;
| |
Collapse
|
14
|
Luz TMD, Guimarães ATB, Matos SGDS, de Souza SS, Gomes AR, Rodrigues ASDL, Durigon EL, Charlie-Silva I, Freitas ÍN, Islam ARMT, Rahman MM, Silva AM, Malafaia G. Exposure of adult zebrafish (Danio rerio) to SARS-CoV-2 at predicted environmentally relevant concentrations: Outspreading warns about ecotoxicological risks to freshwater fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163269. [PMID: 37028679 PMCID: PMC10076041 DOI: 10.1016/j.scitotenv.2023.163269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/30/2023] [Accepted: 03/31/2023] [Indexed: 04/15/2023]
Abstract
While the multifaceted social, economic, and public health impacts associated with the COVID-19 pandemic are known, little is known about its effects on non-target aquatic ecosystems and organisms. Thus, we aimed to evaluate the potential ecotoxicity of SARS-CoV-2 lysate protein (SARS.CoV2/SP02.2020.HIAE.Br) in adult zebrafish (Danio rerio) at predicted environmentally relevant concentrations (0.742 and 2.226 pg/L), by 30 days. Although our data did not show locomotor alterations or anxiety-like or/and anxiolytic-like behavior, we noticed that exposure to SARS-CoV-2 negatively affected habituation memory and social aggregation of animals in response to a potential aquatic predator (Geophagus brasiliensis). An increased frequency of erythrocyte nuclear abnormalities was also observed in animals exposed to SARS-CoV-2. Furthermore, our data suggest that such changes were associated with a redox imbalance [↑ROS (reactive oxygen species), ↑H2O2 (hydrogen peroxide), ↓SOD (superoxide dismutase), and ↓CAT (catalase)], cholinesterasic effect [↑AChE (acetylcholinesterase) activity], as well as the induction of an inflammatory immune response [↑NO (nitric oxide), ↑IFN-γ (interferon-gamma), and ↓IL-10 (interleukin-10)]. For some biomarkers, we noticed that the response of the animals to the treatments was not concentration-dependent. However, principal component analysis (PCA) and the "Integrated Biomarker Response" index (IBRv2) indicated a more prominent ecotoxicity of SARS-CoV-2 at 2.226 pg/L. Therefore, our study advances knowledge about the ecotoxicological potential of SARS-CoV-2 and reinforces the presumption that the COVID-19 pandemic has negative implications beyond its economic, social, and public health impacts.
Collapse
Affiliation(s)
- Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | | | - Sindoval Silva de Souza
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) - Campus Araraquara, Brazil
| | - Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Abner Marcelino Silva
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
15
|
Cao X, Fu M, Du Q, Chang Z. Developmental toxicity of black phosphorus quantum dots in zebrafish (Danio rerio) embryos. CHEMOSPHERE 2023:139029. [PMID: 37244547 DOI: 10.1016/j.chemosphere.2023.139029] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Nanomaterials have attracted much attention in the biomedical field. Black phosphorus quantum dots (BPQDs) have shown great potential in biomedical applications, but their potential risks to biosafety and environmental stability have not been fully evaluated. In the present study, zebrafish (Danio rerio) embryos were exposed to 0, 2.5, 5 and 10 mg/L BPQDs from 2 to 144 h post-fertilization (hpf) to explore developmental toxicity. The results showed that exposure to BPQDs for 96 h induced developmental malformations (tail deformation, yolk sac edema, pericardial edema, and spinal curvature) in zebrafish embryos. ROS and antioxidant enzyme activities (CAT, SOD, MDA and T-AOC) were substantially altered and the acetylcholinesterase (AChE) enzyme activity was significantly decreased in the BPQDs exposed groups. Locomotor behavior was inhibited after BPQDs exposure for 144 h in zebrafish larvae. A significant increase in 8-OHdG content indicates DNA oxidative damage in embryos. In addition, obvious apoptotic fluorescence signals were detected in the brain, spine, yolk sac and heart. At the molecular level, the mRNA transcript levels of key genes related to skeletal development (igf1, gh, MyoD and LOX), neurodevelopment (gfap, pomca, bdnf and Mbpa), cardiovascular development (Myh6, Nkx2.5, Myl7, Tbx2b, Tbx5 and Gata4) and apoptosis (p53, Bax, Bcl-2, apaf1, caspase-3 and caspase-9) were abnormal after BPQDs exposure. In conclusion, BPQDs induced morphological malformations, oxidative stress, locomotor behavior disorders, DNA oxidative damage and apoptosis in zebrafish embryos. This study provides a basis for further study on the toxic effects of BPQDs.
Collapse
Affiliation(s)
- Xiaonan Cao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Mengxiao Fu
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Qiyan Du
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China
| | - Zhongjie Chang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
16
|
Ferreira RDO, Guimarães ATB, Luz TMD, Rodrigues ASDL, Islam ARMT, Rahman MM, Ragavendran C, Kamaraj C, Charlie-Silva I, Durigon EL, Braz HLB, Arias AH, Santiago OC, Barceló D, Malafaia G. First report on the toxicity of SARS-CoV-2, alone and in combination with polyethylene microplastics in neotropical fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163617. [PMID: 37088384 PMCID: PMC10122543 DOI: 10.1016/j.scitotenv.2023.163617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/10/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
The COVID-19 pandemic has caused unprecedented negative impacts in the modern era, including economic, social, and public health losses. On the other hand, the potential effects that the input of SARS-CoV-2 in the aquatic environment from sewage may represent on non-target organisms are not well known. In addition, it is not yet known whether the association of SARS-CoV-2 with other pollutants, such as microplastics (MPs), may further impact the aquatic biota. Thus, we aimed to evaluate the possible ecotoxicological effects of exposure of male adults Poecilia reticulata, for 15 days, to inactivated SARS-CoV-2 (0.742 pg/L; isolated SARS.CoV2/SP02.2020.HIAE.Br) and polyethylene MP (PE MPs) (7.1 × 104 particles/L), alone and in combination, from multiple biomarkers. Our data suggest that exposure to SARS-CoV-2 induced behavioral changes (in the open field test), nephrotoxic effect (inferred by the increase in creatinine), hepatotoxic effect (inferred by the increase in bilirubin production), imbalance in the homeostasis of Fe, Ca, and Mg, as well as an anticholinesterase effect in the animals [marked by the reduction of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity]. On the other hand, exposure to PE MPs induced a genotoxic effect (assessed by the comet assay), as well as an increase in enzyme activity alpha-amylase, alkaline phosphatase, and carboxylesterases. However, we did not show synergistic, antagonistic, or additive effects caused by the combined exposure of P. reticulata to SARS-CoV-2 and PE MPs. Principal component analysis (PCA) and values from the "Integrated Biomarker Response" index indicate that exposure to SARS-CoV-2 was determinant for a more prominent effect in the evaluated animals. Therefore, our study sheds light on the ecotoxicity of the new coronavirus in non-target organisms and ratifies the need for more attention to the impacts of COVID-19 on aquatic biota.
