1
|
Ateya NH, Al-Taie SF, Jasim SA, Uthirapathy S, Chaudhary K, Rani P, Kundlas M, Naidu KS, Amer NA, Ahmed JK. Histone Deacetylation in Alzheimer's Diseases (AD); Hope or Hype. Cell Biochem Biophys 2025:10.1007/s12013-025-01670-0. [PMID: 39825060 DOI: 10.1007/s12013-025-01670-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2025] [Indexed: 01/20/2025]
Abstract
Histone acetylation is the process by which histone acetyltransferases (HATs) add an acetyl group to the N-terminal lysine residues of histones, resulting in a more open chromatin structure. Histone acetylation tends to increase gene expression more than methylation does. In the central nervous system (CNS), histone acetylation is essential for controlling the expression of genes linked to cognition and learning. Histone deacetylases (HDACs), "writing" enzymes (HATs), and "reading" enzymes with bromodomains that identify and localize to acetylated lysine residues are responsible for maintaining histone acetylation. By giving animals HDAC inhibitors (HDACis), it is possible to intentionally control the ratios of "writer" and "eraser" activity, which will change the acetylation of histones. In addition to making the chromatin more accessible, these histone acetylation alterations re-allocate the targeting of "readers," including the transcriptional co-activators, cAMP response element-binding protein (CBP), and bromodomain-containing protein 4 (Brd4) in the CNS. Conclusive evidence has shown that HDACs slow down the progression of Alzheimer's disease (AD) by reducing the amount of histone acetylation, decreasing the activity of genes linked to memory, supporting cognitive decline and Amyloid beta (Aβ) protein accumulation, influencing aberrant tau phosphorylation, and promoting the emergence of neurofibrillary tangles (NFTs). In this review, we have covered the therapeutic targets and functions of HDACs that might be useful in treating AD.
Collapse
Affiliation(s)
- Nabaa Hisham Ateya
- Biotechnology Department, College of Applied Science, Fallujah University, Al-Fallujah, Iraq
| | - Sarah F Al-Taie
- University of Baghdad, College of Science, Department of Biotechnology, Baghdad, Iraq
| | - Saade Abdalkareem Jasim
- Medical Laboratory Techniques department, College of Health and Medical Technology, University of Al-maarif, Anbar, Ramadi, Iraq.
| | - Subasini Uthirapathy
- Pharmacy Department, Tishk International University Erbil, Kurdistan Region, Erbil, Iraq
| | - Kamlesh Chaudhary
- Department of Neurology, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Pooja Rani
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Mayank Kundlas
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - K Satyam Naidu
- Department of Chemistry, Raghu Engineering College, Visakhapatnam, Andhra Pradesh, 531162, India
| | - Nevin Adel Amer
- Nursing Department, College of Applied Medical Sciences, Jouf University, Sakakah, Saudi Arabia
- Medical Surgical Nursing Department, Faculty of Nursing, Menofia University, Shibin el Kom, Saudi Arabia
| | - Jawad Kadhim Ahmed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
2
|
Herder C, Zhu A, Schmitt A, Spagnuolo MC, Kulzer B, Roden M, Hermanns N, Ehrmann D. Associations between biomarkers of inflammation and depressive symptoms-potential differences between diabetes types and symptom clusters of depression. Transl Psychiatry 2025; 15:9. [PMID: 39799156 PMCID: PMC11724873 DOI: 10.1038/s41398-024-03209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 12/06/2024] [Accepted: 12/13/2024] [Indexed: 01/15/2025] Open
Abstract
Inflammation is a probable biological pathway underlying the relationship between diabetes and depression, but data on differences between diabetes types and symptom clusters of depression are scarce. Therefore, this cross-sectional study aimed to compare associations of a multimarker panel of biomarkers of inflammation with depressive symptoms and its symptom clusters between people with type 1 diabetes (T1D) and type 2 diabetes (T2D). This cross-sectional study combined data from five studies including 1260 participants (n = 706 T1D, n = 454 T2D). Depressive symptoms were assessed using the Center for Epidemiological Studies-Depression Scale (CES-D). Serum levels of 92 biomarkers of inflammation were quantified with proximity extension assay technology. After quality control, 76 biomarkers of inflammation remained for statistical analysis. Associations between biomarkers and depressive symptom scores and clusters (cognitive-affective, somatic, anhedonia) were estimated with multivariable linear regression models. Nine biomarkers were positively associated with depressive symptoms in the total sample (CCL11/eotaxin, CCL25, CDCP1, FGF-21, IL-8, IL-10RB, IL-18, MMP-10, TNFRSF9; all p < 0.05) without interaction by diabetes type. Associations differed for eight biomarkers (pinteraction < 0.05). TNFβ was inversely associated with depressive symptoms in T1D, whereas three biomarkers (GDNF, IL-18R1, LIF-R) were positively associated with depressive symptoms in T2D. For the remaining four biomarkers (CD6, CD244, FGF-5, IFNγ) associations were not significant in either subgroup. Biomarker associations were more pronounced with somatic and anhedonia than with cognitive-affective symptoms. These results indicate that different proinflammatory pathways may contribute to depression in T1D and T2D and that there may be a symptom specificity in the link between subclinical inflammation and depression.
Collapse
Affiliation(s)
- Christian Herder
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany.
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Anna Zhu
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Andreas Schmitt
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Institute of the Diabetes Academy Mergentheim (FIDAM), Bad Mergentheim, Germany
- Diabetes Center Mergentheim (DZM), Bad Mergentheim, Germany
| | - Maria C Spagnuolo
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| | - Bernhard Kulzer
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Institute of the Diabetes Academy Mergentheim (FIDAM), Bad Mergentheim, Germany
- Diabetes Center Mergentheim (DZM), Bad Mergentheim, Germany
- Department of Clinical Psychology and Psychotherapy, University of Bamberg, Bamberg, Germany
| | - Michael Roden
- Institute for Clinical Diabetology, German Diabetes Center (DDZ), Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Norbert Hermanns
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Institute of the Diabetes Academy Mergentheim (FIDAM), Bad Mergentheim, Germany
- Diabetes Center Mergentheim (DZM), Bad Mergentheim, Germany
- Department of Clinical Psychology and Psychotherapy, University of Bamberg, Bamberg, Germany
| | - Dominic Ehrmann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Institute of the Diabetes Academy Mergentheim (FIDAM), Bad Mergentheim, Germany
- Department of Clinical Psychology and Psychotherapy, University of Bamberg, Bamberg, Germany
| |
Collapse
|
3
|
Guo X, Feng Y, Ji X, Jia N, Maimaiti A, Lai J, Wang Z, Yang S, Hu S. Shared genetic architecture and bidirectional clinical risks within the psycho-metabolic nexus. EBioMedicine 2025; 111:105530. [PMID: 39731856 PMCID: PMC11743124 DOI: 10.1016/j.ebiom.2024.105530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Increasing evidence suggests a complex interplay between psychiatric disorders and metabolic dysregulations. However, most research has been limited to specific disorder pairs, leaving a significant gap in our understanding of the broader psycho-metabolic nexus. METHODS This study leveraged large-scale cohort data and genome-wide association study (GWAS) summary statistics, covering 8 common psychiatric disorders and 43 metabolic traits. We introduced a comprehensive analytical strategy to identify shared genetic bases sequentially, from key genetic correlation regions to local pleiotropy and pleiotropic genes. Finally, we developed polygenic risk score (PRS) models to translate these findings into clinical applications. FINDINGS We identified significant bidirectional clinical risks between psychiatric disorders and metabolic dysregulations among 310,848 participants from the UK Biobank. Genetic correlation analysis confirmed 104 robust trait pairs, revealing 1088 key genomic regions, including critical hotspots such as chr3: 47588462-50387742. Cross-trait meta-analysis uncovered 388 pleiotropic single nucleotide variants (SNVs) and 126 shared causal variants. Among variants, 45 novel SNVs were associated with psychiatric disorders and 75 novel SNVs were associated with metabolic traits, shedding light on new targets to unravel the mechanism of comorbidity. Notably, RBM6, a gene involved in alternative splicing and cellular stress response regulation, emerged as a key pleiotropic gene. When psychiatric and metabolic genetic information were integrated, PRS models demonstrated enhanced predictive power. INTERPRETATION The study highlights the intertwined genetic and clinical relationships between psychiatric disorders and metabolic dysregulations, emphasising the need for integrated approaches in diagnosis and treatment. FUNDING The National Key Research and Development Program of China (2023YFC2506200, SHH). The National Natural Science Foundation of China (82273741, SY).
Collapse
Affiliation(s)
- Xiaonan Guo
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu Feng
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Department of Psychiatry, Melbourne Neuropsychiatry Centre, The University of Melbourne, Carlton South, VIC, Australia
| | - Xiaolong Ji
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ningning Jia
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Xinjiang Medical University Affiliated First Hospital, Urumqi, Xinjiang, China
| | - Jianbo Lai
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zheng Wang
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Sheng Yang
- Department of Biostatistics, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Shaohua Hu
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Nanhu Brain-Computer Interface Institute, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory of Precision Psychiatry, Hangzhou, 310003, China; Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 311121, China; Brain Research Institute of Zhejiang University, Hangzhou, 310058, China; MOE Frontier Science Center for Brain Science and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310058, China; Department of Psychology and Behavioral Sciences, Graduate School, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
4
|
Li N, Liu T, Wang YY, Xu T, Shi HJ, Chang L, Zhu LJ. Hippocampal HDAC5-mediated histone acetylation underlies stress susceptibility in mice exposed to chronic social defeat stress. Neuroscience 2024; 557:89-99. [PMID: 39127342 DOI: 10.1016/j.neuroscience.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 08/12/2024]
Abstract
Chronic stress leads to social avoidance and anhedonia in susceptible individuals, a phenomenon that has been observed in both human and animal models. Nevertheless, the underlying molecular mechanisms underpinning stress susceptibility and resilience remain largely unclear. There is growing evidence that epigenetic histone deacetylase (HDAC) mediated histone acetylation is involved in the modulation of depressive-related behaviors. We hypothesized that histone deacetylase 5 (HDAC5), which is associated with stress-related behaviors and antidepressant response, may play a vital role in the susceptibility to chronic stress. In the current study, we detected the levels of HDAC5 and acetylation of histone 4 (H4) in the hippocampus subsequent to chronic social defeat stress (CSDS) in C57BL/6J mice. We found that CSDS induces a notable increase in HDAC5 expression, concomitant with a reduction in the acetylation of histone H4 at lysine 12 (H4K12) in the hippocampus of susceptible mice. Meanwhile, intrahippocampal infusion of HDAC5 shRNA or HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) both reversed the depression susceptibility in susceptible mice that subjected to CSDS. Furthermore, HDAC5 overexpression was sufficient to induce depression susceptibility following microdefeat stress, accompanied by a significant reduction in H4K12 level within the hippocampus of mice. Additionally, the Morris water maze (MWM) results indicated that neither CSDS nor HDAC5 exerted significant effects on spatial memory function in mice. Taken together, these investigations indicated that HDAC5-modulated histone acetylation is implicated in regulating the depression susceptibility, and may be serve as potential preventive targets for susceptible individuals.
