1
|
Eder J, Kräter M, Kirschbaum C, Gao W, Wekenborg M, Penz M, Rothe N, Guck J, Wittwer LD, Walther A. Longitudinal associations between depressive symptoms and cell deformability: do glucocorticoids play a role? Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01902-z. [PMID: 39297974 DOI: 10.1007/s00406-024-01902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/07/2024] [Indexed: 09/21/2024]
Abstract
Cell deformability of all major blood cell types is increased in depressive disorders (DD). Furthermore, impaired glucocorticoid secretion is associated with DD, as well as depressive symptoms in general and known to alter cell mechanical properties. Nevertheless, there are no longitudinal studies examining accumulated glucocorticoid output and depressive symptoms regarding cell deformability. The aim of the present study was to investigate, whether depressive symptoms predict cell deformability one year later and whether accumulated hair glucocorticoids mediate this relationship. In 136 individuals (nfemale = 100; Mage = 46.72, SD = 11.28; age range = 20-65), depressive symptoms (PHQ-9) and hair glucocorticoids (cortisol and cortisone) were measured at time point one (T1), while one year later (T2) both depressive symptoms and hair glucocorticoids were reassessed. Additionally, cell deformability of peripheral blood cells was assessed at T2. Depression severity at T1 predicted higher cell deformability in monocytes and lymphocytes at T2. Accumulated hair cortisol and cortisone concentrations from T1 and T2 were not associated with higher cell deformability and further did not mediate the relationship between depressive symptoms and cell deformability. Elevated depressive symptomatology in a population based sample is longitudinally associated with higher immune cell deformability, while long-term integrated glucocorticoid levels seem not to be implicated in the underlying mechanism.
Collapse
Affiliation(s)
- Julian Eder
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Martin Kräter
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Clemens Kirschbaum
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Wei Gao
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
- School of Psychology, Nanjing Normal University, Nanjing, China
| | - Magdalena Wekenborg
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
- Else Kröner Fresenius Center of Digital Health, Faculty of Medicine and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Marlene Penz
- Institute of Psychology, Johannes Kepler Universität Linz, Linz, Austria
| | - Nicole Rothe
- Biopsychology, Faculty of Psychology, TUD Dresden University of Technology, Dresden, Germany
| | - Jochen Guck
- Center for Molecular and Cellular Bioengineering, Biotechnology Center, TUD Dresden University of Technology, Dresden, Germany
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lucas Daniel Wittwer
- Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Institut für Numerische Mathematik und Optimierung, Technische Universität Freiberg, 09599, Freiberg, Germany
| | - Andreas Walther
- Clinical Psychology and Psychotherapy, University of Zurich, Binzmühlestrasse 14, Zurich, 8050, Switzerland.
| |
Collapse
|
2
|
Rydin AO, Milaneschi Y, Quax R, Li J, Bosch JA, Schoevers RA, Giltay EJ, Penninx BWJH, Lamers F. A network analysis of depressive symptoms and metabolomics. Psychol Med 2023; 53:7385-7394. [PMID: 37092859 PMCID: PMC10719687 DOI: 10.1017/s0033291723001009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 03/03/2023] [Accepted: 03/27/2023] [Indexed: 04/25/2023]
Abstract
BACKGROUND Depression is associated with metabolic alterations including lipid dysregulation, whereby associations may vary across individual symptoms. Evaluating these associations using a network perspective yields a more complete insight than single outcome-single predictor models. METHODS We used data from the Netherlands Study of Depression and Anxiety (N = 2498) and leveraged networks capturing associations between 30 depressive symptoms (Inventory of Depressive Symptomatology) and 46 metabolites. Analyses involved 4 steps: creating a network with Mixed Graphical Models; calculating centrality measures; bootstrapping for stability testing; validating central, stable associations by extra covariate-adjustment; and validation using another data wave collected 6 years later. RESULTS The network yielded 28 symptom-metabolite associations. There were 15 highly-central variables (8 symptoms, 7 metabolites), and 3 stable links involving the symptoms Low energy (fatigue), and Hypersomnia. Specifically, fatigue showed consistent associations with higher mean diameter for VLDL particles and lower estimated degree of (fatty acid) unsaturation. These remained present after adjustment for lifestyle and health-related factors and using another data wave. CONCLUSIONS The somatic symptoms Fatigue and Hypersomnia and cholesterol and fatty acid measures showed central, stable, and consistent relationships in our network. The present analyses showed how metabolic alterations are more consistently linked to specific symptom profiles.
