1
|
Jiang J, Ferraro S, Zhao Y, Wu B, Lin J, Chen T, Gao J, Li L. Common and divergent neuroimaging features in major depression, posttraumatic stress disorder, and their comorbidity. PSYCHORADIOLOGY 2024; 4:kkae022. [PMID: 39554694 PMCID: PMC11566235 DOI: 10.1093/psyrad/kkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 10/20/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024]
Abstract
Posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) are common stress-related psychiatric disorders. Genetic and neurobiology research has supported the viewpoint that PTSD and MDD may possess common and disorder-specific underlying mechanisms. In this systematic review, we summarize evidence for the similarities and differences in brain functional and structural features of MDD, PTSD, and their comorbidity, as well as the effects of extensively used therapies in patients with comorbid PTSD and MDD (PTSD + MDD). These functional magnetic resonance imaging (MRI) studies highlight the (i) shared hypoactivation in the prefrontal cortex during cognitive and emotional processing in MDD and PTSD; (ii) higher activation in fear processing regions including amygdala, hippocampus, and insula in PTSD compared to MDD; and (iii) distinct functional deficits in brain regions involved in fear and reward processing in patients with PTSD + MDD relative to those with PTSD alone. These structural MRI studies suggested that PTSD and MDD share features of reduced volume in focal frontal areas. The treatment effects in patients with PTSD + MDD may correlate with the normalization trend of structural alterations. Neuroimaging predictors of repetitive transcranial magnetic stimulation response in patients with PTSD + MDD may differ from the mono-diagnostic groups. In summary, neuroimaging studies to date have provided limited information about the shared and disorder-specific features in MDD and PTSD. Further research is essential to pave the way for developing improved diagnostic markers and eventually targeted treatment approaches for the shared and distinct brain alterations presented in patients with MDD and PTSD.
Collapse
Affiliation(s)
- Jing Jiang
- Department of Radiology, The Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610036, China
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Stefania Ferraro
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico ‘Carlo Besta’, Via Celoria 11, Milan, 20133, Italy
- Clinical Hospital of the Chengdu Brain Science Institute, School of Life Science and Technology, MOE Key Laboratory for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Youjin Zhao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Baolin Wu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinping Lin
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Taolin Chen
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| | - Jin Gao
- Department of Radiology, The Affiliated Hospital of Southwest Jiao Tong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610036, China
| | - Lei Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
2
|
Li HP, Cheng HL, Ding K, Zhang Y, Gao F, Zhu G, Zhang Z. New recognition of the heart-brain axis and its implication in the pathogenesis and treatment of PTSD. Eur J Neurosci 2024; 60:4661-4683. [PMID: 39044332 DOI: 10.1111/ejn.16445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/04/2024] [Indexed: 07/25/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a complex psychological disorder provoked by distressing experiences, and it remains without highly effective intervention strategies. The exploration of PTSD's underlying mechanisms is crucial for advancing diagnostic and therapeutic approaches. Current studies primarily explore PTSD through the lens of the central nervous system, investigating concrete molecular alterations in the cerebral area and neural circuit irregularities. However, the body's response to external stressors, particularly the changes in cardiovascular function, is often pronounced, evidenced by notable cardiac dysfunction. Consequently, examining PTSD with a focus on cardiac function is vital for the early prevention and targeted management of the disorder. This review undertakes a comprehensive literature analysis to detail the alterations in brain and heart structures and functions associated with PTSD. It also synthesizes potential mechanisms of heart-brain axis interactions relevant to the development of PTSD. Ultimately, by considering cardiac function, this review proposes novel perspectives for PTSD's prophylaxis and therapy.
Collapse
Affiliation(s)
- Hai-Peng Li
- Anhui University of Chinese Medicine, Hefei, China
| | - Hong-Liang Cheng
- The Affiliated Hospital of Acupuncture and Moxibustion, Anhui University of Chinese Medicine, Hefei, Anhui Province, China
| | - Keke Ding
- Anhui University of Chinese Medicine, Hefei, China
| | - Yang Zhang
- Anhui University of Chinese Medicine, Hefei, China
| | - Fang Gao
- Anhui University of Chinese Medicine, Hefei, China
| | - Guoqi Zhu
- Anhui University of Chinese Medicine, Hefei, China
| | | |
Collapse
|
3
|
Chen HJ, Guo Y, Ke J, Qiu J, Zhang L, Xu Q, Zhong Y, Lu GM, Qin H, Qi R, Chen F. Characterizing Typhoon-related Posttraumatic Stress Disorder Based on Multimodal Fusion of Structural, Diffusion, and Functional Magnetic Resonance Imaging. Neuroscience 2024; 537:141-150. [PMID: 38042250 DOI: 10.1016/j.neuroscience.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/04/2023]
Abstract
Diagnosing posttraumatic stress disorder (PTSD) using only single-modality images is controversial. We aimed to use multimodal magnetic resonance imaging (MRI) combining structural, diffusion, and functional MRI to possibly provide a more comprehensive viewpoint on the decisive characteristics of PTSD patients. Typhoon-exposed individuals with (n = 26) and without PTSD (n = 32) and healthy volunteers (n = 30) were enrolled. Five MRI features from three modalities, including two resting-state functional MRI (rs-fMRI) features (amplitude of low-frequency fluctuation, ALFF; and regional homogeneity, ReHo), one structural MRI feature (gray matter density, GM), and two diffusion tensor imaging (DTI) features (fractional anisotropy, FA; and mean diffusivity, MD) were investigated simultaneously with a multimodal canonical correlation analysis + joint independent component analysis model to identify abnormalities in the PTSD brain. We identified statistical differences between PTSD patients and healthy controls in terms of 1 rs-fMRI (ALFF, ReHo) alterations in the superior frontal gyrus, precuneus, inferior parietal lobule (IPL), anterior cingulate cortex (ACC), and posterior cingulate cortex (PCC), 2 DTI (FA, MD) changes in the pons, genu, and splenium of the corpus callosum, and 3 Structural MRI abnormalities in the precuneus, IPL, ACC, and PCC. A novel ReHo component was found to distinguish PTSD and trauma-exposed controls, including the precuneus, IPL, middle frontal gyrus, middle occipital gyrus, and cerebellum. This study reveals that PTSD individuals exhibit intertwined functional and structural anomalies within the default mode network. Some alterations within this network may serve as a potential marker to distinguish between PTSD patients and trauma-exposed controls.
