1
|
Jiao S, Wang K, Luo Y, Zeng J, Han Z. Plastic reorganization of the topological asymmetry of hemispheric white matter networks induced by congenital visual experience deprivation. Neuroimage 2024; 299:120844. [PMID: 39260781 DOI: 10.1016/j.neuroimage.2024.120844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024] Open
Abstract
Congenital blindness offers a unique opportunity to investigate human brain plasticity. The influence of congenital visual loss on the asymmetry of the structural network remains poorly understood. To address this question, we recruited 21 participants with congenital blindness (CB) and 21 age-matched sighted controls (SCs). Employing diffusion and structural magnetic resonance imaging, we constructed hemispheric white matter (WM) networks using deterministic fiber tractography and applied graph theory methodologies to assess topological efficiency (i.e., network global efficiency, network local efficiency, and nodal local efficiency) within these networks. Statistical analyses revealed a consistent leftward asymmetry in global efficiency across both groups. However, a different pattern emerged in network local efficiency, with the CB group exhibiting a symmetric state, while the SC group showed a leftward asymmetry. Specifically, compared to the SC group, the CB group exhibited a decrease in local efficiency in the left hemisphere, which was caused by a reduction in the nodal properties of some key regions mainly distributed in the left occipital lobe. Furthermore, interhemispheric tracts connecting these key regions exhibited significant structural changes primarily in the splenium of the corpus callosum. This result confirms the initial observation that the reorganization in asymmetry of the WM network following congenital visual loss is associated with structural changes in the corpus callosum. These findings provide novel insights into the neuroplasticity and adaptability of the brain, particularly at the network level.
Collapse
Affiliation(s)
- Saiyi Jiao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Ke Wang
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; School of System Science, Beijing Normal University, Beijing 100875, China
| | - Yudan Luo
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Department of Psychology and Art Education, Chengdu Education Research Institute, Chengdu 610036, China
| | - Jiahong Zeng
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Zaizhu Han
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
2
|
Hu W, Jiang G, Han J, Li X, Xie P. Regional-Asymmetric Adaptive Graph Convolutional Neural Network for Diagnosis of Autism in Children With Resting-State EEG. IEEE Trans Neural Syst Rehabil Eng 2024; 32:200-211. [PMID: 38145528 DOI: 10.1109/tnsre.2023.3347134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Currently, resting-state electroencephalography (rs-EEG) has become an effective and low-cost evaluation way to identify autism spectrum disorders (ASD) in children. However, it is of great challenge to extract useful features from raw rs-EEG data to improve diagnosis performance. Traditional methods mainly rely on the design of manual feature extractors and classifiers, which are separately performed and cannot be optimized simultaneously. To this end, this paper proposes a new end-to-end diagnostic method based on a recently emerged graph convolutional neural network for the diagnosis of ASD in children. Inspired by related neuroscience findings on the abnormal brain functional connectivity and hemispheric asymmetry characteristics observed in autism patients, we design a new Regional-asymmetric Adaptive Graph Convolutional Neural Network (RAGNN). It utilizes a hierarchical feature extraction and fusion process to learn separable spatiotemporal EEG features from different brain regions, two hemispheres, and a global brain. In the temporal feature extraction section, we utilize a convolutional layer that spans from the brain area to the hemisphere. This allows for effectively capturing temporal features both within and between brain areas. To better capture spatial characteristics of multi-channel EEG signals, we employ adaptive graph convolutional learning to capture non-Euclidean features within the brain's hemispheres. Additionally, an attention layer is introduced to highlight different contributions of the left and right hemispheres, and the fused features are used for classification. We conducted a subject-independent cross-validation experiment on rs-EEG data from 45 children with ASD and 45 typically developing (TD) children. Experimental results have shown that our proposed RAGNN model outperformed several existing deep learning-based methods (ShaollowNet, EEGNet, TSception, ST-GCN, and CGRU-MDGN).
Collapse
|
3
|
Maximov II, Westlye LT. Comparison of different neurite density metrics with brain asymmetry evaluation. Z Med Phys 2023:S0939-3889(23)00085-5. [PMID: 37562999 DOI: 10.1016/j.zemedi.2023.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/05/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
The standard diffusion MRI model with intra- and extra-axonal water pools offers a set of microstructural parameters describing brain white matter architecture. However, non-linearities in the standard model and diffusion data contamination by noise and imaging artefacts make estimation of diffusion metrics challenging. In order to develop reliable diffusion approaches and to avoid computational model degeneracy, additional theoretical assumptions allowing stable numerical implementations are required. Advanced diffusion approaches allow for estimation of intra-axonal water fraction (AWF), describing a key structural characteristic of brain tissue. AWF can be interpreted as an indirect measure or proxy of neurite density and has a potential as useful clinical biomarker. Established diffusion approaches such as white matter tract integrity, neurite orientation dispersion and density imaging (NODDI), and spherical mean technique provide estimates of AWF within their respective theoretical frameworks. In the present study, we estimated AWF metrics using different diffusion approaches and compared measures of brain asymmetry between the different metrics in a sub-sample of 182 subjects from the UK Biobank. Multivariate decomposition by mean of linked independent component analysis revealed that the various AWF proxies derived from the different diffusion approaches reflect partly non-overlapping variance of independent components, with distinct anatomical distributions and sensitivity to age. Further, voxel-wise analysis revealed age-related differences in AWF-based brain asymmetry, indicating less apparent left-right hemisphere difference with higher age. Finally, we demonstrated that NODDI metrics suffer from a quite strong dependence on used numerical algorithms and post-processing pipeline. The analysis based on AWF metrics strongly depends on the used diffusion approach and leads to poorly reproducible results.
Collapse
Affiliation(s)
- Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway.