Collapse
Affiliation(s)
- Raíssa de Oliveira Ferreira
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Water and Soil Quality Research Group, Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), JordiGirona 1826, 08034 Barcelona, Spain
| | | | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | - Aline Sueli de Lima Rodrigues
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Ives Charlie-Silva
- Chemistry Institute, São Paulo State University (UNESP) Campus Araraquara, Brazil
| | - Edison Luiz Durigon
- Laboratory of Clinical and Molecular Virology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | - Andrés Hugo Arias
- National University of the South Bahía Blanca, CONICET Instituto Argentino de Oceanografía (IADO), Argentina
| | - Omar Cruz Santiago
- Multidisciplinary Postgraduate Program for Environmental Sciences, Universidad Autónoma de San Luis Potosí, Mexico
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA-CERCA), H2O Building, Scientific and Technological Park of the University of Girona, Emili Grahit 101, 17003 Girona, Spain
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Brazilian Academy of Young Scientists (ABJC), Brazil.
| |
Collapse
|
17
|
Jijie R, Paduraru E, Simionov IA, Faggio C, Ciobica A, Nicoara M. Effects of Single and Combined Ciprofloxacin and Lead Treatments on Zebrafish Behavior, Oxidative Stress, and Elements Content. Int J Mol Sci 2023; 24:4952. [PMID: 36902383 PMCID: PMC10003324 DOI: 10.3390/ijms24054952] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/10/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023] Open
Abstract
Even though the toxic effects of antibiotics and heavy metals have been extensively studied in the last decades, their combined adverse impact on aquatic organisms is poorly understood. Therefore, the objective of this study was to assess the acute effects of a ciprofloxacin (Cipro) and lead (Pb) mixture on the 3D swimming behavior, acetylcholinesterase (AChE) activity, lipid peroxidation level (MDA-malondialdehyde), activity of some oxidative stress markers (SOD-superoxide dismutase and GPx-glutathione peroxidase), and the essential elements content (Cu-copper, Zn-zinc, Fe-iron, Ca-calcium, Mg-magnesium, Na-sodium and K-potassium) in the body of zebrafish (Danio rerio). For this purpose, zebrafish were exposed to environmentally relevant concentrations of Cipro, Pb, and a mixture for 96 h. The results revealed that acute exposure to Pb alone and in mixture with Cipro impaired zebrafish exploratory behavior by decreasing swimming activity and elevating freezing duration. Moreover, significant deficiencies of Ca, K, Mg, and Na contents, as well as an excess of Zn level, were observed in fish tissues after exposure to the binary mixture. Likewise, the combined treatment with Pb and Cipro inhibited the activity of AChE and increased the GPx activity and MDA level. The mixture produced more damage in all studied endpoints, while Cipro had no significant effect. The findings highlight that the simultaneous presence of antibiotics and heavy metals in the environment can pose a threat to the health of living organisms.
Collapse
Affiliation(s)
- Roxana Jijie
- Research Center on Advanced Materials and Technologies, Department of Exact and Natural Sciences, Institute of Interdisciplinary Research, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700506 Iasi, Romania
| | - Emanuela Paduraru
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Ira-Adeline Simionov
- Rexdan Research Infrastructure, “Dunarea de Jos” University Galati, 800008 Galati, Romania
- Department of Food Science, Food Engineering, Biotechnology and Aquaculture, “Dunarea de Jos” University Galati, 800008 Galati, Romania
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Alin Ciobica
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| | - Mircea Nicoara
- Doctoral School of Geosciences, Faculty of Geography and Geology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Bd. Carol I, 700505 Iasi, Romania
| |
Collapse
|
18
|
Freitas ÍN, Dourado AV, Araújo APDC, Souza SSD, Luz TMD, Guimarães ATB, Gomes AR, Islam ARMT, Rahman MM, Arias AH, Mubarak Ali D, Ragavendran C, Kamaraj C, Malafaia G. Toxicity assessment of SARS-CoV-2-derived peptides in combination with a mix of pollutants on zebrafish adults: A perspective study of behavioral, biometric, mutagenic, and biochemical toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159838. [PMID: 36343805 PMCID: PMC9635251 DOI: 10.1016/j.scitotenv.2022.159838] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 05/19/2023]
Abstract
The dispersion of SARS-CoV-2 in aquatic environments via the discharge of domestic and hospital sewage has been confirmed in different locations. Thus, we aimed to evaluate the possible impacts of zebrafish (Danio rerio) exposure to SARS-CoV-2 peptide fragments (PSPD-2001, 2002, and 2003) alone and combined with a mix of emerging pollutants. Our data did not reveal the induction of behavioral, biometric, or mutagenic changes. But we noticed an organ-dependent biochemical response. While nitric oxide and malondialdehyde production in the brain, gills, and muscle did not differ between groups, superoxide dismutase activity was reduced in the "PSPD", "Mix", and "Mix+PSPD" groups. An increase in catalase activity and a reduction in DPPH radical scavenging activity were observed in the brains of animals exposed to the treatments. However, the "Mix+PSPD" group had a higher IBRv2 value, with NO levels (brain), the reduction of acetylcholinesterase activity (muscles), and the DPPH radical scavenging activity (brain and muscles), the most discriminant factors for this group. The principal component analysis (PCA) and hierarchical clustering analysis indicated a clear separation of the "Mix+PSPD" group from the others. Thus, we conclude that exposure to viral fragments, associated with the mix of pollutants, induced more significant toxicity in zebrafish adults than in others.
Collapse
Affiliation(s)
- Ítalo Nascimento Freitas
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | - Amanda Vieira Dourado
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Sindoval Silva de Souza
- Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil
| | - Thiarlen Marinho da Luz
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil
| | | | - Alex Rodrigues Gomes
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil
| | | | - Md Mostafizur Rahman
- Laboratory of Environmental Health and Ecotoxicology, Department of Environmental Sciences, Jahangirnagar University, Dhaka 1342, Bangladesh
| | - Andrés Hugo Arias
- Instituto Argentino de Oceanografía (IADO), Universidad Nacional del Sur (UNS)-CONICET, Florida 8000, Complejo CCT CONICET Bahía Blanca, Edificio E1, B8000BFW Bahía Blanca, Argentina
| | - Davoodbasha Mubarak Ali
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Chinnasamy Ragavendran
- Department of Conservative Dentistry and Endodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
| | - Chinnaperumal Kamaraj
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research and Virtual Education, SRM Institute of Science and Technology (SRMIST), Kattankulathur 603203, Tamil Nadu, India
| | - Guilherme Malafaia
- Laboratory of Toxicology Applied to the Environment, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil; Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil.
| |
Collapse
|
19
|
Zheng C, Gao Y, Zhu J, Gan L, Wang M, Zhang W, Yang S, Yang L. Prolonged electrolysis injures the neural development of zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25863-25872. [PMID: 36348236 DOI: 10.1007/s11356-022-23864-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Recently, electrolysis technology has been widely applied in nitrogen and phosphorus removal in river water due to its high efficiency, but its effects on aquatic animals, especially on their neurodevelopmental system, are still unclear. In this study, zebrafish (Danio rerio) embryos were used as model organisms and were put into an electrolytic reaction device with a Ti/IrO2/RuO2 mesh plate as the anode and a Ti mesh plate as the cathode to explore the effects of prolonged electrolysis on the nervous system. The neural development of zebrafish embryos was injured when the current density was greater than 0.89 A/m2. Compared with the control group, the movement speed of zebrafish larvae (120 h postfertilization, hpf) was significantly reduced from 65.48 ± 23.69 to 48.08 ± 22.73 mm/min in a dark environment with an electric current density of 0.89 A/m2 in the electrolysis group. In addition, the acetylcholinesterase activity of zebrafish larvae (120 hpf) gradually decreased from 7.60 ± 0.55 to 6.00 ± 0.01 U/mg prot and the dopamine concentration was reduced from 46.96 ± 0.85 to 40.86 ± 1.05 pg/mL with an electric current density from 0 to 0.89 A/m2 in the electrolysis groups. Furthermore, the expression of nerve-related genes (syn2a, mbp, nestin, and AChE) was significantly inhibited when the current density was more than 0.89 A/m2. However, there were few adverse effects on the neural development of zebrafish embryos when the current density was less than 0.86 A/m2. Thus, a current density of 0.86 A/m2 is a reference value to reduce the harm to the neural development of fish when electrolysis technology is used in river water pollutant treatment.