Collapse
Affiliation(s)
- Hui Juan Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Yihao Guo
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Jun Ke
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China; Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province 215006, PR China
| | - Jie Qiu
- Department of Ultrasound, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China
| | - Li Zhang
- Mental Health Institute, The Second Xiangya Hospital, National Technology Institute of Psychiatry, Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, China
| | - Qiang Xu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Yuan Zhong
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Guang Ming Lu
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Haodong Qin
- MR Collaboration, Siemens Healthineers Ltd., Guangzhou, PR China
| | - Rongfeng Qi
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210002, PR China
| | - Feng Chen
- Department of Radiology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No. 19, Xiuhua St, Xiuying Dis, Haikou, Hainan 570311, PR China.
| |
Collapse
|
4
|
Ben-Zion Z, Korem N, Fine NB, Katz S, Siddhanta M, Funaro MC, Duek O, Spiller TR, Danböck SK, Levy I, Harpaz-Rotem I. Structural Neuroimaging of Hippocampus and Amygdala Subregions in Posttraumatic Stress Disorder: A Scoping Review. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:120-134. [PMID: 38298789 PMCID: PMC10829655 DOI: 10.1016/j.bpsgos.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 02/02/2024] Open
Abstract
Numerous studies have explored the relationship between posttraumatic stress disorder (PTSD) and the hippocampus and the amygdala because both regions are implicated in the disorder's pathogenesis and pathophysiology. Nevertheless, those key limbic regions consist of functionally and cytoarchitecturally distinct substructures that may play different roles in the etiology of PTSD. Spurred by the availability of automatic segmentation software, structural neuroimaging studies of human hippocampal and amygdala subregions have proliferated in recent years. Here, we present a preregistered scoping review of the existing structural neuroimaging studies of the hippocampus and amygdala subregions in adults diagnosed with PTSD. A total of 3513 studies assessing subregion volumes were identified, 1689 of which were screened, and 21 studies were eligible for this review (total N = 2876 individuals). Most studies examined hippocampal subregions and reported decreased CA1, CA3, dentate gyrus, and subiculum volumes in PTSD. Fewer studies investigated amygdala subregions and reported altered lateral, basal, and central nuclei volumes in PTSD. This review further highlights the conceptual and methodological limitations of the current literature and identifies future directions to increase understanding of the distinct roles of hippocampal and amygdalar subregions in posttraumatic psychopathology.
Collapse
Affiliation(s)
- Ziv Ben-Zion
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Nachshon Korem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
| | - Naomi B. Fine
- Sagol Brain Institute Tel-Aviv, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Social Sciences, School of Psychological Science, Tel Aviv University, Tel Aviv, Israel
| | - Sophia Katz
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Megha Siddhanta
- Yale School of Medicine, Yale University, New Haven, Connecticut
| | - Melissa C. Funaro
- Harvey Cushing/John Hay Whitney Medical Library, Yale University, New Haven, Connecticut
| | - Or Duek
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Epidemiology, Biostatistics and Community Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Tobias R. Spiller
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Department of Consultation-Liaison Psychiatry and Psychosomatic Medicine, University Hospital Zürich, University of Zürich, Zürich, Switzerland
| | - Sarah K. Danböck
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Division of Clinical Psychology and Psychopathology, Department of Psychology, Paris London University of Salzburg, Salzburg, Austria
| | - Ifat Levy
- Yale School of Medicine, Yale University, New Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Ilan Harpaz-Rotem
- Yale School of Medicine, Yale University, New Haven, Connecticut
- US Department of Veterans Affairs National Center for PTSD, Clinical Neuroscience Division, VA Connecticut Healthcare System, West Haven, Connecticut
- Wu Tsai Institute, Yale University, New Haven, Connecticut
- Department of Psychology, Yale University, New Haven, Connecticut
| |
Collapse
|
5
|
Iqbal J, Huang GD, Xue YX, Yang M, Jia XJ. The neural circuits and molecular mechanisms underlying fear dysregulation in posttraumatic stress disorder. Front Neurosci 2023; 17:1281401. [PMID: 38116070 PMCID: PMC10728304 DOI: 10.3389/fnins.2023.1281401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/13/2023] [Indexed: 12/21/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is a stress-associated complex and debilitating psychiatric disorder due to an imbalance of neurotransmitters in response to traumatic events or fear. PTSD is characterized by re-experiencing, avoidance behavior, hyperarousal, negative emotions, insomnia, personality changes, and memory problems following exposure to severe trauma. However, the biological mechanisms and symptomatology underlying this disorder are still largely unknown or poorly understood. Considerable evidence shows that PTSD results from a dysfunction in highly conserved brain systems involved in regulating stress, anxiety, fear, and reward circuitry. This review provides a contemporary update about PTSD, including new data from the clinical and preclinical literature on stress, PTSD, and fear memory consolidation and extinction processes. First, we present an overview of well-established laboratory models of PTSD and discuss their clinical translational value for finding various treatments for PTSD. We then highlight the research progress on the neural circuits of fear and extinction-related behavior, including the prefrontal cortex, hippocampus, and amygdala. We further describe different molecular mechanisms, including GABAergic, glutamatergic, cholinergic, and neurotropic signaling, responsible for the structural and functional changes during fear acquisition and fear extinction processes in PTSD.