Collapse
Affiliation(s)
- Arja O. Rydin
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| | - Rick Quax
- Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Jie Li
- Computational Science Lab, Faculty of Science, Informatics Institute, University of Amsterdam, Amsterdam, The Netherlands
| | - Jos A. Bosch
- Clinical Psychology, Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Robert A. Schoevers
- Department of Psychiatry, Faculty of Medical Sciences, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Erik J. Giltay
- Department of Psychiatry, Leiden University Medical Centre, Leiden University, Leiden, The Netherlands
| | - Brenda W. J. H. Penninx
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
- Department of Psychiatry and Neuroscience Campus Amsterdam, Amsterdam UMC, Vrije Universiteit, Amsterdam Public Health Research Institute, Amsterdam, The Netherlands
| | - Femke Lamers
- Department of Psychiatry, Amsterdam UMC location Vrije Universiteit Amsterdam, Boelelaan 1117, Amsterdam, The Netherlands
- Amsterdam Public Health, Mental Health Program, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Chaves-Filho AM, Braniff O, Angelova A, Deng Y, Tremblay MÈ. Chronic inflammation, neuroglial dysfunction, and plasmalogen deficiency as a new pathobiological hypothesis addressing the overlap between post-COVID-19 symptoms and myalgic encephalomyelitis/chronic fatigue syndrome. Brain Res Bull 2023; 201:110702. [PMID: 37423295 DOI: 10.1016/j.brainresbull.2023.110702] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/13/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
After five waves of coronavirus disease 2019 (COVID-19) outbreaks, it has been recognized that a significant portion of the affected individuals developed long-term debilitating symptoms marked by chronic fatigue, cognitive difficulties ("brain fog"), post-exertional malaise, and autonomic dysfunction. The onset, progression, and clinical presentation of this condition, generically named post-COVID-19 syndrome, overlap significantly with another enigmatic condition, referred to as myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Several pathobiological mechanisms have been proposed for ME/CFS, including redox imbalance, systemic and central nervous system inflammation, and mitochondrial dysfunction. Chronic inflammation and glial pathological reactivity are common hallmarks of several neurodegenerative and neuropsychiatric disorders and have been consistently associated with reduced central and peripheral levels of plasmalogens, one of the major phospholipid components of cell membranes with several homeostatic functions. Of great interest, recent evidence revealed a significant reduction of plasmalogen contents, biosynthesis, and metabolism in ME/CFS and acute COVID-19, with a strong association to symptom severity and other relevant clinical outcomes. These bioactive lipids have increasingly attracted attention due to their reduced levels representing a common pathophysiological manifestation between several disorders associated with aging and chronic inflammation. However, alterations in plasmalogen levels or their lipidic metabolism have not yet been examined in individuals suffering from post-COVID-19 symptoms. Here, we proposed a pathobiological model for post-COVID-19 and ME/CFS based on their common inflammation and dysfunctional glial reactivity, and highlighted the emerging implications of plasmalogen deficiency in the underlying mechanisms. Along with the promising outcomes of plasmalogen replacement therapy (PRT) for various neurodegenerative/neuropsychiatric disorders, we sought to propose PRT as a simple, effective, and safe strategy for the potential relief of the debilitating symptoms associated with ME/CFS and post-COVID-19 syndrome.
Collapse
Affiliation(s)
| | - Olivia Braniff
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Angelina Angelova
- Université Paris-Saclay, CNRS, Institut Galien Paris-Saclay, F-91400 Orsay, France
| | - Yuru Deng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada; Department of Molecular Medicine, Université Laval, Québec City, Québec, Canada; Neurology and Neurosurgery Department, McGill University, Montréal, Québec, Canada; Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada; Centre for Advanced Materials and Related Technology (CAMTEC) and Institute on Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada.