Collapse
Affiliation(s)
- Chaoqun Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
- School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, 350118, People's Republic of China
| | - Yan Gao
- School of Environment Science and Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Jinling Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Lin Gan
- Nanjing Hydraulic Research Institute, Nanjing, 210017, People's Republic of China
| | - Mengmeng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Wen Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Shunqing Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Liuyan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
20
|
Pullaguri N, Umale A, Bhargava A. Neurotoxic mechanisms of triclosan: The antimicrobial agent emerging as a toxicant. J Biochem Mol Toxicol 2023; 37:e23244. [PMID: 36353933 DOI: 10.1002/jbt.23244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
Several scientific studies have suggested a link between increased exposure to pollutants and a rise in the number of neurodegenerative disorders of unknown origin. Notably, triclosan (an antimicrobial agent) is used in concentrations ranging from 0.3% to 1% in various consumer products. Recent studies have also highlighted triclosan as an emerging toxic pollutant due to its increasing global use. However, a definitive link is missing to associate the rising use of triclosan and the growing number of neurodegenerative disorders or neurotoxicity. In this article, we present systematic scientific evidence which are otherwise scattered to suggest that triclosan can indeed induce neurotoxic effects, especially in vertebrate organisms including humans. Mechanistically, triclosan affected important developmental and differentiation genes, structural genes, genes for signaling receptors and genes for neurotransmitter controlling enzymes. Triclosan-induced oxidative stress impacting cellular proteins and homeostasis which triggers apoptosis. Though the scientific evidence collated in this article unequivocally indicates that triclosan can cause neurotoxicity, further epidemiological studies may be needed to confirm the effects on humans.
Collapse
Affiliation(s)
- Narasimha Pullaguri
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Ashwini Umale
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| | - Anamika Bhargava
- Department of Biotechnology, Indian Institute of Technology Hyderabad (IITH), Kandi, Telangana, India
| |
Collapse
|
21
|
Redox Status, Estrogen and Progesterone Production by Swine Granulosa Cells Are Impaired by Triclosan. Animals (Basel) 2022; 12:ani12243559. [PMID: 36552479 PMCID: PMC9774123 DOI: 10.3390/ani12243559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/10/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan is a chlorinated biphenolic with a broad spectrum of antiseptic activities used in cosmetics and hygiene products. Continuous exposure can lead to absorption and bioaccumulation of this substance with harmful health effects. In fact, previous studies have shown that Triclosan acts as an endocrine-disrupting chemical on reproductive organs, with consequent negative effects on reproductive physiology. Therefore, to assess potential adverse impacts on fertility, we tested Triclosan on swine granulosa cells, a model of endocrine reproductive cells. We examined its effects on the main features of granulosa cell functions such as cell growth (BrdU incorporation and ATP production) and steroidogenesis (17-β estradiol and progesterone secretion). Moreover, since oxidant−antioxidant balance plays a pivotal role in follicular function, redox status markers (superoxide, hydrogen peroxide and nitric oxide production, enzymatic and non-enzymatic scavenging activity) were studied. Our results show that Triclosan significantly inhibits cell growth (p < 0.001), steroidogenesis (p < 0.001), superoxide and nitric oxide production (p < 0.001), while it increases (p < 0.05) enzymatic defense systems. Collectively, these data suggest a disruption of the main granulosa cell functions, i.e., proliferation and hormone production, as well as an imbalance in redox status. On these bases, we can speculate that Triclosan would impair granulosa cell functions, thus exerting negative effects on reproductive function. Further studies are needed to explore lower Triclosan concentrations and to unravel its mechanisms of action at gene level.
Collapse
|
22
|
Wang Y, Song J, Wang X, Qian Q, Wang H. Study on the toxic-mechanism of triclosan chronic exposure to zebrafish (Danio rerio) based on gut-brain axis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:156936. [PMID: 35772538 DOI: 10.1016/j.scitotenv.2022.156936] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Triclosan (TCS), as a broad-spectrum bactericide, is extensively used in the fine chemical and textile industries. It is recognized as a new type of environmental endocrine disruptor with frequent detection and environmental pollution. However, the toxicity mechanism regarding neurodevelopment and neurobehavior remains unclear. This study is intended to explore the underlying toxic mechanism of TCS based on gut-brain axis. TCS-chronic exposure affected the development of zebrafish, induced feminization, obesity physical signs and abnormal organ index and caused neurobehavioral abnormalities by inhibiting both neurotransmitter acetylcholinesterase and dopamine activity, promoting brain neuron apoptosis and accelerating diencephalic lesions. Meanwhile, TCS-chronic exposure led to gut microbiota dysbiosis and decreased diversity, such as increased pathogenic bacteria and decreased probiotics in adult zebrafish gut, which caused many pathological damages, including partial shedding and ablation of intestinal villi, inflammatory infiltration, thinning of intestinal wall, and increased goblet cell in villus. Based on the communication between intestinal peripheral nerves and CNS, the above histopathological injuries and disorders were well underpinned and illustrated by the changes of biomarkers and the expression of related marker genes in the gut-brain axis. Additionally, short-chain fatty acids (SCFA), as the regulators of intestinal sympathetic nerve activation, are also secreting products of intestinal microflora and play a crucial role in regulating the balance of intestinal flora and protecting intestinal homeostasis. SCFA in low doses can effectively alleviate and rescue the toxic effects under TCS exposure, which evidenced that TCS exerted systemic toxic effects on the gut-brain axis by influencing the composition and diversity of gut flora in zebrafish, and fully demonstrated the interaction effect between intestine and brain. Hence, these findings contribute to the understanding, prevention, and diagnosis of endocrine disrupting diseases caused by environmental pollutants from the perspective of the gut-brain axis, and strengthening the early warning, management and control of TCS pollution.
Collapse
Affiliation(s)
- Yang Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jie Song
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Qiuhui Qian
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Huili Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
23
|
Hu H, Su M, Ba H, Chen G, Luo J, Liu F, Liao X, Cao Z, Zeng J, Lu H, Xiong G, Chen J. ZIF-8 nanoparticles induce neurobehavioral disorders through the regulation of ROS-mediated oxidative stress in zebrafish embryos. CHEMOSPHERE 2022; 305:135453. [PMID: 35752317 DOI: 10.1016/j.chemosphere.2022.135453] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Zeolite imidazolate framework-8 (ZIF-8) is a nanomaterial of metal-organic frameworks (MOFs), which have various applications in drug delivery and water pollution remediation. However, little is known about its developmental neurotoxicity in aquatic organisms, especially on the low-level exposure. In the present study, we investigated the toxic effects of ZIF-8 NPs on the neuron development, behavioral traits, oxidative stress and gene expression in zebrafish embryos. Firstly, our results showed that ZIF-8 induced significantly embryonic malformations and abnormal development of nervous system in zebrafish embryos with a concentration-dependent manner. Meanwhile, the locomotor behavior was obviously inhibited while the anxiety behavior was greatly increased after ZIF-8 exposure. Secondly, the levels of ROS and antioxidant enzyme activities (CAT, SOD and MDA) together with AChE and ATPase were substantially increased in the ZIF-8 exposed groups. At the molecular level, ZIF-8 NPs could down-regulate the expression profiles of neural development-related genes (gap43, synapsin 2a and neurogenin 1) and PD-like related genes (dj-1, dynactin and parkin), but up-regulate the expression levels of neuro-inflammatory genes (nox-1, glip1a and glip1b) in larval zebrafish. In addition, we further explored the molecular mechanism of neurotoxicity induced by ZIF-8 with pharmacological experiments. The results showed that specific inhibition of ROS-mediated oxidative stress by the astaxanthin could reverse the expression patterns of ATPase, AChE and neurodevelopmental genes. Moreover, astaxanthin can partially rescue the ZIF-8-modulated locomotor behavior. Taken together, our results demonstrated that ZIF-8 had the potential to cause neurotoxicity in zebrafish embryos. These informations presented in this study will help to elucidate the molecular mechanisms of ZIF-8 nanoparticles exposure in zebrafish, which providing a scientific evaluation of its safety to aquatic ecosystems.