Collapse
Affiliation(s)
- Na Li
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Ting Liu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Yu-Ye Wang
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Tong Xu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Hu-Jiang Shi
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Lei Chang
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing 211166, PR China.
| | - Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, MOE, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China.
| |
Collapse
|
5
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
6
|
Xu S, Huang CH, Eyermann C, Georgakis GV, Turkman N. Design and radiosynthesis of class-IIa HDAC inhibitor with high molar activity via repositioning the 18F-radiolabel. Sci Rep 2024; 14:15100. [PMID: 38956204 PMCID: PMC11219833 DOI: 10.1038/s41598-024-65668-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/23/2024] [Indexed: 07/04/2024] Open
Abstract
The design and radiosynthesis of [18F]NT376, a high potency inhibitor of class-IIa histone deacetylases (HDAC) is reported. We utilized a three-step radiochemical approach that led to the radiosynthesis of [18F]NT376 in a good radiochemical yield, (17.0 ± 3%, decay corrected), high radiochemical purity (> 97%) and relatively high molar activity of 185.0 GBq/µmol (> 5.0 Ci/µmol). The repositioning of the 18F-radiolabel into a phenyl ring (18F-Fluoro-aryl) of the class-IIa HDAC inhibitor avoided the shortcomings of the direct radiolabeling of the 5-trifluoromethyl-1,2,4-oxadiazole moiety that was reported by us previously and was associated with low molar activity (0.74-1.51 GBq/µmol, 20-41 mCi/µmol). This radiochemical approach could find a wider application for radiolabeling similar molecules with good radiochemical yield and high molar activity.
Collapse
Affiliation(s)
- Sulan Xu
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Chun-Han Huang
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Christopher Eyermann
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Georgios V Georgakis
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA
- Department of Surgery, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nashaat Turkman
- Stony Brook Cancer Center, Stony Brook, Long Island, NY, 11794, USA.
- Department of Radiology, School of Medicine, Stony Brook University, Stony Brook, NY, 11794, USA.
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
7
|
Arzate-Mejia RG, Carullo NVN, Mansuy IM. The epigenome under pressure: On regulatory adaptation to chronic stress in the brain. Curr Opin Neurobiol 2024; 84:102832. [PMID: 38141414 DOI: 10.1016/j.conb.2023.102832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/18/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Chronic stress (CS) can have long-lasting consequences on behavior and cognition, that are associated with stable changes in gene expression in the brain. Recent work has examined the role of the epigenome in the effects of CS on the brain. This review summarizes experimental evidence in rodents showing that CS can alter the epigenome and the expression of epigenetic modifiers in brain cells, and critically assesses their functional effect on genome function. It discusses the influence of the developmental time of stress exposure on the type of epigenetic changes, and proposes new lines of research that can help clarify these changes and their causal involvement in the impact of CS.
Collapse
Affiliation(s)
- Rodrigo G Arzate-Mejia
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/RodrigoArzt
| | - Nancy V N Carullo
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland. https://twitter.com/DrNancyCarullo
| | - Isabelle M Mansuy
- Laboratory of Neuroepigenetics, Brain Research Institute, Medical Faculty of the University of Zurich and Institute of Neurosciences, Department of Health Science and Technology of the Swiss Federal Institute of Technology, Neuroscience Center Zurich, Switzerland.
| |
Collapse
|
8
|
Du J, Liu N, Ma L, Liu R, Zuo D, Lan X, Yang J, Wei W, Peng X, Yu J. Antidepressant effect of the novel histone deacetylase-5 inhibitor T2943 in a chronic restraint stress mouse model. Biomed Pharmacother 2024; 171:116176. [PMID: 38242038 DOI: 10.1016/j.biopha.2024.116176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/21/2024] Open
Abstract
Depression is a prevalent and debilitating psychiatric illness. However, the antidepressant drugs currently prescribed are only effective in a limited group of patients. Histone modifications mediated by histone acetylation are considered to play an important role in the pathogenesis and treatment of depression. Recent studies have revealed that histone deacetylase inhibitors may be involved in the pathogenesis of depression and the underlying mechanism of the antidepressant therapeutic action. Here, we first conducted virtual screening of histone deacetylase-5 (HDAC5) inhibitors against HDAC5, a target closely related to depression, and identified compound T2943, further verifying its inhibitory effect on enzyme activities in vitro. After stereotaxic injection of T2943 into the hippocampus of mice, the antidepressant effect of T2943 was evaluated using behavioral experiments. We also used different proteomic and molecular biology analyses to determine and confirm that T2943 promoted histone 3 lysine 14 acetylation (H3K14ac) by inhibiting HDAC5 activity. Following the overexpression of adenoviral HDAC5 in the hippocampus of mice and subsequent behavioral analyses, we confirmed that T2943 exerts antidepressant effects by inhibiting HDAC5 activity. Our findings highlight the efficacy of targeting HDAC5 to treat depression and demonstrate the potential of using T2943 as an antidepressant.
Collapse
Affiliation(s)
- Juan Du
- College of Basic Medicine, Ningxia Medical University, Yin Chuan, China; Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China; Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Ruyun Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Di Zuo
- Ningxia Key Laboratory of Craniocerebral Diseases, Ningxia Medical University, Yin Chuan, China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Wei Wei
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China
| | - Xiaodong Peng
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yin Chuan, China.
| |
Collapse
|
9
|
Sola-Sevilla N, Puerta E. SIRT2 as a potential new therapeutic target for Alzheimer's disease. Neural Regen Res 2024; 19:124-131. [PMID: 37488853 PMCID: PMC10479864 DOI: 10.4103/1673-5374.375315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/09/2023] [Accepted: 04/04/2023] [Indexed: 07/26/2023] Open
Abstract
Alzheimer's disease is the most common cause of dementia globally with an increasing incidence over the years, bringing a heavy burden to individuals and society due to the lack of an effective treatment. In this context, sirtuin 2, the sirtuin with the highest expression in the brain, has emerged as a potential therapeutic target for neurodegenerative diseases. This review summarizes and discusses the complex roles of sirtuin 2 in different molecular mechanisms involved in Alzheimer's disease such as amyloid and tau pathology, microtubule stability, neuroinflammation, myelin formation, autophagy, and oxidative stress. The role of sirtuin 2 in all these processes highlights its potential implication in the etiology and development of Alzheimer's disease. However, its presence in different cell types and its enormous variety of substrates leads to apparently contradictory conclusions when it comes to understanding its specific functions. Further studies in sirtuin 2 research with selective sirtuin 2 modulators targeting specific sirtuin 2 substrates are necessary to clarify its specific functions under different conditions and to validate it as a novel pharmacological target. This will contribute to the development of new treatment strategies, not only for Alzheimer's disease but also for other neurodegenerative diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - Elena Puerta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| |
Collapse
|
10
|
Dai Y, Wei T, Huang Y, Bei Y, Lin H, Shen Z, Yu L, Yang M, Xu H, He W, Lin Z, Dai H. Upregulation of HDAC9 in hippocampal neurons mediates depression-like behaviours by inhibiting ANXA2 degradation. Cell Mol Life Sci 2023; 80:289. [PMID: 37690046 PMCID: PMC10493204 DOI: 10.1007/s00018-023-04945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Major depressive disorder (MDD) is a pervasive and devastating mental disease. Broad spectrum histone deacetylase (HDAC) inhibitors are considered to have potential for the treatment of depressive phenotype in mice. However, due to its non-specific inhibition, it has extensive side effects and can not be used in clinical treatment of MDD. Therefore, finding specific HDAC subtypes that play a major role in the etiology of MDD is the key to develop corresponding specific inhibitors as antidepressants in the future. Copy number variation in HDAC9 gene is thought to be associated with the etiology of some psychiatric disorders. Herein, we found that HDAC9 was highly expressed in the hippocampus of chronic restraint stress (CRS) mouse model of depression. Upregulation of HDAC9 expression in hippocampal neurons of mice induced depression-like phenotypes, including anhedonia, helplessness, decreased dendritic spine density, and neuronal hypoexcitability. Moreover, knockdown or knockout of HDAC9 in hippocampal neurons alleviated depression-like phenotypes caused by chronic restraint stress (CRS) in WT mice. Importantly, using immunoprecipitation-mass spectrometry (IP-MS), we further found that Annexin A2 (ANXA2) was coupled to and deacetylated by HDAC9. This coupling resulted in the inhibition of ubiquitinated ANXA2 degradation and then mediates depression-like behavior. Overall, we discovered a previously unrecognized role for HDAC9 in hippocampal neurons in the pathogenesis of depression, indicating that inhibition of HDAC9 might be a promising clinical strategy for the treatment of depressive disorders.
Collapse
Affiliation(s)
- Yunjian Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Taofeng Wei
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yuwen Huang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Yun Bei
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Haoran Lin
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zexu Shen
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Lingyan Yu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Mingdong Yang
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Huimin Xu
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Wei He
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China
| | - Zheng Lin
- Department of Psychiatry, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Haibin Dai
- Department of Pharmacy, Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
11
|
Meng Y, Du J, Liu N, Qiang Y, Xiao L, Lan X, Ma L, Yang J, Yu J, Lu G. Epigenetic modulation: Research progress on histone acetylation levels in major depressive disorders. J Drug Target 2023; 31:142-151. [PMID: 36112185 DOI: 10.1080/1061186x.2022.2125978] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Depression is a serious mental illness and a prevalent condition with multiple aetiologies. The impact of the current therapeutic strategies is limited and the pathogenesis of the illness is not well understood. According to previous studies, depression onset is influenced by a variety of environmental and genetic factors, including chronic stress, aberrant changes in gene expression, and hereditary predisposition. Transcriptional regulation in eukaryotes is closely related to chromosome packing and is controlled by histone post-translational modifications. The development of new antidepressants may proceed along a new path with medications that target epigenetics. Histone deacetylase inhibitors (HDACis) are a class of compounds that interfere with the function of histone deacetylases (HDACs). This review explores the relationship between HDACs and depression and focuses on the current knowledge on their regulatory mechanism in depression and the potential therapeutic use of HDACis with antidepressant efficacy in preclinical research. Future research on inhibitors is also proposed and discussed.