| |
Collapse
|
4
|
Miao G, Deen J, Struzeski JB, Chen M, Zhang Y, Cole SA, Fretts AM, Lee ET, Howard BV, Fiehn O, Zhao J. Plasma lipidomic profile of depressive symptoms: a longitudinal study in a large sample of community-dwelling American Indians in the strong heart study. Mol Psychiatry 2023; 28:2480-2489. [PMID: 36653676 PMCID: PMC10753994 DOI: 10.1038/s41380-023-01948-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023]
Abstract
Dyslipidemia has been associated with depression, but individual lipid species associated with depression remain largely unknown. The temporal relationship between lipid metabolism and the development of depression also remains to be determined. We studied 3721 fasting plasma samples from 1978 American Indians attending two exams (2001-2003, 2006-2009, mean ~5.5 years apart) in the Strong Heart Family Study. Plasma lipids were repeatedly measured by untargeted liquid chromatography-mass spectrometry (LC-MS). Depressive symptoms were assessed using the 20-item Center for Epidemiologic Studies for Depression (CES-D). Participants at risk for depression were defined as total CES-D score ≥16. Generalized estimating equation (GEE) was used to examine the associations of lipid species with incident or prevalent depression, adjusting for covariates. The associations between changes in lipids and changes in depressive symptoms were additionally adjusted for baseline lipids. We found that lower levels of sphingomyelins and glycerophospholipids and higher level of lysophospholipids were significantly associated with incident and/or prevalent depression. Changes in sphingomyelins, glycerophospholipids, acylcarnitines, fatty acids and triacylglycerols were associated with changes in depressive symptoms and other psychosomatic traits. We also identified differential lipid networks associated with risk of depression. The observed alterations in lipid metabolism may affect depression through increasing the activities of acid sphingomyelinase and phospholipase A2, disturbing neurotransmitters and membrane signaling, enhancing inflammation, oxidative stress, and lipid peroxidation, and/or affecting energy storage in lipid droplets or membrane formation. These findings illuminate the mechanisms through which dyslipidemia may contribute to depression and provide initial evidence for targeting lipid metabolism in developing preventive and therapeutic interventions for depression.
Collapse
Affiliation(s)
- Guanhong Miao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Jason Deen
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Joseph B Struzeski
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Mingjing Chen
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA
| | - Ying Zhang
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Shelley A Cole
- Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amanda M Fretts
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Elisa T Lee
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Oliver Fiehn
- West Coast Metabolomics Center, University of California-Davis, California, CA, USA
| | - Jinying Zhao
- Department of Epidemiology, College of Public Health & Health Professions and College of Medicine, University of Florida, Gainesville, FL, USA.
- Center for Genetic Epidemiology and Bioinformatics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
5
|
Bussmann H, Bremer S, Häberlein H, Boonen G, Drewe J, Butterweck V, Franken S. Impact of St. John's wort extract Ze 117 on stress induced changes in the lipidome of PBMC. Mol Med 2023; 29:50. [PMID: 37029349 PMCID: PMC10082490 DOI: 10.1186/s10020-023-00644-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Membrane lipids have an important function in the brain as they not only provide a physical barrier segregating the inner and outer cellular environments, but are also involved in cell signaling. It has been shown that the lipid composition effects membrane fluidity which affects lateral mobility and activity of membrane-bound receptors. METHODS Since changes in cellular membrane properties are considered to play an important role in the development of depression, the effect of St. John's wort extract Ze 117 on plasma membrane fluidity in peripheral blood mononuclear cells (PBMC) was investigated using fluorescence anisotropy measurements. Changes in fatty acid residues in phospholipids after treatment of cortisol-stressed [1 μM] PBMCs with Ze 117 [10-50 µg/ml] were analyzed by mass spectrometry. RESULTS Cortisol increased membrane fluidity significantly by 3%, co-treatment with Ze 117 [50 µg/ml] counteracted this by 4.6%. The increased membrane rigidity by Ze 117 in cortisol-stressed [1 μM] PBMC can be explained by a reduced average number of double bonds and shortened chain length of fatty acid residues in phospholipids, as shown by lipidomics experiments. CONCLUSION The increase in membrane rigidity after Ze 117 treatment and therefore the ability to normalize membrane structure points to a new mechanism of antidepressant action of the extract.