Collapse
Affiliation(s)
- Hongmei Hu
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China; Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Meile Su
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huixia Ba
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guilan Chen
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Jiaqi Luo
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Fasheng Liu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Xinjun Liao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Zigang Cao
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Junquan Zeng
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Huiqiang Lu
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China
| | - Guanghua Xiong
- Center of Clinical Medicine Research, College of Life Sciences, Jinggangshan University, Ji'an, 343009, Jiangxi, China; Jiangxi Key Laboratory of Developmental Biology of Organs, Jiangxi Engineering Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases, Ji'an, 343009, Jiangxi, China.
| | - Jianjun Chen
- Translational Research Institute of Brain and Brain-like Intelligence, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Department of Pediatrics, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| |
Collapse
|
24
|
Cao X, Rao C, Cui H, Sun D, Li L, Guo S, Zhou J, Yuan R, Yang S, Chen J. Toxic effects of glyphosate on the intestine, liver, brain of carp and on epithelioma papulosum cyprinid cells: Evidence from in vivo and in vitro research. CHEMOSPHERE 2022; 302:134691. [PMID: 35489457 DOI: 10.1016/j.chemosphere.2022.134691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Glyphosate (GLY) is the most widely used organophosphorus herbicide in agriculture. The present study aimed to analyze the comprehensive toxicological effects of GLY on juvenile common carp and an epithelioma papulosum cyprinid (EPC) cell line. In the in vivo experiments, exposure to GLY (5 and 15 mg/L) for 30 days induced liver inflammation and oxidative damage in common carp and changed the physical barrier of the intestine. Histopathological analysis of the intestine, liver, brain, and changes in oxidative stress biomarkers provided evidence of damage and immune system responses to GLY. Moreover, an inhibitory effect of 15 mg/L GLY on acetylcholinesterase (AChE) activity was found in the brain, which may be an important reason for the significant decrease in both swimming distance and average acceleration of common carp. Cell experiments showed that 0.65 and 3.25 mg/L GLY inhibited the viability of EPCs. Furthermore, oxidative DNA damage, mitochondrial dysfunction, and reactive oxygen species (ROS) production were observed in EPC cells following GLY exposure. Taken together, this study not only highlights the negative effects of GLY on common carp but also enriches the knowledge of the cytotoxicity mechanism to further clarify the comprehensive toxicity of GLY in common carp.
Collapse
Affiliation(s)
- Xianglin Cao
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Chenyang Rao
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Han Cui
- College of Fisheries, Henan Normal University, Xinxiang, 453007, PR China.
| | - Dandan Sun
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Lulu Li
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Suqi Guo
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jiameng Zhou
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Rongjie Yuan
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Shuai Yang
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| | - Jianjun Chen
- College of Life Science, Henan Normal University, Xinxiang, 453007, PR China.
| |
Collapse
|
25
|
Lite C, Guru A, Juliet M, Arockiaraj J. Embryonic exposure to butylparaben and propylparaben induced developmental toxicity and triggered anxiety-like neurobehavioral response associated with oxidative stress and apoptosis in the head of zebrafish larvae. ENVIRONMENTAL TOXICOLOGY 2022; 37:1988-2004. [PMID: 35470536 DOI: 10.1002/tox.23545] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/16/2022] [Accepted: 04/10/2022] [Indexed: 05/02/2023]
Abstract
Parabens are synthetic antimicrobial compounds used as a preservative for extending the shelf life of food, pharmaceutical and cosmetic products. The alkyl chain length of the paraben esters positively correlates with their antimicrobial property. Hence, long-chain paraben esters, namely butylparaben and propylparaben, are used in combination as they have better solubility and antimicrobial efficacy. Extensive use of parabens has now resulted in the ubiquitous presence of these compounds in various human and environmental matrices. During early life, exposure to environmental contaminants is known to cause oxidative-stress mediated apoptosis in developing organs. The brain being one of the high oxygen-consuming, metabolically active and lipid-rich organ, it is primarily susceptible to reactive oxygen species (ROS) and lipid peroxidation (LP) induced neuronal cell death. The primary cause for the impairment in cognitive and emotional neurobehvioural outcomes in neurodegenerative disease was found to be associated with neuronal apoptosis. The present study aimed to study butylparaben and propylparaben's effect on zebrafish during early embryonic stages. Besides this, the association between alteration in anxiety-like neurobehavioral response with oxidative stress and antioxidant status in head region was also studied. The study results showed variation in the toxic signature left by butylparaben and propylparaben on developmental parameters such as hatching rate, survival and non-lethal malformations in a time-dependent manner. Data from the light-dark preference test showed embryonic exposure to butylparaben and propylparaben to trigger anxiety-like behavior in zebrafish larvae. In addition, a significant increase in intracellular ROS and LP levels correlated with suppressed antioxidant enzymes: superoxide dismutases (SOD), catalases (CAT), Glutathione peroxidase (GPx), glutathione S-transferase (GST), and Glutathione (GSH) activity in the head region of the zebrafish larvae. Acetylcholinesterase (AChE) activity was also suppressed in the exposed groups, along with increased nitric oxide production. The overall observations show increased oxidative stress indices correlating with upregulated expression of apoptotic cells in a dose-dependent manner. Collectively, our findings reveal butylparaben and propylparaben as an anxiogenic neuroactive compound capable of inducing anxiety-like behavior through a mechanism involving oxidative-stress-induced apoptosis in the head of zebrafish larvae, which suggests a potential hazard to the early life of zebrafish and this can be extrapolated to human health as well.
Collapse
Affiliation(s)
- Christy Lite
- Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Ajay Guru
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| | - Melita Juliet
- Department of Oral and Maxillofacial Surgery, SRM Kattankulathur Dental College and Hospital, SRM Institute of Science and Technology, Chennai, India
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, India
| |
Collapse
|
26
|
Qiao Y, He J, Han P, Qu J, Wang X, Wang J. Long-term exposure to environmental relevant triclosan induces reproductive toxicity on adult zebrafish and its potential mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154026. [PMID: 35219675 DOI: 10.1016/j.scitotenv.2022.154026] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Triclosan (TCS) is widely used in personal care products and has become a contaminant ubiquitously found in the aquatic environment. It is reported exposure to triclosan can cause serious toxic effects on aquatic animals. However, the molecular mechanisms about long-term exposure to TCS-induced reproductive toxicity are not well elucidated. In the present study, adult zebrafish were exposed to TCS (2, 20 and 200 μg/L) for 150 days, and then the reproductive capacity assessment, steroid hormone and VTG quantitative measurement, histopathology observation and RNA sequencing analysis were performed to investigate the effects of TCS on its reproduction. The results indicated that long-term exposure to TCS causes the regulation disorder of the endocrine system, resulting in a reduction of the number of normal germ cells, and ultimately a decrease in the hatching rate and survival rate of offspring. This study revealed the toxic effects and contributed to our deep understanding about the potential disease of TCS exposure in the aquatic environment.
Collapse
Affiliation(s)
- Yingjie Qiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiayi He
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Ping Han
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Jiangbo Qu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China
| | - Xubo Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao, Shandong, China; College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| | - Jun Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, Shandong Province, China.
| |
Collapse
|
27
|
Sinicropi MS, Iacopetta D, Ceramella J, Catalano A, Mariconda A, Pellegrino M, Saturnino C, Longo P, Aquaro S. Triclosan: A Small Molecule with Controversial Roles. Antibiotics (Basel) 2022; 11:735. [PMID: 35740142 PMCID: PMC9220381 DOI: 10.3390/antibiotics11060735] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 05/25/2022] [Accepted: 05/27/2022] [Indexed: 12/23/2022] Open
Abstract
Triclosan (TCS), a broad-spectrum antimicrobial agent, has been widely used in personal care products, medical products, plastic cutting boards, and food storage containers. Colgate Total® toothpaste, containing 10 mM TCS, is effective in controlling biofilm formation and maintaining gingival health. Given its broad usage, TCS is present ubiquitously in the environment. Given its strong lipophilicity and accumulation ability in organisms, it is potentially harmful to biohealth. Several reports suggest the toxicity of this compound, which is inserted in the class of endocrine disrupting chemicals (EDCs). In September 2016, TCS was banned by the U.S. Food and Drug Administration (FDA) and the European Union in soap products. Despite these problems, its application in personal care products within certain limits is still allowed. Today, it is still unclear whether TCS is truly toxic to mammals and the adverse effects of continuous, long-term, and low concentration exposure remain unknown. Indeed, some recent reports suggest the use of TCS as a repositioned drug for cancer treatment and cutaneous leishmaniasis. In this scenario it is necessary to investigate the advantages and disadvantages of TCS, to understand whether its use is advisable or not. This review intends to highlight the pros and cons that are associated with the use of TCS in humans.