Collapse
Affiliation(s)
- Javed Iqbal
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Geng-Di Huang
- Shenzhen Graduate School, Peking University Shenzhen, Guangdong, China
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mei Yang
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Jian Jia
- Department of Addiction Medicine, Shenzhen Engineering Research Center for Precision Psychiatric Technology, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital and Shenzhen Mental Health Center; Clinical College of Mental Health, Shenzhen University Health Science Center; Affiliated Mental Health Center, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
6
|
Bremner JD, Ortego RA, Campanella C, Nye JA, Davis LL, Fani N, Vaccarino V. Neural correlates of PTSD in women with childhood sexual abuse with and without PTSD and response to paroxetine treatment: A placebo-controlled, double-blind trial. JOURNAL OF AFFECTIVE DISORDERS REPORTS 2023; 14:100615. [PMID: 38088987 PMCID: PMC10715797 DOI: 10.1016/j.jadr.2023.100615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024] Open
Abstract
Objective Childhood sexual abuse is the leading cause of posttraumatic stress disorder (PTSD) in women, and is a prominent cause of morbidity and loss of function for which limited treatments are available. Understanding the neurobiology of treatment response is important for developing new treatments. The purpose of this study was to assess neural correlates of personalized traumatic memories in women with childhood sexual abuse with and without PTSD, and to assess response to treatment. Methods Women with childhood sexual abuse with (N = 28) and without (N = 17) PTSD underwent brain imaging with High-Resolution Positron Emission Tomography scanning with radiolabeled water for brain blood flow measurements during exposure to personalized traumatic scripts and memory encoding tasks. Women with PTSD were randomized to paroxetine or placebo followed by three months of double-blind treatment and repeat imaging with the same protocol. Results Women with PTSD showed decreases in areas involved in the Default Mode Network (DMN), a network of brain areas usually active when the brain is at rest, hippocampus and visual processing areas with exposure to traumatic scripts at baseline while women without PTSD showed increased activation in superior frontal gyrus and other areas (p < 0.005). Treatment of women with PTSD with paroxetine resulted in increased anterior cingulate activation and brain areas involved in the DMN and visual processing with scripts compared to placebo (p < 0.005). Conclusion PTSD related to childhood sexual abuse in women is associated with alterations in brain areas involved in memory and the stress response and treatment with paroxetine results in modulation of these areas.
Collapse
Affiliation(s)
- J. Douglas Bremner
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
- Atlanta VA Medical Center, Decatur, GA
| | - Rebeca Alvarado Ortego
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Carolina Campanella
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Jonathon A. Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA
| | - Lori L. Davis
- Department of Psychiatry, University of Alabama School of Medicine, Birmingham, AL
- Tuscaloosa VA Medical Center, Tuscaloosa AL
| | - Negar Fani
- Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta GA
- Department of Medicine (Cardiology), Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
7
|
Fu S, Liang S, Lin C, Wu Y, Xie S, Li M, Lei Q, Li J, Yu K, Yin Y, Hua K, Li W, Wu C, Ma X, Jiang G. Aberrant brain entropy in posttraumatic stress disorder comorbid with major depressive disorder during the coronavirus disease 2019 pandemic. Front Psychiatry 2023; 14:1143780. [PMID: 37333934 PMCID: PMC10272369 DOI: 10.3389/fpsyt.2023.1143780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023] Open
Abstract
Aim Previously, neuroimaging studies on comorbid Posttraumatic-Major depression disorder (PTSD-MDD) comorbidity found abnormalities in multiple brain regions among patients. Recent neuroimaging studies have revealed dynamic nature on human brain activity during resting state, and entropy as an indicator of dynamic regularity may provide a new perspective for studying abnormalities of brain function among PTSD-MDD patients. During the COVID-19 pandemic, there has been a significant increase in the number of patients with PTSD-MDD. We have decided to conduct research on resting-state brain functional activity of patients who developed PTSD-MDD during this period using entropy. Methods Thirty three patients with PTSD-MDD and 36 matched TCs were recruited. PTSD and depression symptoms were assessed using multiple clinical scales. All subjects underwent functional magnetic resonance imaging (fMRI) scans. And the brain entropy (BEN) maps were calculated using the BEN mapping toolbox. A two-sample t-test was used to compare the differences in the brain entropy between the PTSD-MDD comorbidity group and TC group. Furthermore, correlation analysis was conducted between the BEN changes in patients with PTSD-MDD and clinical scales. Results Compared to the TCs, PTSD-MDD patients had a reduced BEN in the right middle frontal orbital gyrus (R_MFOG), left putamen, and right inferior frontal gyrus, opercular part (R_IFOG). Furthermore, a higher BEN in the R_MFOG was related to higher CAPS and HAMD-24 scores in the patients with PTSD-MDD. Conclusion The results showed that the R_MFOG is a potential marker for showing the symptom severity of PTSD-MDD comorbidity. Consequently, PTSD-MDD may have reduced BEN in frontal and basal ganglia regions which are related to emotional dysregulation and cognitive deficits.