Collapse
Affiliation(s)
- Yuan Meng
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Juan Du
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China.,Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Ning Liu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Yuanyuan Qiang
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Lifei Xiao
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| | - Xiaobing Lan
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Lin Ma
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jiamei Yang
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Jianqiang Yu
- Department of Pharmacology, College of Pharmacy, Ningxia Medical University, Yinchuan, PR China
| | - Guangyuan Lu
- Ningxia Key Laboratory of Cerebrocranial Disease, Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, PR China
| |
Collapse
|
12
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
13
|
The Sirtuin 2 Inhibitor AK-7 Leads to an Antidepressant-Like Effect in Mice via Upregulation of CREB1, BDNF, and NTRK2 Pathways. Mol Neurobiol 2022; 59:7036-7044. [PMID: 36074231 DOI: 10.1007/s12035-022-03026-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Depression is one of the most important and serious health problems in developing countries which affects millions of people. It is associated with the decrease of the quality of life as well as suicides and mortality. The disease may show recurrent episodes in some patients. Obviously, not all the patients with depression could be treated properly, because some individuals are drug-resistant and the options for the therapy are limited. Therefore, it is crucial to investigate new molecules and pathways that may have possible antidepressant activity. Sirtuin (SIRT), known as a class III histone deacetylase, which is regulated by nicotinamide adenine dinucleotide (NAD +), is one of these molecules. In the current study, we investigated the possible antidepressant-like effect of SIRT2 inhibitor AK-7. For this purpose, behavioral tests were performed in chronic AK-7-treated mice, and the expression levels of BDNF, NGF, NTF3, CREB, NTRK2, ERK1, ERK2, and GAP43 genes were evaluated by qRT-PCR analysis in brain tissues. Protein levels for BDNF, CREB1, and NTRK2 were determined by western blot. Our data showed that AK-7 significantly decreased immobility time and showed antidepressant-like effect. In addition, AK-7 treatment significantly increased mRNA levels of CREB and NTRK2 and protein levels of CREB1, BDNF, and NTRK2. Finally, our results suggest that SIRT2 and AK-7 may have a potential role in the cellular mechanisms of depression.
Collapse
|
14
|
Fagerli E, Escobar I, Ferrier FJ, Jackson CW, Perez-Lao EJ, Perez-Pinzon MA. Sirtuins and cognition: implications for learning and memory in neurological disorders. Front Physiol 2022; 13:908689. [PMID: 35936890 PMCID: PMC9355297 DOI: 10.3389/fphys.2022.908689] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022] Open
Abstract
Sirtuins are an evolutionarily conserved family of regulatory proteins that function in an NAD+ -dependent manner. The mammalian family of sirtuins is composed of seven histone deacetylase and ADP-ribosyltransferase proteins (SIRT1-SIRT7) that are found throughout the different cellular compartments of the cell. Sirtuins in the brain have received considerable attention in cognition due to their role in a plethora of metabolic and age-related diseases and their ability to induce neuroprotection. More recently, sirtuins have been shown to play a role in normal physiological cognitive function, and aberrant sirtuin function is seen in pathological cellular states. Sirtuins are believed to play a role in cognition through enhancing synaptic plasticity, influencing epigenetic regulation, and playing key roles in molecular pathways involved with oxidative stress affecting mitochondrial function. This review aims to discuss recent advances in the understanding of the role of mammalian sirtuins in cognitive function and the therapeutic potential of targeting sirtuins to ameliorate cognitive deficits in neurological disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Miguel A. Perez-Pinzon
- Department of Neurology, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
15
|
Park J, Lee K, Kim K, Yi SJ. The role of histone modifications: from neurodevelopment to neurodiseases. Signal Transduct Target Ther 2022; 7:217. [PMID: 35794091 PMCID: PMC9259618 DOI: 10.1038/s41392-022-01078-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/11/2022] [Accepted: 06/21/2022] [Indexed: 12/24/2022] Open
Abstract
Epigenetic regulatory mechanisms, including DNA methylation, histone modification, chromatin remodeling, and microRNA expression, play critical roles in cell differentiation and organ development through spatial and temporal gene regulation. Neurogenesis is a sophisticated and complex process by which neural stem cells differentiate into specialized brain cell types at specific times and regions of the brain. A growing body of evidence suggests that epigenetic mechanisms, such as histone modifications, allow the fine-tuning and coordination of spatiotemporal gene expressions during neurogenesis. Aberrant histone modifications contribute to the development of neurodegenerative and neuropsychiatric diseases. Herein, recent progress in understanding histone modifications in regulating embryonic and adult neurogenesis is comprehensively reviewed. The histone modifications implicated in neurodegenerative and neuropsychiatric diseases are also covered, and future directions in this area are provided.
Collapse
Affiliation(s)
- Jisu Park
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyubin Lee
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea
| | - Kyunghwan Kim
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| | - Sun-Ju Yi
- Department of Biological Sciences and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, Republic of Korea.
| |
Collapse
|
16
|
Abstract
Since the NAD+-dependent histone deacetylases sirtuin-1 (SIRT1) and sirtuin-2 (SIRT2) are critically involved in epigenetics, endocrinology and immunology and affect the longevity in model organisms, we investigated their expression in brains of 3-month-old and 14-15 months old rat model of depression Flinders Sensitive Line (FSL) and control Flinders Resistant Line (FRL) rats. In view of the dysregulated NPY system in depression, we also studied NPY in young and old FSL to explore the temporal trajectory of depressive-like-ageing interaction. Sirt1, Sirt2 and Npy mRNA were determined using qRT-PCR in prefrontal cortex (PFC) from young and old FSL and FRL, and in hippocampi from young FSL and FRL. PFC: Sirt1 expression was decreased in FSL (p = 0.001). An interaction between age and genotype was found (p = 0.032); young FSL had lower Sirt1 with respect to both age (p = 0.026) and genotype (p = 0.001). Sirt2 was lower in FSL (p = 0.003). Npy mRNA was downregulated in FSL (p = 0.001) but did not differ between the young and old rat groups. Hippocampus: Sirt1 was reduced in young FSL compared to young FRL (p = 0.005). There was no difference in Sirt2 between FSL and FRL. Npy levels were decreased in hippocampus of young FSL compared to young FRL (p = 0.003). Effects of ageing could not be investigated due to loss of samples. To conclude, i this is the first demonstration that SIRT1 and SIRT2 are changed in brain of FSL, a rat model of depression; ii the changes are age-dependent; iii sirtuins are potential targets for treatment of age-related neurodegenerative diseases.
Collapse
|
17
|
Misztak P, Sowa-Kućma M, Pańczyszyn-Trzewik P, Szewczyk B, Nowak G. Antidepressant-like Effects of Combined Fluoxetine and Zinc Treatment in Mice Exposed to Chronic Restraint Stress Are Related to Modulation of Histone Deacetylase. Molecules 2021; 27:22. [PMID: 35011254 PMCID: PMC8746513 DOI: 10.3390/molecules27010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 12/13/2021] [Accepted: 12/16/2021] [Indexed: 11/17/2022] Open
Abstract
Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.
Collapse
Affiliation(s)
- Paulina Misztak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-668 Krakow, Poland; (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Magdalena Sowa-Kućma
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (M.S.-K.); (P.P.-T.)
| | - Patrycja Pańczyszyn-Trzewik
- Department of Human Physiology, Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland; (M.S.-K.); (P.P.-T.)
| | - Bernadeta Szewczyk
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-668 Krakow, Poland; (G.N.)
- Department of Neurobiology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| |
Collapse
|
18
|
Zhang J, Zhang J, Zhang Z, Zheng Y, Zhong Z, Yao Z, Cai X, Lao L, Huang Y, Qu S. Dopaminergic signaling in prefrontal cortex contributes to the antidepressant effect of electroacupuncture: An iTRAQ-based proteomics analysis in a rat model of CUMS. Anat Rec (Hoboken) 2021; 304:2454-2469. [PMID: 34523244 DOI: 10.1002/ar.24732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Electroacupuncture (EA) is used as an adjunctive treatment for depression. This study was conducted to evaluate the efficacy and mechanisms of EA in the depressive rat model induced by chronic unpredictable mild stress (CUMS) in male adult Wistar rats. The underlying mechanisms were explored by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of the proteins in the prefrontal cortex (PFC), and observing the number of the PFC neurons stained with hematoxylin and eosin (H&E) and synaptic morphological changes under transmission electron microscopy (TEM). The results showed that EA plus paroxetine (EA + Par) for 1 week significantly relieved depression-like anhedonia symptoms and improved anxiety-like behavior, accompanied by the improvements in synaptic morphology and a significant increase of PFC neurons. Moreover, EA or paroxetine alone significantly alleviated anhedonia symptoms after 2 weeks of intervention. Additionally, iTRAQ analysis showed that dopaminergic signaling was significantly altered in CUMS rats after 1 week of EA treatment. As the critical enzyme of this pathway, aromatic-l-amino-acid decarboxylase (DDC) was significantly upregulated after the treatment with EA + Par for 1 week. These findings suggested that the dopaminergic signaling pathway in PFC may be involved in the antidepressant mechanisms of EA.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yu Zheng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zheng Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Abstract
Neuroepigenetics, a new branch of epigenetics, plays an important role in the regulation of gene expression. Neuroepigenetics is associated with holistic neuronal function and helps in formation and maintenance of memory and learning processes. This includes neurodevelopment and neurodegenerative defects in which histone modification enzymes appear to play a crucial role. These modifications, carried out by acetyltransferases and deacetylases, regulate biologic and cellular processes such as apoptosis and autophagy, inflammatory response, mitochondrial dysfunction, cell-cycle progression and oxidative stress. Alterations in acetylation status of histone as well as non-histone substrates lead to transcriptional deregulation. Histone deacetylase decreases acetylation status and causes transcriptional repression of regulatory genes involved in neural plasticity, synaptogenesis, synaptic and neural plasticity, cognition and memory, and neural differentiation. Transcriptional deactivation in the brain results in development of neurodevelopmental and neurodegenerative disorders. Mounting evidence implicates histone deacetylase inhibitors as potential therapeutic targets to combat neurologic disorders. Recent studies have targeted naturally-occurring biomolecules and micro-RNAs to improve cognitive defects and memory. Multi-target drug ligands targeting HDAC have been developed and used in cell-culture and animal-models of neurologic disorders to ameliorate synaptic and cognitive dysfunction. Herein, we focus on the implications of histone deacetylase enzymes in neuropathology, their regulation of brain function and plausible involvement in the pathogenesis of neurologic defects.
Collapse
|
20
|
LGI1 governs neuritin-mediated resilience to chronic stress. Neurobiol Stress 2021; 15:100373. [PMID: 34401409 PMCID: PMC8350063 DOI: 10.1016/j.ynstr.2021.100373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 11/23/2022] Open
Abstract
Depression is accompanied by neuronal atrophy and decreased neuroplasticity. Leucine-rich glioma-inactivated protein 1 (LGI1), a metastasis suppressor, plays an important role in the development of CNS synapses. We found that LGI1 expression was reduced in the hippocampi of mice that underwent chronic unpredictable stress (CUS), and could be rescued by the antidepressant, fluoxetine. Recombinant soluble neuritin, an endogenous protein previously implicated in antidepressant-like behaviors, elevated hippocampal LGI1 expression in a manner dependent on histone deacetylase 5 (HDAC5) phosphorylation. Accordingly, Nrn1 flox/flox ;Pomc-cre (Nrn1 cOE) mice, which conditionally overexpress neuritin, displayed increases in hippocampal LGI1 level under CUS and exhibited resilience to CUS that were blocked by hippocampal depletion of LGI1. Interestingly, neuritin-mediated LGI1 expression was inhibited by HNMPA-(AM)3, an insulin receptor inhibitor, as was neuritin-mediated HDAC5 phosphorylation. We thus establish hippocampal LGI1 as an effector of neurite outgrowth and stress resilience, and suggest that HDAC5-LGI1 plays a critical role in ameliorating pathological depression.