Collapse
Affiliation(s)
- Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70126 Bari, Italy
| | - Annaluisa Mariconda
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Michele Pellegrino
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| | - Carmela Saturnino
- Department of Science, University of Basilicata, 85100 Potenza, Italy; (A.M.); (C.S.)
| | - Pasquale Longo
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, Italy;
| | - Stefano Aquaro
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Arcavacata di Rende, Italy; (M.S.S.); (D.I.); (J.C.); (M.P.); (S.A.)
| |
Collapse
|
28
|
Elizalde-Velázquez GA, Gómez-Oliván LM, Rosales-Pérez KE, Orozco-Hernández JM, García-Medina S, Islas-Flores H, Galar-Martínez M. Chronic exposure to environmentally relevant concentrations of guanylurea induces neurotoxicity of Danio rerio adults. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153095. [PMID: 35038519 DOI: 10.1016/j.scitotenv.2022.153095] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/07/2022] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Recent studies have shown guanylurea (GUA) alters the growth and development of fish, induces oxidative stress, and disrupts the levels and expression of several genes, metabolites, and proteins related to the overall fitness of fish. Nonetheless, up to date, no study has assessed the potential neurotoxic effects that GUA may induce in non-target organisms. To fill the current knowledge gaps about the effects of this metabolite in the central nervous system of fish, we aimed to determine whether or not environmentally relevant concentrations of this metabolite may disrupt the behavior, redox status, AChE activity in Danio rerio adults. In addition, we also meant to assess if 25, 50, and 200 μg/L of GUA can alter the expression of several antioxidant defenses-, apoptosis-, AMPK pathway-, and neuronal communication-related genes in the brain of fish exposed for four months to GUA. Our results demonstrated that chronic exposure to GUA altered the swimming behavior of D. rerio, as fish remained more time frozen and traveled less distance in the tank compared to the control group. Moreover, this metabolite significantly increased the levels of oxidative damage biomarkers and inhibited the activity of acetylcholinesterase of fish in a concentration-dependent manner. Concerning gene expression, environmentally relevant concentrations of GUA downregulated the expression GRID2IP, PCDH17, and PCDH19, but upregulated Nrf1, Nrf2, p53, BAX, CASP3, PRKAA1, PRKAA2, and APP in fish after four months of exposure. Collectively, we can conclude that GUA may alter the homeostasis of several essential brain biomarkers, generating anxiety-like behavior in fish.
Collapse
Affiliation(s)
- Gustavo Axel Elizalde-Velázquez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Leobardo Manuel Gómez-Oliván
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico.
| | - Karina Elisa Rosales-Pérez
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - José Manuel Orozco-Hernández
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Sandra García-Medina
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| | - Hariz Islas-Flores
- Laboratorio de Toxicología Ambiental, Facultad de Química, Universidad Autónoma del Estado de México, Paseo Colón intersección Paseo Tollocan, Colonia Residencial Colón, CP 50120 Toluca, Estado de México, Mexico
| | - Marcela Galar-Martínez
- Laboratorio de Toxicología Acuática, Departamento de Farmacia, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu s/n y cerrada Manuel Stampa, Col. Industrial Vallejo, Ciudad de México, CP 07700, Mexico
| |
Collapse
|
29
|
Malafaia G, Ahmed MAI, Souza SSD, Rezende FNE, Freitas ÍN, da Luz TM, da Silva AM, Charlie-Silva I, Braz HLB, Jorge RJB, Sanches PRS, Mendonça-Gomes JM, Cilli EM, Araújo APDC. Toxicological impact of SARS-CoV-2 on the health of the neotropical fish, Poecilia reticulata. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106104. [PMID: 35176694 PMCID: PMC8830931 DOI: 10.1016/j.aquatox.2022.106104] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 01/19/2022] [Accepted: 01/27/2022] [Indexed: 05/12/2023]
Abstract
There have been significant impacts of the current COVID-19 pandemic on society including high health and economic costs. However, little is known about the potential ecological risks of this virus despite its presence in freshwater systems. In this study, we aimed to evaluate the exposure of Poecilia reticulata juveniles to two peptides derived from Spike protein of SARS-CoV-2, which was synthesized in the laboratory (named PSPD-2002 and PSPD-2003). For this, the animals were exposed for 35 days to the peptides at a concentration of 40 µg/L and different toxicity biomarkers were assessed. Our data indicated that the peptides were able to induce anxiety-like behavior in the open field test and increased acetylcholinesterase (AChE) activity. The biometric evaluation also revealed that the animals exposed to the peptides displayed alterations in the pattern of growth/development. Furthermore, the increased activity of superoxide dismutase (SOD) and catalase (CAT) enzymes were accompanied by increased levels of malondialdehyde (MDA), reactive oxygen species (ROS) and hydrogen peroxide (H2O2), which suggests a redox imbalance induced by SARS-CoV-2 spike protein peptides. Moreover, molecular docking analysis suggested a strong interaction of the peptides with the enzymes AChE, SOD and CAT, allowing us to infer that the observed effects are related to the direct action of the peptides on the functionality of these enzymes. Consequently, our study provided evidence that the presence of SARS-CoV-2 viral particles in the freshwater ecosystems offer a health risk to fish and other aquatic organisms.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil; Post-Graduation Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, Uberlândia MG, Brazil.
| | | | - Sindoval Silva de Souza
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Fernanda Neves Estrela Rezende
- Post-Graduation Program in Biotechnology and Biodiversity, Goiano Federal Institution and Federal University of Goiás, GO, Brazil
| | - Ítalo Nascimento Freitas
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Thiarlen Marinho da Luz
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Abner Marcelino da Silva
- Biological Research Laboratory, Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí Campus, Rodovia Geraldo Silva Nascimento, 2,5km, Zona Rural CEP, Urutaí, GO 75790-000, Brazil
| | - Ives Charlie-Silva
- Department of Pharmacology, Institute of Biomedical Sciences, University of Sao Paulo, SP, Brazil
| | - Helyson Lucas Bezerra Braz
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Roberta Jeane Bezerra Jorge
- Drug Research and Development Center, Federal University of Ceará, CE, Brazil; Department of Physiology and Pharmacology, School of Medicine, Federal University of Ceará, CE, Brazil
| | - Paulo R S Sanches
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | | - Eduardo M Cilli
- Instituto de Química, Universidade Estadual Paulista, Araraquara, SP, Brazil
| | | |
Collapse
|
30
|
Phillips J, Haimbaugh AS, Akemann C, Shields JN, Wu CC, Meyer DN, Baker BB, Siddiqua Z, Pitts DK, Baker TR. Developmental Phenotypic and Transcriptomic Effects of Exposure to Nanomolar Levels of 4-Nonylphenol, Triclosan, and Triclocarban in Zebrafish (Danio rerio). TOXICS 2022; 10:toxics10020053. [PMID: 35202241 PMCID: PMC8877790 DOI: 10.3390/toxics10020053] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/01/2023]
Abstract
Triclosan, triclocarban and 4-nonylphenol are all chemicals of emerging concern found in a wide variety of consumer products that have exhibited a wide range of endocrine-disrupting effects and are present in increasing amounts in groundwater worldwide. Results of the present study indicate that exposure to these chemicals at critical developmental periods, whether long-term or short-term in duration, leads to significant mortality, morphologic, behavioral and transcriptomic effects in zebrafish (Danio rerio). These effects range from total mortality with either long- or short-term exposure at 100 and 1000 nM of triclosan, to abnormalities in uninflated swim bladder seen with long-term exposure to triclocarban and short-term exposure to 4-nonylphenol, and cardiac edema seen with short-term 4-nonylphenol exposure. Additionally, a significant number of genes involved in neurological and cardiovascular development were differentially expressed after the exposures, as well as lipid metabolism genes and metabolic pathways after exposure to each chemical. Such changes in behavior, gene expression, and pathway abnormalities caused by these three known endocrine disruptors have the potential to impact not only the local ecosystem, but human health as well.