Collapse
Affiliation(s)
- Shishun Fu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Sipei Liang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Chulan Lin
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yunfan Wu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Shuangcong Xie
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Meng Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Qiang Lei
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Jianneng Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kanghui Yu
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yi Yin
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Kelei Hua
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Wuming Li
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Caojun Wu
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Xiaofen Ma
- The Department of Nuclear Medicine, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Guihua Jiang
- The Department of Medical Imaging Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
8
|
Wen X, Han B, Li H, Dou F, Wei G, Hou G, Wu X. Unbalanced amygdala communication in major depressive disorder. J Affect Disord 2023; 329:192-206. [PMID: 36841299 DOI: 10.1016/j.jad.2023.02.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 02/06/2023] [Accepted: 02/19/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Previous studies suggested an association between functional alteration of the amygdala and typical major depressive disorder (MDD) symptoms. Examining whether and how the interaction between the amygdala and regions/functional networks is altered in patients with MDD is important for understanding its neural basis. METHODS Resting-state functional magnetic resonance imaging data were recorded from 67 patients with MDD and 74 age- and sex-matched healthy controls (HCs). A framework for large-scale network analysis based on seed mappings of amygdala sub-regions, using a multi-connectivity-indicator strategy (cross-correlation, total interdependencies (TI), Granger causality (GC), and machine learning), was employed. Multiple indicators were compared between the two groups. The altered indicators were ranked in a supporting-vector machine-based procedure and associated with the Hamilton Rating Scale for Depression scores. RESULTS The amygdala connectivity with the default mode network and ventral attention network regions was enhanced and that with the somatomotor network, dorsal frontoparietal network, and putamen regions in patients with MDD was reduced. The machine learning analysis highlighted altered indicators that were most conducive to the classification between the two groups. LIMITATIONS Most patients with MDD received different pharmacological treatments. It is difficult to illustrate the medication state's effect on the alteration model because of its complex situation. CONCLUSION The results indicate an unbalanced interaction model between the amygdala and functional networks and regions essential for various emotional and cognitive functions. The model can help explain potential aberrancy in the neural mechanisms that underlie the functional impairments observed across various domains in patients with MDD.
Collapse
Affiliation(s)
- Xiaotong Wen
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Bukui Han
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Huanhuan Li
- Department of Psychology, Renmin University of China, Beijing 100872, China; Laboratory of the Department of Psychology, Renmin University of China, Beijing 100872, China; Interdisciplinary Platform of Philosophy and Cognitive Science, Renmin University of China, 100872, China.
| | - Fengyu Dou
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Guodong Wei
- Department of Psychology, Renmin University of China, Beijing 100872, China
| | - Gangqiang Hou
- Shenzhen Mental Health Center, Shenzhen Kangning Hospital, Shenzhen 518020, China
| | - Xia Wu
- School of Artificial Intelligence, Beijing Normal University, Beijing 100093, China
| |
Collapse
|
9
|
Yuan M, Liu B, Yang B, Dang W, Xie H, Lui S, Qiu C, Zhu H, Zhang W. Dysfunction of default mode network characterizes generalized anxiety disorder relative to social anxiety disorder and post-traumatic stress disorder. J Affect Disord 2023; 334:35-42. [PMID: 37127115 DOI: 10.1016/j.jad.2023.04.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/04/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND The perseverative cognition of generalized anxiety disorder (GAD) is distinctive compared to other anxiety disorders. However, the disease-specific and shared neuropathophysiological mechanisms of GAD remain unclear. METHODS We recruited medication-free patients of GAD (N = 33), social anxiety disorder (SAD; N = 36), post-traumatic stress disorder (PTSD; N = 59), and healthy controls (HC; N = 50). All subjects underwent clinical assessments and resting-state functional magnetic resonance imaging. We compared both the amplitude low-frequency fluctuation (ALFF) and seed-based functional connectivity across the whole brain, using the significantly different regions from the ALFF analyses as seed regions, followed by post-hoc tests. RESULTS We found that ALFF of the left angular gyrus (AG), left inferior parietal lobule (IPL), left precentral gyrus, left middle temporal gyrus, and left cerebellum were higher in GAD compared with SAD, PTSD and HC. This trend was further corroborated by the higher functional connectivity between left AG and bilateral IPL, left inferior temporal gyrus, and left medial prefrontal cortex (mPFC) in GAD. In addition, GAD and SAD both showed abnormally higher left AG-right insula connectivity. Significant correlations were found between anxiety symptom severity and the left AG regional activity and left AG-left mPFC connectivity. LIMITATIONS We did not compare the differences in neuroimaging between GAD and other anxiety disorders, such as panic disorder. CONCLUSIONS The default mode network dysfunction may underlie the distinctive perseverative thoughts of GAD relative to other anxiety disorders, and left AG-right insula connectivity may reflect somatic anxiety of anxiety disorder spectrum.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Bo Liu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Biao Yang
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Wen Dang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Medical Big Data Center, Sichuan University, Chengdu, China
| | - Hua Xie
- Children's National Hospital and Center for Neuroscience, Washington, DC, USA
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; Mental Health Center, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, China.
