1
|
Al Marri SH, Manawi Y, Simson S, Lawler J, Kochkodan V. Novel Ultrafiltration Polyethersulfone Membranes Blended with Carrageenan. Polymers (Basel) 2025; 17:176. [PMID: 39861249 PMCID: PMC11768257 DOI: 10.3390/polym17020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 12/29/2024] [Accepted: 01/06/2025] [Indexed: 01/27/2025] Open
Abstract
The development of ultrafiltration (UF) polymeric membranes with high flux and enhanced antifouling properties bridges a critical gap in the polymeric membrane fabrication research field. In the present work, the preparation of novel PES membranes incorporated with carrageenan (CAR), which is a natural polymer derived from edible red seaweed, is reported for the first time. The PES/CAR membranes were prepared by using the nonsolvent-induced phase separation (NIPS) method at 0.1-4.0 wt.% CAR loadings in the casting solutions. The use of dimethylsulfoxide (DMSO), which is a bio-based and low-toxic solvent, is reported. Scanning electron microscopy, atomic force microscopy, water contact angle, porosity, and zeta potential measurements were used to evaluate the surface morphology, structure, pore size, hydrophilicity, and surface charge of the prepared membranes. The filtration performance of PES/CAR membranes was tested with bovine serum albumin (BSA) solutions. It was shown that CAR incorporation in the casting solutions notably increased hydrophilicity, porosity, pore size, surface charge, and fouling resistance of the prepared membranes compared with plain PES membranes due to the hydrophilic nature and pore-forming properties of CAR. The PES/CAR membranes showed a significant reduction in irreversible and total fouling during filtration of BSA solutions by 38% and 32%, respectively, an enhancement in the flux recovery ratio by 20-40%, and an improvement in mechanical properties by 1.5-fold when compared with plain PES membranes. The findings of the present study indicate that CAR can be used as a promising additive for the development of PES UF membranes with enhanced properties and performance for water treatment applications.
Collapse
Affiliation(s)
| | - Yehia Manawi
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.H.A.M.); (S.S.)
| | | | | | - Viktor Kochkodan
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar; (S.H.A.M.); (S.S.)
| |
Collapse
|
2
|
Alsaka L, Ibrar I, Altaee A, Zhou J, Chowdhury MH, Al-Ejji M, Hawari AH. Performance and analysis of kappa-carrageenan hydrogel for PFOA-contaminated soil remediation wastewater treatment. CHEMOSPHERE 2024; 365:143371. [PMID: 39306105 DOI: 10.1016/j.chemosphere.2024.143371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 08/08/2024] [Accepted: 09/18/2024] [Indexed: 10/12/2024]
Abstract
Perfluorooctanoic acid is an emerging pollutant with exceptional resistance to degradation and detrimental environmental and health impacts. Conventional physical and chemical processes for Perfluorooctanoic acid are either expensive or inefficient. This study developed an environmentally sustainable and cost-effective gravity-driven kappa-carrageenan (kC)-based hydrogel for perfluorooctanoic acid (PFOA) removal from synthetic and actual wastewater. Two kC filters were prepared by mixing activated carbon (AC) or vanillin (V) with the kC hydrogel to optimize the hydrogel selectivity and water permeability. Experimental work revealed that the PFOA rejection and water permeability increased with the AC and V concentrations in the kC hydrogel. Experiments also evaluated the impact of feed pH, PFOA concentration, hydrogel composition, and hydrogel thickness on its performance. Due to pore size shrinkage, the AC-kC and V-kC hydrogels achieved the highest PFOA rejection at pH 4, whereas the water flux decreased. Increasing the PFOA concentration reduced water flux and increased PFOA rejection. For 2 cm hydrogel thickness, the water flux of 3%kC-0.3%AC and 3%kC-3%V hydrogels was 25.6 LMH and 21.5 LMH, and the corresponding PFOA rejection was 86.9% for 3%kC-0.3%AC and 85.7% for 3%kC-3%V. Finally, the kC-0.3%AC hydrogel removed 81.1% of PFOA from wastewater of 179 mg/L initial concentration compared to 79.3% for the kC-3%V hydrogel. After three filtration cycles, the water flux decline of 3%kC-0.3%AC was less than 10%. The gravity dead-end kC hydrogel provides sustainable PFOA wastewater treatment with biodegradable and natural materials.