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; Norwegian Centre for Mental Disorders Research (NORMENT), Department of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway; KG Jensen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| |
Collapse
|
4
|
Butera C, Kaplan J, Kilroy E, Harrison L, Jayashankar A, Loureiro F, Aziz-Zadeh L. The relationship between alexithymia, interoception, and neural functional connectivity during facial expression processing in autism spectrum disorder. Neuropsychologia 2023; 180:108469. [PMID: 36610493 PMCID: PMC9898240 DOI: 10.1016/j.neuropsychologia.2023.108469] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Neural processing differences of emotional facial expressions, while common in autism spectrum disorder (ASD), may be related to co-occurring alexithymia and interoceptive processing differences rather than autism per se. Here, we investigate relationships between alexithymia, interoceptive awareness of emotions, and functional connectivity during observation of facial expressions in youth (aged 8-17) with ASD (n = 28) compared to typically developing peers (TD; n = 37). Behaviorally, we found no significant differences between ASD and TD groups in interoceptive awareness of emotions, though alexithymia severity was significantly higher in the ASD group. In the ASD group, increased alexithymia was significantly correlated with lower interoceptive sensation felt during emotion. Using psycho-physiological interaction (PPI) analysis, the ASD group showed higher functional connectivity between the left ventral anterior insula and the left lateral prefrontal cortex than the TD group when viewing facial expressions. Further, alexithymia was associated with reduced left anterior insula-right precuneus connectivity and reduced right dorsal anterior insula-left ventral anterior insula connectivity when viewing facial expressions. In the ASD group, the degree of interoceptive sensation felt during emotion was positively correlated with left ventral anterior insula-right IFG connectivity when viewing facial expressions. However, across all participants, neither alexithymia nor interoceptive awareness of emotions predicted connectivity between emotion-related brain regions when viewing emotional facial expressions. To summarize, we found that in ASD compared to TD: 1) there is stronger connectivity between the insula and lateral prefrontal cortex; and 2) differences in interhemispheric and within left hemisphere connectivity between the insula and other emotion-related brain regions are related to individual differences in interoceptive processing and alexithymia. These results highlight complex relationships between alexithymia, interoception, and brain processing in ASD.
Collapse
Affiliation(s)
- Christiana Butera
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jonas Kaplan
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Emily Kilroy
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Laura Harrison
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Aditya Jayashankar
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Fernanda Loureiro
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lisa Aziz-Zadeh
- Brain & Creativity Institute, University of Southern California, Los Angeles, CA, 90089, USA; Division of Occupational Science, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
5
|
Desaunay P, Guillery B, Moussaoui E, Eustache F, Bowler DM, Guénolé F. Brain correlates of declarative memory atypicalities in autism: a systematic review of functional neuroimaging findings. Mol Autism 2023; 14:2. [PMID: 36627713 PMCID: PMC9832704 DOI: 10.1186/s13229-022-00525-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/29/2022] [Indexed: 01/11/2023] Open
Abstract
The long-described atypicalities of memory functioning experienced by people with autism have major implications for daily living, academic learning, as well as cognitive remediation. Though behavioral studies have identified a robust profile of memory strengths and weaknesses in autism spectrum disorder (ASD), few works have attempted to establish a synthesis concerning their neural bases. In this systematic review of functional neuroimaging studies, we highlight functional brain asymmetries in three anatomical planes during memory processing between individuals with ASD and typical development. These asymmetries consist of greater activity of the left hemisphere than the right in ASD participants, of posterior brain regions-including hippocampus-rather than anterior ones, and presumably of the ventral (occipito-temporal) streams rather than the dorsal (occipito-parietal) ones. These functional alterations may be linked to atypical memory processes in ASD, including the pre-eminence of verbal over spatial information, impaired active maintenance in working memory, and preserved relational memory despite poor context processing in episodic memory.
Collapse
Affiliation(s)
- Pierre Desaunay
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Bérengère Guillery
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Edgar Moussaoui
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France
| | - Francis Eustache
- grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France
| | - Dermot M. Bowler
- grid.28577.3f0000 0004 1936 8497Autism Research Group, City University of London, DG04 Rhind Building, Northampton Square, EC1V 0HB London, UK
| | - Fabian Guénolé
- grid.411149.80000 0004 0472 0160Service de Psychiatrie de l’Enfant et de l’Adolescent, CHU de Caen Normandie, 27 rue des compagnons, 14000 Caen, France ,grid.412043.00000 0001 2186 4076EPHE, INSERM, U1077, Pôle des Formations et de Recherche en Santé, CHU de Caen Normandie, GIP Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Normandie Univ, UNICAEN, PSL Research University, 2 rue des Rochambelles, 14032 Caen Cedex CS, France ,grid.412043.00000 0001 2186 4076Faculté de Médecine, Pôle des Formation et de Recherche en Santé, Université de Caen Normandie, 2 rue des Rochambelles, 14032 Caen cedex CS, France
| |
Collapse
|
6
|
Taking Sides: Asymmetries in the Evolution of Human Brain Development in Better Understanding Autism Spectrum Disorder. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Confirmation from structural, functional, and behavioral studies agree and suggest a configuration of atypical lateralization in individuals with autistic spectrum disorders (ASD). It is suggested that patterns of cortical and behavioral atypicality are evident in individuals with ASDs with atypical lateralization being common in individuals with ASDs. The paper endeavors to better understand the relationship between alterations in typical cortical asymmetries and functional lateralization in ASD in evolutionary terms. We have proposed that both early genetic and/or environmental influences can alter the developmental process of cortical lateralization. There invariably is a “chicken or egg” issue that arises whether atypical cortical anatomy associated with abnormal function, or alternatively whether functional atypicality generates abnormal structure.
