1
|
Thant MT, Bhummaphan N, Wuttiin J, Puttipanyalears C, Chaichompoo W, Rojsitthisak P, Punpreuk Y, Böttcher C, Likhitwitayawuid K, Sritularak B. New Phenolic Glycosides from Coelogyne fuscescens Lindl. var. brunnea and Their Cytotoxicity against Human Breast Cancer Cells. ACS OMEGA 2024; 9:7679-7691. [PMID: 38405545 PMCID: PMC10883021 DOI: 10.1021/acsomega.3c07048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/27/2024]
Abstract
The phytochemical investigation of the whole plants of Coelogyne fuscescens Lindl. var. brunnea led to the discovery of three new phenolic glycosides, i.e., coelofusides A-C (1-3) and 12 known compounds (4-15). For the first time, we reported the nuclear magnetic resonance (NMR) data of 4-O-(6'-O-glucosyl-4″-hydroxybenzoyl)-4-hydroxybenzyl alcohol (4) in this study. The identification of the structures of newly discovered compounds was done through the analysis of their spectroscopic data [NMR, mass spectrometry, ultraviolet, Fourier transform infrared, optical rotation, and circular dichroism (CD)]. In comparison to anticancer drugs (i.e., etoposide and carboplatin), we evaluated anticancer potential of the isolated compounds on two different breast cancer cell lines, namely, T47D and MDA-MB-231. Human fibroblast HaCaT cells were used as the control cells. After a 48 h incubation, flavidin (8), coelonin (10), 3,4-dihydroxybenzaldehyde (11), and oxoflavidin (12) showed significant cytotoxic effects against breast cancer cells. Among them, oxoflavidin (12) exhibited the most potent cytotoxicity on MDA-MB-231 with an IC50 value of 26.26 ± 4.33 μM. In the nuclear staining assay, oxoflavidin induced apoptosis after 48 h in both T47D and MDA-MB-231 cells in a dose-dependent manner. Furthermore, oxoflavidin upregulated the expression of apoptotic genes, such as p53, Bax, poly(ADP-ribose) polymerase, caspase-3, and caspase-9 genes while significantly decreasing antiapoptotic protein (Bcl-2) expression levels.
Collapse
Affiliation(s)
- May Thazin Thant
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Narumol Bhummaphan
- College
of Public Health Sciences, Chulalongkorn
University, Bangkok 10330, Thailand
| | - Jittima Wuttiin
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | | | - Waraluck Chaichompoo
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural
Products for Ageing and Chronic Diseases Research Unit, Faculty of
Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Pornchai Rojsitthisak
- Department
of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural
Products for Ageing and Chronic Diseases Research Unit, Faculty of
Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Yanyong Punpreuk
- Department
of Agriculture, Ministry of Agriculture
and Cooperatives, Bangkok 10900, Thailand
| | - Chotima Böttcher
- Experimental
and Clinical Research Center, a Cooperation Between the Max Delbrück
Center for Molecular Medicine in the Helmholtz Association, Charité—Universitätsmedizin Berlin, Berlin 13125, Germany
| | - Kittisak Likhitwitayawuid
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Boonchoo Sritularak
- Department
of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical
Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Natural
Products for Ageing and Chronic Diseases Research Unit, Faculty of
Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
2
|
Bandi DR, Chitturi CMK, Aswathanarayan JB, Veeresh PKM, Bovilla VR, Sukocheva OA, Devi PS, Natraj SM, Madhunapantula SV. Pigmented Microbial Extract (PMB) from Exiguobacterium Species MB2 Strain (PMB1) and Bacillus subtilis Strain MB1 (PMB2) Inhibited Breast Cancer Cells Growth In Vivo and In Vitro. Int J Mol Sci 2023; 24:17412. [PMID: 38139241 PMCID: PMC10743659 DOI: 10.3390/ijms242417412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Breast cancer (BC) continues to be one of the major causes of cancer deaths in women. Progress has been made in targeting hormone and growth factor receptor-positive BCs with clinical efficacy and success. However, little progress has been made to develop a clinically viable treatment for the triple-negative BC cases (TNBCs). The current study aims to identify potent agents that can target TNBCs. Extracts from microbial sources have been reported to contain pharmacological agents that can selectively inhibit cancer cell growth. We have screened and identified pigmented microbial extracts (PMBs) that can inhibit BC cell proliferation by targeting legumain (LGMN). LGMN is an oncogenic protein expressed not only in malignant cells but also in tumor microenvironment cells, including tumor-associated macrophages. An LGMN inhibition assay was performed, and microbial extracts were evaluated for in vitro anticancer activity in BC cell lines, angiogenesis assay with chick chorioallantoic membrane (CAM), and tumor xenograft models in Swiss albino mice. We have identified that PMB from the Exiguobacterium (PMB1), inhibits BC growth more potently than PMB2, from the Bacillus subtilis strain. The analysis of PMB1 by GC-MS showed the presence of a variety of fatty acids and fatty-acid derivatives, small molecule phenolics, and aldehydes. PMB1 inhibited the activity of oncogenic legumain in BC cells and induced cell cycle arrest and apoptosis. PMB1 reduced the angiogenesis and inhibited BC cell migration. In mice, intraperitoneal administration of PMB1 retarded the growth of xenografted Ehrlich ascites mammary tumors and mitigated the proliferation of tumor cells in the peritoneal cavity in vivo. In summary, our findings demonstrate the high antitumor potential of PMB1.
Collapse
Affiliation(s)
- Deepa R. Bandi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Ch M. Kumari Chitturi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Jamuna Bai Aswathanarayan
- Department of Microbiology, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India;
| | - Prashant Kumar M. Veeresh
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Venugopal R. Bovilla
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - Olga A. Sukocheva
- Department of Gastroenterology and Hepatology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
| | - Potireddy Suvarnalatha Devi
- Department of Applied Microbiology, Sri Padmavathi Mahila Viswavidyalayam, Tirupati 517502, Andhra Pradesh, India; (D.R.B.); (P.S.D.)
| | - Suma M. Natraj
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
| | - SubbaRao V. Madhunapantula
- Center of Excellence in Molecular Biology and Regenerative Medicine (CEMR) Laboratory, Department of Biochemistry, JSS Medical College, JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India; (P.K.M.V.); (V.R.B.); (S.M.N.)
- Special Interest Group (SIG) in Cancer Biology and Cancer Stem Cells (CBCSC), JSS Academy of Higher Education & Research (JSS AHER), Mysore 570015, Karnataka, India
| |
Collapse
|
3
|
Hegazy GE, Olama ZA, Abou-Elela GM, Ramadan HS, Ibrahim WM, El Badan DES. Biodiversity and biological applications of marine actinomycetes-Abu-Qir Bay, Mediterranean Sea, Egypt. J Genet Eng Biotechnol 2023; 21:150. [PMID: 38015326 PMCID: PMC10684441 DOI: 10.1186/s43141-023-00612-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
BACKGROUND The ability of actinomycetes to produce bioactive secondary metabolites makes them one of the most important prokaryotes. Marine actinomycetes are one of the most important secondary metabolites producers used for pharmaceuticals and other different industries. RESULTS In this study, the promising actinomycetes were isolated from Abu-Qir Bay. Four different media named as starch nitrate, starch casein, glycerol asparagine, and glycerol glycine were used as a preliminary experimental media to study the role of the medium components on the counts of actinomycetes in sediment samples. The results indicated that starch casein medium reported the highest counts (30-63 CFU/g) in all the tested sites. Lower counts were detected on starch nitrate and glycerol asparagine. On the other hand, glycerol glycine medium gave the lowest counts (15-48 CFU/g). Abu-Qir8 harbored the highest average count of actinomycetes (63 CFU/g), followed by Abu-Qir1 (48 CFU/g). The lower counts were detected in Abu-Qir5 and Abu-Qir7 (26 and 29 CFU/g, respectively). A total of 12 pure obtained actinomycetes isolates were subjected to morphological, physiological, and biochemical characterization. The selected actinobacterial isolates were subjected to numerical analysis, and the majority of isolates were grouped into four main clusters (A, B, C, & D), and each of them harbored two isolates; additionally, four isolates did not cluster at this similarity level. Isolate W4 was carefully chosen as the most promising pigment and antimicrobial agent's producer; the produced pigment was extracted and optimized by statistical experiments (PBD & BBD) and was tested for its anti-inflammatory activity. The results showed anti-inflammatory effect and prevented the denaturation of BSA protein at a concentration much higher than the safe dose and increased with increasing the pigment concentration. CONCLUSION Marine actinomycetes play a vital role in the production of novel and important economic metabolites that have many industrial and pharmaceuticals applications. Streptomyces genera are the most important actinomycetes that produce important metabolites as previously reported.
Collapse
Affiliation(s)
- Ghada E Hegazy
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt.
| | - Zakia A Olama
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - G M Abou-Elela
- National Institute of Oceanography and Fisheries (NIOF), Qaitbay Sq, El-Anfousy, Alexandria, 11865, Egypt
| | - Heba S Ramadan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Walaa M Ibrahim
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Dalia El S El Badan
- Botany & Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| |
Collapse
|
4
|
Lin L, Zhao Y, Wang P, Li T, Liang Y, Chen Y, Meng X, Zhang Y, Su G. Amino Acid Derivatives of Ginsenoside AD-2 Induce HepG2 Cell Apoptosis by Affecting the Cytoskeleton. Molecules 2023; 28:7400. [PMID: 37959819 PMCID: PMC10650444 DOI: 10.3390/molecules28217400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
AD-2 (20(R)-dammarane-3β, 12β, 20, 25-tetrol, 25-OH-PPD) was structurally modified to introduce additional amino groups, which can better exert its anti-tumor effects in MCF-7, A549, LoVo, HCT-116, HT -29, and U-87 cell lines. We investigated the cellular activity of 15 different AD-2 amino acid derivatives on HepG2 cells and the possible mechanism of action of the superior derivative 6b. An MTT assay was used to detect the cytotoxicity of the derivatives. Western blotting was used to study the signaling pathways. Flow cytometry was used to detect cell apoptosis and ghost pen peptide staining was used to identify the changes in the cytoskeleton. The AD-2 amino acid derivatives have a better cytotoxic effect on the HepG2 cells than AD-2, which may be achieved by promoting the apoptosis of HepG2 cells and influencing the cytoskeleton. The derivative 6b shows obvious anti-HepG2 cells activity through affecting the expression of apoptotic proteins such as MDM2, P-p53, Bcl-2, Bax, Caspase 3, Cleaved Caspase 3, Caspase 8, and NSD2. According to the above findings, the amino acid derivatives of AD-2 may be developed as HepG2 cytotoxic therapeutic drugs.