Collapse
Affiliation(s)
- Lilyan Alsaka
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ibrar Ibrar
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Ali Altaee
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia.
| | - John Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Mahedy Hasan Chowdhury
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, 15 Broadway, NSW, 2007, Australia
| | - Maryam Al-Ejji
- Center of Advanced Materials, Qatar University, PO Box 2713, Doha, Qatar
| | - Alaa H Hawari
- Department of Civil and Environmental Engineering, College of Engineering, Qatar University, PO Box 2713, Doha, Qatar
| |
Collapse
|
3
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
4
|
Suresh R, Rajendran S, Gnanasekaran L, Show PL, Chen WH, Soto-Moscoso M. Modified poly(vinylidene fluoride) nanomembranes for dye removal from water - A review. CHEMOSPHERE 2023; 322:138152. [PMID: 36791812 DOI: 10.1016/j.chemosphere.2023.138152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/26/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Water contamination due to soluble synthetic dyes has serious concerns. Membrane-based wastewater treatments are emerging as a preferred choice for removing dyes from water. Poly(vinylidene fluoride) (PVDF)-based nanomembranes have gained much popularity due to their favorable features. This review explores the application of PVDF-based nanomembranes in synthetic dye removal through various treatments. Different fabrication methods to obtain high performance PVDF-based nanomembranes were discussed under surface coating and blending methods. Studies related to use of PVDF-based nanomembranes in adsorption, filtration, catalysis (oxidant activation, ozonation, Fenton process and photocatalysis) and membrane distillation have been elaborately discussed. Nanomaterials including metal compounds, metals, (synthetic/bio)polymers, metal organic frameworks, carbon materials and their composites were incorporated in PVDF membrane to enhance its performance. The advantages and limitations of incorporating nanomaterials in PVDF-based membranes have been highlighted. The influence of nanomaterials on the surface features, mechanical strength, hydrophilicity, crystallinity and catalytic ability of PVDF membrane was discussed. The conclusion of this literature review was given along with future research.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602105, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou, 325035, China; Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan
| | | |
Collapse
|
5
|
Pahnavar Z, Ghaemy M, Naji L, Hasantabar V. Self-extinguished and flexible cation exchange membranes based on modified K-Carrageenan/PVA double network hydrogels for electrochemical applications. Int J Biol Macromol 2023; 231:123253. [PMID: 36642355 DOI: 10.1016/j.ijbiomac.2023.123253] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
It is highly desired and yet challenging to develop eco-friendly cation exchange membranes with a combination of good mechanical, electrochemical, and biocompatible properties with a rational economic efficiency for given applications. In this study, new biocompatible double network (DN) hydrogels were prepared based on a blend of modified K-Carrageenan (KC) and polyvinyl alcohol (PVA). Acrylic acid (AA)-grafted KC (KC-g-(PAA)) and (AA-co-tertbutyl acrylate (TBA))-grafted KC (KC-g-P(AA-co-TBA)) were synthesized through an in situ free radical copolymerization. The grafted copolymers were blended with PVA and mixed with ZrOCl2/KCl and glutaraldehyde (Glu) as the physical and chemical cross-linkers, respectively to produce KC-g-P(AA)/PVA and KC-g-P(AA-co-TBA)/PVA DN hydrogels. The membranes were prepared by a solution casting method. Various techniques were carried out to compare the structural, thermal, mechanical, flammability, and electrochemical properties of the membranes with those of the cross-linked KC, PVA, and KC/PVA membranes. The KC-g-P(AA-co-TBA)/PVA DN membrane showed more desirable properties as the cation exchange membrane with water uptake of 70.7 %, ion exchange capacity of 0.47 meq H+ /g, the ionic conductivity of 1.99 × 10-2 S/cm2, and elongation at break of 71.8 %. The prepared biopolymer membrane is very cost-effective and self-extinguished with admissible conductivity for electrochemical applications.