Collapse
|
7
|
Li M, Wang Y, Tachibana M, Rahman S, Kagitani-Shimono K. Atypical structural connectivity of language networks in autism spectrum disorder: A meta-analysis of diffusion tensor imaging studies. Autism Res 2022; 15:1585-1602. [PMID: 35962721 PMCID: PMC9546367 DOI: 10.1002/aur.2789] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
Abstract
Patients with autism spectrum disorder (ASD) often show pervasive and complex language impairments that are closely associated with aberrant structural connectivity of language networks. However, the characteristics of white matter connectivity in ASD have remained inconclusive in previous diffusion tensor imaging (DTI) studies. The current meta‐analysis aimed to comprehensively elucidate the abnormality in language‐related white matter connectivity in individuals with ASD. We searched PubMed, Web of Science, Scopus, and Medline databases to identify relevant studies. The standardized mean difference was calculated to measure the pooled difference in DTI metrics in each tract between the ASD and typically developing (TD) groups. The moderating effects of age, sex, language ability, and symptom severity were investigated using subgroup and meta‐regression analysis. Thirty‐three DTI studies involving 831 individuals with ASD and 836 TD controls were included in the meta‐analysis. ASD subjects showed significantly lower fractional anisotropy or higher mean diffusivity across language‐associated tracts than TD controls. These abnormalities tended to be more prominent in the left language networks than in the right. In addition, children with ASD exhibit more pronounced and pervasive disturbances in white matter connectivity than adults. These results support the under‐connectivity hypothesis and demonstrate the widespread abnormal microstructure of language‐related tracts in patients with ASD. Otherwise, white matter abnormalities in the autistic brain could vary depending on the developmental stage and hemisphere.
Collapse
Affiliation(s)
- Min Li
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Yide Wang
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Masaya Tachibana
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| | - Shafiur Rahman
- Department of Child Development, United Graduate School of Child Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan.,Research Center for Child Mental Development, Hamamatsu University School of Medicine, Higashi-ku, Hamamatsu, Shizuoka, Japan
| | - Kuriko Kagitani-Shimono
- Department of Child Development, United Graduate School of Child Development, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
8
|
Melillo R, Leisman G, Machado C, Machado-Ferrer Y, Chinchilla-Acosta M, Kamgang S, Melillo T, Carmeli E. Retained Primitive Reflexes and Potential for Intervention in Autistic Spectrum Disorders. Front Neurol 2022; 13:922322. [PMID: 35873782 PMCID: PMC9301367 DOI: 10.3389/fneur.2022.922322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
We provide evidence to support the contention that many aspects of Autistic Spectrum Disorder (ASD) are related to interregional brain functional disconnectivity associated with maturational delays in the development of brain networks. We think a delay in brain maturation in some networks may result in an increase in cortical maturation and development in other networks, leading to a developmental asynchrony and an unevenness of functional skills and symptoms. The paper supports the close relationship between retained primitive reflexes and cognitive and motor function in general and in ASD in particular provided to indicate that the inhibition of RPRs can effect positive change in ASD.
Collapse
Affiliation(s)
- Robert Melillo
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| | - Gerry Leisman
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
- Department of Neurology, University of the Medical Sciences of Havana, Havana, Cuba
| | - Calixto Machado
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | - Yanin Machado-Ferrer
- Department of Clinical Neurophysiology, Institute for Neurology and Neurosurgery, Havana, Cuba
| | | | - Shanine Kamgang
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Ty Melillo
- Northeast College of the Health Sciences, Seneca Falls, New York, NY, United States
| | - Eli Carmeli
- Movement and Cognition Laboratory, Department of Physical Therapy, University of Haifa, Haifa, Israel
| |
Collapse
|
9
|
Liu G, Huo E, Liu H, Jia G, Zhi Y, Dong Q, Niu H. Development and emergence of functional network asymmetry in 3- to 9-month-old infants. Cortex 2022; 154:390-404. [DOI: 10.1016/j.cortex.2022.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 05/09/2022] [Accepted: 06/30/2022] [Indexed: 11/03/2022]
|
10
|
Kushima M, Kojima R, Shinohara R, Horiuchi S, Otawa S, Ooka T, Akiyama Y, Miyake K, Yokomichi H, Yamagata Z. Association Between Screen Time Exposure in Children at 1 Year of Age and Autism Spectrum Disorder at 3 Years of Age: The Japan Environment and Children's Study. JAMA Pediatr 2022; 176:384-391. [PMID: 35099540 PMCID: PMC8804971 DOI: 10.1001/jamapediatrics.2021.5778] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE It is unclear to what extent the duration of screen time in infancy is associated with the subsequent diagnosis of autism spectrum disorder. OBJECTIVE To examine the association between screen time in infancy and the development of autism spectrum disorder at 3 years of age. DESIGN, SETTING, AND PARTICIPANTS This cohort study analyzed data from mother-child dyads in a large birth cohort in Japan. This study included children born to women recruited between January 2011 and March 2014, and data were analyzed in December 2020. The study was conducted by the Japan Environment and Children's Study Group in collaboration with 15 regional centers across Japan. EXPOSURES Screen time at 1 year of age. MAIN OUTCOMES AND MEASURES The outcome variable, children diagnosed with autism spectrum disorder at 3 years of age, was assessed using a questionnaire administered to mothers of the participating children. RESULTS A total of 84 030 mother-child dyads were analyzed. The prevalence of children with autism spectrum disorder at 3 years of age was 392 per 100 000 (0.4%), and boys were 3 times more likely to have been diagnosed with autism spectrum disorder than were girls. Logistic regression analysis showed that among boys, when "no screen" was the reference, the adjusted odds ratios were as follows: less than 1 hour, odds ratio, 1.38 (95 % CI, 0.71-2.69; P = .35), 1 hour to less than 2 hours, odds ratio, 2.16 (95 % CI, 1.13-4.14; P = .02), 2 hours to less than 4 hours, odds ratio, 3.48 (95% CI, 1.83-6.65; P < .001), and more than 4 hours, odds ratio, 3.02 (95% CI, 1.44-6.34; P = .04). Among girls, however, there was no association between autism spectrum disorder and screen time. CONCLUSIONS AND RELEVANCE Among boys, longer screen time at 1 year of age was significantly associated with autism spectrum disorder at 3 years of age. With the rapid increase in device usage, it is necessary to review the health effects of screen time on infants and to control excessive screen time.