Collapse
Affiliation(s)
- Hendrik Bussmann
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Swen Bremer
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Hanns Häberlein
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Georg Boonen
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | - Jürgen Drewe
- Max Zeller Söhne AG, Seeblickstrasse 4, 8590, Romanshorn, Switzerland
| | | | - Sebastian Franken
- Institute of Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
6
|
Tkachev A, Stekolshchikova E, Vanyushkina A, Zhang H, Morozova A, Zozulya S, Kurochkin I, Anikanov N, Egorova A, Yushina E, Vogl T, Senner F, Schaupp SK, Reich-Erkelenz D, Papiol S, Kohshour MO, Klöhn-Saghatolislam F, Kalman JL, Heilbronner U, Heilbronner M, Gade K, Comes AL, Budde M, Anderson-Schmidt H, Adorjan K, Wiltfang J, Reininghaus EZ, Juckel G, Dannlowski U, Fallgatter A, Spitzer C, Schmauß M, von Hagen M, Zorkina Y, Reznik A, Barkhatova A, Lisov R, Mokrov N, Panov M, Zubkov D, Petrova D, Zhou C, Liu Y, Pu J, Falkai P, Kostyuk G, Klyushnik T, Schulze TG, Xie P, Schulte EC, Khaitovich P. Lipid Alteration Signature in the Blood Plasma of Individuals With Schizophrenia, Depression, and Bipolar Disorder. JAMA Psychiatry 2023; 80:250-259. [PMID: 36696101 PMCID: PMC9878436 DOI: 10.1001/jamapsychiatry.2022.4350] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 10/31/2022] [Indexed: 01/26/2023]
Abstract
Importance No clinically applicable diagnostic test exists for severe mental disorders. Lipids harbor potential as disease markers. Objective To define a reproducible profile of lipid alterations in the blood plasma of patients with schizophrenia (SCZ) independent of demographic and environmental variables and to investigate its specificity in association with other psychiatric disorders, ie, major depressive disorder (MDD) and bipolar disorder (BPD). Design, Setting, and Participants This was a multicohort case-control diagnostic analysis involving plasma samples from psychiatric patients and control individuals collected between July 17, 2009, and May 18, 2018. Study participants were recruited as consecutive and volunteer samples at multiple inpatient and outpatient mental health hospitals in Western Europe (Germany and Austria [DE-AT]), China (CN), and Russia (RU). Individuals with DSM-IV or International Statistical Classification of Diseases and Related Health Problems, Tenth Revision diagnoses of SCZ, MDD, BPD, or a first psychotic episode, as well as age- and sex-matched healthy controls without a mental health-related diagnosis were included in the study. Samples and data were analyzed from January 2018 to September 2020. Main Outcomes and Measures Plasma lipidome composition was assessed using liquid chromatography coupled with untargeted mass spectrometry. Results Blood lipid levels were assessed in 980 individuals (mean [SD] age, 36 [13] years; 510 male individuals [52%]) diagnosed with SCZ, BPD, MDD, or those with a first psychotic episode and in 572 controls (mean [SD] age, 34 [13] years; 323 male individuals [56%]). A total of 77 lipids were found to be significantly altered between those with SCZ (n = 436) and controls (n = 478) in all 3 sample cohorts. Alterations were consistent between cohorts (CN and RU: [Pearson correlation] r = 0.75; DE-AT and CN: r = 0.78; DE-AT and RU: r = 0.82; P < 10-38). A lipid-based predictive model separated patients with SCZ from controls with high diagnostic ability (area under the receiver operating characteristic curve = 0.86-0.95). Lipidome alterations in BPD and MDD, assessed in 184 and 256 individuals, respectively, were found to be similar to those of SCZ (BPD: r = 0.89; MDD: r = 0.92; P < 10-79). Assessment of detected alterations in individuals with a first psychotic episode, as well as patients with SCZ not receiving medication, demonstrated only limited association with medication restricted to particular lipids. Conclusions and Relevance In this study, SCZ was accompanied by a reproducible profile of plasma lipidome alterations, not associated with symptom severity, medication, and demographic and environmental variables, and largely shared with BPD and MDD. This lipid alteration signature may represent a trait marker of severe psychiatric disorders, indicating its potential to be transformed into a clinically applicable testing procedure.