Collapse
|
21
|
Ribeiro ACR, Jahr FM, Hawkins E, Kronfol MM, Younis RM, McClay JL, Deshpande LS. Epigenetic histone acetylation and Bdnf dysregulation in the hippocampus of rats exposed to repeated, low-dose diisopropylfluorophosphate. Life Sci 2021; 281:119765. [PMID: 34186043 DOI: 10.1016/j.lfs.2021.119765] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/08/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
AIMS Deployment-related exposures to organophosphate (OP) compounds are implicated for Gulf War Illness (GWI) development in First GW veterans. However, reasons for the persistence of GWI are not fully understood. Epigenetic modifications to chromatin are regulatory mechanisms that can adaptively or maladaptively respond to external stimuli. These include DNA methylation and histone acetylation. DNA methylation changes have been reported in GWI but the role of histone acetylation in GWI has been less explored, despite its importance as an epigenetic mechanism for neurological disorders. MAIN METHODS Male Sprague-Dawley rats were exposed to OP diisopropyl fluorophosphate (DFP, 0.5 mg/kg s.c., 5-d) and 6-m later brains were dissected for hippocampus. Western blotting, activity assays and chromatin immunoprecipitation (ChIP) were utilized for epigenetic analyses. Behavior was assessed using the Forced Swim Test (FST) and the Elevated Plus Maze (EPM). KEY FINDINGS We observed a significant upregulation in HDAC1 protein along with a significant increase in HDAC enzyme activity in the hippocampus of DFP rats. A locus-specific ChIP study revealed decreases in H3K9ac at the brain derived neurotrophic factor (Bdnf) promoter IV coupled with a significant decrease in BDNF protein in DFP rat hippocampus. Treatment with HDAC inhibitor valproic acid reduced HDAC activity and decreased the FST immobility time in DFP rats. SIGNIFICANCE Our research suggests that epigenetic alterations to histone acetylation pathways and decreased BDNF expression could represent novel mechanisms for GWI symptomatology and may provide new targets for developing effective drugs for GWI treatment.
Collapse
Affiliation(s)
- Ana C R Ribeiro
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Fay M Jahr
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Elisa Hawkins
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mohamad M Kronfol
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Rabha M Younis
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Joseph L McClay
- Department of Pharmacotherapy & Outcome Sciences, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Laxmikant S Deshpande
- Department of Neurology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA; Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
22
|
Novel late-stage radiosynthesis of 5-[18F]-trifluoromethyl-1,2,4-oxadiazole (TFMO) containing molecules for PET imaging. Sci Rep 2021; 11:10668. [PMID: 34021207 PMCID: PMC8139947 DOI: 10.1038/s41598-021-90069-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Small molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.
Collapse
|
23
|
Sola-Sevilla N, Ricobaraza A, Hernandez-Alcoceba R, Aymerich MS, Tordera RM, Puerta E. Understanding the Potential Role of Sirtuin 2 on Aging: Consequences of SIRT2.3 Overexpression in Senescence. Int J Mol Sci 2021; 22:3107. [PMID: 33803627 PMCID: PMC8003096 DOI: 10.3390/ijms22063107] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/14/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.
Collapse
Affiliation(s)
- Noemi Sola-Sevilla
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Ricobaraza
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ruben Hernandez-Alcoceba
- Gene Therapy Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Maria S Aymerich
- Departamento de Bioquímica y Genética, Facultad de Ciencias, Universidad de Navarra, 31008 Pamplona, Spain
- Neuroscience Program CIMA, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Rosa M Tordera
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Elena Puerta
- Pharmacology and Toxicology Department, Faculty of Pharmacy, University of Navarra, Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
24
|
Zhang Y, Anoopkumar-Dukie S, Davey AK. SIRT1 and SIRT2 Modulators: Potential Anti-Inflammatory Treatment for Depression? Biomolecules 2021; 11:biom11030353. [PMID: 33669121 PMCID: PMC7996578 DOI: 10.3390/biom11030353] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 01/07/2023] Open
Abstract
Depression is a psychiatric disorder that has a significant health burden on patients and their families. Unfortunately, the current antidepressant medications that mainly target monoamine neurotransmitters have limited efficacy. Recent evidence has indicated that neuroinflammation participates in the genesis and development of depression, and interacts with other factors involved in depression. Therefore, exploring effective anti-inflammatory medications could be beneficial for the development of new treatment options for depression. Sirtuins are a unique class of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, which have seven members that can affect multiple downstream targets by deacetylation activity. Among these seven members, SIRT1 and SIRT2 have been shown to participate in the pathophysiology of inflammation in numerous studies. Thus, in this short article, we review the association of SIRT1 and SIRT2 activity and depression, and evidence of the effects of SIRT1 and SIRT2 modulators on inflammation in vitro and depressive-like behaviours in vivo.
Collapse
Affiliation(s)
- Yuqing Zhang
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Shailendra Anoopkumar-Dukie
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
| | - Andrew Keith Davey
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia; (Y.Z.); (S.A.-D.)
- School of Pharmacy and Pharmacology, Griffith University, Gold Coast, QLD 4222, Australia
- Quality Use of Medicines Network, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-07-5552-8361; Fax: +61-07-5552-8804
| |
Collapse
|
25
|
Seo MK, Choi AJ, Seog DH, Lee JG, Park SW. Early Enriched Environment Prevents Epigenetic p11 Gene Changes Induced by Adulthood Stress in Mice. Int J Mol Sci 2021; 22:ijms22041928. [PMID: 33672075 PMCID: PMC7919643 DOI: 10.3390/ijms22041928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/09/2021] [Accepted: 02/12/2021] [Indexed: 12/21/2022] Open
Abstract
Positive experiences in early life may improve the capacity to cope with adulthood stress through epigenetic modification. We investigated whether an enriched environment (EE) in the postnatal period affected epigenetic changes in the p11 gene induced by chronic unpredictable stress (CUS) in adult C57BL/6J mice. EE was introduced for 5 weeks during postnatal days 21–55. After EE, the mice were subjected to CUS for 4 weeks. EE prevented depression-like behavior induced by adult CUS. EE prevented a decrease in p11 mRNA and histone H3 acetylation induced by CUS, with changes in the expression of histone deacetylase 5. Moreover, EE prevented changes in trimethylation of histone H3 lysine 4 (H3K4) and H3K27 induced by CUS. Furthermore, EE had positive effects on behavior and epigenetic alterations in adult mice without CUS. These results suggest that one of the underlying mechanisms of early-life EE may involve epigenetic modification of the hippocampal p11 gene promoter.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
| | | | - Dae-Hyun Seog
- Department of Biochemistry, College of Medicine, Inje University, Busan 47392, Korea;
- Dementia and Neurodegenerative Disease Research Center, Inje University, Busan 47392, Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan 48108, Korea
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| | - Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan 47392, Korea;
- Department of Health Science and Technology, Graduate School, Inje University, Busan 47392, Korea
- Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan 47392, Korea
- Correspondence: (J.G.L.); (S.W.P.); Tel.: +82-51-797-3300 (J.G.L.); +82-51-890-6071 (S.W.P.); Fax: +82-51-894-6709 (J.G.L. & S.W.P.)
| |
Collapse
|
26
|
Gui LS, Raza SHA, Zhou L, Garcia M, Abd El-Aziz AH, Wei D, Hou S, Jia J, Wang Z. Association between Single Nucleotide Polymorphisms in SIRT1 and SIRT2 Loci and Growth in Tibetan Sheep. Animals (Basel) 2020; 10:ani10081362. [PMID: 32781630 PMCID: PMC7459998 DOI: 10.3390/ani10081362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 08/05/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary In summary, three single nucleotide polymorphisms (SNPs) were observed including two SNPs (g.3148 C > T and g.3570 G > A) in SIRT1, and one SNP (g.8074 T > A) in SIRT2 through sequence analysis. Association analyses suggested that all three SNPs were associated growth-related traits in Tibetan sheep. These findings imply that both SIRT1 and SIRT2 may play an important role in growth traits and are potential biomarkers for Marker-assisted selection (MAS). Abstract Silent information regulator 1 and 2 (SIRT1, 2) were NAD+-dependent histone or non-histone deacetylase, which emerged as key metabolic sensors in several tissues of mammals. In the present study, the search for polymorphisms within the ovine SIRT1 and SIRT2 loci as well as association analyses between SNPs and growth-related traits were performed in Tibetan sheep. To determine the expression pattern of SIRT1 and SIRT2 genes in Tibetan sheep, the quantitative real-time polymerase chain reaction (qPCR) analysis revealed that those two genes were widely expressed in diverse tissues. Expression of SIRT1 was less in abomasum of lamb, whereas it was greater in duodenum within adult stage. In the case of SIRT2, the greatest expression was observed in reticulum (lamb) and in muscle (adult), whereas the least expression was in liver for lamb and in kidney for adult animals. The association analysis demonstrated that g.3148 C > T polymorphism of SIRT1 affected heart girth (p = 0.002). The g.8074 T > A SNP of SIRT2 had a significant correlation with body weight (p = 0.011) and body length (p = 0.008). These findings suggested that the SIRT1 and SIRT2 polymorphism was involved in growth-related traits in Tibetan sheep, which may be considered to be genetic markers for improving the growth traits of Tibetan sheep.
Collapse
Affiliation(s)
- Lin-sheng Gui
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Sayed Haidar Abbas Raza
- National Beef Cattle Improvement Center, Northwest A&F University, Yangling 712100, Shaanxi, China;
| | - Li Zhou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Matthew Garcia
- School of Animal Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA;
| | - Ayman Hassan Abd El-Aziz
- Animal Husbandry and Animal Wealth Development Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt;
| | - Dawei Wei
- School of Agriculture, Ningxia University, Yinchuan 750021, China;
| | - Shengzhen Hou
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Jianlei Jia
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
| | - Zhiyou Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China; (L.-s.G.); (L.Z.); (S.H.); (J.J.)