Collapse
Affiliation(s)
- Megumi Kushima
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Reiji Kojima
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Ryoji Shinohara
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sayaka Horiuchi
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Sanae Otawa
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Tadao Ooka
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Yuka Akiyama
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Kunio Miyake
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Hiroshi Yokomichi
- Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | - Zentaro Yamagata
- Center for Birth Cohort Studies, University of Yamanashi, Chuo, Yamanashi, Japan,Department of Health Sciences, University of Yamanashi, Chuo, Yamanashi, Japan
| | | |
Collapse
|
11
|
Sha Z, van Rooij D, Anagnostou E, Arango C, Auzias G, Behrmann M, Bernhardt B, Bolte S, Busatto GF, Calderoni S, Calvo R, Daly E, Deruelle C, Duan M, Duran FLS, Durston S, Ecker C, Ehrlich S, Fair D, Fedor J, Fitzgerald J, Floris DL, Franke B, Freitag CM, Gallagher L, Glahn DC, Haar S, Hoekstra L, Jahanshad N, Jalbrzikowski M, Janssen J, King JA, Lazaro L, Luna B, McGrath J, Medland SE, Muratori F, Murphy DGM, Neufeld J, O'Hearn K, Oranje B, Parellada M, Pariente JC, Postema MC, Remnelius KL, Retico A, Rosa PGP, Rubia K, Shook D, Tammimies K, Taylor MJ, Tosetti M, Wallace GL, Zhou F, Thompson PM, Fisher SE, Buitelaar JK, Francks C. Subtly altered topological asymmetry of brain structural covariance networks in autism spectrum disorder across 43 datasets from the ENIGMA consortium. Mol Psychiatry 2022; 27:2114-2125. [PMID: 35136228 PMCID: PMC9126820 DOI: 10.1038/s41380-022-01452-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 12/23/2021] [Accepted: 01/14/2022] [Indexed: 12/30/2022]
Abstract
Small average differences in the left-right asymmetry of cerebral cortical thickness have been reported in individuals with autism spectrum disorder (ASD) compared to typically developing controls, affecting widespread cortical regions. The possible impacts of these regional alterations in terms of structural network effects have not previously been characterized. Inter-regional morphological covariance analysis can capture network connectivity between different cortical areas at the macroscale level. Here, we used cortical thickness data from 1455 individuals with ASD and 1560 controls, across 43 independent datasets of the ENIGMA consortium's ASD Working Group, to assess hemispheric asymmetries of intra-individual structural covariance networks, using graph theory-based topological metrics. Compared with typical features of small-world architecture in controls, the ASD sample showed significantly altered average asymmetry of networks involving the fusiform, rostral middle frontal, and medial orbitofrontal cortex, involving higher randomization of the corresponding right-hemispheric networks in ASD. A network involving the superior frontal cortex showed decreased right-hemisphere randomization. Based on comparisons with meta-analyzed functional neuroimaging data, the altered connectivity asymmetry particularly affected networks that subserve executive functions, language-related and sensorimotor processes. These findings provide a network-level characterization of altered left-right brain asymmetry in ASD, based on a large combined sample. Altered asymmetrical brain development in ASD may be partly propagated among spatially distant regions through structural connectivity.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
| | - Daan van Rooij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Evdokia Anagnostou
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital and Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Celso Arango
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Guillaume Auzias
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Marlene Behrmann
- Department of Psychology and Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Sven Bolte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Child and Adolescent Psychiatry, Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
- Curtin Autism Research Group, Curtin School of Allied Health, Curtin University, Perth, WA, Australia
| | - Geraldo F Busatto
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sara Calderoni
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Rosa Calvo
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Eileen Daly
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience King's College London, London, UK
| | - Christine Deruelle
- Institut de Neurosciences de la Timone, UMR 7289, Aix Marseille Universit, CNRS, Marseille, France
| | - Meiyu Duan
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Fabio Luis Souza Duran
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Sarah Durston
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christine Ecker
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Stefan Ehrlich
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Damien Fair
- Institute of Child Development, Department of Pediatrics, Masonic Institute of the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Jennifer Fedor
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jacqueline Fitzgerald
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Dorothea L Floris
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital, Goethe University Frankfurt am Main, Frankfurt, Germany
| | - Louise Gallagher
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115-5724, USA
- Olin Neuropsychiatric Research Center, Hartford, CT, USA
| | - Shlomi Haar
- Department of Brain Sciences, Imperial College London, London, UK
| | - Liesbeth Hoekstra
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- Karakter Child and Adolescent Psychiatry University Centre, Nijmegen, The Netherlands
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Joost Janssen
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Joseph A King
- Department of Child and Adolescent Psychiatry & Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Luisa Lazaro
- Department of Child and Adolescent Psychiatry and Psychology Hospital Clinic, Psychiatry Unit, Department of Medicine, 2017SGR881, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Spain
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Jane McGrath
- Department of Psychiatry, School of Medicine, Trinity College, Dublin, Ireland
- The Trinity College Institute of Neuroscience, Trinity College, Dublin, Ireland
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Filippo Muratori
- IRCCS Stella Maris Foundation, Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Declan G M Murphy
- The Sackler Institute for Translational Neurodevelopment, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Behavioural Genetics Clinic, Adult Autism Service, Behavioural and Developmental Psychiatry Clinical Academic Group, South London and Maudsley Foundation NHS Trust, London, UK
| | - Janina Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Kirsten O'Hearn
- Department of Physiology and Pharmacology, Wake Forest Baptist Medical Center, Winston-Salem, NC, USA
| | - Bob Oranje
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Mara Parellada
- Child and Adolescent Psychiatry Department, Institute of Psychiatry and Mental Health, Gregorio Maran General University Hospital, School of Medicine, Universidad Complutense, IiSGM, CIBERSAM, Madrid, Spain
| | - Jose C Pariente
- Magnetic Resonance Image Core Facility, IDIBAPS (Institut d'Investigacions Biomdiques August Pi i Sunyer), Barcelona, Spain
| | - Merel C Postema
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Karl Lundin Remnelius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Women's and Children's Health, Karolinska Institutet & Stockholm Health Care Services, Region Stockholm, Stockholm, Sweden
| | - Alessandra Retico
- National Institute for Nuclear Physics, Pisa Division, Largo B. Pontecorvo 3, Pisa, Italy
| | - Pedro Gomes Penteado Rosa
- Laboratory of Psychiatric Neuroimaging (LIM-21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Katya Rubia
- Institute of Psychiatry, King's College London, London, UK
| | - Devon Shook
- Brain Center Rudolf Magnus, Department of Psychiatry, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kristiina Tammimies
- Astrid Lindgren Children's Hospital, Karolinska University Hospital, Region, Stockholm, Sweden
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research; Department of Womens and Childrens Health, Karolinska Institutet and Child and Adolescent Psychiatry, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
| | - Margot J Taylor
- Diagnostic Imaging, The Hospital for Sick Children, and Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | | | - Gregory L Wallace
- Department of Speech, Language, and Hearing Sciences, The George Washington University, Washington, DC, USA
| | - Fengfeng Zhou
- BioKnow Health Informatics Lab, College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, 130012, China
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Marina del Rey, CA, USA
| | - Simon E Fisher
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Clyde Francks
- Department of Language & Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands.