Collapse
Affiliation(s)
- Lizhen Lin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yuqing Zhao
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China;
| | - Peng Wang
- ORxes Therapeutics (Shanghai) Co., Ltd., Shanghai 200000, China;
| | - Tao Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, Yanbian University, Yanji 133002, China;
| | - Yuhang Liang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yu Chen
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Xianyi Meng
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Yudong Zhang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
| | - Guangyue Su
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, China; (L.L.); (Y.L.); (Y.C.); (X.M.); (Y.Z.)
- Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning Province, Shenyang 110016, China
| |
Collapse
|
5
|
Rachwał K, Niedźwiedź I, Waśko A, Laskowski T, Szczeblewski P, Kukula-Koch W, Polak-Berecka M. Red Kale ( Brassica oleracea L. ssp. acephala L. var. sabellica) Induces Apoptosis in Human Colorectal Cancer Cells In Vitro. Molecules 2023; 28:6938. [PMID: 37836781 PMCID: PMC10574217 DOI: 10.3390/molecules28196938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023] Open
Abstract
This article presents the results of studies investigating the effect of red kale (Brassica oleracea L. ssp. acephala L. var. sabellica) extract on cancer cells (HT-29). The cytotoxicity of the red kale extract was assessed using MTT and LDH assays, while qRT-PCR was employed to analyze the expression of genes associated with the p53 signaling pathway to elucidate the effect of the extract on cancer cells. Furthermore, HPLC-ESI-QTOF-MS/MS was applied to identify bioactive compounds present in red kale. The obtained results indicated that red kale extract reduced the viability and suppressed the proliferation of HT-29 cells (the IC50 value of 60.8 µg/mL). Additionally, mRNA expression analysis revealed significant upregulation of several genes, i.e., casp9, mapk10, mapk11, fas, kat2 b, and ubd, suggesting the induction of cell apoptosis through the caspase-dependent pathway. Interestingly, the study revealed a decrease in the expression of genes including cdk2 and cdk4 encoding cell cycle-related proteins, which may lead to cell cycle arrest. Furthermore, the study identified certain bioactive compounds, such as sinigrin, spirostanol, hesperetin and usambarensine, which could potentially contribute to the apoptotic effect of red kale extracts. However, further investigations are necessary to elucidate the specific role of these individual compounds in the anti-cancer process.
Collapse
Affiliation(s)
- Kamila Rachwał
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Iwona Niedźwiedź
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Adam Waśko
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| | - Tomasz Laskowski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (T.L.); (P.S.)
| | - Paweł Szczeblewski
- Department of Pharmaceutical Technology and Biochemistry and BioTechMed Center, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza Str. 11/12, 80-233 Gdańsk, Poland; (T.L.); (P.S.)
| | - Wirginia Kukula-Koch
- Department of Pharmacognosy with Medicinal Plants Garden, Medical University of Lublin, 1 Chodzki Str., 20-093 Lublin, Poland;
| | - Magdalena Polak-Berecka
- Department of Microbiology, Biotechnology and Human Nutrition, University of Life Sciences in Lublin, 8 Skromna Street, 20-704 Lublin, Poland; (I.N.); (A.W.); (M.P.-B.)
| |
Collapse
|
6
|
Kanelli M, Bardhan NM, Sarmadi M, Alsaiari S, Rothwell WT, Pardeshi A, De Fiesta DC, Mak H, Spanoudaki V, Henning N, Han J, Belcher AM, Langer RS, Jaklenec A. A Machine Learning-optimized system for on demand, pulsatile, photo- and chemo-therapeutic treatment using near-infrared responsive MoS 2 -based microparticles in a breast cancer model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.16.536750. [PMID: 37090507 PMCID: PMC10120681 DOI: 10.1101/2023.04.16.536750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Cancer therapy research is of high interest because of the persistence and mortality of the disease and the side effects of traditional therapeutic methods, while often multimodal treatments are necessary based on the patient's needs. The development of less invasive modalities for recurring treatment cycles is thus of critical significance. Herein, a light-activatable microparticle system was developed for localized, pulsatile delivery of anticancer drugs with simultaneous thermal ablation, by applying controlled ON-OFF thermal cycles using near-infrared laser irradiation. The system is composed of poly(caprolactone) microparticles of 200 μm size with incorporated molybdenum disulfide (MoS 2 ) nanosheets as the photothermal agent and hydrophilic doxorubicin or hydrophobic violacein, as model drugs. Upon irradiation the nanosheets heat up to ≥50 °C leading to polymer matrix melting and release of the drug. MoS 2 nanosheets exhibit high photothermal conversion efficiency and allow for application of low power laser irradiation for the system activation. A Machine Learning algorithm was applied to acquire optimal laser operation conditions; 0.4 W/cm 2 laser power at 808 nm, 3-cycle irradiation, for 3 cumulative minutes. In a mouse subcutaneous model of 4T1 triple-negative breast cancer, 25 microparticles were intratumorally administered and after 3-cycle laser treatment the system conferred synergistic phototherapeutic and chemotherapeutic effect. Our on-demand, pulsatile synergistic treatment resulted in increased median survival up to 40 days post start of treatment compared to untreated mice, with complete eradication of the tumors at the primary site. Such a system could have potential for patients in need of recurring cycles of treatment on subcutaneous tumors. GRAPHICAL ABSTRACT
Collapse
|
7
|
Di Salvo E, Lo Vecchio G, De Pasquale R, De Maria L, Tardugno R, Vadalà R, Cicero N. Natural Pigments Production and Their Application in Food, Health and Other Industries. Nutrients 2023; 15:nu15081923. [PMID: 37111142 PMCID: PMC10144550 DOI: 10.3390/nu15081923] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In addition to fulfilling their function of giving color, many natural pigments are known as interesting bioactive compounds with potential health benefits. These compounds have various applications. In recent times, in the food industry, there has been a spread of natural pigment application in many fields, such as pharmacology and toxicology, in the textile and printing industry and in the dairy and fish industry, with almost all major natural pigment classes being used in at least one sector of the food industry. In this scenario, the cost-effective benefits for the industry will be welcome, but they will be obscured by the benefits for people. Obtaining easily usable, non-toxic, eco-sustainable, cheap and biodegradable pigments represents the future in which researchers should invest.
Collapse
Affiliation(s)
- Eleonora Di Salvo
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Giovanna Lo Vecchio
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Rita De Pasquale
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Laura De Maria
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy
| | - Roberta Tardugno
- Department of Pharmacy-Drug Sciences, University of Bari, 70121 Bari, Italy
| | - Rossella Vadalà
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
| | - Nicola Cicero
- Departement of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98168 Messina, Italy
- Science4life srl, University of Messina, 98168 Messina, Italy
| |
Collapse
|
8
|
Gupta R, Ghosh SK. Discerning perturbed assembly of lipids in a model membrane in presence of violacein: Effects of membrane hydrophobicity. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184130. [PMID: 36764473 DOI: 10.1016/j.bbamem.2023.184130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
For the lack of effective antibiotics towards antibiotic resisting bacteria, it is required to discover new antibiotics and to understand their antimicrobial mechanism. Violacein is a violet pigment found in several gram-negative bacteria possessing antimicrobial properties to gram-positive bacteria. This present article investigates the insertion ability of this molecule into a model membrane composed of zwitterionic phospholipids. Thermodynamic characterization of lipid monolayers in the presence of violacein was carried out using a single lipid layer formed at air-water interface. The molecule inserts into the layer altering the area occupied by each lipid and the in-plane compressibility of the film. This insertion increases with the hydrophobic chain length of the lipid. The perturbed self-assembly of lipids in a bilayer is quantified using a lipid multilayer system applying the X-ray reflectivity technique. The electron density profile from the reflectivity data shows that the molecule inserts into the fluid phase creating a relatively ordered chain conformation. Further, the insertion into the gel phase is observed to increase with the increased thickness of the hydrophobic core of a bilayer.
Collapse
Affiliation(s)
- Ritika Gupta
- Department of Physics, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India
| | - Sajal K Ghosh
- Department of Physics, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
9
|
Lyakhovchenko NS, Travkin VM, Senchenkov VY, Solyanikova IP. Bacterial Violacein: Properties, Biosynthesis and Application Prospects. APPL BIOCHEM MICRO+ 2022. [DOI: 10.1134/s0003683822060072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
10
|
Dahlem C, Chanda S, Hemmer J, Schymik HS, Kohlstedt M, Wittmann C, Kiemer AK. Characterization of Anti-Cancer Activities of Violacein: Actions on Tumor Cells and the Tumor Microenvironment. Front Oncol 2022; 12:872223. [PMID: 35646663 PMCID: PMC9130777 DOI: 10.3389/fonc.2022.872223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Natural products have been shown to serve as promising starting points for novel anti-cancer drugs. In this study, the anti-cancer activities of the purple compound violacein, initially isolated from Chromobacterium violaceum, were investigated. To highlight the crucial role of the tumor microenvironment on the effectiveness of cancer therapies, this study includes effects on macrophages as prototypic cells of the microenvironment in addition to the investigation of tumor-centric activities. Using 2D and 3D cell culture models, automated live-cell microscopy, and biochemical analyses, violacein was demonstrated to inhibit tumor cell proliferation and migration. The violacein-triggered tumor cell death was further associated with caspase 3-like activation and ATP release. Stimuli released from dead cells resulted in inflammatory activation of macrophages, as shown by NF-κB reporter cell assays, macrophage morphology, and gene expression analysis. Moreover, macrophages deficient in the inflammasome component Nlrp3 were found to be significantly less sensitive towards treatment with violacein and doxorubicin. Taken together, this study provides new insights into the biological activity of violacein against cancer. In addition, the in vitro data suggest immunogenic features of induced cell death, making violacein an interesting candidate for further studies investigating the compound as an inducer of immunogenic cell death.