Collapse
Affiliation(s)
- Anna Tkachev
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
| | - Elena Stekolshchikova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Anna Vanyushkina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anna Morozova
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Ilia Kurochkin
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Nickolay Anikanov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Alina Egorova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Ekaterina Yushina
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
- FSBSI N.P. Bochkov Research Center of Medical Genetics, Moscow, Russia
| | - Thomas Vogl
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sabrina K. Schaupp
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Daniela Reich-Erkelenz
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farahnaz Klöhn-Saghatolislam
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Janos L. Kalman
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Maria Heilbronner
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Katrin Gade
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Ashley L. Comes
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Heike Anderson-Schmidt
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
| | - Kristina Adorjan
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Medicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eva Z. Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Neurobiology and Anthropometrics in Bipolar Affective Disorder, Medical University of Graz, Graz, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, Germany
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Andreas Fallgatter
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University Tübingen, Tübingen, Germany
| | - Carsten Spitzer
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Rostock, Rostock, Germany
| | - Max Schmauß
- Department of Psychiatry and Psychotherapy, Bezirkskrankenhaus Augsburg, Augsburg, Germany
| | - Martin von Hagen
- Clinic for Psychiatry and Psychotherapy, Clinical Center Werra-Meißner, Eschwege, Germany
| | - Yana Zorkina
- Department Basic and Applied Neurobiology, V. Serbsky Federal Medical Research Centre of Psychiatry and Narcology, Moscow, Russia
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | - Alexander Reznik
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
- Moscow State University of Food Production, Moscow, Russia
| | | | - Roman Lisov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Nikita Mokrov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia
- Center for Artificial Intelligence Technologies, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Maxim Panov
- Technology Innovation Institute, Abu Dhabi, United Arab Emirates
| | - Dmitri Zubkov
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Daria Petrova
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Chanjuan Zhou
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
| | - Georgiy Kostyuk
- Moscow Psychiatric Hospital No. 1, named after N.A. Alekseev, Moscow, Russia
| | | | - Thomas G. Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, New York
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, Maryland
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Neurobiology, Chongqing, China
| | - Eva C. Schulte
- Institute of Psychiatric Phenomics and Genomics, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig Maximilian University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, medical Faculty University of Bonn, Bonn, Germany
| | - Philipp Khaitovich
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow, Russia
| |
Collapse
|
7
|
Cntnap2-dependent molecular networks in autism spectrum disorder revealed through an integrative multi-omics analysis. Mol Psychiatry 2023; 28:810-821. [PMID: 36253443 PMCID: PMC9908544 DOI: 10.1038/s41380-022-01822-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 09/15/2022] [Accepted: 09/26/2022] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorder (ASD) is a major neurodevelopmental disorder in which patients present with core symptoms of social communication impairment, restricted interest, and repetitive behaviors. Although various studies have been performed to identify ASD-related mechanisms, ASD pathology is still poorly understood. CNTNAP2 genetic variants have been found that represent ASD genetic risk factors, and disruption of Cntnap2 expression has been associated with ASD phenotypes in mice. In this study, we performed an integrative multi-omics analysis by combining quantitative proteometabolomic data obtained with Cntnap2 knockout (KO) mice with multi-omics data obtained from ASD patients and forebrain organoids to elucidate Cntnap2-dependent molecular networks in ASD. To this end, a mass spectrometry-based proteometabolomic analysis of the medial prefrontal cortex in Cntnap2 KO mice led to the identification of Cntnap2-associated molecular features, and these features were assessed in combination with multi-omics data obtained on the prefrontal cortex in ASD patients to identify bona fide ASD cellular processes. Furthermore, a reanalysis of single-cell RNA sequencing data obtained from forebrain organoids derived from patients with CNTNAP2-associated ASD revealed that the aforementioned identified ASD processes were mainly linked to excitatory neurons. On the basis of these data, we constructed Cntnap2-associated ASD network models showing mitochondrial dysfunction, axonal impairment, and synaptic activity. Our results may shed light on the Cntnap2-dependent molecular networks in ASD.