Collapse
Affiliation(s)
- Jessica Phillips
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Alex S. Haimbaugh
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Camille Akemann
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
| | - Jeremiah N. Shields
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
| | - Chia-Chen Wu
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Danielle N. Meyer
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
| | - Bridget B. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL 32610, USA
| | - Zoha Siddiqua
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - David K. Pitts
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI 48202, USA; (Z.S.); (D.K.P.)
| | - Tracie R. Baker
- Institute of Environmental Health Sciences, Wayne State University, Detroit, MI 48202, USA; (J.P.); (A.S.H.); (C.A.); (J.N.S.); (C.-C.W.); (D.N.M.); (B.B.B.)
- Department of Pharmacology, Wayne State University, Detroit, MI 28201, USA
- Department of Environmental and Global Health, University of Florida, Gainesville, FL 32610, USA
- Correspondence:
| |
Collapse
|
31
|
Iannetta A, Caioni G, Di Vito V, Benedetti E, Perugini M, Merola C. Developmental toxicity induced by triclosan exposure in zebrafish embryos. Birth Defects Res 2022; 114:175-183. [DOI: 10.1002/bdr2.1982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/12/2021] [Accepted: 01/03/2022] [Indexed: 01/01/2023]
Affiliation(s)
- Annamaria Iannetta
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Giulia Caioni
- Department of Life, Health and Environmental Sciences University of L'Aquila L'Aquila Italy
| | - Viviana Di Vito
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences University of L'Aquila L'Aquila Italy
| | - Monia Perugini
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| | - Carmine Merola
- Faculty of Bioscience and Agro‐Food and Environmental Technology University of Teramo Teramo Italy
| |
Collapse
|
32
|
Rai AR, Joy T, Rashmi KS, Rai R, Vinodini NA, Jiji PJ. Zebrafish as an experimental model for the simulation of neurological and craniofacial disorders. Vet World 2022; 15:22-29. [PMID: 35369579 PMCID: PMC8924399 DOI: 10.14202/vetworld.2022.22-29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
Zebrafish have gained momentum as a leading experimental model in recent years. At present, the zebrafish vertebrate model is increasingly used due to its multifactorial similarities to humans that include genetic, organ, and cellular factors. With the emergence of novel research techniques that are very expensive, it is necessary to develop affordable and valid experimental models. This review aimed to highlight some of the most important similarities between zebrafish and humans by emphasizing the relevance of the first in simulating neurological disorders and craniofacial deformity.
Collapse
Affiliation(s)
- Ashwin Rohan Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Teresa Joy
- Department of Anatomy, American University of Antigua College of Medicine, University Park, Coolidge, St. John's, Antigua
| | - K. S. Rashmi
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajalakshmi Rai
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - N. A. Vinodini
- Department of Physiology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - P. J. Jiji
- Department of Anatomy, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
33
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
34
|
New insights into inhibitory nature of triclosan on acetylcholinesterase activity. Toxicology 2021; 466:153080. [PMID: 34942273 DOI: 10.1016/j.tox.2021.153080] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/01/2021] [Accepted: 12/17/2021] [Indexed: 12/23/2022]
Abstract
The antimicrobial agent, triclosan, has been designated as a "contaminant of emerging concern (CEC)". Previous in vivo studies have shown that triclosan exposure can inhibit acetylcholinesterase (AChE) activity. However, mechanistic insights into AChE inhibition by triclosan are missing. Here, using in vitro activity assay with purified AChE, we show that triclosan can directly inhibit AChE. In vivo, triclosan exposure resulted in reduced total antioxidant capacity concomitant with reduced AChE activity in the adult zebrafish brain. Adult zebrafish when pre-treated with antioxidant melatonin, resulted in attenuated oxidative stress and attenuated inhibitory effect of triclosan on the AChE activity. Our results indicate that triclosan can affect AChE activity both by direct binding and indirectly through increased oxidative stress and therefore, provide important mechanistic insights into triclosan induced neurotoxicity.
Collapse
|
35
|
Kumar S, Paul T, Shukla SP, Kumar K, Karmakar S, Bera KK, Bhushan Kumar C. Biomarkers-based assessment of triclosan toxicity in aquatic environment: A mechanistic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 286:117569. [PMID: 34438492 DOI: 10.1016/j.envpol.2021.117569] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/21/2021] [Accepted: 06/06/2021] [Indexed: 06/13/2023]
Abstract
Triclosan (TCS), an emergent pollutant, is raising a global concern due to its toxic effects on organisms and aquatic ecosystems. The non-availability of proven treatment technologies for TCS remediation is the central issue stressing thorough research on understanding the underlying mechanisms of toxicity and assessing vital biomarkers in the aquatic organism for practical monitoring purposes. Given the unprecedented circumstances during COVID 19 pandemic, a several-fold higher discharge of TCS in the aquatic ecosystems cannot be considered a remote possibility. Therefore, identifying potential biomarkers for assessing chronic effects of TCS are prerequisites for addressing the issues related to its ecological impact and its monitoring in the future. It is the first holistic review on highlighting the biomarkers of TCS toxicity based on a comprehensive review of available literature about the biomarkers related to cytotoxicity, genotoxicity, hematological, alterations of gene expression, and metabolic profiling. This review establishes that biomarkers at the subcellular level such as oxidative stress, lipid peroxidation, neurotoxicity, and metabolic enzymes can be used to evaluate the cytotoxic effect of TCS in future investigations. Micronuclei frequency and % DNA damage proved to be reliable biomarkers for genotoxic effects of TCS in fishes and other aquatic organisms. Alteration of gene expression and metabolic profiling in different organs provides a better insight into mechanisms underlying the biocide's toxicity. In the concluding part of the review, the present status of knowledge about mechanisms of antimicrobial resistance of TCS and its relevance in understanding the toxicity is also discussed referring to the relevant reports on microorganisms.
Collapse
Affiliation(s)
- Saurav Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India.
| | - Tapas Paul
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - S P Shukla
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Kundan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, 400061, Maharashtra, India
| | - Sutanu Karmakar
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Kuntal Krishna Bera
- West Bengal University of Animal & Fishery Sciences, Kolkata, 700037, West Bengal, India
| | - Chandra Bhushan Kumar
- ICAR-National Bureau of Fish Genetic Resources, Lucknow, 226002, Uttar Pradesh, India
| |
Collapse
|
36
|
Sun D, Zhao T, Long K, Wu M, Zhang Z. Triclosan down-regulates fatty acid synthase through microRNAs in HepG2 cells. Eur J Pharmacol 2021; 907:174261. [PMID: 34144025 DOI: 10.1016/j.ejphar.2021.174261] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022]
Abstract
Triclosan is a promising candidate of fatty acid synthase (FASN) inhibitor by blocking FASN activity, but its effect on FASN expression and the underling epigenetic mechanism remain elusive. In this study, the effect of triclosan on FASN mRNA and protein expressions in human HepG2 cells and the regulatory role of microRNAs (miRNAs) in the downregulation of FASN induced by triclosan were explored through experiments and bioinformatics analysis. The results showed that triclosan not only directly inhibited FASN activity, but also significantly decreased FASN mRNA and protein levels in human liver HepG2 cells. Nine miRNAs targeting FASN mRNA degradation were identified by miRNA prediction tools, and the expression levels of these nine miRNAs were then detected by real-time quantitative PCR. Triclosan significantly increased the expressions of the six miRNAs, namely miR-15a, miR-107, miR-195, miR-424, miR-497 and miR-503, leading to the downregulation of FASN. Further investigation revealed that the six triclosan-upregulated miRNAs played an important regulatory role in lipid metabolism and cell cycle by gene ontology annotations and pathway analysis. Consistent with the results of bioinformatics analyses, triclosan significantly reduced the intracellular lipid content by triglyceride assay, oil red O, BODIPY 493/503 and Nile Red staining, thereby inhibiting the growth of HepG2 cells through apoptosis. Taken together, our study reveals that triclosan downregulates FASN expression through a variety of miRNAs, providing new insight for triclosan as a FASN inhibitor candidate to regulate lipid metabolism in human hepatoma cells.