Collapse
Affiliation(s)
- Zohreh Pahnavar
- Polymer Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, 4741695447, Iran
| | - Mousa Ghaemy
- Polymer Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, 4741695447, Iran.
| | - Leila Naji
- Department of Chemistry, Amirkabir University of Technology (Polytechnic), Tehran, 15875-4413, Iran
| | - Vahid Hasantabar
- Polymer Chemistry Research Laboratory, Faculty of Chemistry, University of Mazandaran, Babolsar, 4741695447, Iran
| |
Collapse
|
6
|
Rando G, Sfameni S, Plutino MR. Development of Functional Hybrid Polymers and Gel Materials for Sustainable Membrane-Based Water Treatment Technology: How to Combine Greener and Cleaner Approaches. Gels 2022; 9:gels9010009. [PMID: 36661777 PMCID: PMC9857570 DOI: 10.3390/gels9010009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Water quality and disposability are among the main challenges that governments and societies will outside during the next years due to their close relationship to population growth and urbanization and their direct influence on the environment and socio-economic development. Potable water suitable for human consumption is a key resource that, unfortunately, is strongly limited by anthropogenic pollution and climate change. In this regard, new groups of compounds, referred to as emerging contaminants, represent a risk to human health and living species; they have already been identified in water bodies as a result of increased industrialization. Pesticides, cosmetics, personal care products, pharmaceuticals, organic dyes, and other man-made chemicals indispensable for modern society are among the emerging pollutants of difficult remediation by traditional methods of wastewater treatment. However, the majority of the currently used waste management and remediation techniques require significant amounts of energy and chemicals, which can themselves be sources of secondary pollution. Therefore, this review reported newly advanced, efficient, and sustainable techniques and approaches for water purification. In particular, new advancements in sustainable membrane-based filtration technologies are discussed, together with their modification through a rational safe-by-design to modulate their hydrophilicity, porosity, surface characteristics, and adsorption performances. Thus, their preparation by the use of biopolymer-based gels is described, as well as their blending with functional cross-linkers or nanofillers or by advanced and innovative approaches, such as electrospinning.
Collapse
Affiliation(s)
- Giulia Rando
- Department of Chemical, Biological, Pharmaceutical and Analytical Sciences (ChiBioFarAm), University of Messina, 98166 Messina, Italy
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
| | - Silvia Sfameni
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Department of Engineering, University of Messina, Contrada di Dio, S. Agata, 98166 Messina, Italy
| | - Maria Rosaria Plutino
- Institute for the Study of Nanostructured Materials, ISMN—CNR, Palermo, c/o Department of ChiBioFarAm, University of Messina, 98166 Messina, Italy
- Correspondence: ; Tel.: +39-0906765713
| |
Collapse
|
7
|
Preparation and Characterization of Modified Polysulfone with Crosslinked Chitosan-Glutaraldehyde MWCNT Nanofiltration Membranes, and Evaluation of Their Capability for Salt Rejection. Polymers (Basel) 2022; 14:polym14245463. [PMID: 36559828 PMCID: PMC9785133 DOI: 10.3390/polym14245463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Nanofiltration membranes were successfully created using multi-walled carbon nanotubes (MWCNTs) and MWCNTs modified with amine (MWCNT-NH2) and carboxylic groups (MWCNT-COOH). Chitosan (CHIT) and chitosan−glutaraldehyde (CHIT-G) were utilized as dispersants. Sonication, SEM, and contact angle were used to characterize the as-prepared membranes. The results revealed that the type of multi-walled carbon nanotubes (MWCNT, MWCNT-COOH and MWCNT-NH2) used as the top layer had a significant impact on membrane characteristics. The lowest contact angle was 38.6 ± 8.5 for the chitosan-G/MWCNT-COOH membrane. The surface morphology of membranes changed when carbon with carboxylic or amine groups was introduced. In addition, water permeability was greater for CHIT-G/MWCNT-COOH and CHIT-G/MWCNT-NH2 membranes. The CHIT-G/MWCNT-COOH membrane had the highest water permeability (5.64 ± 0.27 L m−2 h−1 bar−1). The findings also revealed that for all membranes, the rejection of inorganic salts was in the order R(NaCl) > R(MgSO4).