| |
Collapse
|
12
|
Batool M, Fayyaz H, Alam MR. Asymmetric Opening of Mitochondrial Permeability Transition Pore in Mouse Brain Hemispheres: A Link to the Mitochondrial Calcium Uniporter Complex. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
13
|
Qiao Y, Sun Y, Guo J, Chen Y, Hou W, Zhang J, Peng D. Disrupted White Matter Integrity and Cognitive Functions in Amyloid-β Positive Alzheimer's Disease with Concomitant Lobar Cerebral Microbleeds. J Alzheimers Dis 2021; 85:369-380. [PMID: 34842192 DOI: 10.3233/jad-215251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Lobar cerebral microbleeds (CMBs), which can impair white matter (WM), are often concomitant with definite Alzheimer's disease (AD). OBJECTIVE To explore the features of cognitive impairments and WM disruptions due to lobar CMBs in patients with AD. METHODS There were 310 participants who underwent Florbetapir F18 (AV45) amyloid PET and susceptibility-weighted imaging. Participants with cognitive impairment and amyloid-β positive (ADCI) were included into three groups: ADCI without CMBs, with strictly lobar CMBs (SL-CMBs), and with mixed CMBs (M-CMBs). Tract-based spatial statistics were performed to detect the group differences in WM integrity. RESULTS There were 82 patients and 29 healthy controls finally included. A decreasing tendency in memory and executive performance can be found among HCs > no CMBs (n = 16) >SL-CMBs (n = 41) >M-CMBs (n = 25) group. Compared to no CMBs, M-CMBs group had significantly decreased fractional anisotropy in left anterior thalamic radiation (ATR), forceps major, forceps minor and inferior longitudinal fasciculus, bilateral inferior fronto-occipital fasciculus (IFOF), and superior longitudinal fasciculus. M-CMBs group also had lower fractional anisotropy in left ATR, IFOF, uncinate fasciculus, and forceps minor compared with SL-CMBs. Furthermore, analysis of Pearson correlation indicated damages in discrepant WMs were positively associated with impairment of memory, executive function, and attention. CONCLUSION This study showed lobar CMBs had intensively aggravated cognitive impairments associated with extensive WM damages in definite AD. These findings highlight that lobar CMBs play an important role in AD progression and need to be taken into consideration for the early detection of AD.
Collapse
Affiliation(s)
- Yanan Qiao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yu Sun
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Wenjie Hou
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Junying Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
14
|
Paakki J, Rahko JS, Kotila A, Mattila M, Miettunen H, Hurtig TM, Jussila KK, Kuusikko‐Gauffin S, Moilanen IK, Tervonen O, Kiviniemi VJ. Co-activation pattern alterations in autism spectrum disorder-A volume-wise hierarchical clustering fMRI study. Brain Behav 2021; 11:e02174. [PMID: 33998178 PMCID: PMC8213933 DOI: 10.1002/brb3.2174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 04/05/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION There has been a growing effort to characterize the time-varying functional connectivity of resting state (RS) fMRI brain networks (RSNs). Although voxel-wise connectivity studies have examined different sliding window lengths, nonsequential volume-wise approaches have been less common. METHODS Inspired by earlier co-activation pattern (CAP) studies, we applied hierarchical clustering (HC) to classify the image volumes of the RS-fMRI data on 28 adolescents with autism spectrum disorder (ASD) and their 27 typically developing (TD) controls. We compared the distribution of the ASD and TD groups' volumes in CAPs as well as their voxel-wise means. For simplification purposes, we conducted a group independent component analysis to extract 14 major RSNs. The RSNs' average z-scores enabled us to meaningfully regroup the RSNs and estimate the percentage of voxels within each RSN for which there was a significant group difference. These results were jointly interpreted to find global group-specific patterns. RESULTS We found similar brain state proportions in 58 CAPs (clustering interval from 2 to 30). However, in many CAPs, the voxel-wise means differed significantly within a matrix of 14 RSNs. The rest-activated default mode-positive and default mode-negative brain state properties vary considerably in both groups over time. This division was seen clearly when the volumes were partitioned into two CAPs and then further examined along the HC dendrogram of the diversifying brain CAPs. The ASD group network activations followed a more heterogeneous distribution and some networks maintained higher baselines; throughout the brain deactivation state, the ASD participants had reduced deactivation in 12/14 networks. During default mode-negative CAPs, the ASD group showed simultaneous visual network and either dorsal attention or default mode network overactivation. CONCLUSION Nonsequential volume gathering into CAPs and the comparison of voxel-wise signal changes provide a complementary perspective to connectivity and an alternative to sliding window analysis.