Collapse
Affiliation(s)
- Donglei Sun
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Tianhe Zhao
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Keyan Long
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Mei Wu
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China
| | - Zunzhen Zhang
- Department of Environmental and Occupational Health, Sichuan University West China School of Public Health and West China Fourth Hospital, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
37
|
Guerra LJ, do Amaral AMB, de Quadros VA, da Luz Fiuza T, Rosemberg DB, Prestes OD, Zanella R, Clasen B, Loro VL. Biochemical and Behavioral Responses in Zebrafish Exposed to Imidacloprid Oxidative Damage and Antioxidant Responses. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:255-264. [PMID: 34137922 DOI: 10.1007/s00244-021-00865-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Imidacloprid (IMI) is an insecticide used worldwide, a neonicotinoid that could cause toxicity in non-target organisms. Zebrafish (Danio rerio) is a model organism widely used in different fields of research such as behavioral studies, biochemical parameters as well as neurotoxicity research. Here, we investigate whether the exposure to three concentrations (0.15, 15, and 45 μg/L) of IMI for 96 h alters responses in zebrafish. Oxidative stress parameters and acetylcholinesterase activity (AChE) as well as the behavioral responses of locomotion were measured. IMI exposure decreased distance traveled in fish exposed to the 45 μg/L. In the exploratory activity, time spent and transitions to the top area of the water column decreased in fish exposed to all concentrations of IMI. In addition, exposures to 45 and 15 μg/L of IMI decreased episodes of erratic movement in the zebrafish. Exposures to IMI at a concentration of 45 μg/L decreased the time spent in erratic movements and increased the time spent with no movement (i.e., "freezing"). Glutathione S-transferase (GST) activity was increased in the brain of zebrafish exposed for 96 h to concentrations of 0.15 and 45 μg/L. Brain AChE activity was reduced and the levels of carbonyl protein (CP) increased in brain of zebrafish at concentrations of 15 and 45 μg/L. Lipid peroxidation measured by TBARS and, also non-protein thiols (NPSH) did not show any variation in the brain of zebrafish exposed to IMI. Changes in the activity of cholinergic neurotransmitters in the brain tissues of zebrafish indicate IMI toxicity. Exposures of fish over 96 h to IMI at a nominal concentration of 45 μg/L caused more extensive sublethal responses in zebrafish, but this concentration is well above those expected in the aquatic environment. Studies are warranted to evaluate the effects on behavior and biomarker responses in fish exposed over longer periods to IMI at environmentally relevant concentrations.
Collapse
Affiliation(s)
- Luciana Joner Guerra
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Aline Monique Blank do Amaral
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Animal Biodiversity, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Vanessa Andreatta de Quadros
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Tiago da Luz Fiuza
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Denis Broock Rosemberg
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Osmar Damian Prestes
- Laboratory of Residue of Pesticides (LARP), Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Renato Zanella
- Laboratory of Residue of Pesticides (LARP), Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil
| | - Barbara Clasen
- Department of Environmental Sciences, State University of Rio Grande Do Sul, 98.600-000, Três Passos, RS, Brazil
| | - Vania Lucia Loro
- Laboratory of Aquatic Toxicology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
- Graduate Program in Animal Biodiversity, Federal University of Santa Maria, 1000 Roraima Avenue, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
38
|
Wang D, Wang X, Huang H, Wang H. Triclosan regulates alternative splicing events of nerve-related genes through RNA-binding protein CELF2 to induce zebrafish neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125414. [PMID: 33621777 DOI: 10.1016/j.jhazmat.2021.125414] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Herein, we demonstrated that triclosan (TCS) induced neurotoxicity mediated by pre-mRNA alternative splicing (AS). TCS exposure resulted in a series of phenotypic malformations, abnormal locomotor behavior, circadian rhythm disorder and inhibited AChE activity. High throughput mRNA sequencing revealed that TCS regulated the AS events of nerve-related genes. Meanwhile, abnormal expression was observed in marker genes related to nerve cell migration, axon guidance and myelination. The expression of mitochondrial apoptosis activator bcl2l11 was significantly increased under TCS exposure. Interestingly, CELF2 as one of the important RNA-binding proteins was closely related to the AS events, and its mRNA and protein expression levels were significantly increased in zebrafish brain under acute or chronic TCS exposure. Functional knock-down and over-expression of celf2 confirmed that TCS led to nervous system injury and developmental defects through the CELF2-mediated AS events of genes (mbpa, mef2d, u2af2b and matn3b). Histopathological injury, phenotypic malformation, abnormal locomotor behavior and changes in neuromarkers all confirmed the biological functions of CELF2 in zebrafish brain. These findings demonstrate that TCS might regulate some of the AS events of nerve-related genes through upregulating the expression of CELF2. Thus, CELF2 may serve as a target for the prevention, diagnosis and treatment of contaminant-induced neurological diseases.
Collapse
Affiliation(s)
- Danting Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xuedong Wang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haishan Huang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Huili Wang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
39
|
Gallego R SE, Peñuela GA, Martínez-López E. Enzymatic activity changes in striped catfish Pseudoplatystoma magdaleniatum, induced by exposure to different concentrations of ibuprofen and triclosan. CHEMOSPHERE 2021; 271:129399. [PMID: 33482525 DOI: 10.1016/j.chemosphere.2020.129399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/16/2020] [Accepted: 12/18/2020] [Indexed: 06/12/2023]
Abstract
The present study aimed to evaluate the effects of exposure for four months, with ibuprofen and triclosan at 25 and 50 μg/L in Striped catfish Pseudoplatystoma magdaleniatum, evaluated between sexes and exposure times. Biochemical biomarkers such as lactate dehydrogenase, alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, gamma-glutamyltransferase, acetylcholinesterase, creatine kinase, lipid peroxidation, albumin, globulins, creatinine, and urea were evaluated. The results of this study suggest that both ibuprofen and triclosan at concentrations of 25 and 50 μg/L can cause alterations to P. magdaleniatum, interfering with the activity of certain enzymes associated with energy production, immune response, architecture, and cellular physiology. Also, we determined the current state of contamination in fish, the concentration of ibuprofen and triclosan in P. magdaleniatum muscle samples from the different places markets located on the banks of the main rivers of Colombia was quantified by UHPLC-QqQ-MS/MS, in three climatic periods; finding triclosan levels in the dry season in some of the sampling points compatible with enzyme-level alterations in this species.
Collapse
Affiliation(s)
- Sara E Gallego R
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia.
| | - Gustavo A Peñuela
- Pollution Diagnostics and Control Group (GDCON), School of the Environment, Faculty of Engineering, University Research Campus (SIU), University of Antioquia (U de A), Calle 70 No. 52-21, Medellin, Colombia.
| | - Emma Martínez-López
- Area of Toxicology, Veterinary Faculty, University of Murcia, Spain; Biomedical Research Institute of Murcia (IMIB-Arrixaca), Spain.