Collapse
|
8
|
Biopolymer composites for removal of toxic organic compounds in pharmaceutical effluents – a review. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
9
|
Cheng C, Chen S, Su J, Zhu M, Zhou M, Chen T, Han Y. Recent advances in carrageenan-based films for food packaging applications. Front Nutr 2022; 9:1004588. [PMID: 36159449 PMCID: PMC9503319 DOI: 10.3389/fnut.2022.1004588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/16/2022] [Indexed: 11/27/2022] Open
Abstract
In order to solve the increasingly serious environmental problems caused by plastic-based packaging, carrageenan-based films are drawing much attentions in food packaging applications, due to low cost, biodegradability, compatibility, and film-forming property. The purpose of this article is to present a comprehensive review of recent developments in carrageenan-based films, including fabrication strategies, physical and chemical properties and novel food packaging applications. Carrageenan can be extracted from red algae mainly by hydrolysis, ultrasonic-assisted and microwave-assisted extraction, and the combination of multiple extraction methods will be future trends in carrageenan extraction methods. Carrageenan can form homogeneous film-forming solutions and fabricate films mainly by direct coating, solvent casting and electrospinning, and mechanism of film formation was discussed in detail. Due to the inherent limitations of the pure carrageenan film, physical and chemical properties of carrageenan films were enhanced by incorporation with other compounds. Therefore, carrageenan-based films can be widely used for extending the shelf life of food and monitoring the food freshness by inhibiting microbial growth, reducing moisture loss and the respiration, etc. This article will provide useful guidelines for further research on carrageenan-based films.
Collapse
Affiliation(s)
- Cheng Cheng
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Shuai Chen
- School of Public Health, Wuhan University, Wuhan, China
| | - Jiaqi Su
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Zhu
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Mingrui Zhou
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Tianming Chen
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| | - Yahong Han
- Key Laboratory of Aquaculture Facilities Engineering, Ministry of Agriculture and Rural Affairs, College of Engineering, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Yaashikaa PR, Senthil Kumar P, Karishma S. Review on biopolymers and composites - Evolving material as adsorbents in removal of environmental pollutants. ENVIRONMENTAL RESEARCH 2022; 212:113114. [PMID: 35331699 DOI: 10.1016/j.envres.2022.113114] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
The presence of pollutants and toxic contaminants in water sources makes it unfit to run through. Though various conventional techniques are on deck, development of new technologies are vital for wastewater treatment and recycling. Polymers have been intensively utilized recently in many industries owing to their unique characteristics. Biopolymers resembles natural alternative to synthetic polymers that can be prepared by linking the monomeric units covalently. Despite the obvious advantages of biopolymers, few reviews have been conducted. This review focuses on biopolymers and composites as suitable adsorbent material for removing pollutants present in environment. The classification of biopolymers and their composites based on the sources, methods of preparation and their potential applications are discussed in detail. Biopolymers have the potentiality of substituting conventional adsorbents due to its unique characteristics. Biopolymer based membranes and effective methods of utilization of biopolymers as suitable adsorbent materials are also briefly elaborated. The mechanism of biopolymers and their membrane-based adsorption has been briefly reviewed. In addition, the methods of regeneration and reuse of used biopolymer based adsorbents are highlighted. The comprehensive content on fate of biopolymer after adsorption is given in brief. Finally, this review concludes the future investigations in recent trends in application of biopolymer in various fields in view of eco-friendly and economic perspectives.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603110, India.
| | - S Karishma
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
11
|
Lakshmi DS, Saxena M, Radha K, Dass L. Effect of sulfated seaweed polysaccharide on flat sheet polymer (Polysulfone) membrane properties. CHEMICAL ENGINEERING JOURNAL ADVANCES 2022. [DOI: 10.1016/j.ceja.2022.100314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
12
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
13
|
Qi P, Jia H, Wang Q, Su G, Xu S, Zhang M, Qu Y, Pei F. Ionic liquid-modified polyimide membranes with in-situ-grown polydopamine for separation of oil–water emulsions. HIGH PERFORM POLYM 2022. [DOI: 10.1177/09540083221075949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Leakage of oily industrial waste is not only a serious environmental and ecological hazard but also poses a significant health risk to people. Membrane separation, which is cost-effective and efficient, is one of the best solutions for reducing pollution discharge through oil–water separation. In this study, polydopamine (PDA) was incorporated into electrostatically spun ionic liquid-capped polyimide (IL-PI) membranes through an in situ growth method; the membranes exhibited the strong adsorption properties of PDA. The polyimide fibers were hydrophilically modified with an IL, which contains several hydrophilic groups, and PDA. Adjusting the polymerization time resulted in the formation of a composite membrane, which could effectively separate oil–water emulsions. Scanning electron microscopy analysis showed that with an increase in the PDA coating time, the PDA content in and on the surface of the composite membrane fibers significantly increased. In addition, the surface contact angle of the membrane decreased from 72.87° to 12.06° with the addition of the PDA coating, while the wettability was significantly improved. The PDA-modified fibrous membranes showed good separation of the emulsified oil–water mixtures. The maximum membrane flux and separation efficiency achieved was 280 L·m−2·h−1 and >99%, respectively. After 10 repeated cycles, the separation efficiency was maintained at >92%. This approach can be used for the design of future wastewater treatment solutions.