Collapse
Affiliation(s)
- Jyri‐Johan Paakki
- Faculty of Medicine, Health and Biosciences Doctoral ProgrammeUniversity of Oulu Graduate SchoolUniversity of OuluOuluFinland
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| | - Jukka S. Rahko
- Faculty of Medicine, Health and Biosciences Doctoral ProgrammeUniversity of Oulu Graduate SchoolUniversity of OuluOuluFinland
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Aija Kotila
- Faculty of HumanitiesResearch Unit of LogopedicsUniversity of OuluOuluFinland
| | - Marja‐Leena Mattila
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Helena Miettunen
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Tuula M. Hurtig
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
- Research Unit of Clinical Neuroscience, PsychiatryUniversity of OuluOuluFinland
| | - Katja K. Jussila
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Sanna Kuusikko‐Gauffin
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Irma K. Moilanen
- PEDEGO Research UnitFaculty of MedicineChild PsychiatryUniversity of OuluOuluFinland
- Institute of Clinical MedicineClinic of Child PsychiatryUniversity and University Hospital of OuluOuluFinland
| | - Osmo Tervonen
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| | - Vesa J. Kiviniemi
- The Faculty of MedicineResearch Unit of Medical Imaging, Physics and TechnologyOulu Functional NeuroImaging GroupUniversity of OuluOuluFinland
- Department of Diagnostic RadiologyMedical Research CenterOulu University HospitalOuluFinland
| |
Collapse
|
15
|
Liang X, Zhao C, Jin X, Jiang Y, Yang L, Chen Y, Gong G. Sex-related human brain asymmetry in hemispheric functional gradients. Neuroimage 2021; 229:117761. [PMID: 33454413 DOI: 10.1016/j.neuroimage.2021.117761] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/16/2020] [Accepted: 01/07/2021] [Indexed: 01/25/2023] Open
Abstract
The left and right hemispheres of the human brain are two connected but relatively independent functional modules; they show multidimensional asymmetries ranging from particular local brain unit properties to entire hemispheric connectome topology. To date, however, it remains largely unknown whether and how hemispheric functional hierarchical structures differ between hemispheres. In the present study, we adopted a newly developed resting-state (rs) functional connectivity (FC)-based gradient approach to evaluate hemispheric functional hierarchical structures and their asymmetries in right-handed healthy young adults. Our results showed an overall mirrored principal functional gradient between hemispheres, with the sensory cortex and the default-mode network (DMN) anchored at the two opposite ends of the gradient. Interestingly, the left hemisphere showed a significantly larger full range of the principal gradient in both males and females, with males exhibiting greater leftward asymmetry. Similarly, the principal gradient component scores of two regions around the middle temporal gyrus and posterior orbitofrontal cortex exhibited similar hemisphere × sex interaction effects: a greater degree of leftward asymmetry in males than in females. Moreover, we observed significant main hemisphere and sex effects in distributed regions across the entire hemisphere. All these results are reproducible and robust between test-retest rs-fMRI sessions. Our findings provide evidence of functional gradients that enhance the present understanding of human brain asymmetries in functional organization and highlight the impact of sex on hemispheric functional gradients and their asymmetries.
Collapse
Affiliation(s)
- Xinyu Liang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; School of Systems Science, Beijing Normal University, Beijing, China
| | - Xinhu Jin
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yaya Jiang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Yijun Chen
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
16
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/22/2021] [Indexed: 11/20/2022] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if the technical aspects of our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
17
|
Hodge SM, Haselgrove C, Honor L, Kennedy DN, Frazier JA. An assessment of the autism neuroimaging literature for the prospects of re-executability. F1000Res 2020; 9:1031. [PMID: 33796274 PMCID: PMC7968525 DOI: 10.12688/f1000research.25306.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2020] [Indexed: 05/04/2024] Open
Abstract
Background: The degree of reproducibility of the neuroimaging literature in psychiatric application areas has been called into question and the issues that relate to this reproducibility are extremely complex. Some of these complexities have to do with the underlying biology of the disorders that we study and others arise due to the technology we apply to the analysis of the data we collect. Ultimately, the observations we make get communicated to the rest of the community through publications in the scientific literature. Methods: We sought to perform a 're-executability survey' to evaluate the recent neuroimaging literature with an eye toward seeing if our publication practices are helping or hindering the overall quest for a more reproducible understanding of brain development and aging. The topic areas examined include availability of the data, the precision of the imaging method description and the reporting of the statistical analytic approach, and the availability of the complete results. We applied the survey to 50 publications in the autism neuroimaging literature that were published between September 16, 2017 to October 1, 2018. Results: The results of the survey indicate that for the literature examined, data that is not already part of a public repository is rarely available, software tools are usually named but versions and operating system are not, it is expected that reasonably skilled analysts could approximately perform the analyses described, and the complete results of the studies are rarely available. Conclusions: We have identified that there is ample room for improvement in research publication practices. We hope exposing these issues in the retrospective literature can provide guidance and motivation for improving this aspect of our reporting practices in the future.
Collapse
Affiliation(s)
- Steven M. Hodge
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Christian Haselgrove
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Leah Honor
- Lamar Soutter Library, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - David N. Kennedy
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| | - Jean A. Frazier
- Eunice Kennedy Shriver Center, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts, 01655, USA
| |
Collapse
|
18
|
Wylie KP, Tregellas JR, Bear JJ, Legget KT. Autism Spectrum Disorder Symptoms are Associated with Connectivity Between Large-Scale Neural Networks and Brain Regions Involved in Social Processing. J Autism Dev Disord 2020; 50:2765-2778. [PMID: 32006272 PMCID: PMC7377948 DOI: 10.1007/s10803-020-04383-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The neurobiology of autism spectrum disorder remains poorly understood. The present study addresses this knowledge gap by examining the relationship between functional brain connectivity and Autism Diagnostic Observation Schedule (ADOS) scores using publicly available data from the Autism Brain Imaging Data Exchange (ABIDE) database (N = 107). This relationship was tested across all brain voxels, without a priori assumptions, using a novel statistical approach. ADOS scores were primarily associated with decreased connectivity to right temporoparietal junction, right anterior insula, and left fusiform gyrus (p < 0.05, corrected). Seven large-scale brain networks influenced these associations. Findings largely encompassed brain regions involved in processing socially relevant information, highlighting the importance of these processes in autism spectrum disorder.