| |
Collapse
|
40
|
Martini GDA, Montagner CC, Viveiros W, Quinaglia GA, França DD, Munin NCG, Lopes-Ferreira M, Rogero SO, Rogero JR. Emerging contaminant occurrence and toxic effects on zebrafish embryos to assess the adverse effects caused by mixtures of substances in the environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:20313-20329. [PMID: 33405144 DOI: 10.1007/s11356-020-11963-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
The contaminants of emerging concern (CECs) have been receiving global attention due to their worldwide presence in water bodies. The CECs could be originated from synthetic or natural sources, and they are not commonly monitored, although these substances are continuously reaching the aquatic environment. The main goal of this study was to determine the occurrence of some target CECs in São Paulo state surface water, once there is practically no information on the presence and concentration range of these substances at the studied sites. In addition, the present study aimed to assess adverse effects in the non-target fish embryo of Danio rerio (zebrafish) after exposure to surface water organic extract samples during 96 h using FET test. The CECs in surface water samples were determined by solid-phase extraction and liquid chromatography coupled by mass spectrometry. A 2-year study was assessed in 7 rivers and 3 reservoirs at São Paulo state, where 25 of the 30 analyzed substances were quantified, being caffeine the substance with the highest concentration range (5.5 ng L-1 to 69 μg L-1) and detected in 95% of analyzed samples, followed by bisphenol A (6.5-1300 ng L-1) and carbendazim (4.7-285 ng L-1), found in 50% and 85% of the analyzed samples, respectively. The chemical analysis and biological test were not performed in order to show a direct relationship between concentrations and observed effects on embryos; however, the combined approach can provide a better understanding of the adverse effects caused by mixtures of substances at relevant environmental concentrations. Regarding the adverse effects, it was observed that in the samples from sites with higher anthropogenic activity in the surroundings, there was also a higher mortality rate in organisms. At the Ribeirão Pires River and Sapucaí-Guaçu River, the mortality rate during the 2-year study was 21.6% and 9.3%, respectively. The morphological abnormality rates were higher at Ribeirão Grande (21.4%) and Ribeirão Pires (29.5%) Rivers. The obtained results aim to show that even in low concentrations (ng-μg L-1) the CECs can cause adverse effects on non-target species, and because of that, new chemical indicators would be important to monitor the water quality and protect the aquatic biota.
Collapse
Affiliation(s)
- Gisela de Assis Martini
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil.
| | | | | | | | | | - Nívea Cristina Guedes Munin
- Instituto de Química, Universidade Estadual de Campinas, São Paulo, Brazil
- Universidade Federal do Amazonas, Manaus, Brazil
| | | | - Sizue Ota Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| | - José Roberto Rogero
- Centro de Química e Meio Ambiente, Instituto de Pesquisas Energéticas e Nucleares, São Paulo, Brazil
| |
Collapse
|
41
|
de Oliveira JPJ, Estrela FN, Rodrigues ASDL, Guimarães ATB, Rocha TL, Malafaia G. Behavioral and biochemical consequences of Danio rerio larvae exposure to polylactic acid bioplastic. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124152. [PMID: 33068943 DOI: 10.1016/j.jhazmat.2020.124152] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/24/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
The literature has largely shown the toxicity of petroleum-based PLA biomicroplastics (PLABioMPs) and encouraged the production of alternative materials to replace their use, such as biopolymers. However, knowledge concerning the effects of biopolymers on aquatic organisms remains under development. The hypothesis that the acute exposure (five days) to polylactic acid (PLA) biopolymers may lead to behavioral and biochemical changes and to their accumulation in Danio rerio larvae was tested. Based on the results, PLA biomicroplastics (PLA BioMPs) at concentration of 3 and 9 mg/L decreased swimming distance and speed of larvae in the open field test. This outcome suggests effects on animals' locomotor and exploration activities. Larvae's longer immobility time and greater permanence in the peripheral zone of the apparatus is indicative of anxiety-like behavior caused by the exposure to PLA BioMPs. Zebrafish larvae accumulated PLA BioMPs and their acetylcholinesterase activity was inhibited by their presence, which reinforces the accumulative potential of biopolymers and their direct or indirect role as anxiogenic agents, even at sublethal concentrations. The decreased activity of acetylcholinesterase reinforces the neurotoxic action in groups exposed to PLA BioMPs. The current study has confirmed the initial hypothesis and is an insight about the toxicity of these biopolymers in D. rerio larvae, since it deepens the discussion about the environmental risk of these substances in freshwater ecosystems.
Collapse
Affiliation(s)
| | - Fernanda Neves Estrela
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | | | - Abraão Tiago Batista Guimarães
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil
| | - Thiago Lopes Rocha
- Laboratory of Environmental Biotechnology and Ecotoxicology, Institute of Tropical Pathology and Public Health, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute - Urutaí Campus, Goiás, Brazil; Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Goiás, Instituto de Patologia Tropical e Saúde Pública, Goiânia, Brazil.
| |
Collapse
|
42
|
Naffaa V, Laprévote O, Schang AL. Effects of endocrine disrupting chemicals on myelin development and diseases. Neurotoxicology 2020; 83:51-68. [PMID: 33352275 DOI: 10.1016/j.neuro.2020.12.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
In the central and peripheral nervous systems, myelin is essential for efficient conduction of action potentials. During development, oligodendrocytes and Schwann cells differentiate and ensure axon myelination, and disruption of these processes can contribute to neurodevelopmental disorders. In adults, demyelination can lead to important disabilities, and recovery capacities by remyelination often decrease with disease progression. Among environmental chemical pollutants, endocrine disrupting chemicals (EDCs) are of major concern for human health and are notably suspected to participate in neurodevelopmental and neurodegenerative diseases. In this review, we have combined the current knowledge on EDCs impacts on myelin including several persistent organic pollutants, bisphenol A, triclosan, heavy metals, pesticides, and nicotine. Besides, we presented several other endocrine modulators, including pharmaceuticals and the phytoestrogen genistein, some of which are candidates for treating demyelinating conditions but could also be deleterious as contaminants. The direct impacts of EDCs on myelinating cells were considered as well as their indirect consequences on myelin, particularly on immune mechanisms associated with demyelinating conditions. More studies are needed to describe the effects of these compounds and to further understand the underlying mechanisms in relation to the potential for endocrine disruption.
Collapse
Affiliation(s)
- Vanessa Naffaa
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| | - Olivier Laprévote
- Université de Paris, UMR 8038 (CiTCoM), CNRS, Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France; Hôpital Européen Georges Pompidou, AP-HP, Service de Biochimie, 20 rue Leblanc, 75015 Paris, France.
| | - Anne-Laure Schang
- Université de Paris, UMR 1153 (CRESS), Faculté de Pharmacie de Paris, 4 avenue de l'Observatoire, 75006 Paris, France.
| |
Collapse
|
43
|
A Miniature Intermittent-Flow Respirometry System with a 3D-Printed, Palm-Sized Zebrafish Treadmill for Measuring Rest and Activity Metabolic Rates. SENSORS 2020; 20:s20185088. [PMID: 32906794 PMCID: PMC7570584 DOI: 10.3390/s20185088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/02/2020] [Accepted: 09/04/2020] [Indexed: 12/20/2022]
Abstract
Zebrafish are a preferred vertebrate model for evaluating metabolism during development, and for toxicity studies. However, commercially available intermittent-flow respirometry systems (IFRS) do not provide a suitable zebrafish-scaled swimming tunnel with a low water volume and proper flow velocities. We developed a miniature IFRS (mIFRS) with a 3D-printed, palm-sized zebrafish treadmill for measuring the swimming ability and metabolic rate of a single one- or three-month-old zebrafish with and without toxicity treatment. The 3D-printed zebrafish treadmill consists of discrete components assembled together which enables the provision of a temporary closed circulating water flow. The results showed that three-month-old zebrafish of normal physiological status had higher energetic efficiency and could swim at a higher critical swimming speed (Ucrit) of 16.79 cm/s with a lower cost of transport (COTopt) of 0.11 μmol g−1m−1. However, for a single three-month-old zebrafish treated with an antibacterial agent, Ucrit decreased to 45% of normal zebrafish and the COTopt increased to 0.24 μmol g−1m−1, due to the impairment of mitochondria. Our mIFRS provides a low-cost, portable, and readily adaptable tool for studying the swimming performance and energetic metabolism of zebrafish.
Collapse
|
44
|
Synthesis, anti-cholinesterease, α-glucosidase inhibitory, antioxidant and DNA nuclease properties of non-peripheral triclosan substituted metal-free, copper(II), and nickel(II) phthalocyanines. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121423] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
45
|
Caon NB, Cardoso CDS, Faita FL, Vitali L, Parize AL. Magnetic solid-phase extraction of triclosan from water using n-octadecyl modified silica-coated magnetic nanoparticles. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2020; 8:104003. [DOI: 10.1016/j.jece.2020.104003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|