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; Med-X Center for Informatics, Sichuan University, Chengdu 610041, Sichuan, China; Mental Health Center, West China Hospital of Sichuan University, No. 37 GuoXue Xiang, Chengdu 610041, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China; Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China; West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China; Medical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Li Q, Wang C, Hu J, Jiao W, Tang Z, Song X, Wu Y, Dai J, Gao P, Du L, Jin Y. Cannabidiol-loaded biomimetic macrophage membrane vesicles against post-traumatic stress disorder assisted by ultrasound. Int J Pharm 2023; 637:122872. [PMID: 36958611 DOI: 10.1016/j.ijpharm.2023.122872] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023]
Abstract
Post-traumatic stress disorder (PTSD), which normally follows psychological trauma, has been increasingly studied as a brain disease. However, the blood-brain barrier (BBB) prevents conventional drugs for PTSD from entering the brain. Our previous studies proved the effectiveness of cannabidiol (CBD) against PTSD, but low water solubility, low brain targeting efficiency and poor bioavailability restricted its applications. Here, a bionic delivery system, camouflage CBD-loaded macrophage-membrane nanovesicles (CMNVs), was constructed via co-extrusion of CBD with macrophage membranes, which had inflammatory and immune escape properties. In vitro anti-inflammatory, cellular uptake and pharmacokinetic experiments respectively verified the anti-inflammatory, inflammatory targeting and immune escape properties of CMNVs. Brain targeting and excellent anti-PTSD effects of CMNVs had been validated in vivo by imaging and pharmacodynamics studies. In our study, the potential of ultrasound to open BBBs and improve the brain-targeted delivery of CBD was evaluated. In conclusion, this cell membrane bionic delivery system assisted with ultrasound had good therapeutic effect against PTSD mice, which is expected to help convey CBD to inflammatory areas within the brain and alleviate the symptoms of PTSD.
Collapse
Affiliation(s)
- Qi Li
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Chunqing Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jinglu Hu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Pharmaceutical College, Henan University, Kaifeng 475004, China
| | - Wencheng Jiao
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Pharmaceutical College, Hebei University, Baoding 071000, China
| | - Ziyan Tang
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xingshuang Song
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Yanping Wu
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Jing Dai
- Information Department, General Hospital of Western Theater Command, Chengdu 610083, China
| | - Peng Gao
- R&D Institute, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Lina Du
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China; Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Pharmaceutical College, Henan University, Kaifeng 475004, China; Pharmaceutical College, Hebei University, Baoding 071000, China.
| | - Yiguang Jin
- Department of Pharmaceutical Sciences, Beijing Institute of Radiation Medicine, Beijing 100850, China; Pharmaceutical College, Henan University, Kaifeng 475004, China
| |
Collapse
|
11
|
Wang J, Sun L, Chen L, Sun J, Xie Y, Tian D, Gao L, Zhang D, Xia M, Wu T. Common and distinct roles of amygdala subregional functional connectivity in non-motor symptoms of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:28. [PMID: 36806219 PMCID: PMC9938150 DOI: 10.1038/s41531-023-00469-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 02/02/2023] [Indexed: 02/19/2023] Open
Abstract
Neuroimaging studies suggest a pivotal role of amygdala dysfunction in non-motor symptoms (NMS) of Parkinson's disease (PD). However, the relationship between amygdala subregions (the centromedial (CMA), basolateral (BLA) and superficial amygdala (SFA)) and NMS has not been delineated. We used resting-state functional MRI to examine the PD-related alterations in functional connectivity for amygdala subregions. The left three subregions and right BLA exhibited between-group differences, and were commonly hypo-connected with the frontal, temporal, insular cortex, and putamen in PD. Each subregion displayed distinct hypoconnectivity with the limbic systems. Partial least-squares analysis revealed distinct amygdala subregional involvement in diverse NMS. Hypo-connectivity of all four subregions was associated with emotion, pain, olfaction, and cognition. Hypo-connectivity of the left SFA was associated with sleepiness. Our findings highlight the hypofunction of the amygdala subregions in PD and their preliminary associations with NMS, providing new insights into the pathogenesis of NMS.
Collapse
Affiliation(s)
- Junling Wang
- grid.24696.3f0000 0004 0369 153XCenter for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Lianglong Sun
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091 China
| | - Lili Chen
- grid.24696.3f0000 0004 0369 153XCenter for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Junyan Sun
- grid.24696.3f0000 0004 0369 153XCenter for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Yapei Xie
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091 China
| | - Dezheng Tian
- grid.20513.350000 0004 1789 9964State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100091 China ,grid.20513.350000 0004 1789 9964IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091 China
| | - Linlin Gao
- grid.417031.00000 0004 1799 2675Department of General Medicine, Tianjin Union Medical Center, Tianjin, 300122 China
| | - Dongling Zhang
- grid.24696.3f0000 0004 0369 153XCenter for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070 China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100091, China. .,Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, 100091, China. .,IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100091, China.
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.
| |
Collapse
|
12
|
Woodward SH, Jamison AL, Khan C, Gala S, Bhowmick C, Villasenor D, Tamayo G, Puckett M, Parker KJ. Reading the mind in the eyes in PTSD: Limited Moderation by the presence of a service dog. J Psychiatr Res 2022; 155:320-330. [PMID: 36174367 DOI: 10.1016/j.jpsychires.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 08/02/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
Persons with posttraumatic stress disorder (PTSD) frequently experience relationship failures in family and occupational domains resulting in loss of social supports. Prior research has implicated impairments in social cognition. The Reading the Mind in the Eyes Test (RMET) measures a key component of social cognition, the ability to infer the internal states of other persons based on features of the eyes region of the face; however, studies administering this popular test to persons with PTSD have yielded mixed results. This study assessed RMET performance in 47 male U.S. military Veterans with chronic, severe PTSD. Employing a within-subjects design that avoided selection biases, it aimed specifically to determine whether components of RMET performance, including accuracy, response latency, and stimulus dwell time, were improved by the company of a service dog, an intervention that has improved social function in other populations. RMET accuracies and response latencies in this PTSD sample were in the normal range. The presence of a familiar service dog did not improve RMET accuracy, reduce response latencies, or increase dwell times. Dog presence increased the speed of visual scanning perhaps consistent with reduced social fear.