Collapse
Affiliation(s)
- Charlotte Dahlem
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Shilpee Chanda
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Jan Hemmer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Hanna S Schymik
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbruecken, Germany
| | - Michael Kohlstedt
- Institute of Systems Biotechnology, Saarland University, Saarbruecken, Germany
| | - Christoph Wittmann
- Institute of Systems Biotechnology, Saarland University, Saarbruecken, Germany
| | - Alexandra K Kiemer
- Pharmaceutical Biology, Department of Pharmacy, Saarland University, Saarbruecken, Germany
| |
Collapse
|
11
|
Functional characterization of a novel violacein biosynthesis operon from Janthinobacterium sp. B9-8. Appl Microbiol Biotechnol 2022; 106:2903-2916. [PMID: 35445857 DOI: 10.1007/s00253-022-11929-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/02/2022]
Abstract
Violacein is a secondary metabolite mainly produced by Gram-negative bacteria that is formed from tryptophan by five enzymes encoded by a single operon. It is a broad-spectrum antibacterial pigment with various important biological activities such as anti-tumor, antiviral, and antioxidative effects. The newly discovered violacein operon vioABCDE was identified in the genome of the extremophile Janthinobacterium sp. B9-8. The key enzyme-encoding genes were cloned to construct the multigene coexpression plasmids pET-vioAB and pRSF-vioCDE. The violacein biosynthesis pathway was heterologously introduced into engineered Escherichia coli VioABCDE and VioABCDE-SD. The factors affecting violacein production, including temperature, pH, inoculum size, carbon and nitrogen source, precursor, and inducers were investigated. The violacein titer of VioABCDE-SD reached 107 mg/L in a two-stage fermentation process, representing a 454.4% increase over the original strain. The violacein operon from B9-8 provides a new microbial gene source for the analysis of the violacein synthesis mechanism, and the constructed engineering E. coli strains lay a foundation for the efficient and rapid synthesis of other natural products.Key points• The newly discovered violacein operon vioABCDE was identified in the genome of the extremophile Janthinobacterium sp. B9-8.• The violacein synthesis pathway was reconstructed in E. coli using two compatible plasmids.• A two-stage fermentation process was optimized for improved violacein accumulation.
Collapse
|
12
|
Olivera-Bravo S, Bolatto C, Otero Damianovich G, Stancov M, Cerri S, Rodríguez P, Boragno D, Hernández Mir K, Cuitiño MN, Larrambembere F, Isasi E, Alem D, Canclini L, Marco M, Davyt D, Díaz-Amarilla P. Neuroprotective effects of violacein in a model of inherited amyotrophic lateral sclerosis. Sci Rep 2022; 12:4439. [PMID: 35292673 PMCID: PMC8924276 DOI: 10.1038/s41598-022-06470-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/25/2022] [Indexed: 11/25/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by progressive death of motor neurons and muscle atrophy, with defective neuron-glia interplay and emergence of aberrant glial phenotypes having a role in disease pathology. Here, we have studied if the pigment violacein with several reported protective/antiproliferative properties may control highly neurotoxic astrocytes (AbAs) obtained from spinal cord cultures of symptomatic hSOD1G93A rats, and if it could be neuroprotective in this ALS experimental model. At concentrations lower than those reported as protective, violacein selectively killed aberrant astrocytes. Treatment of hSOD1G93A rats with doses equivalent to the concentrations that killed AbAs caused a marginally significant delay in survival, partially preserved the body weight and soleus muscle mass and improved the integrity of the neuromuscular junction. Reduced motor neuron death and glial reactivity was also found and likely related to decreased inflammation and matrix metalloproteinase-2 and -9. Thus, in spite that new experimental designs aimed at extending the lifespan of hSOD1G93A rats are needed, improvements observed upon violacein treatment suggest a significant therapeutic potential that deserves further studies.
Collapse
Affiliation(s)
- Silvia Olivera-Bravo
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay.
| | - Carmen Bolatto
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Gabriel Otero Damianovich
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Matías Stancov
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Sofía Cerri
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Paola Rodríguez
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Daniela Boragno
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Karina Hernández Mir
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - María Noel Cuitiño
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Fernanda Larrambembere
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Eugenia Isasi
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Histology and Embryology Department, Faculty of Medicine, Universidad de La República (UdelaR), Montevideo, Uruguay
| | - Diego Alem
- Genetic Department, IIBCE, Montevideo, Uruguay
| | | | - Marta Marco
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Tumoral Biol Area, Clin Biochem Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Danilo Davyt
- Pharm Chem Lab, Organic Chemistry Department, Faculty of Chemistry, UdelaR, Montevideo, Uruguay
| | - Pablo Díaz-Amarilla
- Cell and Mol Neurobiol Lab, NCIC Department, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| |
Collapse
|
13
|
Neron B, Zingaropoli M, Radocchia G, Ciardi M, Mosca L, Pantanella F, Schippa S. Evaluation of the anti‑proliferative activity of violacein, a natural pigment of bacterial origin, in urinary bladder cancer cell lines. Oncol Lett 2022; 23:132. [DOI: 10.3892/ol.2022.13252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 12/06/2021] [Indexed: 11/06/2022] Open
Affiliation(s)
- Bruna Neron
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| | - Maria Zingaropoli
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| | - Giulia Radocchia
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| | - Maria Ciardi
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Rome, I-00185 Rome, Italy
| | - Fabrizio Pantanella
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| | - Serena Schippa
- Department of Public Health and Infectious Diseases, Microbiology Section, Sapienza University of Rome, I-00185 Rome, Italy
| |
Collapse
|
14
|
Yuan L, Cai Y, Zhang L, Liu S, Li P, Li X. Promoting Apoptosis, a Promising Way to Treat Breast Cancer With Natural Products: A Comprehensive Review. Front Pharmacol 2022; 12:801662. [PMID: 35153757 PMCID: PMC8836889 DOI: 10.3389/fphar.2021.801662] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Breast cancer is one of the top-ranked malignant carcinomas associated with morbidity and mortality in women worldwide. Chemotherapy is one of the main approaches to breast cancer treatment. Breast cancer initially responds to traditional first- and second-line drugs (aromatase inhibitor, tamoxifen, and carboplatin), but eventually acquires resistance, and certain patients relapse within 5 years. Chemotherapeutic drugs also have obvious toxic effects. In recent years, natural products have been widely used in breast cancer research because of their low side effects, low toxicity, and good efficacy based on their multitarget therapy. Apoptosis, a programmed cell death, occurs as a normal and controlled process that promotes cell growth and death. Inducing apoptosis is an important strategy to control excessive breast cancer cell proliferation. Accumulating evidence has revealed that natural products become increasingly important in breast cancer treatment by suppressing cell apoptosis. In this study, we reviewed current studies on natural product–induced breast cancer cell apoptosis and summarized the proapoptosis mechanisms including mitochondrial, FasL/Fas, PI3K/AKT, reactive oxygen species, and mitogen-activated protein kinase–mediated pathway. We hope that our review can provide direction in the search for candidate drugs derived from natural products to treat breast cancer by promoting cell apoptosis.
Collapse
Affiliation(s)
- Lie Yuan
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Yongqing Cai
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Liang Zhang
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Sijia Liu
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
| | - Pan Li
- Department of Pharmacy, Fengdu County Hospital of Traditional Chinese Medicine, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| | - Xiaoli Li
- Department of Pharmacology, College of Pharmacy, Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Drug Metabolism, Chongqing, China
- Key Laboratory for Biochemistry and Molecular Pharmacology of Chongqing, Chongqing, China
- *Correspondence: Xiaoli Li, ; Pan Li,
| |
Collapse
|
15
|
Ahmed A, Ahmad A, Li R, AL-Ansi W, Fatima M, Mushtaq BS, Basharat S, Li Y, Bai Z. Recent Advances in Synthetic, Industrial and Biological Applications of Violacein and Its Heterologous Production. J Microbiol Biotechnol 2021; 31:1465-1480. [PMID: 34584039 PMCID: PMC9705886 DOI: 10.4014/jmb.2107.07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/15/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
Violacein, a purple pigment first isolated from a gram-negative coccobacillus Chromobacterium violaceum, has gained extensive research interest in recent years due to its huge potential in the pharmaceutic area and industry. In this review, we summarize the latest research advances concerning this pigment, which include (1) fundamental studies of its biosynthetic pathway, (2) production of violacein by native producers, apart from C. violaceum, (3) metabolic engineering for improved production in heterologous hosts such as Escherichia coli, Citrobacter freundii, Corynebacterium glutamicum, and Yarrowia lipolytica, (4) biological/pharmaceutical and industrial properties, (5) and applications in synthetic biology. Due to the intrinsic properties of violacein and the intermediates during its biosynthesis, the prospective research has huge potential to move this pigment into real clinical and industrial applications.