- Correspondence:
| |
Collapse
|
27
|
Antidepressant mechanisms of venlafaxine involving increasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport 2019; 30:255-261. [PMID: 30640193 DOI: 10.1097/wnr.0000000000001191] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Venlafaxine (VEN) is a widely used antidepressant as a serotonin-reuptake and norepinephrine-reuptake inhibitor. It is used primarily in depression, especially with generalized anxiety disorder or chronic pain. This medicine is of interest because its mechanisms involved multiple aspects. In the current study, the antidepressant action of VEN was investigated by studying the histone acetylation and expression of tyrosine hydroxylase (TH) and tryptophan hydroxylase (TPH) in rats exposed to chronic unpredicted stress (CUS) for 28 days. Male Sprague-Dawley rats were divided into a control group, VEN-treated control group, CUS group, and VEN-treated CUS group. VEN (23.4 mg/kg once daily) was administered to rats by intragastric gavage, whereas the same volume of vehicle was given to rats in the control and model groups. Rat behaviors, acetylated H3 at lysine 9 (acH3K9), acetylated H3 at lysine 14 (acH3K14), acetylated H4 at lysine 12 (acH4K12), histone deacetylase 5, and TH and TPH expression in the hippocampus were determined. Chronic VEN treatment significantly relieved the anxiety- and depression-like behaviors, prevented the increase of histone deacetylase 5 expression and decrease of acH3K9 level, and promoted TH and TPH protein expression in the hippocampus of CUS rats. The results suggest that the preventive antidepressant mechanism of VEN is partly involved in the blocking effects on histone de-acetylated modification and then increasing TH, TPH expression.
Collapse
|
28
|
Wang SE, Ko SY, Jo S, Jo HR, Han J, Kim YS, Son H. Downregulation of SIRT2 by Chronic Stress Reduces Expression of Synaptic Plasticity-related Genes through the Upregulation of Ehmt2. Exp Neurobiol 2019; 28:537-546. [PMID: 31495082 PMCID: PMC6751865 DOI: 10.5607/en.2019.28.4.537] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/31/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022] Open
Abstract
Silent information regulator 2 (Sirtuin2 / SIRT2) is a NAD+-dependent deacetylase that regulates the cellular oxidative stress response. It modulates transcriptional silencing and protein stability through deacetylation of target proteins including histones. Previous studies have shown that SIRT2 plays a role in mood disorders and hippocampus-dependent cognitive function, but the underlying neurobiological mechanism is poorly understood. Here, we report that chronic stress suppresses SIRT2 expression in the hippocampus. Molecular and biochemical analyses indicate that the stress-induced decrease in the SIRT2 expression downregulates synaptic plasticity-related genes in the hippocampus through the increase of euchromatic histone-lysine N-methyltransferase 2 (Ehmt2) (also known as G9a). shRNA-mediated knockdown of SIRT2 in the dentate gyrus alters the expression of synaptic plasticity- related genes in a way similar to those induced by chronic stress, and produces depression-like behaviors. Our results indicate that SIRT2 plays an important role in the response to stress, thereby modulating depression-like behaviors.
Collapse
Affiliation(s)
- Sung Eun Wang
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Seung Yeon Ko
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Sungsin Jo
- Hanyang University Hospital for Rheumatic Diseases, Seoul 04763, Korea
| | - Hye-Ryeong Jo
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea
| | - Jinil Han
- Gencurix, Inc, Hanhwan Bizmetro 1, Seoul 08394, Korea
| | - Yong-Seok Kim
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| | - Hyeon Son
- Hanyang Biomedical Research Institute, Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, Korea.,Department of Biochemistry and Molecular Biology, College of Medicine, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
29
|
Eren G, Bruno A, Guntekin-Ergun S, Cetin-Atalay R, Ozgencil F, Ozkan Y, Gozelle M, Kaya SG, Costantino G. Pharmacophore modeling and virtual screening studies to identify novel selective SIRT2 inhibitors. J Mol Graph Model 2019; 89:60-73. [DOI: 10.1016/j.jmgm.2019.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 02/15/2019] [Accepted: 02/27/2019] [Indexed: 12/12/2022]
|
30
|
Karnib N, El-Ghandour R, El Hayek L, Nasrallah P, Khalifeh M, Barmo N, Jabre V, Ibrahim P, Bilen M, Stephan JS, Holson EB, Ratan RR, Sleiman SF. Lactate is an antidepressant that mediates resilience to stress by modulating the hippocampal levels and activity of histone deacetylases. Neuropsychopharmacology 2019; 44:1152-1162. [PMID: 30647450 PMCID: PMC6461925 DOI: 10.1038/s41386-019-0313-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/27/2018] [Accepted: 12/30/2018] [Indexed: 11/09/2022]
Abstract
Chronic stress promotes depression in some individuals, but has no effect in others. Susceptible individuals exhibit social avoidance and anxious behavior and ultimately develop depression, whereas resilient individuals live normally. Exercise counteracts the effects of stress. Our objective was to examine whether lactate, a metabolite produced during exercise and known to reproduce specific brain exercise-related changes, promotes resilience to stress and acts as an antidepressant. To determine whether lactate promotes resilience to stress, male C57BL/6 mice experienced daily defeat by a CD-1 aggressor, for 10 days. On the 11th day, mice were subjected to behavioral tests. Mice received lactate before each defeat session. When compared with control mice, mice exposed to stress displayed increased susceptibility, social avoidance and anxiety. Lactate promoted resilience to stress and rescued social avoidance and anxiety by restoring hippocampal class I histone deacetylase (HDAC) levels and activity, specifically HDAC2/3. To determine whether lactate is an antidepressant, mice only received lactate from days 12-25 and a second set of behavioral tests was conducted on day 26. In this paradigm, we examined whether lactate functions by regulating HDACs using co-treatment with CI-994, a brain-permeable class I HDAC inhibitor. When administered after the establishment of depression, lactate behaved as antidepressant. In this paradigm, lactate regulated HDAC5 and not HDAC2/3 levels. On the contrary, HDAC2/3 inhibition was antidepressant-like. This indicates that lactate mimics exercise's effects and rescues susceptibility to stress by modulating HDAC2/3 activity and suggests that HDAC2/3 play opposite roles before and after establishment of susceptibility to stress.
Collapse
Affiliation(s)
- Nabil Karnib
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Rim El-Ghandour
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Lauretta El Hayek
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Patrick Nasrallah
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Mohamad Khalifeh
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Nour Barmo
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Vanessa Jabre
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Pascale Ibrahim
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Maria Bilen
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Joseph S. Stephan
- 0000 0001 2324 5973grid.411323.6School of Medicine, Lebanese American University, PO Box 36, Byblos, Lebanon
| | - Edward B. Holson
- Atlas Venture, Cambridge, MA USA ,grid.66859.34Stanley Center for Psychiatric Research, The Broad Institute of MIT and Harvard, Cambridge, MA USA
| | - Rajiv R. Ratan
- 0000 0004 0421 4727grid.410373.2Burke Medical Research Institute, White Plains, NY USA
| | - Sama F. Sleiman
- 0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Molecular Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon ,0000 0001 2324 5973grid.411323.6Department of Natural Sciences, Biology Program, Lebanese American University, PO Box 36, Byblos, Lebanon
| |
Collapse
|
31
|
Albert PR, Le François B, Vahid-Ansari F. Genetic, epigenetic and posttranscriptional mechanisms for treatment of major depression: the 5-HT1A receptor gene as a paradigm. J Psychiatry Neurosci 2019; 44:164-176. [PMID: 30807072 PMCID: PMC6488484 DOI: 10.1503/jpn.180209] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/10/2018] [Accepted: 12/21/2018] [Indexed: 02/07/2023] Open
Abstract
Major depression and anxiety are highly prevalent and involve chronic dysregulation of serotonin, but they remain poorly understood. Here, we review novel transcriptional (genetic, epigenetic) and posttranscriptional (microRNA, alternative splicing) mechanisms implicated in mental illness, focusing on a key serotonin-related regulator, the serotonin 1A (5-HT1A) receptor. Functional single-nucleotide polymorphisms and stress-induced DNA methylation of the 5-HT1A promoter converge to differentially alter pre- and postsynaptic 5-HT1A receptor expression associated with major depression and reduced therapeutic response to serotonergic antidepressants. Major depression is also associated with altered levels of splice factors and microRNA, posttranscriptional mechanisms that regulate RNA stability. The human 5-HT1A 3′-untranslated region is alternatively spliced, removing microRNA sites and increasing 5-HT1A expression, which is reduced in major depression and may be genotype-dependent. Thus, the 5-HT1A receptor gene illustrates the convergence of genetic, epigenetic and posttranscriptional mechanisms in gene expression, neurodevelopment and neuroplasticity, and major depression. Understanding gene regulatory mechanisms could enhance the detection, categorization and personalized treatment of major depression.
Collapse
Affiliation(s)
- Paul R. Albert
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Brice Le François
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| | - Faranak Vahid-Ansari
- From the Department of Neuroscience, Ottawa Hospital Research Institute, UOttawa Brain and Mind Research Institute, Ottawa, Ont., Canada
| |
Collapse
|
32
|
Iaconelli J, Xuan L, Karmacharya R. HDAC6 Modulates Signaling Pathways Relevant to Synaptic Biology and Neuronal Differentiation in Human Stem-Cell-Derived Neurons. Int J Mol Sci 2019; 20:ijms20071605. [PMID: 30935091 PMCID: PMC6480207 DOI: 10.3390/ijms20071605] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022] Open
Abstract
Recent studies show that histone deacetylase 6 (HDAC6) has important roles in the human brain, especially in the context of a number of nervous system disorders. Animal models of neurodevelopmental, neurodegenerative, and neuropsychiatric disorders show that HDAC6 modulates important biological processes relevant to disease biology. Pan-selective histone deacetylase (HDAC) inhibitors had been studied in animal behavioral assays and shown to induce synaptogenesis in rodent neuronal cultures. While most studies of HDACs in the nervous system have focused on class I HDACs located in the nucleus (e.g., HDACs 1,2,3), recent findings in rodent models suggest that the cytoplasmic class IIb HDAC, HDAC6, plays an important role in regulating mood-related behaviors. Human studies suggest a significant role for synaptic dysfunction in the prefrontal cortex (PFC) and hippocampus in depression. Studies of HDAC inhibitors (HDACi) in human neuronal cells show that HDAC6 inhibitors (HDAC6i) increase the acetylation of specific lysine residues in proteins involved in synaptogenesis. This has led to the hypothesis that HDAC6i may modulate synaptic biology not through effects on the acetylation of histones, but by regulating acetylation of non-histone proteins.
Collapse
Affiliation(s)
- Jonathan Iaconelli
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Lucius Xuan
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| | - Rakesh Karmacharya
- Center for Genomic Medicine, Harvard Medical School and Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA.
- Chemical Biology Program, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
- Schizophrenia and Bipolar Disorder Program, McLean Hospital, Belmont, MA 02478, USA.
- Program in Neuroscience, Harvard University, Cambridge, MA 02138, USA.