Collapse
|
8
|
Zhou C, Zhao X, Ma X, Ma H, Li R, Hu G, Wang H, Peng Z, Cai M. Effects of (S)-ketamine on depression-like behaviors in a chronic variable stress model: a role of brain lipidome. Front Cell Neurosci 2023; 17:1114914. [PMID: 36874216 PMCID: PMC9975603 DOI: 10.3389/fncel.2023.1114914] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/23/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction: Compelling evidence indicates that a single sub-anesthetic dose of (S)-ketamine elicits rapid and robust antidepressant effects. However, the underlying mechanisms behind the antidepressant effects of (S)-ketamine remain unclear. Methods: Here, using a chronic variable stress (CVS) model in mice, we analyzed changes inthe lipid compositions of the hippocampus and prefrontal cortex (PFC) with a mass spectrometry-based lipidomic approach. Results: Similar to previous research outcomes, the current study also showed that (S)-ketamine reversed depressive-like behaviors in mice produced by CVS procedures. Moreover, CVS induced changes inthe lipid compositions of the hippocampus and PFC, notably in the contents of sphingolipids, glycerolipids, and fatty acyls. With the administration of (S)-ketamine, CVS-induced lipid disturbances were partially normalized, particularly in the hippocampus. Conclusion: Altogether, our results indicated that (S)-ketamine could rescue CVS-induced depressive-like behaviors in mice through region-specific modulation of the brain lipidome, contributing to the understanding of (S)-ketamine's antidepressant effects.
Collapse
Affiliation(s)
- Cuihong Zhou
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinxin Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xinxu Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Hongzhe Ma
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Rui Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Guangtao Hu
- Department of Psychological Medicine, 958th Hospital, Chongqing, China
| | - Huaning Wang
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Zhengwu Peng
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Min Cai
- Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
9
|
Deng L, Zhou X, Tao G, Hao W, Wang L, Lan Z, Song Y, Wu M, Huang JQ. Ferulic acid and feruloylated oligosaccharides alleviate anxiety and depression symptom via regulating gut microbiome and microbial metabolism. Food Res Int 2022; 162:111887. [DOI: 10.1016/j.foodres.2022.111887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 11/27/2022]
|
10
|
Grant CW, Wilton AR, Kaddurah-Daouk R, Skime M, Biernacka J, Mayes T, Carmody T, Wang L, Lazaridis K, Weinshilboum R, Bobo WV, Trivedi MH, Croarkin PE, Athreya AP. Network science approach elucidates integrative genomic-metabolomic signature of antidepressant response and lifetime history of attempted suicide in adults with major depressive disorder. Front Pharmacol 2022; 13:984383. [PMID: 36263124 PMCID: PMC9573988 DOI: 10.3389/fphar.2022.984383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Individuals with major depressive disorder (MDD) and a lifetime history of attempted suicide demonstrate lower antidepressant response rates than those without a prior suicide attempt. Identifying biomarkers of antidepressant response and lifetime history of attempted suicide may help augment pharmacotherapy selection and improve the objectivity of suicide risk assessments. Towards this goal, this study sought to use network science approaches to establish a multi-omics (genomic and metabolomic) signature of antidepressant response and lifetime history of attempted suicide in adults with MDD. Methods: Single nucleotide variants (SNVs) which associated with suicide attempt(s) in the literature were identified and then integrated with a) p180-assayed metabolites collected prior to antidepressant pharmacotherapy and b) a binary measure of antidepressant response at 8 weeks of treatment using penalized regression-based networks in 245 'Pharmacogenomics Research Network Antidepressant Medication Study (PGRN-AMPS)' and 103 'Combining Medications to Enhance Depression Outcomes (CO-MED)' patients with major depressive disorder. This approach enabled characterization and comparison of biological profiles and associated antidepressant treatment outcomes of those with (N = 46) and without (N = 302) a self-reported lifetime history of suicide attempt. Results: 351 SNVs were associated with suicide attempt(s) in the literature. Intronic SNVs in the circadian genes CLOCK and ARNTL (encoding the CLOCK:BMAL1 heterodimer) were amongst the top network analysis features to differentiate patients with and without a prior suicide attempt. CLOCK and ARNTL differed in their correlations with plasma phosphatidylcholines, kynurenine, amino acids, and carnitines between groups. CLOCK and ARNTL-associated phosphatidylcholines showed a positive correlation with antidepressant response in individuals without a prior suicide attempt which was not observed in the group with a prior suicide attempt. Conclusion: Results provide evidence for a disturbance between CLOCK:BMAL1 circadian processes and circulating phosphatidylcholines, kynurenine, amino acids, and carnitines in individuals with MDD who have attempted suicide. This disturbance may provide mechanistic insights for differential antidepressant pharmacotherapy outcomes between patients with MDD with versus without a lifetime history of attempted suicide. Future investigations of CLOCK:BMAL1 metabolic regulation in the context of suicide attempts may help move towards biologically-augmented pharmacotherapy selection and stratification of suicide risk for subgroups of patients with MDD and a lifetime history of attempted suicide.