Collapse
Affiliation(s)
- Aqsa Ahmed
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Abdullah Ahmad
- Department of Industrial Biotechnology, Atta-Ur-Rahman School of Applied Biosciences, National University of Science and Technology, Islamabad 44000, Pakistan
| | - Renhan Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China
| | - Waleed AL-Ansi
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China,Department of Food Science and Technology, Faculty of Agriculture, Sana’a University, Sana’a, 725, Yemen
| | - Momal Fatima
- Department of Industrial Biotechnology, National Institute of Biotechnology and Genetic Engineering (NIBGE), Faisalabad 38000, Pakistan
| | - Bilal Sajid Mushtaq
- School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, P.R. China
| | - Samra Basharat
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China
| | - Ye Li
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,Corresponding authors Y. Li E-mail:
| | - Zhonghu Bai
- School of Biotechnology, Jiangnan University, Wuxi 214122, P.R. China,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, P.R. China,
Z. Bai Phone: +86510-85197983 Fax: +86510-85197983 E-mail:
| |
Collapse
|
16
|
The Natural Pigment Violacein Potentially Suppresses the Proliferation and Stemness of Hepatocellular Carcinoma Cells In Vitro. Int J Mol Sci 2021; 22:ijms221910731. [PMID: 34639072 PMCID: PMC8509727 DOI: 10.3390/ijms221910731] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a malignant type of primary liver cancer with high incidence and mortality, worldwide. A major challenge in the treatment of HCC is chemotherapeutic resistance. It is therefore necessary to develop novel anticancer drugs for suppressing the growth of HCC cells and overcoming drug resistance for improving the treatment of HCC. Violacein is a deep violet-colored indole derivative that is produced by several bacterial strains, including Chromobacterium violaceum, and it possesses numerous pharmacological properties, including antitumor activity. However, the therapeutic effects of violacein and the mechanism underlying its antitumor effect against HCC remain to be elucidated. This study is the first to demonstrate that violacein inhibits the proliferation and stemness of Huh7 and Hep3B HCC cells. The antiproliferative effect of violacein was attributed to cell cycle arrest at the sub-G1 phase and the induction of apoptotic cell death. Violacein induced nuclear condensation, dissipated mitochondrial membrane potential (MMP), increased generation of reactive oxygen species (ROS), activated the caspase cascade, and upregulated p53 and p21. The anticancer effect of violacein on HCC cells was also associated with the downregulation of protein kinase B (AKT) and extracellular signal-regulated kinase (ERK)1/2 signaling. Violacein not only suppressed the proliferation and formation of tumorspheres of Huh7 and Hep3B cancer stem-like cells but also reduced the expression of key markers of cancer stemness, including CD133, Sox2, Oct4, and Nanog, by inhibiting the signal transducer and activator of transcription 3 (STAT3)/AKT/ERK pathways. These results suggest the therapeutic potential of violacein in effectively suppressing HCC by targeting the proliferation and stemness of HCC cells.
Collapse
|
17
|
Ward CS, Rolison K, Li M, Rozen S, Fisher CL, Lane TW, Thelen MP, Stuart RK. Janthinobacter additions reduce rotifer grazing of microalga Microchloropsis salina in biotically complex communities. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Durán N, Nakazato G, Durán M, Berti IR, Castro GR, Stanisic D, Brocchi M, Fávaro WJ, Ferreira-Halder CV, Justo GZ, Tasic L. Multi-target drug with potential applications: violacein in the spotlight. World J Microbiol Biotechnol 2021; 37:151. [PMID: 34398340 DOI: 10.1007/s11274-021-03120-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
The aim of the current review is to address updated research on a natural pigment called violacein, with emphasis on its production, biological activity and applications. New information about violacein's action mechanisms as antitumor agent and about its synergistic action in drug delivery systems has brought new alternatives for anticancer therapy. Thus, violacein is introduced as reliable drug capable of overcoming at least three cancer hallmarks, namely: proliferative signaling, cell death resistance and metastasis. In addition, antimicrobial effects on several microorganisms affecting humans and other animals turn violacein into an attractive drug to combat resistant pathogens. Emphasis is given to effects of violacein combined with different agents, such as antibiotics, anticancer agents and nanoparticles. Although violacein is well-known for many decades, it remains an attractive compound. Thus, research groups have been making continuous effort to help improving its production in recent years, which can surely enable its pharmaceutical and chemical application as multi-task compound, even in the cosmetics and food industries.
Collapse
Affiliation(s)
- Nelson Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil. .,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil.
| | - Gerson Nakazato
- Laboratory of Basic and Applied Bacteriology, Department of Microbiology, Biology Sciences Center, Universidade Estadual de Londrina (UEL), Londrina, PR, Brazil
| | - Marcela Durán
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.,Nanomedicine Research Unit (Nanomed), Center for Natural and Human Sciences (CCNH), Universidade Federal do ABC (UFABC), Santo André, SP, Brazil
| | - Ignasio R Berti
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Guillermo R Castro
- Nanobiomaterials Laboratory, Department of Chemistry, School of Sciences, Institute of Applied Biotechnology CINDEFI (UNLPCONICET, CCT La Plata),, Universidad Nacional de La Plata, La Plata, Argentina
| | - Danijela Stanisic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Marcelo Brocchi
- Laboratory of Tropical Diseases, Department of Genetic, Evolution and Bioagents , Biology Institute, Universidade Estadual de Campinas, Campinas, SP, Brazil
| | - Wagner J Fávaro
- Laboratory of Urogenital Carcinogenesis and Immunotherapy, Department of Structural and Functional Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Carmen V Ferreira-Halder
- Departamento de Bioquímica e Biologia Tecidual, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, São Paulo, Brazil
| | - Giselle Z Justo
- Departamento de Ciências Farmacêuticas (Campus Diadema) e Departamento de Bioquímica (Campus São Paulo), Universidade Federal de São Paulo (UNIFESP), 3 de Maio, 100, São Paulo, SP, 04044-020, Brazil.
| | - Ljubica Tasic
- Biological Chemistry Laboratory, Institute of Chemistry, Universidade Estadual de Campinas, Campinas, SP, Brazil
| |
Collapse
|
19
|
Discerning perturbed assembly of lipids in a model membrane in presence of violacein. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183647. [PMID: 33989532 DOI: 10.1016/j.bbamem.2021.183647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/13/2022]
Abstract
Violacein is a naturally found pigment that is used by some gram negative bacteria to defend themselves from various gram positive bacteria. As a result, this molecule has caught attention for its potential biomedical applications and has already shown promising outcomes as an antiviral, an antibacterial, and an anti-tumor agent. Understanding the interaction of this molecule with a cellular membrane is an essential step to extend its use in the pharmaceutical paradigm. Here, the interaction of violacein with a lipid monolayer formed at the air-water interface is found to depend on electrostatic nature of lipids. In presence of violacein, the two dimensional (2D) pressure-area isotherms of lipids have exhibited changes in their phase transition pressure and in-plane elasticity. To gain insights into the out-of-plane structural organization of lipids in a membrane, X-ray reflectivity (XRR) study on a solid supported lipid monolayer on a hydrophilic substrate has been performed. It has revealed that the increase in membrane thickness is more pronounced in the zwitterionic and positively charged lipids compared to the negatively charged one. Further, the lipid molecules are observed to decrease their tilt angle made with the normal of lipid membrane along with an alteration in their in-plane ordering. This has been quantified by grazing incidence X-ray diffraction (GIXD) experiments on the multilayer membrane formed in an environment with controlled humidity. The structural reorganization of lipid molecules in presence of violacein can be utilized to provide a detailed mechanism of the interaction of this molecule with cellular membrane.
Collapse
|
20
|
Celedón RS, Díaz LB. Natural Pigments of Bacterial Origin and Their Possible Biomedical Applications. Microorganisms 2021; 9:739. [PMID: 33916299 PMCID: PMC8066239 DOI: 10.3390/microorganisms9040739] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/25/2021] [Accepted: 03/29/2021] [Indexed: 12/02/2022] Open
Abstract
Microorganisms are considered one of the most promising niches for prospecting, production, and application of bioactive compounds of biotechnological interest. Among them, bacteria offer certain distinctive advantages due to their short life cycle, their low sensitivity to seasonal and climatic changes, their easy scaling as well as their ability to produce pigments of various colors and shades. Natural pigments have attracted the attention of industry due to an increasing interest in the generation of new products harmless to humans and nature. This is because pigments of artificial origin used in industry can have various deleterious effects. On this basis, bacterial pigments promise to be an attractive niche of new biotechnological applications, from functional food production to the generation of new drugs and biomedical therapies. This review endeavors to establish the beneficial properties of several relevant pigments of bacterial origin and their relation to applications in the biomedical area.
Collapse
Affiliation(s)
- Rodrigo Salazar Celedón
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco 4810296, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| | - Leticia Barrientos Díaz
- Laboratory of Molecular Applied Biology, Center of Excellence in Translational Medicine, Universidad de La Frontera, Temuco 4810296, Chile;
- Scientific and Technological Bioresource Nucleus (BIOREN), Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
21
|
S K J, S P D, R S, Sai Surya NU, Chenmala K. Guardian of genome on the tract: Wild type p53-mdm2 complex inhibition in healing the breast cancer. Gene 2021; 786:145616. [PMID: 33811963 DOI: 10.1016/j.gene.2021.145616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/11/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer acts as an assassin among women. According to WHO (world health organisation), about 6, 27,000 deaths have occurred in 2018 due to breast cancer. Since, the evolution of cancer involves many complicated pathway, in this article we have decided to focus on wild type p53. P53 is also called as tumor suppressor gene. As the name suggest, p53 is a real guardian of genome, if it is not mutated or subjected to degradation. It can perform a wide range of activities during cancer progression. It either stimulates or inhibits the genes or proteins that are responsible for cell cycle arrest, apoptosis, anti-angiogenic activity and anti-metastatic activity. At times, the p53 will be unable to produce its action due to various reasons like mutation or degradation by other proteins or degrading ligases. Since, we are focusing on wild type p53, it will be inhibited occasionally by mdm2 resulting in proteosomal degradation of p53. However, this condition can be prevented by possible treatment regimen. With the above points in mind, we have focused on p53 activation, complex formation between p53 and mdm2, and inhibition of the complex in order to free p53 and allow them to perform their action for rehabilitation of cancer. Furthermore, we have also discussed pathways involved in eradicating cancer through p53 activation. By considering the following aspects, hope that p53 can be considered for management of breast cancer.