- Chemical Biology PhD Program, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
33
|
Nucleocytoplasmic export of HDAC5 and SIRT2 downregulation: two epigenetic mechanisms by which antidepressants enhance synaptic plasticity markers. Psychopharmacology (Berl) 2018; 235:2831-2846. [PMID: 30091005 DOI: 10.1007/s00213-018-4975-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 07/17/2018] [Indexed: 10/28/2022]
Abstract
RATIONALE Antidepressant action has been linked to increased synaptic plasticity in which epigenetic mechanisms such as histone posttranslational acetylation could be involved. Interestingly, the histone deacetylases HDAC5 and SIRT2 are oppositely regulated by stress and antidepressants in mice prefrontal cortex (PFC). Besides, the neuroblastoma SH-SY5Y line is an in vitro neuronal model reliable to study drug effects with clear advantages over animals. OBJECTIVES We aimed to characterize in vitro the role of HDAC5 and SIRT2 in antidepressant regulation of neuroplasticity. METHODS SH-SY5Y cultures were incubated with imipramine, fluoxetine, and reboxetine (10 μM, 2 and 24 h) as well as the selective HDAC5 (MC3822, 5 μM, 24 h) or SIRT2 (33i, 5 μM, 24 h) inhibitors. The regulation of the brain-derived neurotrophic factor (BDNF), the vesicular glutamate transporter 1 (VGLUT1), the acetylated histones 3 (AcH3) and 4 (AcH4), HDAC5, and SIRT2 was studied. Comparatively, the long-term effects of these antidepressants (21 days, i.p.) in the mice (C57BL6, 8 weeks) PFC were studied. RESULTS Antidepressants increased both in vitro and in vivo expression of BDNF, VGLUT1, AcH3, and AcH4. Moreover, imipramine and reboxetine increased the phosphorylated form of HDAC5 (P-HDAC5), mediating its cytoplasmic export. Further, SIRT2 was downregulated by all antidepressants. Finally, specific inhibition of HDAC5 and SIRT2 increased neuroplasticity markers. CONCLUSIONS This study supports the validity of the SH-SY5Y model for studying epigenetic changes linked to synaptic plasticity induced by antidepressants as well as the effect of selective HDAC inhibitors. Particularly, nucleocytoplasmic export of HDAC5 and SIRT2 downregulation mediated by antidepressants could enhance synaptic plasticity markers leading to antidepressant action.
Collapse
|
34
|
Montagud-Romero S, Blanco-Gandía MC, Reguilón MD, Ferrer-Pérez C, Ballestín R, Miñarro J, Rodríguez-Arias M. Social defeat stress: Mechanisms underlying the increase in rewarding effects of drugs of abuse. Eur J Neurosci 2018; 48:2948-2970. [PMID: 30144331 DOI: 10.1111/ejn.14127] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/11/2018] [Accepted: 08/14/2018] [Indexed: 12/27/2022]
Abstract
Social interaction is known to be the main source of stress in human beings, which explains the translational importance of this research in animals. Evidence reported over the last decade has revealed that, when exposed to social defeat experiences (brief episodes of social confrontations during adolescence and adulthood), the rodent brain undergoes remodeling and functional modifications, which in turn lead to an increase in the rewarding and reinstating effects of different drugs of abuse. The mechanisms by which social stress cause changes in the brain and behavior are unknown, and so the objective of this review is to contemplate how social defeat stress induces long-lasting consequences that modify the reward system. First of all, we will describe the most characteristic results of the short- and long-term consequences of social defeat stress on the rewarding effects of drugs of abuse such as psychostimulants and alcohol. Secondly, and throughout the review, we will carefully assess the neurobiological mechanisms underlying these effects, including changes in the dopaminergic system, corticotrophin releasing factor signaling, epigenetic modifications and the neuroinflammatory response. To conclude, we will consider the advantages and disadvantages and the translational value of the social defeat stress model, and will discuss challenges and future directions.
Collapse
Affiliation(s)
- Sandra Montagud-Romero
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | | | - Marina D Reguilón
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Carmen Ferrer-Pérez
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Raul Ballestín
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Jose Miñarro
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| | - Marta Rodríguez-Arias
- Department of Psychobiology, Facultad de Psicología, Universitat de Valencia, Valencia, Spain
| |
Collapse
|
35
|
Effects of Antipsychotic Drugs on the Epigenetic Modification of Brain-Derived Neurotrophic Factor Gene Expression in the Hippocampi of Chronic Restraint Stress Rats. Neural Plast 2018; 2018:2682037. [PMID: 29991943 PMCID: PMC6016229 DOI: 10.1155/2018/2682037] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 03/19/2018] [Accepted: 04/01/2018] [Indexed: 01/23/2023] Open
Abstract
Recent studies have shown that antipsychotic drugs have epigenetic effects. However, the effects of antipsychotic drugs on histone modification remain unclear. Therefore, we investigated the effects of antipsychotic drugs on the epigenetic modification of the BDNF gene in the rat hippocampus. Rats were subjected to chronic restraint stress (6 h/d for 21 d) and then were administered with either olanzapine (2 mg/kg) or haloperidol (1 mg/kg). The levels of histone H3 acetylation and MeCP2 binding at BDNF promoter IV were assessed with chromatin immunoprecipitation assays. The mRNA levels of total BDNF with exon IV, HDAC5, DNMT1, and DNMT3a were assessed with a quantitative RT-PCR procedure. Chronic restraint stress resulted in the downregulation of total and exon IV BDNF mRNA levels and a decrease in histone H3 acetylation and an increase in MeCP2 binding at BDNF promoter IV. Furthermore, there were robust increases in the expression of HDAC5 and DNMTs. Olanzapine administration largely prevented these changes. The administration of haloperidol had no effect. These findings suggest that the antipsychotic drug olanzapine induced histone modification of BDNF gene expression in the hippocampus and that these epigenetic alterations may represent one of the mechanisms underlying the actions of antipsychotic drugs.
Collapse
|
36
|
Abnormal modification of histone acetylation involved in depression-like behaviors of rats induced by chronically unpredicted stress. Neuroreport 2018; 28:1054-1060. [PMID: 28877103 DOI: 10.1097/wnr.0000000000000879] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Depression is a complex multifactorial mental disorder. Its etiology involves many factors such as social environments, genetics, and psychology. Recent studies have shown that epigenetic modification may be associated with depression. Histone acetylation is one of the main mechanisms of epigenetic modification and plays an important role in genetic expression. In this study, we investigated the role of histone acetylation in the depression-like behaviors of rats undergoing chronically unpredicted stress (CUS) by detecting the mRNA and protein expression of histone deacetylase 5, cAMP-response element-binding protein, and the level of histone acetylated modification of H3K14, H3K23, and H4K16 in the prefrontal cortex and hippocampus of the rats. The results showed that significantly increasing depression-like behaviors were observed with a decreasing histone acetylated modification level, especially on acytelated-H3K14, acytelated-H3K23, and acytelated-H4K16, upregulating histone deacetylase 5 expression and downregulating cAMP-response element-binding protein expression in CUS rats, compared with control rats. The results indicate that the decrease in the histone acetylation modification level may be partly involved in the mechanism of depression-like behaviors of rats induced by CUS.
Collapse
|
37
|
Park SW, Seo MK, Lee JG, Hien LT, Kim YH. Effects of maternal separation and antidepressant drug on epigenetic regulation of the brain-derived neurotrophic factor exon I promoter in the adult rat hippocampus. Psychiatry Clin Neurosci 2018; 72:255-265. [PMID: 28990703 DOI: 10.1111/pcn.12609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/25/2017] [Accepted: 10/03/2017] [Indexed: 12/15/2022]
Abstract
AIM Early life stress can induce epigenetic changes through genetic and environmental interactions and is a risk factor for depression. Brain-derived neurotrophic factor (BDNF) has been implicated in the pathophysiology of depression and antidepressant drug action. We investigated epigenetic changes at the BDNF exon I promoter in the hippocampus of adult rats subjected to maternal separation (MS) during early life and treated with an antidepressant drug as adults. METHODS Rat pups were subjected to MS from postnatal day 1 to 21 and received chronic escitalopram (ESC) as adults. We assessed the effects of MS and ESC on BDNF exon I and DNA methyltransferases (DNMT) mRNA levels (quantitative reverse-transcription polymerase chain reaction), acetylated histone H3, and MeCP2 binding to the BDNF promoter I (chromatin immunoprecipitation followed by real-time polymerase chain reaction), and BDNF protein levels (enzyme-linked immunosorbent assay). RESULTS The levels of BDNF protein, exon I mRNA, histone H3 acetylation, and DNMT1 and DNMT3a mRNA were altered in the MS group compared with the control group. Significant decreases were observed in the BDNF protein, exon I mRNA, and histone H3 acetylation levels and there were significant increases in DNMT1 and DNMT3a mRNA levels. The comparison between the MS + ESC and MS groups revealed significant increases in BDNF protein, exon I mRNA, and histone H3 acetylation levels and significant decreases in MeCP2 and DNMT1 and DNMT3a mRNA levels. CONCLUSION These findings indicate that MS induced epigenetic changes at the BDNF exon I promoter and these changes were prevented by antidepressant drug treatment during adulthood.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea.,Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Department of Convergence Biomedical Science, College of Medicine, Inje University, Busan, Republic of Korea
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea.,Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea.,Department of Psychiatry, College of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Le Thi Hien
- Departments of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Gongju National Hospital, Gongju, Republic of Korea
| |
Collapse
|
38
|
Zhang Z, Zhang P, Qi GJ, Jiao FJ, Wang QZ, Yan JG, He F, Zhang Q, Lv ZX, Peng X, Cai HW, Chen X, Sun N, Tian B. CDK5-mediated phosphorylation of Sirt2 contributes to depressive-like behavior induced by social defeat stress. Biochim Biophys Acta Mol Basis Dis 2018; 1864:533-541. [DOI: 10.1016/j.bbadis.2017.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/19/2017] [Accepted: 11/16/2017] [Indexed: 02/02/2023]
|
39
|
Zammataro M, Merlo S, Barresi M, Parenti C, Hu H, Sortino MA, Chiechio S. Chronic Treatment with Fluoxetine Induces Sex-Dependent Analgesic Effects and Modulates HDAC2 and mGlu2 Expression in Female Mice. Front Pharmacol 2017; 8:743. [PMID: 29104538 PMCID: PMC5654865 DOI: 10.3389/fphar.2017.00743] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/02/2017] [Indexed: 12/21/2022] Open
Abstract
Gender and sex differences in pain recognition and drug responses have been reported in clinical trials and experimental models of pain. Among antidepressants, contradictory results have been observed in patients treated with selective serotonin reuptake inhibitors (SSRIs). This study evaluated sex differences in response to the SSRI fluoxetine after chronic administration in the mouse formalin test. Adult male and female CD1 mice were intraperitoneally injected with fluoxetine (10 mg/kg) for 21 days and subjected to pain assessment. Fluoxetine treatment reduced the second phase of the formalin test only in female mice without producing behavioral changes in males. We also observed that fluoxetine was able to specifically increase the expression of metabotropic glutamate receptor type-2 (mGlu2) in females. Also a reduced expression of the epigenetic modifying enzyme, histone deacetylase 2 (HDAC2), in dorsal root ganglia (DRG) and dorsal horn (DH) together with an increase histone 3 acetylation (H3) level was observed in females but not in males. With this study we provide evidence that fluoxetine induces sex specific changes in HDAC2 and mGlu2 expression in the DH of the spinal cord and in DRGs and suggests a molecular explanation for the analgesic effects in female mice.