Collapse
Affiliation(s)
- Korey P Wylie
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Fitzsimons Building, Mail Stop F546, 13001 East 17th Place, Aurora, CO, 80045, USA
| | - Jason R Tregellas
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Fitzsimons Building, Mail Stop F546, 13001 East 17th Place, Aurora, CO, 80045, USA
- Research Service, Rocky Mountain Regional VA Medical Center, Eastern Colorado Health System, 1700 N. Wheeling St., Aurora, CO, 80045, USA
| | - Joshua J Bear
- Department of Pediatrics, Section of Neurology, Children's Hospital Colorado, 13123 East 16th Avenue, Aurora, CO, 80045, USA
- Department of Pediatrics, Section of Neurology, University of Colorado School of Medicine, Anschutz Medical Campus, 13123 East 16th Avenue, Aurora, CO, 80045, USA
| | - Kristina T Legget
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Fitzsimons Building, Mail Stop F546, 13001 East 17th Place, Aurora, CO, 80045, USA.
| |
Collapse
|
19
|
Fu L, Wang Y, Fang H, Xiao X, Xiao T, Li Y, Li C, Wu Q, Chu K, Xiao C, Ke X. Longitudinal Study of Brain Asymmetries in Autism and Developmental Delays Aged 2–5 Years. Neuroscience 2020; 432:137-149. [DOI: 10.1016/j.neuroscience.2020.02.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 02/16/2020] [Accepted: 02/18/2020] [Indexed: 12/24/2022]
|
20
|
Fourie E, Palser ER, Pokorny JJ, Neff M, Rivera SM. Neural Processing and Production of Gesture in Children and Adolescents With Autism Spectrum Disorder. Front Psychol 2020; 10:3045. [PMID: 32038408 PMCID: PMC6987472 DOI: 10.3389/fpsyg.2019.03045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 12/23/2019] [Indexed: 02/02/2023] Open
Abstract
Individuals with autism spectrum disorder (ASD) demonstrate impairments in non-verbal communication, including gesturing and imitation deficits. Reduced sensitivity to biological motion (BM) in ASD may impair processing of dynamic social cues like gestures, which in turn may impede encoding and subsequent performance of these actions. Using both an fMRI task involving observation of action gestures and a charade style paradigm assessing gesture performance, this study examined the brain-behavior relationships between neural activity during gesture processing, gesturing abilities and social symptomology in a group of children and adolescents with and without ASD. Compared to typically developing (TD) controls, participants with ASD showed atypical sensitivity to movement in right posterior superior temporal sulcus (pSTS), a region implicated in action processing, and had poorer overall gesture performance with specific deficits in hand posture. The TD group showed associations between neural activity, gesture performance and social skills, that were weak or non-significant in the ASD group. These findings suggest that those with ASD demonstrate abnormalities in both processing and production of gestures and may reflect dysfunction in the mechanism underlying perception-action coupling resulting in atypical development of social and communicative skills.
Collapse
Affiliation(s)
- Emily Fourie
- Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Eleanor R Palser
- Department of Neurology, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer J Pokorny
- Center for Mind and Brain, University of California, Davis, Davis, CA, United States
| | - Michael Neff
- Department of Computer Science, University of California, Davis, Davis, CA, United States.,Department of Cinema and Digital Media, University of California, Davis, Davis, CA, United States
| | - Susan M Rivera
- Department of Psychology, University of California, Davis, Davis, CA, United States.,Center for Mind and Brain, University of California, Davis, Davis, CA, United States.,MIND Institute, University of California, Davis, Sacramento, CA, United States
| |
Collapse
|
21
|
Altered structural brain asymmetry in autism spectrum disorder in a study of 54 datasets. Nat Commun 2019; 10:4958. [PMID: 31673008 PMCID: PMC6823355 DOI: 10.1038/s41467-019-13005-8] [Citation(s) in RCA: 149] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 10/01/2019] [Indexed: 01/02/2023] Open
Abstract
Altered structural brain asymmetry in autism spectrum disorder (ASD) has been reported. However, findings have been inconsistent, likely due to limited sample sizes. Here we investigated 1,774 individuals with ASD and 1,809 controls, from 54 independent data sets of the ENIGMA consortium. ASD was significantly associated with alterations of cortical thickness asymmetry in mostly medial frontal, orbitofrontal, cingulate and inferior temporal areas, and also with asymmetry of orbitofrontal surface area. These differences generally involved reduced asymmetry in individuals with ASD compared to controls. Furthermore, putamen volume asymmetry was significantly increased in ASD. The largest case-control effect size was Cohen’s d = −0.13, for asymmetry of superior frontal cortical thickness. Most effects did not depend on age, sex, IQ, severity or medication use. Altered lateralized neurodevelopment may therefore be a feature of ASD, affecting widespread brain regions with diverse functions. Large-scale analysis was necessary to quantify subtle alterations of brain structural asymmetry in ASD. Changes in brain structure asymmetry have been reported in autism spectrum disorder. Here the authors investigate this issue using a large-scale sample consisting of 54 data sets.