Collapse
Affiliation(s)
- Janani S K
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Dhanabal S P
- Department of Pharmacognosy and Phytopharmacy, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India.
| | - Sureshkumar R
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Nikitha Upadhyayula Sai Surya
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| | - Karthika Chenmala
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Ooty, Nilgiris, Tamilnadu, India
| |
Collapse
|
22
|
Reactive oxygen species (ROS): Critical roles in breast tumor microenvironment. Crit Rev Oncol Hematol 2021; 160:103285. [DOI: 10.1016/j.critrevonc.2021.103285] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 01/18/2021] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
|
23
|
Park H, Park S, Yang YH, Choi KY. Microbial synthesis of violacein pigment and its potential applications. Crit Rev Biotechnol 2021; 41:879-901. [PMID: 33730942 DOI: 10.1080/07388551.2021.1892579] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Violacein is a pigment synthesized by Gram-negative bacteria such as Chromobacterium violaceum. It has garnered significant interest owing to its unique physiological and biological activities along with its synergistic effects with various antibiotics. In addition to C. violaceum, several microorganisms, including: Duganella sp., Pseudoalteromonas sp., Iodobacter sp., and Massilia sp., are known to produce violacein. Along with the identification of violacein-producing strains, the genetic regulation, quorum sensing mechanism, and sequence of the vio-operon involved in the biosynthesis of violacein have been elucidated. From an engineering perspective, the heterologous production of violacein using the genetically engineered Escherichia coli or Citrobacter freundii host has also been attempted. Genetic engineering of host cells involves the heterologous expression of genes involved in the vio operon and the optimization of metabolic pathways and gene regulation. Further, the crystallography of VioD and VioE was revealed, and mass production by enzyme engineering has been accelerated. In this review, we highlight the biologically assisted end-use applications of violacein (such as functional fabric development, nanoparticles, functional polymer composites, and sunscreen ingredients) and violacein activation mechanisms, production strains, and the results of mass production with engineered methods. The prospects for violacein research and engineering applications have also been discussed.
Collapse
Affiliation(s)
- HyunA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - SeoA Park
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon, South Korea.,Department of Environmental and Safety Engineering, College of Engineering, Ajou University, Suwon, South Korea
| |
Collapse
|
24
|
Choi SY, Lim S, Yoon KH, Lee JI, Mitchell RJ. Biotechnological Activities and Applications of Bacterial Pigments Violacein and Prodigiosin. J Biol Eng 2021; 15:10. [PMID: 33706806 PMCID: PMC7948353 DOI: 10.1186/s13036-021-00262-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
In this review, we discuss violacein and prodigiosin, two chromogenic bacterial secondary metabolites that have diverse biological activities. Although both compounds were "discovered" more than seven decades ago, interest into their biological applications has grown in the last two decades, particularly driven by their antimicrobial and anticancer properties. These topics will be discussed in the first half of this review. The latter half delves into the current efforts of groups to produce these two compounds. This includes in both their native bacterial hosts and heterogeneously in other bacterial hosts, including discussing some of the caveats related to the yields reported in the literature, and some of the synthetic biology techniques employed in this pursuit.
Collapse
Affiliation(s)
- Seong Yeol Choi
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Sungbin Lim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Kyoung-Hye Yoon
- Department of Physiology, Mitohormesis Research Center, Yonsei University Wonju College of Medicine, Wonju, Gangwon-do, South Korea.
| | - Jin I Lee
- Division of Biological Science and Technology, College of Science and Technology, Yonsei University, Mirae Campus, Wonju, Gangwon-do, South Korea.
| | - Robert J Mitchell
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| |
Collapse
|
25
|
The inhibition of tumor protein p53 by microRNA-151a-3p induced cell proliferation, migration and invasion in nasopharyngeal carcinoma. Biosci Rep 2020; 39:220889. [PMID: 31652456 PMCID: PMC6822577 DOI: 10.1042/bsr20191357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
A close relation between microRNA-151a-3p (miR-151a-3p) and nasopharyngeal carcinoma (NPC) has been reported, however, the molecular mechanism is still unclear. The aim of the present study was to explore the mechanism in the promotion of miR-151a-3p to NPC progression. The levels of miR-151-3p in several NPC cell lines were detected in order to screen an experimental cell line. MiR-151a-3p mimic and inhibitor were constructed and transfected into 5-8F cells and cell proliferation were detected by Cell Counting Kit-8 (CCK-8). The apoptosis rate, cell migration and invasion were determined by flow cytometry, wound healing and Transwell assays. The predicted target was further verified by luciferase reporter assay. Real-time quantification-PCR and Western blot were carried out for mRNA and protein level analysis. Tumor protein p53 was co-transfected to verify the functions of miR-151a-3p. The miR-151a-3p level in NPC tissues was much higher than that in adjacent tissues. After transfecting cells with miR-151a-3p mimic, the cell proliferation and patients' survival rate were much increased, and this was accompanied by the increase in B-cell lymphoma 2 (Bcl-2) and decreases in Bax and cleaved caspase-3 (P<0.01). Moreover, the migration rate and number of invaded cells were also remarkably increased, however, the miR-151a-3p inhibitor had opposite effects on the 5-8F cells. Noticeably, p53 was revealed as a potential target of miR-151a-3p. Co-transfection of P53 could partially reverse the promotive effects of miR-151a-3p on NPC cell progression. Our data indicated that blocking p53 expression and mediated signal pathways contribute to the positive effects of miR-151a-3p on NPC cell proliferation, migration and invasion.
Collapse
|
26
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
27
|
Alem D, Marizcurrena JJ, Saravia V, Davyt D, Martinez-Lopez W, Castro-Sowinski S. Production and antiproliferative effect of violacein, a purple pigment produced by an Antarctic bacterial isolate. World J Microbiol Biotechnol 2020; 36:120. [DOI: 10.1007/s11274-020-02893-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/11/2020] [Indexed: 12/22/2022]
|
28
|
Sajjad W, Din G, Rafiq M, Iqbal A, Khan S, Zada S, Ali B, Kang S. Pigment production by cold-adapted bacteria and fungi: colorful tale of cryosphere with wide range applications. Extremophiles 2020; 24:447-473. [PMID: 32488508 PMCID: PMC7266124 DOI: 10.1007/s00792-020-01180-2] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/18/2020] [Indexed: 12/18/2022]
Abstract
Pigments are an essential part of everyday life on Earth with rapidly growing industrial and biomedical applications. Synthetic pigments account for a major portion of these pigments that in turn have deleterious effects on public health and environment. Such drawbacks of synthetic pigments have shifted the trend to use natural pigments that are considered as the best alternative to synthetic pigments due to their significant properties. Natural pigments from microorganisms are of great interest due to their broader applications in the pharmaceutical, food, and textile industry with increasing demand among the consumers opting for natural pigments. To fulfill the market demand of natural pigments new sources should be explored. Cold-adapted bacteria and fungi in the cryosphere produce a variety of pigments as a protective strategy against ecological stresses such as low temperature, oxidative stresses, and ultraviolet radiation making them a potential source for natural pigment production. This review highlights the protective strategies and pigment production by cold-adapted bacteria and fungi, their industrial and biomedical applications, condition optimization for maximum pigment extraction as well as the challenges facing in the exploitation of cryospheric microorganisms for pigment extraction that hopefully will provide valuable information, direction, and progress in forthcoming studies.
Collapse
Affiliation(s)
- Wasim Sajjad
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ghufranud Din
- Department of Microbiology, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| | - Muhammad Rafiq
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of IT, Engineering and Management Sciences, Quetta, Pakistan
| | - Awais Iqbal
- School of Life Sciences, State Key Laboratory of Grassland Agro-Ecosystems, Lanzhou University, Lanzhou, People's Republic of China
| | - Suliman Khan
- The Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Sahib Zada
- Department of Biology, College of Science, Shantou University, Shantou, China
| | - Barkat Ali
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China.
- CAS Center for Excellence in Tibetan Plateau Earth Sciences, Beijing, China.
| |
Collapse
|
29
|
Transcriptome Analysis of Ochratoxin A-Induced Apoptosis in Differentiated Caco-2 Cells. Toxins (Basel) 2019; 12:toxins12010023. [PMID: 31906179 PMCID: PMC7020595 DOI: 10.3390/toxins12010023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 12/20/2022] Open
Abstract
Ochratoxin A (OTA), an important mycotoxin that occurs in food and animal feed, has aroused widespread concern in recent years. Previous studies have indicated that OTA causes nephrotoxicity, hepatotoxicity, genotoxicity, immunotoxicity, cytotoxicity, and neurotoxicity. The intestinal toxicity of OTA has gradually become a focus of research, but the mechanisms underlying this toxicity have not been described. Here, differentiated Caco-2 cells were incubated for 48 h with different concentrations of OTA and transcriptome analysis was used to estimate damage to the intestinal barrier. Gene expression profiling was used to compare the characteristics of differentially expressed genes (DEGs). There were altogether 10,090 DEGs, mainly clustered into two downregulation patterns. The Search Tool for Retrieval of Interacting Genes (STRING), which was used to analyze the protein-protein interaction network, indicated that 24 key enzymes were mostly responsible for regulating cell apoptosis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis was used to validate eight genes, three of which were key genes (CASP3, CDC25B, and EGR1). The results indicated that OTA dose-dependently induces apoptosis in differentiated Caco-2 cells. Transcriptome analysis showed that the impairment of intestinal function caused by OTA might be partly attributed to apoptosis, which is probably associated with downregulation of murine double minute 2 (MDM2) expression and upregulation of Noxa and caspase 3 (CASP3) expression. This study has highlighted the intestinal toxicity of OTA and provided a genome-wide view of biological responses, which provides a theoretical basis for enterotoxicity and should be useful in establishing a maximum residue limit for OTA.
Collapse
|
30
|
Nhu Ngoc LT, Park SM, Oh JH, Shin HY, Kim MI, Lee HU, Lee KB, Lee KS, Moon JY, Kwon OH, Yang HY, Lee YC. Cerium Aminoclay-A Potential Hybrid Biomaterial for Anticancer Therapy. ACS Biomater Sci Eng 2019; 5:5857-5871. [PMID: 33405676 DOI: 10.1021/acsbiomaterials.9b00789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In this study, novel biomedical properties of Ce-aminoclay (CeAC) were investigated through in vitro and in vivo assays. CeAC (≥500 μg/mL) can selectively kill cancer cells (A549, Huh-1, AGS, C33A, HCT116, and MCF-7 cells) while leaving most normal cells unharmed (WI-38 and CCD-18Co cells). Notably, it displayed a high contrast of simultaneous imaging in HeLa cells by blue photoluminescence without any fluorescence dye. Its anticancer mechanism has been fully demonstrated through apoptosis assays; herein CeAC induced high-level apoptosis (16%), which promoted the expression of proapoptotic proteins (Bax, p53, and caspase 9) in tumor cells. Besides, its biological behavior was determined through antitumor effects using intravenous and intratumoral administration routes in mice implanted with HCT116 cells. During a 40 day trial, the tumor volume and tumor weight were reduced by a maximum of 92.24 and 86.11%, respectively. The results indicate that CeAC exhibits high bioavailability and therapeutic potential based on its unique characteristics, including high antioxidant capacity and electrostatic interaction between its amino functional groups and the mucosal surface of cells. In summary, it is suggested that CeAC, with its high bioimaging contrast, can be a promising anticancer agent for future biomedical applications.