Collapse
Affiliation(s)
- Magda Zammataro
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | | | - Carmela Parenti
- Department of Drug Sciences, University of Catania, Catania, Italy
| | - Huijuan Hu
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Maria A Sortino
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Santina Chiechio
- Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
40
|
Lu Y, Zhang J, Zhang L, Dang S, Su Q, Zhang H, Lin T, Zhang X, Zhang Y, Sun H, Zhu Z, Li H. Hippocampal Acetylation may Improve Prenatal-Stress-Induced Depression-Like Behavior of Male Offspring Rats Through Regulating AMPARs Expression. Neurochem Res 2017; 42:3456-3464. [PMID: 29019029 DOI: 10.1007/s11064-017-2393-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/03/2017] [Accepted: 08/23/2017] [Indexed: 12/23/2022]
Abstract
This study is to determine the role and mechanism of hippocampal acetylation in prenatal stress (PS) induced depression-like behavior of male offspring rats. PS-induced depression rat model was established. Sucrose preference and forced swim test were used to observe the behavior changes of male offspring rats. Hippocampal acetylation was induced by Trichostatin A injection. Quantitative real-time PCR and Western blot were used to determine the changes of AMPARs in acetylated hippocampus. The behavioral tests proved that AMPA was involved in the PS-induced depression-like behavior in offspring rats. Hippocampal acetylation significantly increased the preference to sucrose of PS-induced offspring rats and reduced the immobile time in forced swimming test, suggesting that acetylation could improve PS-induced depression-like behaviors. In addition, PS inhibited the expression levels of GluA1-3 subunits of AMPARs in the offspring hippocampus, while Hippocampal acetylation could reverse this effect by increasing GluA1-3 expression. PS-induced reduction of GluA1-3 subunits of AMPARs may be an important potential mechanism of offspring depression. Hippocampal acetylation may improve PS-induced offspring depression-like behavior through the enhanced expression of AMPARs (GluA1-3 subunits).
Collapse
Affiliation(s)
- Yong Lu
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.,Center Laboratory, Heze Medical College, Heze, 274000, Shandong, China
| | - Junli Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Lin Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Shaokang Dang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Qian Su
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Huiping Zhang
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Tianwei Lin
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Xiaoxiao Zhang
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Yurong Zhang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Medical College, Xi'an, 710077, Shanxi, China
| | - Hongli Sun
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China
| | - Zhongliang Zhu
- Shaanxi Province Biomedicine Key Laboratory, College of Life Sciences, Northwest University, No. 229 North Taibai North Road, Beilin District, Xi'an, 710069, Shanxi, China
| | - Hui Li
- Department of Neonatology, The First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Yanta District, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
41
|
SIRT2 inhibition reverses anhedonia in the VGLUT1+/- depression model. Behav Brain Res 2017; 335:128-131. [PMID: 28778545 DOI: 10.1016/j.bbr.2017.07.045] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 07/21/2017] [Accepted: 07/29/2017] [Indexed: 11/21/2022]
Abstract
Some histone deacetylase (HDACs) enzymes have been proposed as epigenetic targets involved in the pathophysiology of depression and antidepressant-like action. Among them, we have recently identified SIRT2, a class III NAD+-dependent HDAC, as being oppositely regulated by stress and antidepressants. Moreover, SIRT2 inhibition has shown antianhedonic-like action in the chronic mild stress model of depression. Here we have extended the study using an alternative model of depression based in a genetic manipulation of glutamate function. Specifically, mice heterozygous for the vesicular glutamate transporter 1 (VGLUT1+/-) were used. Firstly, mRNA expression of the different members of the HDAC superfamily in the prefrontal cortex (PFC) of VGLUT1+/- mice and WT littermates were studied by RT-PCR. Secondly, the effect of repeated treatment with the selective SIRT2 inhibitor 33i and the antidepressant imipramine on anhedonic behaviour of VGLUT1+/- mice was studied by weekly monitoring of sucrose intake. Further, the interaction of 33i towards specific monoaminergic targets such as serotonin or noradrenaline transporters as well as the monoaminooxidase enzyme was studied. The mRNA occurance of the different members of HDAC superfamily was not altered in the PFC of VGLUT1+/- mice. While repeated imipramine showed an anti-anhedonic action in both VGLUT1+/- and WT, the selective SIRT2 inhibitor 33i fully reversed anhedonia of VGLUT1+/-. Further, 33i showed no interaction with the above mentioned monoaminergic molecular targets. These results confirm that SIRT2 inhibition is able to reverse anhedonia in different animal models and highlight the need to further investigate the role of SIRT2 inhibitors as new antidepressant agents.
Collapse
|
42
|
Mellini P, Itoh Y, Tsumoto H, Li Y, Suzuki M, Tokuda N, Kakizawa T, Miura Y, Takeuchi J, Lahtela-Kakkonen M, Suzuki T. Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, "selectivity pocket" and NAD +-binding site. Chem Sci 2017; 8:6400-6408. [PMID: 28989670 PMCID: PMC5628579 DOI: 10.1039/c7sc02738a] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 07/14/2017] [Indexed: 12/19/2022] Open
Abstract
Sirtuin 2 (SIRT2), a member of the NAD+-dependent histone deacetylase family, has recently received increasing attention due to its potential involvement in neurodegenerative diseases and the progression of cancer. Potent and selective SIRT2 inhibitors thus represent desirable biological probes. Based on the X-ray crystal structure of SIRT2 in complex with a previously reported weak inhibitor (6), we identified in this study the potent mechanism-based inactivator KPM-2 (36), which is selective toward SIRT2. Compound 36 engages in a nucleophilic attack toward NAD+ at the active site of SIRT2, which affords a stable 36-ADP-ribose conjugate that simultaneously occupies the substrate-binding site, the "selectivity pocket" and the NAD+-binding site. Moreover, 36 exhibits antiproliferative activity in cancer cells and remarkable neurite outgrowth activity. This strategy for the selective inhibition of SIRT2 should allow further probing of the biology of SIRT2, and promote the development of new disease treatment strategies.
Collapse
Affiliation(s)
- Paolo Mellini
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Yukihiro Itoh
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Hiroki Tsumoto
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku , Tokyo , 173-0015 , Japan
| | - Ying Li
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Miki Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan .
| | - Natsuko Tokuda
- Minase Research Institute , Ono Pharmaceutical Co., Ltd. , 3-1-1 Sakurai Shimamoto-Cho, Mishima-Gun , Osaka 618-8585 , Japan
| | - Taeko Kakizawa
- Department of Chemistry and Biochemistry , School of Advanced Science and Engineering , Waseda University , Shinjuku , Tokyo 169-8555 , Japan
| | - Yuri Miura
- Research Team for Mechanism of Aging , Tokyo Metropolitan Institute of Gerontology , 35-2 Sakae-cho, Itabashi-ku , Tokyo , 173-0015 , Japan
| | - Jun Takeuchi
- Minase Research Institute , Ono Pharmaceutical Co., Ltd. , 3-1-1 Sakurai Shimamoto-Cho, Mishima-Gun , Osaka 618-8585 , Japan
| | - Maija Lahtela-Kakkonen
- School of Pharmacy , University of Eastern Finland , P.O. Box 1627 , 70211 Kuopio , Finland
| | - Takayoshi Suzuki
- Graduate School of Medical Science , Kyoto Prefectural University of Medicine , 1-5 Shimogamohangi-cho, Sakyo-ku , Kyoto 606-0823 , Japan . .,CREST , Japan Science and Technology Agency (JST) , 4-1-8 Honcho , Kawaguchi , Saitama 332-0012 , Japan
| |
Collapse
|
43
|
Epigenetic programming by stress and glucocorticoids along the human lifespan. Mol Psychiatry 2017; 22:640-646. [PMID: 28289275 DOI: 10.1038/mp.2017.35] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Revised: 01/08/2017] [Accepted: 01/17/2017] [Indexed: 12/19/2022]
Abstract
Psychosocial stress triggers a set of behavioral, neural, hormonal, and molecular responses that can be a driving force for survival when adaptive and time-limited, but may also contribute to a host of disease states if dysregulated or chronic. The beneficial or detrimental effects of stress are largely mediated by the hypothalamic-pituitary axis, a highly conserved neurohormonal cascade that culminates in systemic secretion of glucocorticoids. Glucocorticoids activate the glucocorticoid receptor, a ubiquitous nuclear receptor that not only causes widespread changes in transcriptional programs, but also induces lasting epigenetic modifications in many target tissues. While the epigenome remains sensitive to stressors throughout life, we propose two key principles that may govern the epigenetics of stress and glucocorticoids along the lifespan: first, the presence of distinct life periods, during which the epigenome shows heightened plasticity to stress exposure, such as in early development and at advanced age; and, second, the potential of stress-induced epigenetic changes to accumulate throughout life both in select chromatin regions and at the genome-wide level. These principles have important clinical and translational implications, and they show striking parallels with the existence of sensitive developmental periods and the cumulative impact of stressful experiences on the development of stress-related phenotypes. We hope that this conceptual mechanistic framework will stimulate fruitful research that aims at unraveling the molecular pathways through which our life stories sculpt genomic function to contribute to complex behavioral and somatic phenotypes.
Collapse
|
44
|
Park SW, Lee JG, Seo MK, Ly NN, Lee CH, Cho HY, Hein LT, Choi AJ, Kim GM, Kim YH. Epigenetic modification of glucocorticoid receptor promoter I 7 in maternally separated and restraint-stressed rats. Neurosci Lett 2017; 650:38-44. [PMID: 28414132 DOI: 10.1016/j.neulet.2017.04.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 12/31/2022]
Abstract
Glucocorticoid receptor (GR) promoter I7 is susceptible to epigenetic changes induced by environmental influences. Early life stress (ELS) has a persistent impact on GR expression, as well as behavior, in adult rodents via epigenetic changes of GR promoter I7. Moreover, various stressors can induce histone modifications in this region during adulthood. Thus, the present study aimed to investigate whether maternally separated (MS) rats exposed to chronic restraint stress (RS) would exhibit histone modifications of GR promoter I7 in the hippocampus. Rats were subjected to MS (3h per day) on postnatal days (PND) 1-21. Then, during adulthood (PND 56-77), the rats were exposed to RS (2h per day) followed by treatment with escitalopram (10mg/kg). The MS and RS groups exhibited significant decreases in total and exon I7 GR mRNA levels and the combination of MS and RS exerted a greater effect on these mRNA levels than either MS or RS alone. Additionally, both the MS and RS groups showed significant reductions in histone H3 acetylation at GR promoter I7 and the combination of MS and RS had a greater effect than did either MS or RS alone. Chronic escitalopram treatment ameliorated these changes. The present results indicate that postnatal MS and adult RS influence GR expression through histone modification at GR promoter I7, and that the combination of the two stressors potentiates these changes. Furthermore, epigenetic mechanisms are involved in escitalopram action.