Collapse
Affiliation(s)
- Steven H Woodward
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA.
| | - Andrea L Jamison
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Christina Khan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5485, USA
| | - Sasha Gala
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Chloe Bhowmick
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Diana Villasenor
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Gisselle Tamayo
- National Center for PTSD, Dissemination and Training Division, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Melissa Puckett
- Trauma Recovery Programs and Recreation Service, VA Palo Alto Healthcare System, 3801 Miranda Ave, Palo Alto, CA, 94304, USA
| | - Karen J Parker
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305-5485, USA; Department of Comparative Medicine, Stanford University School of Medicine, 300 Pasteur Drive, Stanford, CA, 94305-5342, USA
| |
Collapse
|
13
|
Yuan M, Zhu H, Li Y, Ge F, Lui S, Gong Q, Qiu C, Song H, Zhang W. The DRD2 Taq1A polymorphism moderates the effect of PTSD symptom severity on the left hippocampal CA3 volume: a pilot study. Psychopharmacology (Berl) 2022; 239:3431-3438. [PMID: 34086098 PMCID: PMC9585014 DOI: 10.1007/s00213-021-05882-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/21/2021] [Indexed: 02/08/2023]
Abstract
RATIONALE AND OBJECTIVES The hippocampus, especially the CA1, CA3, and dentate gyrus (DG) subfields, is reported to be associated with post-traumatic stress disorder (PTSD) after trauma. However, neuroimaging studies of the associations between PTSD and hippocampal subfield volumes have failed to yield consistent findings. The aim of this study is to examine whether the dopamine D2 receptor (DRD2) Taq1A polymorphism, which is associated with both hippocampal function and PTSD, moderated the association between PTSD severity and hippocampal CA1, CA3 and DG volumes. METHODS T1-weighted images were acquired from 142 trauma survivors from the 2008 Wenchuan earthquake using a 3.0-T magnetic resonance imaging system. Hippocampal subfield segmentations were performed with FreeSurfer v6.0. We used the simple moderation model from the PROCESS v3.4 tool for SPSS 23.0 to examine the association between the rs1800497 polymorphism, PTSD severity, and hippocampal CA3 and DG volumes. RESULTS A significant genotype × PTSD symptom severity interaction was found for the left CA3 volume (ΔF = 5.01, p = 0.008, ΔR2 = 0.05). Post hoc, exploratory analyses deconstructing the interaction revealed that severe PTSD symptomatology were associated with reduced left CA3 volume among TC heterozygotes (t = - 2.86, p = 0.005). CONCLUSIONS This study suggests that DRD2 Taq1A polymorphism moderates the association between PTSD symptomatology and left CA3 volume, which promotes an etiological understanding of the hippocampal atrophy at the subfield level. This highlights the complex effect of environmental stress, and provides possible mechanism for the relationship between the dopaminergic system and hippocampal function in PTSD.
Collapse
Affiliation(s)
- Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Fenfen Ge
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Radiology Department of the Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
| | - Huan Song
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, the State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, 610041, Chengdu, China.
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, 610041, Chengdu, China.
- Medical Big Data Center, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Leite L, Esper NB, Junior JRML, Lara DR, Buchweitz A. An exploratory study of resting-state functional connectivity of amygdala subregions in posttraumatic stress disorder following trauma in adulthood. Sci Rep 2022; 12:9558. [PMID: 35688847 PMCID: PMC9187646 DOI: 10.1038/s41598-022-13395-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/03/2022] [Indexed: 11/09/2022] Open
Abstract
We carried out an exploratory study aimed at identifying differences in resting-state functional connectivity for the amygdala and its subregions, right and left basolateral, centromedial and superficial nuclei, in patients with Posttraumatic Stress Disorder (PTSD), relative to controls. The study included 10 participants with PTSD following trauma in adulthood (9 females), and 10 controls (9 females). The results suggest PTSD was associated with a decreased (negative) functional connectivity between the superficial amygdala and posterior brain regions relative to controls. The differences were observed between right superficial amygdala and right fusiform gyrus, and between left superficial amygdala and left lingual and left middle occipital gyri. The results suggest that among PTSD patients, the worse the PTSD symptoms, the lower the connectivity. The results corroborate the fMRI literature that shows PTSD is associated with weaker amygdala functional connectivity with areas of the brain involved in sensory and perceptual processes. The results also suggest that though the patients traumatic experience occured in adulthood, the presence of early traumatic experiences were associated with negative connectivity between the centromedial amygdala and sensory and perceptual regions. We argue that the understanding of the mechanisms of PTSD symptoms, its behaviors and the effects on quality of life of patients may benefit from the investigation of brain function that underpins sensory and perceptual symptoms associated with the disorder.
Collapse
Affiliation(s)
- Leticia Leite
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
| | - Nathalia Bianchini Esper
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil
| | - José Roberto M Lopes Junior
- School of Psychology and Health, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170, Brazil
| | | | - Augusto Buchweitz
- School of Medicine, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90619-900, Brazil.
- Brain Institute (BraIns), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, 90610-000, Brazil.