Collapse
Affiliation(s)
- Le Thi Nhu Ngoc
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| | - Se-Myo Park
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Jung-Hwa Oh
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Ho Yun Shin
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| | - Moon Il Kim
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| | - Hyun Uk Lee
- Division of Materials Science, Korea Basic Science Institute (KBSI), Daejeon 305-333, Republic of Korea
| | - Kyung-Bok Lee
- Electron Microscopy Research Center, Korea Basic Science Institute (KBSI), 161 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory (PAL), Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Ju-Young Moon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul 02876, Korea
| | - Oh-Hyeok Kwon
- Department of Beauty Design Management, Hansung University, 116 Samseongyoro-16gil, Seoul 02876, Korea
| | - Hee Young Yang
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), 141 Gajeong-ro, Yuseong-gu, Daejeon 34114, Republic of Korea
| | - Young-Chul Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
31
|
The Bacterial Product Violacein Exerts an Immunostimulatory Effect Via TLR8. Sci Rep 2019; 9:13661. [PMID: 31541142 PMCID: PMC6754391 DOI: 10.1038/s41598-019-50038-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 07/19/2019] [Indexed: 12/28/2022] Open
Abstract
Violacein, an indole-derived, purple-colored natural pigment isolated from Chromobacterium violaceum has shown multiple biological activities. In this work, we studied the effect of violacein in different immune cell lines, namely THP-1, MonoMac 6, ANA-1, Raw 264.7 cells, as well as in human peripheral blood mononuclear cells (PBMCs). A stimulation of TNF-α production was observed in murine macrophages (ANA-1 and Raw 264.7), and in PBMCs, IL-6 and IL-1β secretion was detected. We obtained evidence of the molecular mechanism of activation by determining the mRNA expression pattern upon treatment with violacein in Raw 264.7 cells. Incubation with violacein caused activation of pathways related with an immune and inflammatory response. Our data utilizing TLR-transfected HEK-293 cells indicate that violacein activates the human TLR8 (hTLR8) receptor signaling pathway and not human TLR7 (hTLR7). Furthermore, we found that the immunostimulatory effect of violacein in PBMCs could be suppressed by the specific hTLR8 antagonist, CU-CPT9a. Finally, we studied the interaction of hTLR8 with violacein in silico and obtained evidence that violacein could bind to hTLR8 in a similar fashion to imidazoquinoline compounds. Therefore, our results indicate that violacein may have some potential in contributing to future immune therapy strategies.
Collapse
|
32
|
Canuto J, Lima D, Menezes R, Batista A, Nogueira P, Silveira E, Grangeiro T, Nogueira N, Martins A. Antichagasic effect of violacein from
Chromobacterium violaceum. J Appl Microbiol 2019; 127:1373-1380. [DOI: 10.1111/jam.14391] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/03/2019] [Accepted: 07/11/2019] [Indexed: 12/26/2022]
Affiliation(s)
- J.A. Canuto
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - D.B. Lima
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - R.R.P.P.B. Menezes
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - A.H.M. Batista
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - P.C.D.N. Nogueira
- Departamento de Química Universidade Federal do Ceará Fortaleza CE Brazil
| | - E.R. Silveira
- Departamento de Química Universidade Federal do Ceará Fortaleza CE Brazil
| | - T.B. Grangeiro
- Departamento de Biologia Universidade Federal do Ceará Fortaleza CE Brazil
| | - N.A.P. Nogueira
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| | - A.M.C. Martins
- Departamento de Análises Clínicas e Toxicológicas Universidade Federal do Ceará Fortaleza CE Brazil
| |
Collapse
|
33
|
Gao A, Chen H, Hou A, Xie K. Efficient antimicrobial silk composites using synergistic effects of violacein and silver nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109821. [PMID: 31349531 DOI: 10.1016/j.msec.2019.109821] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 04/29/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
Abstract
Violacein, a natural violet biopigment with efficient bioactivities from Gram-negative bacteria, possesses good affinity to silk fiber and complexes with silver. In this paper, a new approach involving the surface modification of silk fabrics with violacein for the in-situ synthesis of silver nanoparticles (SNPs) was developed. Violacein is used to modify silk material. Subsequently, silk containing bio-violacein was in situ assembled by silver ions and formed SNPs. Functional silk composites (FSC) containing bio-violacein and SNPs were obtained with effective synergistic antimicrobial effects. FSC were characterized by FT-IR spectroscopy, UV-visible absorption spectroscopy, and scanning electron microscopy/energy dispersive spectroscopy, and X-ray diffraction. Exhaustion and amount of violacein on silk fabric were 65.82% and 0.16 g/g, respectively. SNPs were small particles with irregular shapes and sizes <60-70 nm. Antimicrobial activities of the FSC were evaluated against S. aureus, E. coli, and C. albicans. The silk fabric with violacein possessed good antimicrobial activity against S. aureus, with a bacterial reduction of 81.25%. FSC with violacein combined with SNPs integration exhibited good synergistic properties as excellent antimicrobial activities against S. aureus, E. coli, and C. albicans, with microbial reductions of 99.98%, 99.90%, and 99.85%, respectively. FSC not only exhibited the enhanced antimicrobial effects but also exhibited a broadened antimicrobial range.
Collapse
Affiliation(s)
- Aiqin Gao
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Huanghuang Chen
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China
| | - Aiqin Hou
- National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
| | - Kongliang Xie
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, China.
| |
Collapse
|
34
|
Nagabhishek SN, Madankumar A. A novel apoptosis-inducing metabolite isolated from marine sponge symbiont Monascus sp. NMK7 attenuates cell proliferation, migration and ROS stress-mediated apoptosis in breast cancer cells. RSC Adv 2019; 9:5878-5890. [PMID: 35517301 PMCID: PMC9060890 DOI: 10.1039/c8ra09886g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 01/27/2019] [Indexed: 01/19/2023] Open
Abstract
The marine environment has a remarkable source of natural products mainly from marine fungi, which have been a central source of novel pharmacologically bioactive secondary metabolites. In this study, the search for a new potential apoptosis-inducing metabolite is focused on marine sponge-associated symbionts. A total of sixteen different sponges were obtained from the Gulf of Mannar region, India, and twenty-three different marine fungal strains were isolated and tested for antiproliferative activity by the MTT assay. Out of these, Monascus sp. NMK7 associated with the marine sponge Clathria frondifera was found to have a promising antiproliferative property. Furthermore, to isolate the pure active metabolite, the crude material was subjected to column chromatography and HPLC. Structural characterization was conducted by a variety of spectroscopic techniques including UV, IR, MS and NMR. The obtained results from the MS and NMR spectroscopy determined 418.5 Da to be the molecular weight and C24H34O6 to be the molecular formula of the metabolite, indicating the presence of monacolin X (NMKD7). NMKD7 was found to induce dose-dependent cytotoxicity in different human breast cancer cell lines MCF-7, T47D, MDA-MB-231, MDA-MB-468 and MCF-10A normal breast cell after 24 h of exposure. For elucidating the possible mode of cell death, T47D and MDA-MB-468 cells were treated with NMKD7 for 24 h to examine the morphological change of the chromatin (PI & AO/EB). Therefore, it has been suggested as the possible mechanism of apoptosis, and apart from this, it has also exhibited antibacterial and anti-migratory properties as well as induced the ROS stress (DCFH-DA), which causes the mitochondrial membrane potential difference (Rhodamine-123), the loss of cell membrane integrity and eventually cell death. Thus, the present study features a novel promising apoptosis-inducing metabolite (NMKD7) with minimal toxicity, suggesting its potential for biotechnological applications, and substantiates that it should be further considered for the elucidation of molecular targets and signal transduction pathways.
Collapse
Affiliation(s)
- Sirpu Natesh Nagabhishek
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| | - Arumugam Madankumar
- Cancer Biology Lab, Molecular and Nanomedicine Research Unit, Sathyabama Institute of Science and Technology Chennai-600119 Tamil Nadu India +919942110146
| |
Collapse
|
35
|
Marizcurrena JJ, Cerdá MF, Alem D, Castro-Sowinski S. Living with Pigments: The Colour Palette of Antarctic Life. SPRINGER POLAR SCIENCES 2019. [DOI: 10.1007/978-3-030-02786-5_4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
36
|
Azman AS, Mawang CI, Abubakar S. Bacterial Pigments: The Bioactivities and as an Alternative for Therapeutic Applications. Nat Prod Commun 2018. [DOI: 10.1177/1934578x1801301240] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Synthetic pigments have been widely used in various applications since the 1980s. However, the hyperallergenicity or carcinogenicity effects of synthetic dyes have led to the increased research on natural pigments. Among the natural resources, bacterial pigments are a good alternative to synthetic pigments because of their significant properties. Bacterial pigments are also one of the emerging fields of research since it offers promising opportunities for different applications. Besides its use as safe coloring agents in the cosmetic and food industry, bacterial pigments also possess biological properties such as antimicrobial, antiviral, antioxidant and anticancer activities. This review article highlights the various types of bacterial pigments, the latest studies on the discovery of bacterial pigments and the therapeutic insights of these bacterial pigments which hopefully provides useful information, guidance and improvement in future study.