Collapse
Affiliation(s)
- Sung Woo Park
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea; Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea; Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea; Mood Disorders Psychopharmacology Unit, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Mi Kyoung Seo
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Nguyen Ngoc Ly
- Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Le Thi Hein
- Department of Health Science and Technology, Graduate School, Inje University, Busan, Republic of Korea
| | - Ah Jeong Choi
- Paik Institute for Clinical Research, Inje University, Busan, Republic of Korea
| | - Gyung-Mee Kim
- Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Young Hoon Kim
- Department of Psychiatry, Gongju National Hospital, Gongju, Republic of Korea.
| |
Collapse
|
45
|
Histone deacetylase 5 modulates the effects of social adversity in early life on cocaine-induced behavior. Physiol Behav 2017; 171:7-12. [DOI: 10.1016/j.physbeh.2016.12.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 12/14/2022]
|
46
|
Bonnaud EM, Suberbielle E, Malnou CE. Histone acetylation in neuronal (dys)function. Biomol Concepts 2017; 7:103-16. [PMID: 27101554 DOI: 10.1515/bmc-2016-0002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/25/2016] [Indexed: 02/05/2023] Open
Abstract
Cognitive functions require the expression of an appropriate pattern of genes in response to environmental stimuli. Over the last years, many studies have accumulated knowledge towards the understanding of molecular mechanisms that regulate neuronal gene expression. Epigenetic modifications have been shown to play an important role in numerous neuronal functions, from synaptic plasticity to learning and memory. In particular, histone acetylation is a central player in these processes. In this review, we present the molecular mechanisms of histone acetylation and summarize the data underlying the relevance of histone acetylation in cognitive functions in normal and pathological conditions. In the last part, we discuss the different mechanisms underlying the dysregulation of histone acetylation associated with neurological disorders, with a particular focus on environmental causes (stress, drugs, or infectious agents) that are linked to impaired histone acetylation.
Collapse
|
47
|
Sirtuin-2 inhibition affects hippocampal functions and sodium butyrate ameliorates the reduction in novel object memory, cell proliferation, and neuroblast differentiation. Lab Anim Res 2016; 32:224-230. [PMID: 28053616 PMCID: PMC5206229 DOI: 10.5625/lar.2016.32.4.224] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/03/2016] [Accepted: 12/03/2016] [Indexed: 12/03/2022] Open
Abstract
We investigated the effects of the sirtuin-2 (SIRT2) inhibitor AK-7 on novel object memory, cell proliferation, and neuroblast differentiation in the dentate gyrus. In addition, we also observed the relationships with sodium butyrate, a histone deacetylase inhibitor, on the hippocampal functions. To investigate the effects of AK-7 on hippocampal functions, 10-week-old C57BL/6 mice were daily injected intraperitoneally with 20 mg/kg AK-7 alone or in combination with subcutaneous administration of 300 mg/kg sodium butyrate, a histone deacetylase inhibitor, for 21 days. A novel object recognition test was conducted on days 20 (training) and 21 (testing) of treatment. Thereafter, the animals were sacrificed for immunohistochemistry for Ki67 (cell proliferation) and doublecortin (DCX, neuroblast differentiation). AK-7 administration significantly reduced the time spent exploring new objects, while treatment in combination with sodium butyrate significantly alleviated this reduction. Additionally, AK-7 administration significantly reduced the number of Ki67-positive cells and DCX-immunoreactive neuroblasts in the dentate gyrus, while the treatment in combination with sodium butyrate ameliorated these changes. This result suggests that the reduction of SIRT2 may be closely related to age-related phenotypes including novel object memory, as well as cell proliferation and neuroblast differentiation in the dentate gyrus. In addition, sodium butyrate reverses SIRT2-related age phenotypes.
Collapse
|
48
|
Danielewicz J, Trenk A, Hess G. Imipramine ameliorates early life stress-induced alterations in synaptic plasticity in the rat lateral amygdala. Behav Brain Res 2016; 317:319-326. [PMID: 27693266 DOI: 10.1016/j.bbr.2016.09.065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/27/2016] [Accepted: 09/28/2016] [Indexed: 12/11/2022]
Abstract
Long-term potentiation (LTP) and long-term depression (LTD) are two opposite forms of synaptic plasticity at the cortical and thalamic inputs to the lateral amygdala (LA). It has been demonstrated that maternal separation (MS) of rat pups results in alterations in the potential for both pathways to undergo LTP and LTD in adolescence. Imipramine, a prototypic tricyclic antidepressant, has been shown to counteract some detrimental effects of MS on rat behavior, however it is not known whether MS-induced alterations in the potential for bidirectional synaptic plasticity in the LA could be reversed by imipramine treatment. To this end, rat pups were subjected to MS (3h/day) on postnatal days (PNDs) 1-21. On each of PNDs 29-42, male rats previously subjected to MS were injected subcutaneously with imipramine (10mg/kg). Field potentials were recorded ex vivo from slices containing the LA and saturating levels of LTP and LTD were induced. At the thalamic input to the LA, both the maximum LTP and the maximum LTD were reduced in rats subjected to MS when compared to control animals, confirming earlier results. However, these effects were no longer present in rats subjected to MS and later treated with imipramine. At the cortical input in slices prepared from MS-subjected rats, an impairment of the maximum LTP and an enhancement of the maximum LTD were observed. At the cortical input in rats subjected to MS and receiving imipramine treatment, the level of LTD was comparable to control but imipramine did not restore the potential for LTP at this input. These results demonstrate that imipramine fully reverses the effects of MS in the thalamo-amygdalar pathway, however, in the cortico-amygdalar pathway the reversal of the effects of MS by imipramine is partial.
Collapse
Affiliation(s)
| | | | - Grzegorz Hess
- Institute of Zoology, Jagiellonian University, Krakow, Poland; Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Smetna street 12, Poland.
| |
Collapse
|
49
|
Wu R, Tao W, Zhang H, Xue W, Zou Z, Wu H, Cai B, Doron R, Chen G. Instant and Persistent Antidepressant Response of Gardenia Yellow Pigment Is Associated with Acute Protein Synthesis and Delayed Upregulation of BDNF Expression in the Hippocampus. ACS Chem Neurosci 2016; 7:1068-76. [PMID: 27203575 DOI: 10.1021/acschemneuro.6b00011] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gardenia yellow pigment (GYP) is a collection of compounds with shared structure of crocin, which confers antidepressant activity. GYP is remarkably enriched in Gardenia jasminoides Ellis, implicated in rapid antidepressant effects that are exerted through enhanced neuroplasticity. This study aims to investigate the rapid antidepressant-like activity of GYP and its underlying mechanism. After the optimal dose was determined, antidepressant responses in tail suspension test or forced swim test were monitored at 30 min, 1 day, 3 days, and 7 days post a single GYP administration. Rapid antidepressant potential was tested using learned helplessness paradigm. The expression of proteins involved in hippocampal neuroplasticity was determined. The effect of blockade of protein synthesis on GYP's antidepressant response was examined. Antidepressant response was detected at 30 min, and lasted for at least 3 days post a single administration of GYP. A single administration of GYP also reversed the deficits in learned helplessness test. Thirty minutes post GYP administration, ERK signaling was activated, and its downstream effector phosphorylated eukaryotic elongation factor 2 was inhibited, contributing to increased protein translation. Expression of synaptic proteins GluR1 and synapsin 1 was upregulated. Blockade of protein synthesis with anisomycin blunted the immediate antidepressant response of GYP. CREB signaling and BDNF expression were upregulated at 24 h, but not at 30 min. In conclusion, GYP-induced immediate antidepressant response was dependent on synthesis of proteins, including synaptic proteins. This was followed by enhanced expression of CREB and BDNF, which likely mediated the persistent antidepressant responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ravid Doron
- School
of Behavioral Sciences, The Academic College of Tel Aviv-Yaffo, Tel- Aviv 61083, Israel
- Department
of Education and Psychology, The Open University of Israel, 108 Ravutski
St., P.O. BOX 808, Raanana 43107, Israel
| | | |
Collapse
|
50
|
Seo MK, Ly NN, Lee CH, Cho HY, Choi CM, Nhu LH, Lee JG, Lee BJ, Kim GM, Yoon BJ, Park SW, Kim YH. Early life stress increases stress vulnerability through BDNF gene epigenetic changes in the rat hippocampus. Neuropharmacology 2016; 105:388-397. [PMID: 26877199 DOI: 10.1016/j.neuropharm.2016.02.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 02/08/2016] [Indexed: 12/15/2022]
Abstract
Early life stress (ELS) exerts long-lasting epigenetic influences on the brain and makes an individual susceptible to later depression. It is poorly understood whether ELS and subsequent adult chronic stress modulate epigenetic mechanisms. We examined the epigenetic mechanisms of the BDNF gene in the hippocampus, which may underlie stress vulnerability to postnatal maternal separation (MS) and adult restraint stress (RS). Rat pups were separated from their dams (3 h/day from P1-P21). When the pups reached adulthood (8 weeks old), we introduced RS (2 h/day for 3 weeks) followed by escitalopram treatment. We showed that both the MS and RS groups expressed reduced levels of total and exon IV BDNF mRNA. Furthermore, RS potentiated MS-induced decreases in these expression levels. Similarly, both the MS and RS groups showed decreased levels of acetylated histone H3 and H4 at BDNF promoter IV, and RS exacerbated MS-induced decreases of H3 and H4 acetylation. Both the MS and RS groups had increased MeCP2 levels at BDNF promoter IV, as well as increased HDAC5 mRNA, and the combination of MS and RS exerted a greater effect on these parameters than did RS alone. In the forced swimming test, the immobility time of the MS + RS group was significantly higher than that of the RS group. Additionally, chronic escitalopram treatment recovered these alterations. Our results suggest that postnatal MS and subsequent adult RS modulate epigenetic changes in the BDNF gene, and that these changes may be related to behavioral phenotype. These epigenetic mechanisms are involved in escitalopram action.
Collapse
Affiliation(s)
- Mi Kyoung Seo
- Paik Institute for Clinical Research, Republic of Korea
| | - Nguyen Ngoc Ly
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Chan Hong Lee
- Paik Institute for Clinical Research, Republic of Korea
| | - Hye Yeon Cho
- Paik Institute for Clinical Research, Republic of Korea
| | - Cheol Min Choi
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Le Hoa Nhu
- Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea
| | - Jung Goo Lee
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea; Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Bong Ju Lee
- Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Gyung-Mee Kim
- Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea
| | - Bong June Yoon
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sung Woo Park
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea.
| | - Young Hoon Kim
- Paik Institute for Clinical Research, Republic of Korea; Department of Health Science and Technology, Graduate School of Inje University, Republic of Korea; Department of Psychiatry, School of Medicine, Haeundae Paik Hospital, Inje University, Busan, Republic of Korea.
| |
Collapse
|