Collapse
Affiliation(s)
- Peng Qi
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Hongge Jia
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Qingji Wang
- CNPC Research Institute Of Safety&Environment Technology, Beijing, China
| | - Guiming Su
- Institute of Advanced Technology, Heilongjiang Academy of Sciences, Harbin, China
| | - Shuangping Xu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Mingyu Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Yanqing Qu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| | - Fuying Pei
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Heilongjiang province Key Laboratory of Polymeric Composition, Qiqihar University, Qiqihar, China
| |
Collapse
|
14
|
Membrane patterning through horizontally aligned microchannels developed by sulfated chopped carbon fiber for facile permeability of blood plasma components in low-density lipoprotein apheresis. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Lincy V, Prasannan A, Hong PD. Rational design of multifunctional membrane material with underwater superoleophobicity for dye contaminated emulsion separation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
16
|
Hajiali S, Khajavi R, Kalaee MR, Montazer M. Dual‐functioning
core@shell nanofiber strip for enhancing drinking water quality: Polysulfone/graphene oxide adsorbent core layer and polyvinylpyrrolidone/mint sacrificial shell layer. J Appl Polym Sci 2021. [DOI: 10.1002/app.51291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Sepideh Hajiali
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
| | - Ramin Khajavi
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
| | - Mohammad Reza Kalaee
- Faculty of Engineering, Department of Polymer Engineering Islamic Azad University Tehran Iran
- Nanotechnology Research Centre Islamic Azad University Tehran Iran
| | - Majid Montazer
- Department of Textile Engineering Amirkabir University of Technology (Tehran Polytechnic) Tehran Iran
| |
Collapse
|
17
|
Mamba FB, Mbuli BS, Ramontja J. Recent Advances in Biopolymeric Membranes towards the Removal of Emerging Organic Pollutants from Water. MEMBRANES 2021; 11:798. [PMID: 34832027 PMCID: PMC8619572 DOI: 10.3390/membranes11110798] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
Herein, this paper details a comprehensive review on the biopolymeric membrane applications in micropollutants' removal from wastewater. As such, the implications of utilising non-biodegradable membrane materials are outlined. In comparison, considerations on the concept of utilising nanostructured biodegradable polymeric membranes are also outlined. Such biodegradable polymers under considerations include biopolymers-derived cellulose and carrageenan. The advantages of these biopolymer materials include renewability, biocompatibility, biodegradability, and cost-effectiveness when compared to non-biodegradable polymers. The modifications of the biopolymeric membranes were also deliberated in detail. This included the utilisation of cellulose as matrix support for nanomaterials. Furthermore, attention towards the recent advances on using nanofillers towards the stabilisation and enhancement of biopolymeric membrane performances towards organic contaminants removal. It was noted that most of the biopolymeric membrane applications focused on organic dyes (methyl blue, Congo red, azo dyes), crude oil, hexane, and pharmaceutical chemicals such as tetracycline. However, more studies should be dedicated towards emerging pollutants such as micropollutants. The biopolymeric membrane performances such as rejection capabilities, fouling resistance, and water permeability properties were also outlined.