Collapse
Affiliation(s)
- Adzzie-Shazleen Azman
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Christina-Injan Mawang
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Sazaly Abubakar
- Tropical Infectious Diseases Research and Education Centre, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| |
Collapse
|
37
|
Apoptotic role of marine sponge symbiont Bacillus subtilis NMK17 through the activation of caspase-3 in human breast cancer cell line. Mol Biol Rep 2018; 45:2641-2651. [PMID: 30414102 DOI: 10.1007/s11033-018-4434-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/10/2018] [Indexed: 12/15/2022]
Abstract
The aim of the present study was to evaluate the diverse potential biological activity of partially purified crude extract (PPCEBS) of marine Bacillus subtilis NMK17 associated with marine sponge Clathria frondifera. Symbionts were isolated from a marine sponge, only the potential strain which exhibited apoptosis was sequenced using 16S rRNA and extract of the active strain was subjected to purification using HPLC. The potential pro-apoptotic role of PPCEBS was investigated in MCF-7 human breast cancer cell line for cytotoxicity by MTT assay, which showed dose-dependent cytotoxicity on 24 h of exposure. The apoptotic findings demonstrated that PPCEBS significantly induces apoptosis, which was characterised by apoptotic morphological changes. Further, an increased expression of the Caspase 3 and Bax whereas decreased Bcl-2 was confirmed by immunofluorescence and western blotting analysis in MCF-7 cell line, which revealed that PPCEBS has potent apoptosis-inducing property. Added to the desirable apoptotic activity, PPCEBS exhibited excellent antibacterial and antioxidant activities too. The pharmacological effect of the marine sponge-associated bacteria from Gulf of Mannar India needs further attention in discovering new bioactive compounds. Our results suggested that the compounds present in the PPCEBS in marine bacterial B. subtilis NMK17 could be candidates for developing an apoptosis-specific drug with minimal toxicity. This study indicated that marine sponge-associated bacteria could be a good source to find the cytotoxic metabolites which would induce apoptosis and cause cancer cell death. Also, this study explores that marine natural products as a potential source of pharmaceuticals.
Collapse
|
38
|
Investigating the potential use of an Antarctic variant of Janthinobacterium lividum for tackling antimicrobial resistance in a One Health approach. Sci Rep 2018; 8:15272. [PMID: 30323184 PMCID: PMC6189184 DOI: 10.1038/s41598-018-33691-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 10/02/2018] [Indexed: 01/16/2023] Open
Abstract
The aim of this paper is to describe a new variant of Janthinobacterium lividum - ROICE173, isolated from Antarctic snow, and to investigate the antimicrobial effect of the crude bacterial extract against 200 multi-drug resistant (MDR) bacteria of both clinical and environmental origin, displaying various antibiotic resistance patterns. ROICE173 is extremotolerant, grows at high pH (5.5–9.5), in high salinity (3%) and in the presence of different xenobiotic compounds and various antibiotics. The best violacein yield (4.59 ± 0.78 mg·g−1 wet biomass) was obtained at 22 °C, on R2 broth supplemented with 1% glycerol. When the crude extract was tested for antimicrobial activity, a clear bactericidal effect was observed on 79 strains (40%), a bacteriostatic effect on 25 strains (12%) and no effect in the case of 96 strains (48%). A very good inhibitory effect was noticed against numerous MRSA, MSSA, Enterococci, and Enterobacteriaceae isolates. For several environmental E. coli strains, the bactericidal effect was encountered at a violacein concentration below of what was previously reported. A different effect (bacteriostatic vs. bactericidal) was observed in the case of Enterobacteriaceae isolated from raw vs. treated wastewater, suggesting that the wastewater treatment process may influence the susceptibility of MDR bacteria to violacein containing bacterial extracts.
Collapse
|
39
|
Mart’yanov SV, Letarov AV, Ivanov PA, Plakunov VK. Stimulation of Violacein Biosynthesis in Chromobacterium violaceum Biofilms in the Presence of Dimethyl Sulfoxide. Microbiology (Reading) 2018. [DOI: 10.1134/s0026261718030050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
40
|
Action and function of Chromobacterium violaceum in health and disease: Violacein as a promising metabolite to counteract gastroenterological diseases. Best Pract Res Clin Gastroenterol 2017; 31:649-656. [PMID: 29566908 DOI: 10.1016/j.bpg.2017.10.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 10/10/2017] [Indexed: 01/31/2023]
Abstract
Chromobacterium violaceum is a Gram negative, β-proteobacterium found in the microbiota of tropical and subtropical environments. Although considered an opportunistic pathogen, infection rapidly progress to fatal sepsis, with metastatic abscesses. It is noteworthy the multidrug resistant phenotype of C. violaceum and the possibility of relapse. Recently, an influence of global climate in the incidence of cases beyond the previous areas has been observed. Furthermore, chronic granulomatous disease has been considered a risk factor to infection. Despite the increase in C. violaceum infection incidence and high mortality, most clinicians are not familiar with it. This review pointed out important features of this life threatening microorganism, including its pathogenicity, mechanistic aspects, genetic and drug resistance associated factors, and the clinical association with chronic granulomatous disease. In addition, its main metabolite violacein may be a promising agent to counteract gastroenterological diseases, such as colorectal cancer and inflammatory gastric lesions.
Collapse
|
41
|
Cytotoxicity and Proapoptotic Effects of Allium atroviolaceum Flower Extract by Modulating Cell Cycle Arrest and Caspase-Dependent and p53-Independent Pathway in Breast Cancer Cell Lines. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:1468957. [PMID: 29250124 PMCID: PMC5698829 DOI: 10.1155/2017/1468957] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 10/12/2017] [Indexed: 01/16/2023]
Abstract
Breast cancer is the second leading cause of cancer death among women and despite significant advances in therapy, it remains a critical health problem worldwide. Allium atroviolaceum is an herbaceous plant, with limited information about the therapeutic capability. We aimed to study the anticancer effect of flower extract and the mechanisms of action in MCF-7 and MDA-MB-231. The extract inhibits the proliferation of the cells in a time- and dose-dependent manner. The underlying mechanism involved the stimulation of S and G2/M phase arrest in MCF-7 and S phase arrest in MDA-MB-231 associated with decreased level of Cdk1, in a p53-independent pathway. Furthermore, the extract induces apoptosis in both cell lines, as indicated by the percentage of sub-G0 population, the morphological changes observed by phase contrast and fluorescent microscopy, and increase in Annexin-V-positive cells. The apoptosis induction was related to downregulation of Bcl-2 and also likely to be caspase-dependent. Moreover, the combination of the extract and tamoxifen exhibits synergistic effect, suggesting that it can complement current chemotherapy. LC-MS analysis displayed 17 major compounds in the extract which might be responsible for the observed effects. Overall, this study demonstrates the potential applications of Allium atroviolaceum extract as an anticancer drug for breast cancer treatment.
Collapse
|
42
|
Recent research advances on Chromobacterium violaceum. ASIAN PAC J TROP MED 2017; 10:744-752. [PMID: 28942822 DOI: 10.1016/j.apjtm.2017.07.022] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/18/2017] [Accepted: 06/17/2017] [Indexed: 11/21/2022] Open
Abstract
Chromobacterium violaceum is a gram-negative bacterium, which has been used widely in microbiology labs involved in quorum sensing (QS) research. Among the QS-regulated traits of this bacterium, violacein production has received the maximum attention. Violacein production in this organism, however is not under sole control of QS machinery, and other QS-regulated traits of this bacterium also need to be investigated in better detail. Though not often involved in human infections, this bacterium is being viewed as an emerging pathogen. This review attempts to highlight the recent research advances on C. violaceum, with respect to violacein biosynthesis, development of various applications of this bacterium and its bioactive metabolite violacein, and its pathogenicity.
Collapse
|
43
|
Fu X, Xu L, Qi L, Tian H, Yi D, Yu Y, Liu S, Li S, Xu Y, Wang C. BMH-21 inhibits viability and induces apoptosis by p53-dependent nucleolar stress responses in SKOV3 ovarian cancer cells. Oncol Rep 2017; 38:859-865. [PMID: 28656213 PMCID: PMC5561869 DOI: 10.3892/or.2017.5750] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Accepted: 05/22/2017] [Indexed: 01/05/2023] Open
Abstract
The nucleolus is a stress sensor associated with cell cycle progression and apoptosis. Studies have shown that nucleolar stress is positively correlated with apoptosis in breast, prostate and lung cancer cells. However, the role and function of nucleolar stress in ovarian cancer has not been reported. In this study, we found that the nucleolar stress inducer BMH-21 inhibited viability of SKOV3 ovarian cancer cells in a dose-dependent manner. Furthermore, BMH-21 induced the expression of nucleolar stress marker proteins (nucleolin, nucleophosmin and fibrillarin) and promoted the nuclear export of these proteins. BMH-21 also decreased MDM2 proto-oncogene expression and increased protein levels of the tumor suppressor p53 and p53 phosphorylated at serine 15 (p‑p53‑Ser15), which contributed to increased expression of the downstream apoptosis-related protein BCL2 associated X (BAX) and activation of caspase-3. Taken together, these data provide the first reported evidence that induction of p53-dependent nucleolar stress by BMH-21 induces apoptosis in ovarian cancer. Our data suggest that nucleolar stress might be a pathway suitable for targeting in ovarian cancer.
Collapse
Affiliation(s)
- Xinxu Fu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Lu Xu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Ling Qi
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Hongyan Tian
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Dan Yi
- Physical Examination Center, Jilin Integrated Traditional Chinese and Western Medicine Hospital, Jilin, Jilin 132013, P.R. China
| | - Yang Yu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Shibing Liu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Songyan Li
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Ye Xu
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
- Department of Histology and Embryology, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| | - Chunyan Wang
- Tumor Targeted Therapy and Translational Medicine Laboratory, Basic College of Medicine, Jilin Medical University, Jilin, Jilin 132013, P.R. China
| |
Collapse
|
44
|
Theodorou E, Scanga R, Twardowski M, Snyder MP, Brouzes E. A Droplet Microfluidics Based Platform for Mining Metagenomic Libraries for Natural Compounds. MICROMACHINES 2017; 8:E230. [PMID: 30400422 PMCID: PMC6189830 DOI: 10.3390/mi8080230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/14/2017] [Accepted: 07/19/2017] [Indexed: 12/17/2022]
Abstract
Historically, microbes from the environment have been a reliable source for novel bio-active compounds. Cloning and expression of metagenomic DNA in heterologous strains of bacteria has broadened the range of potential compounds accessible. However, such metagenomic libraries have been under-exploited for applications in mammalian cells because of a lack of integrated methods. We present an innovative platform to systematically mine natural resources for pro-apoptotic compounds that relies on the combination of bacterial delivery and droplet microfluidics. Using the violacein operon from C. violaceum as a model, we demonstrate that E. coli modified to be invasive can serve as an efficient delivery vehicle of natural compounds. This approach permits the seamless screening of metagenomic libraries with mammalian cell assays and alleviates the need for laborious extraction of natural compounds. In addition, we leverage the unique properties of droplet microfluidics to amplify bacterial clones and perform clonal screening at high-throughput in place of one-compound-per-well assays in multi-well format. We also use droplet microfluidics to establish a cell aggregate strategy that overcomes the issue of background apoptosis. Altogether, this work forms the foundation of a versatile platform to efficiently mine the metagenome for compounds with therapeutic potential.