Collapse
|
22
|
Quantifying individual differences in brain morphometry underlying symptom severity in Autism Spectrum Disorders. Sci Rep 2019; 9:9898. [PMID: 31289283 PMCID: PMC6617442 DOI: 10.1038/s41598-019-45774-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 06/14/2019] [Indexed: 01/12/2023] Open
Abstract
The neurobiology of heterogeneous neurodevelopmental disorders such as autism spectrum disorders (ASD) are still unclear. Despite extensive efforts, most findings are difficult to reproduce due to high levels of individual variance in phenotypic expression. To quantify individual differences in brain morphometry in ASD, we implemented a novel subject-level, distance-based method on subject-specific attributes. In a large multi-cohort sample, each subject with ASD (n = 100; n = 84 males; mean age: 11.43 years; mean IQ: 110.58) was strictly matched to a control participant (n = 100; n = 84 males; mean age: 11.43 years; mean IQ: 110.70). Intrapair Euclidean distance of MRI brain morphometry and symptom severity measures (Social Responsiveness Scale) were entered into a regularised machine learning pipeline for feature selection, with rigorous out-of-sample validation and permutation testing. Subject-specific structural morphometry features significantly predicted individual variation in ASD symptom severity (19 cortical thickness features, p = 0.01, n = 5000 permutations; 10 surface area features, p = 0.006, n = 5000 permutations). Findings remained robust across subjects and were replicated in validation samples. Identified cortical regions implicate key hubs of the salience and default mode networks as neuroanatomical features of social impairment in ASD. Present results highlight the importance of subject-level markers in ASD, and offer an important step forward in understanding the neurobiology of heterogeneous disorders.
Collapse
|
23
|
Zhao C, Yang L, Xie S, Zhang Z, Pan H, Gong G. Hemispheric Module-Specific Influence of the X Chromosome on White Matter Connectivity: Evidence from Girls with Turner Syndrome. Cereb Cortex 2019; 29:4580-4594. [PMID: 30615091 DOI: 10.1093/cercor/bhy335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/11/2018] [Accepted: 12/05/2018] [Indexed: 11/14/2022] Open
Abstract
AbstractTurner syndrome (TS) is caused by the congenital absence of all or part of one of the X chromosomes in females, offering a valuable human “knockout model” to study the functioning patterns of the X chromosome in the human brain. Little is known about whether and how the loss of the X chromosome influences the brain structural wiring patterns in human. We acquired a multimodal MRI dataset and cognitive assessments from 22 girls with TS and 21 age-matched control girls to address these questions. Hemispheric white matter (WM) networks and modules were derived using refined diffusion MRI tractography. Statistical comparisons revealed a reduced topological efficiency of both hemispheric networks and bilateral parietal modules in TS girls. Specifically, the efficiency of right parietal module significantly mediated the effect of the X chromosome on working memory performance, indicating that X chromosome loss impairs working memory performance by disrupting this module. Additionally, TS girls showed structural and functional connectivity decoupling across specific within- and between-modular connections, predominantly in the right hemisphere. These findings provide novel insights into the functional pathways in the brain that are regulated by the X chromosome and highlight a module-specific genetic contribution to WM connectivity in the human brain.
Collapse
Affiliation(s)
- Chenxi Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Liyuan Yang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Sheng Xie
- Department of Radiology, China–Japan Friendship Hospital, Beijing, China
| | - Zhixin Zhang
- Department of Pediatrics, China–Japan Friendship Hospital, Beijing, China
| | - Hui Pan
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China
| |
Collapse
|
24
|
Farooqi N, Scotti M, Lew J, Botteron KN, Karama S, McCracken JT, Nguyen TV. Role of DHEA and cortisol in prefrontal-amygdalar development and working memory. Psychoneuroendocrinology 2018; 98:86-94. [PMID: 30121549 PMCID: PMC6204313 DOI: 10.1016/j.psyneuen.2018.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 11/29/2022]
Abstract
There is accumulating evidence that both dehydroepiandrosterone (DHEA) and cortisol play an important role in regulating physical maturation and brain development. High DHEA levels tend to be associated with neuroprotective and indirect anabolic effects, while high cortisol levels tend to be associated with catabolic and neurotoxic properties. Previous literature has linked the ratio between DHEA and cortisol levels (DC ratio) to disorders of attention, emotional regulation and conduct, but little is known as to the relationship between this ratio and brain development. Due to the extensive links between the amygdala and the cortex as well as the known amygdalar involvement in emotional regulation, we examined associations between DC ratio, structural covariance of the amygdala with whole-brain cortical thickness, and validated report-based measures of attention, working memory, internalizing and externalizing symptoms, in a longitudinal sample of typically developing children and adolescents 6-22 years of age. We found that DC ratio predicted covariance between amygdalar volume and the medial anterior cingulate cortex, particularly in the right hemisphere. DC ratio had a significant indirect effect on working memory through its impact on prefrontal-amygdalar covariance, with higher DC ratios associated with a prefrontal-amygdalar covariance pattern predictive of higher scores on a measure of working memory. Taken together, these findings support the notion, as suggested by animal and in vitro studies, that there are opposing effects of DHEA and cortisol on brain development in humans, and that these effects may especially target prefrontal-amygdalar development and working memory, in a lateralized fashion.
Collapse
Affiliation(s)
- Nasr Farooqi
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Martina Scotti
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Jimin Lew
- Department of Psychology, McGill University, Montreal, QC, Canada, H4A 3J1
| | - Kelly N Botteron
- Washington University School of Medicine, St. Louis, MO, USA, 63110,Brain Development Cooperative Group
| | - Sherif Karama
- Department of Psychiatry, McGill University, Montreal, QC, Canada, H4A 3J1,McConnell Brain imaging Centre, Montreal Neurological Institute, Montreal, QC Canada H3A 2B4,Douglas Mental Health University Institute, Montreal, QC, Canada, H4H 1R3
| | - James T McCracken
- Brain Development Cooperative Group,Department of Child and Adolescent Psychiatry, University of California in Los Angeles, Los Angeles, CA, USA, 90024
| | - Tuong-Vi Nguyen
- Department of Psychiatry, McGill University, Montreal, QC, H4A 3J1, Canada; Research Institute of McGill University Health Center, Montreal, QC, H4A 3J1, Canada; Department of Obstetrics-Gynecology, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|