Collapse
Affiliation(s)
- Feziwe B. Mamba
- Department of Chemical Sciences, Faculty of Science, University of Johannesburg, P.O. Box 17011, Doornfontein, Johannesburg 2028, South Africa;
| | - Bhekani S. Mbuli
- DST/Mintek Nanotechnology Innovation Centre, University of Johannesburg, Johannesburg 2028, South Africa
| | - James Ramontja
- Centre for Nanomaterials Science Research, University of Johannesburg, Johannesburg 2028, South Africa
| |
Collapse
|
18
|
Water-soluble electrospun strip based on the PVP/PVA/ mint extract modified with chitosan-glucosamine for the improvement of water quality. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
19
|
Dehghan R, Barzin J. High cut-off membrane: evaluation of pore collapse and the synergistic effect of low and high molecular weight polyvinylpyrrolidone. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02429-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
20
|
Low density lipoprotein (LDL) apheresis from blood plasma via anti-biofouling tuned membrane incorporated with graphene oxide-modified carrageenan. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118878] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
21
|
Chen Q, Yang B, Ding M, Pan Y, Qian J, Zheng Z, Wu B, Miao J, Xia R, Tu Y, Shi Y. Enhanced physical, mechanical and protein adsorption properties of PVDF composite films prepared via thermally-induced phase separation (TIPS): Effect of SiO2@PDA nanoparticles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.110039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Kheiri Mollaqasem V, Asefnejad A, Nourani MR, Goodarzi V, Kalaee MR. Incorporation of graphene oxide and calcium phosphate in the PCL/PHBV core‐shell nanofibers as bone tissue scaffold. J Appl Polym Sci 2020. [DOI: 10.1002/app.49797] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Vahid Kheiri Mollaqasem
- Department of Biomedical Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| | - Azadeh Asefnejad
- Department of Biomedical Engineering, Science and Research Branch Islamic Azad University Tehran Iran
| | - Mohammad Reza Nourani
- Tissue Engineering Division, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Vahabodin Goodarzi
- Tissue Engineering Division, Nanobiotechnology Research Center Baqiyatallah University of Medical Sciences Tehran Iran
| | - Mohammad Reza Kalaee
- Department of Chemical and Polymer Engineering, South Tehran Branch Islamic Azad University Tehran Iran
| |
Collapse
|
23
|
Prasannan A, Udomsin J, Tsai HC, Wang CF, Lai JY. Robust underwater superoleophobic membranes with bio-inspired carrageenan/laponite multilayers for the effective removal of emulsions, metal ions, and organic dyes from wastewater. CHEMICAL ENGINEERING JOURNAL 2020; 391:123585. [DOI: 10.1016/j.cej.2019.123585] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Cosenza VA, Navarro DA, Stortz CA, Rojas AM. Rheology of partially and totally oxidized red seaweed galactans. Carbohydr Polym 2019; 230:115653. [PMID: 31887934 DOI: 10.1016/j.carbpol.2019.115653] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/09/2019] [Accepted: 11/20/2019] [Indexed: 11/17/2022]
Abstract
Agarose and κ-carrageenan were oxidized using (2,2,6,6-tetramethylpiperidinyl)oxy (TEMPO) in the presence of NaOCl and NaBr. Products with several degrees of oxidation were structurally characterized. The mechanical spectra were determined: derivatives with a medium to high degree of oxidation give rise to polysaccharides that behave like dilute solutions in water, whereas those with a degree of oxidation close to 20 % keep the gelling properties with a different thermo-rheological response towards pH (6.5 or 4.0) and counterions (K+ or Ca2+) in comparison with the native polysaccharides. For instance, they showed a marked dependence on the presence of calcium ions, observed in the increase of thermal stability and dynamic elastic component (G') value, due to the known interaction of this divalent cation with the carboxylate groups. In this sense, these derivatives with low oxidation degrees have proven to be not only thermosensitive, like the native polysaccharide, but also pH- and calcium-sensitive.
Collapse
Affiliation(s)
- Vanina A Cosenza
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Diego A Navarro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, 1428, Buenos Aires, Argentina
| | - Carlos A Stortz
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR/CONICET), Departamento de Química Orgánica, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| | - Ana M Rojas
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Tecnología de Alimentos y Procesos Químicos (ITAPROQ/CONICET), Departamento de Industrias, Ciudad Universitaria, 1428, Buenos Aires, Argentina.
| |
Collapse
|