Collapse
Affiliation(s)
- Elias Theodorou
- Metagenomix Inc., Branford, CT 06405, USA.
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Randall Scanga
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Mariusz Twardowski
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Michael P Snyder
- Metagenomix Inc., Branford, CT 06405, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Eric Brouzes
- Metagenomix Inc., Branford, CT 06405, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794, USA.
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|
45
|
Qian X, Tan C, Yang B, Wang F, Ge Y, Guan Z, Cai J. Astaxanthin increases radiosensitivity in esophageal squamous cell carcinoma through inducing apoptosis and G2/M arrest. Dis Esophagus 2017; 30:1-7. [PMID: 28475750 DOI: 10.1093/dote/dox027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 03/23/2017] [Indexed: 12/11/2022]
Abstract
Nowadays esophageal squamous cell carcinoma (ESCC) is primarily treated by a comprehensive approach combining surgical resection and neoadjuvant chemo- or radiotherapy. However, ESCC is resistant to radiation therapy, resulting in its invasion, infiltration, and metastasis. It usually has rapidly progressed and has a poor outcome clinically. The purpose of this study is to determine the potential radiosensitizing effect of astaxanthin (ATX) and explore the underlying mechanisms in ESCC cells in vitro. ESCC cell lines were exposure to irradiation, in the presence or absence of ATX treatment. Cell viability and radiosensitization were tested by CCK8 assay and clonogenic survival assay, respectively. Cell apoptosis and the changes of cell cycle distribution were observed by flow cytometry. The protein expression of Bcl2, Bax, CyclinB1, and Cdc2 was examined by western blot analysis. It was shown that ATX improved radiosensitivity of ESCC cells and induced apoptosis and G2/M arrest via inhibiting Bcl2, CyclinB1, Cdc2, and promoting Bax expression. In conclusion, ATX might function as a promising radiosensitizer in ESCC cells by leading to apoptosis and G2/M arrest.
Collapse
|
46
|
Subash-Babu P, Alshammari GM, Ignacimuthu S, Alshatwi AA. Epoxy clerodane diterpene inhibits MCF-7 human breast cancer cell growth by regulating the expression of the functional apoptotic genes Cdkn2A, Rb1, mdm2 and p53. Biomed Pharmacother 2017; 87:388-396. [DOI: 10.1016/j.biopha.2016.12.091] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 02/07/2023] Open
|
47
|
The Expression of IGFBP6 after Spinal Cord Injury: Implications for Neuronal Apoptosis. Neurochem Res 2016; 42:455-467. [PMID: 27888466 DOI: 10.1007/s11064-016-2092-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/11/2016] [Accepted: 10/27/2016] [Indexed: 01/03/2023]
Abstract
IGFBP6, a member of the insulin-like growth factor-binding proteins family that contains six high affinity IGFBPs, modulates insulin-like growth factor (IGF) activity and also showed an independent effect of IGF, such as growth inhibition and apoptosis. However, the role of IGFBP6 in spinal cord injury (SCI) remains largely elusive. In this study, we have performed an acute SCI model in adult rats and investigated the dynamic changes of IGFBP6 expression in the spinal cord. Our results showed that IGFBP6 was upregulated significantly after SCI, which was paralleled with the levels of apoptotic proteins p53 and active caspase-3. Immunofluorescent labeling showed that IGFBP6 was co-localizated with active caspase-3 and p53 in neurons. To further investigate the function of IGFBP6, an apoptosis model was established in primary neuronal cells. When IGFBP6 was knocked down by specific short interfering RNA (siRNA), the protein levels of active caspase-3 and Bax as well as the number of apoptotic primary neurons were significantly decreased in our study. Taken together, our findings suggest that the change of IGFBP6 protein expression plays a key role in neuronal apoptosis after SCI.
Collapse
|
48
|
Violacein induces death of RAS-mutated metastatic melanoma by impairing autophagy process. Tumour Biol 2016; 37:14049-14058. [PMID: 27502397 DOI: 10.1007/s13277-016-5265-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 07/15/2016] [Indexed: 12/22/2022] Open
Abstract
Treatment of metastatic melanoma still remains a challenge, since in advanced stage it is refractory to conventional treatments. Most patients with melanoma have either B-RAF or N-RAS mutations, and these oncogenes lead to activation of the RAS-RAF-MEK-ERK and AKT signal pathway, keeping active the proliferation and survival pathways in the cell. Therefore, the identification of small molecules that block metastatic cell proliferation and induce cell death is needed. Violacein, a pigment produced by Chromobacterium violaceum found in Amazon River, has been used by our group as a biotool for scrutinizing signaling pathways associated with proliferation, survival, aggressiveness, and resistance of cancer cells. In the present study, we demonstrate that violacein diminished the viability of RAS- and RAF-mutated melanoma cells (IC50 value ∼500 nM), and more important, this effect was not abolished after treatment medium removal. Furthermore, violacein was able to reduce significantly the invasion capacity of metastatic melanoma cells in 3D culture. In the molecular context, we have shown for the first time that violacein causes a strong drop on histone deacetylase 6 expression, a proliferating activator, in melanoma cells. Besides, an inhibition of AXL and AKT was detected. All these molecular events propitiate an inhibition of autophagy, and consequently, melanoma cell death by apoptosis.
Collapse
|
49
|
Al-Mamun MA, Akter Z, Uddin MJ, Ferdaus KMKB, Hoque KMF, Ferdousi Z, Reza MA. Characterization and evaluation of antibacterial and antiproliferative activities of crude protein extracts isolated from the seed of Ricinus communis in Bangladesh. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:211. [PMID: 27405609 PMCID: PMC4942971 DOI: 10.1186/s12906-016-1185-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 07/01/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ricinus communis (Euphorbiaceae) has previously been reported to possess analgesic, antihistamine, antioxidant and anti-inflammatory activities. This study was designed for isolation, characterization and evaluation of antibacterial and anti-proliferative activities of R. communis seed protein. METHODS The concentration and molecular weight of R. communis seed protein were estimated by SDS-PAGE and spectrophotometric analysis, respectively. Lectin activity was evaluated by hemagglutination assay on mice blood. In vitro susceptibility of four human pathogenic bacteria including Escherichia coli, Pseudomonas aeruginosa, Enterobacter aerogenes and Staphylococcus aureus was detected using disk diffusion assay, and minimum inhibitory concentration (MIC) value was determined using micro-dilution method. A total of twenty four Swiss albino mice containing Ehrlich's ascites carcinoma (EAC) cells were treated with the crude protein of R. communis at 50 and 100 μg/ml/d/mouse for 6 days. Growth inhibitory activity of R. communis seed protein on EAC cells was determined by haemocytometer counting using trypan blue dye and DAPI (4΄,6-diamidino-2-phenylindole) staining was used to assess apoptotic cells. RESULTS The protein concentration of six R. communis (castor) varieties ranged between 21-35 mg/ml and molecular weight between 14-200 kDa. Castor protein agglutinated mice blood at 3.125 μg/wall. The seed protein shows considerable antimicrobial activity against E. coli, P. aeruginosa and S. aureus, exhibiting MIC values of 250, 125 and 62.5 μg/ml, respectively. Administration of seed protein led to 54 % growth inhibition of EAC cells at 100 μg/ml. DAPI staining indicates marked features of apoptosis including condensation of cytoplasm, nuclear fragmentation and aggregation of apoptotic bodies etc. CONCLUSION Our study suggests that the lectin rich R. communis seed protein has strong antibacterial and anticancer activities.
Collapse
Affiliation(s)
- M Abdulla Al-Mamun
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Zerin Akter
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Md Josim Uddin
- Department of Pharmacy, Faculty of Science and Engineering, International Islamic University Chittagong, Chittagong, 4203, Bangladesh
| | - K M K B Ferdaus
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - K M F Hoque
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - Z Ferdousi
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh
| | - M Abu Reza
- Department of Genetic Engineering and Biotechnology, Protein Science Lab, University of Rajshahi, Rajshahi, 6205, Bangladesh.
| |
Collapse
|
50
|
Transcription Factor HBP1 Enhances Radiosensitivity by Inducing Apoptosis in Prostate Cancer Cell Lines. Anal Cell Pathol (Amst) 2016; 2016:7015659. [PMID: 26942107 PMCID: PMC4749775 DOI: 10.1155/2016/7015659] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/11/2016] [Indexed: 12/14/2022] Open
Abstract
Radiotherapy for prostate cancer has been gradually carried out in recent years; however, acquired radioresistance often occurred in some patients after radiotherapy. HBP1 (HMG-box transcription factor 1) is a transcriptional inhibitor which could inhibit the expression of dozens of oncogenes. In our previous study, we showed that the expression level of HBP1 was closely related to prostate cancer metastasis and prognosis, but the relationship between HBP1 and radioresistance for prostate cancer is largely unknown. In this study, the clinical data of patients with prostate cancer was compared, and the positive correlation was revealed between prostate cancer brachytherapy efficacy and the expression level of HBP1 gene. Through research on prostate cancer cells in vitro, we found that HBP1 expression levels were negatively correlated with oncogene expression levels. Furthermore, HBP1 overexpression could sensitize prostate cancer cells to radiation and increase apoptosis in prostate cancer cells. In addition, animal model was employed to analyze the relationship between HBP1 gene and prostate cancer radiosensitivity in vivo; the result showed that knockdown of HBP1 gene could decrease the sensitivity to radiation of xenograft. These studies identified a specific molecular mechanism underlying prostate cancer radiosensitivity, which suggested HBP1 as a novel target in prostate cancer radiotherapy.
Collapse
|