- Department of Psychology, University of Connecticut, Stamford, 06269-1020, United States of America.
| |
Collapse
|
15
|
Wang M, Zeng N, Zheng H, Du X, Potenza MN, Dong GH. Altered effective connectivity from the pregenual anterior cingulate cortex to the laterobasal amygdala mediates the relationship between internet gaming disorder and loneliness. Psychol Med 2022; 52:737-746. [PMID: 32684185 DOI: 10.1017/s0033291720002366] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Individual with internet gaming disorder (IGD) often experience a high level of loneliness, and neuroimaging studies have demonstrated that amygdala function is associated with both IGD and loneliness. However, the neurobiological basis underlying these relationships remains unclear. METHODS In the current study, Granger causal analysis was performed to investigate amygdalar subdivision-based resting-state effective connectivity differences between 111 IGD subjects and 120 matched participants with recreational game use (RGUs). We further correlated neuroimaging findings with clinical measures. Mediation analysis was conducted to explore whether amygdalar subdivision-based effective connectivity mediated the relationship between IGD severity and loneliness. RESULTS Compared with RGUs, IGD subjects showed inhibitory effective connections from the left pregenual anterior cingulate cortex (pACC) to the left laterobasal amygdala (LBA) and from the right medial prefrontal cortex (mPFC) to the left LBA, as well as an excitatory effective connection from the left middle prefrontal gyrus (MFG) to the right superficial amygdala. Further analyses demonstrated that the left pACC-left LBA effective connection was negatively correlated with both Internet Addiction Test and UCLA Loneliness scores, and it mediated the relationship between the two. CONCLUSION IGD subjects and RGUs showed different connectivity patterns involving amygdalar subdivisions. These findings support a neurobiological mechanism for the relationship between IGD and loneliness, and suggest targets for therapeutic approaches that could be used to treat IGD.
Collapse
Affiliation(s)
- Min Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
| | - Ningning Zeng
- Department of Psychology, Zhejiang Normal University, Jinhua, PR, China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR, China
| | - Xiaoxia Du
- Department of Physics, Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, PR, China
| | - Marc N Potenza
- Department of Psychiatry and Child Study Center, Yale University School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale University, New Haven, CT, USA
- Connecticut Council on Problem Gambling, Wethersfield, CT, USA
- Connecticut Mental Health Center, New Haven, CT, USA
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR, China
- Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR, China
| |
Collapse
|
16
|
Zhang S, Cui J, Zhang Z, Wang Y, Liu R, Chen X, Feng Y, Zhou J, Zhou Y, Wang G. Functional connectivity of amygdala subregions predicts vulnerability to depression following the COVID-19 pandemic. J Affect Disord 2022; 297:421-429. [PMID: 34606814 PMCID: PMC8558508 DOI: 10.1016/j.jad.2021.09.107] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/10/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND The amygdala is vital in processing psychological stress and predicting vulnerability or resilience to stress-related disorders. This study aimed to build the link between functional magnetic resonance imaging data obtained before the stress event and the subsequent stress-related depressive symptoms. METHODS Neuroimaging data obtained before the coronavirus disease 2019 pandemic from 39 patients with major depressive disorder (MDD) and 61 health controls (HCs) were used in this study. The participants were divided retrospectively into four groups in accordance with the severity of depressive symptoms during the pandemic: remitted patients, non-remitted patients, depressed HCs (HCd) and non-depressed HCs (HCnd). Seed-based resting-state functional connectivity (rsFC) analyses of the amygdala and its subregions, including the centromedial (CM), the basolateral and the superficial (SF), were performed. RESULTS Vulnerability to depression was suggested by decreased rsFC between the left CM amygdala and the bilateral lingual gyrus in the HCd group compared with the HCnd group, and decreased rsFC of the left CM or right SF amygdala with the precuneus and the postcentral gyrus in the HCd group compared with patients with MDD. No evidence supported the rsFC of the amygdala or its subregions as a biomarker for the resilience of patients with MDD to stress under antidepressant treatment. LIMITATIONS Smaller sample size and no longitudinal neuroimaging data. CONCLUSIONS Our findings suggested that the rsFC of amygdala subregions may represent a neurobiological marker of vulnerability to depression following stress.
Collapse
Affiliation(s)
- Shudong Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Jian Cui
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Zhifang Zhang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yun Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Rui Liu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Xiongying Chen
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jingjing Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China
| | - Yuan Zhou
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing 100088, China; Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
17
|
Resting-state neuroimaging in social anxiety disorder: a systematic review. Mol Psychiatry 2022; 27:164-179. [PMID: 34035474 DOI: 10.1038/s41380-021-01154-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/21/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
There has been a growing interest in resting-state brain alterations in people with social anxiety disorder. However, the evidence has been mixed and contested and further understanding of the neurobiology of this disorder may aid in informing methods to increase diagnostic accuracy and treatment targets. With this systematic review, we aimed to synthesize the findings of the neuroimaging literature on resting-state functional activity and connectivity in social anxiety disorder, and to summarize associations between brain and social anxiety symptoms to further characterize the neurobiology of the disorder. We systematically searched seven databases for empirical research studies. Thirty-five studies met the inclusion criteria, with a total of 1611 participants (795 people with social anxiety disorder and 816 controls). Studies involving resting-state seed-based functional connectivity analyses were the most common. Individuals with social anxiety disorder (vs. controls) displayed both higher and lower connectivity between frontal-amygdala and frontal-parietal regions. Frontal regions were the most consistently implicated across other analysis methods, and most associated with social anxiety symptoms. Small sample sizes and variation in the types of analyses used across studies may have contributed to the inconsistencies in the findings of this review. This review provides novel insights into established neurobiological models of social anxiety disorder and provides an update on what is known about the neurobiology of this disorder in the absence of any overt tasks (i.e., resting state). The knowledge gained from this body of research enabled us to also provide recommendations for a more standardized imaging pre-processing approach to examine resting-state brain activity and connectivity that could help advance knowledge in this field. We believe this is warranted to take the next step toward clinical translation in social anxiety disorder that may lead to better treatment outcomes by informing the identification of neurobiological targets for treatment.
Collapse
|
18
|
Wang Z, Zhu H, Yuan M, Li Y, Qiu C, Ren Z, Yuan C, Lui S, Gong Q, Zhang W. The resting-state functional connectivity of amygdala subregions associated with post-traumatic stress symptom and sleep quality in trauma survivors. Eur Arch Psychiatry Clin Neurosci 2021; 271:1053-1064. [PMID: 32052123 DOI: 10.1007/s00406-020-01104-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 02/03/2020] [Indexed: 02/05/2023]
Abstract
Neuroimaging findings suggest that the amygdala plays a primary role in both the psychopathology of posttraumatic stress disorder (PTSD) and poor sleep quality, which are common in trauma survivors. However, the neural mechanisms of these two problems in trauma survivors associated with amygdala remain unclear. In the current study, we aimed to explore the role of functional connectivity of amygdala subregions in both PTSD symptoms and poor sleep quality. A total of 94 trauma-exposed subjects were scanned on a 3T MR system using resting-state functional magnetic resonance imaging. Both Pittsburgh Sleep Quality Index and Clinician-Administered PTSD Scale scores were negatively correlated with the resting-state functional connectivity between the left basolateral amygdala-left medial prefrontal cortex and the right basolateral amygdala-right medial prefrontal cortex. Our findings suggest a shared amygdala subregional neural circuitry underlying the neuropathological mechanisms of PTSD symptoms and poor sleep quality in trauma survivors.
Collapse
Affiliation(s)
- Zuxing Wang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Sichuan Provincial Center for Mental Healthy, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
| | - Hongru Zhu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Huaxi Brain Research Center, West China Hospital of Sichuan University, Chengdu, China
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Minlan Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuchen Li
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Changjian Qiu
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhengjia Ren
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
- Department of Clinical Psychology, Southwest Hospital, Army Medical University (The Third Military Medical University), Chongqing, China
| | - Cui Yuan
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Mental Health Center and Psychiatric Laboratory, The State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.
| |
Collapse
|
19
|
Pang L, Zhu S, Ma J, Zhu L, Liu Y, Ou G, Li R, Wang Y, Liang Y, Jin X, Du L, Jin Y. Intranasal temperature-sensitive hydrogels of cannabidiol inclusion complex for the treatment of post-traumatic stress disorder. Acta Pharm Sin B 2021; 11:2031-2047. [PMID: 34386336 PMCID: PMC8343172 DOI: 10.1016/j.apsb.2021.01.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/15/2020] [Accepted: 01/06/2021] [Indexed: 11/26/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) is a psychiatric disease that seriously affects brain function. Currently, selective serotonin reuptake inhibitors (SSRIs) are used to treat PTSD clinically but have decreased efficiency and increased side effects. In this study, nasal cannabidiol inclusion complex temperature-sensitive hydrogels (CBD TSGs) were prepared and evaluated to treat PTSD. Mice model of PTSD was established with conditional fear box. CBD TSGs could significantly improve the spontaneous behavior, exploratory spirit and alleviate tension in open field box, relieve anxiety and tension in elevated plus maze, and reduce the freezing time. Hematoxylin and eosin and c-FOS immunohistochemistry slides showed that the main injured brain areas in PTSD were the prefrontal cortex, amygdala, and hippocampus CA1. CBD TSGs could reduce the level of tumor necrosis factor-α caused by PTSD. Western blot analysis showed that CBD TSGs increased the expression of the 5-HT1A receptor. Intranasal administration of CBD TSGs was more efficient and had more obvious brain targeting effects than oral administration, as evidenced by the pharmacokinetics and brain tissue distribution of CBD TSGs. Overall, nasal CBD TSGs are safe and effective and have controlled release. There are a novel promising option for the clinical treatment of PTSD.
Collapse
Key Words
- AUC, area under the curve
- BBB, blood‒brain barrier
- Blood‒brain barrier
- Brain targeting
- CBD TSGs, cannabidiol inclusion complex temperature-sensitive hydrogels
- CNS, central nervous system
- COVID-19, coronavirus disease 2019
- Cannabidiol
- DSC, differential scanning calorimetry
- HP-β-CD, hydroxypropyl-β-cyclodextrin
- Hydrogels
- Hydroxypropyl-β-cyclodextrin
- IR, infrared
- IS, internal standard
- Inclusion complex
- Intranasal administration
- MRM, multiple reaction monitoring
- PPV, percentage of persistent vibration
- PTSD, post-traumatic stress disorder
- PVD, persistent vibration duration
- Post-traumatic stress disorder
- SSRIs, selective serotonin reuptake inhibitors
- TNF-α, tumor necrosis factor-α
- WB, Western blot
Collapse
|
20
|
Carlson HN, Weiner JL. The neural, behavioral, and epidemiological underpinnings of comorbid alcohol use disorder and post-traumatic stress disorder. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 157:69-142. [PMID: 33648676 DOI: 10.1016/bs.irn.2020.09.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol use disorder (AUD) and (PTSD) frequently co-occur and individuals suffering from this dual diagnosis often exhibit increased symptom severity and poorer treatment outcomes than those with only one of these diseases. Although there have been significant advances in our understanding of the neurobiological mechanisms underlying each of these disorders, the neural underpinnings of the comorbid condition remain poorly understood. This chapter summarizes recent epidemiological findings on comorbid AUD and PTSD, with a focus on vulnerable populations, the temporal relationship between these disorders, and the clinical consequences associated with the dual diagnosis. We then review animal models of the comorbid condition and emerging human and non-human animal research that is beginning to identify maladaptive neural changes common to both disorders, primarily involving functional changes in brain reward and stress networks. We end by proposing a neural framework, based on the emerging field of affective valence encoding, that may better explain the epidemiological and neural findings on AUD and PTSD.
Collapse
Affiliation(s)
- Hannah N Carlson
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States
| | - Jeff L Weiner
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, United States.
| |
Collapse
|