Collapse
Affiliation(s)
- Caroline W. Grant
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Angelina R. Wilton
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Department of Medicine, Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Michelle Skime
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Joanna Biernacka
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, United States
| | - Taryn Mayes
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Thomas Carmody
- Department Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Konstantinos Lazaridis
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, United States
| | - Richard Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - William V. Bobo
- Department of Psychiatry and Psychology, Mayo Clinic, Jacksonville, FL, United States
| | - Madhukar H. Trivedi
- Peter O’Donnell Jr. Brain Institute and the Department of Psychiatry at the University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Paul E. Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Arjun P. Athreya
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
11
|
Reemst K, Broos JY, Abbink MR, Cimetti C, Giera M, Kooij G, Korosi A. Early-life stress and dietary fatty acids impact the brain lipid/oxylipin profile into adulthood, basally and in response to LPS. Front Immunol 2022; 13:967437. [PMID: 36131915 PMCID: PMC9484596 DOI: 10.3389/fimmu.2022.967437] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 08/04/2022] [Indexed: 01/06/2023] Open
Abstract
Brain lipid dysregulation is a hallmark of depression and Alzheimer's disease, also marked by chronic inflammation. Early-life stress (ELS) and dietary intake of polyunsaturated fatty acids (PUFAs) are risk factors for these pathologies and are known to impact inflammatory processes. However, if these early-life factors alter brain lipid homeostasis on the long-term and thereby contribute to this risk remains to be elucidated. We have recently shown that an early diet enriched in omega(ω)-3 PUFAs protected against the long-term negative effects of ELS on cognition and neuroinflammation. Here, we aim to understand if modulation of brain lipid and oxylipin profiles contributes to the detrimental effects of ELS and the protective ones of the diet. We therefore studied if and how ELS and early dietary PUFAs modulate the brain lipid and oxylipin profile, basally as well as in response to an inflammatory challenge, to unmask possible latent effects. Male mice were exposed to ELS via the limited bedding and nesting paradigm, received an early diet with high or low ω6/ω3 ratio (HRD and LRD) and were injected with saline or lipopolysaccharide (LPS) in adulthood. Twenty-four hours later plasma cytokines (Multiplex) and hypothalamic lipids and oxylipins (liquid chromatography tandem mass spectrometry) were measured. ELS exacerbated the LPS-induced increase in IL-6, CXCL1 and CCL2. Both ELS and diet affected the lipid/oxylipin profile long-term. For example, ELS increased diacylglycerol and LRD reduced triacylglycerol, free fatty acids and ceramides. Importantly, the ELS-induced alterations were strongly influenced by the early diet. For example, the ELS-induced decrease in eicosapentaenoic acid was reversed when fed LRD. Similarly, the majority of the LPS-induced alterations were distinct for control and ELS exposed mice and unique for mice fed with LRD or HRD. LPS decreased ceramides and lysophosphotidylcholine, increased hexosylceramides and prostaglandin E2, reduced triacylglycerol species and ω6-derived oxylipins only in mice fed LRD and ELS reduced the LPS-induced increase in phosphatidylcholine. These data give further insights into the alterations in brain lipids and oxylipins that might contribute to the detrimental effects of ELS, to the protective ones of LRD and the possible early-origin of brain lipid dyshomeostasis characterizing ELS-related psychopathologies.
Collapse
Affiliation(s)
- Kitty Reemst
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Jelle Y. Broos
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands,Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Maralinde R. Abbink
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Chiara Cimetti
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, Netherlands
| | - Gijs Kooij
- Amsterdam University Medical Center (UMC), Vrije Universiteit Amsterdam, Department of Molecular Cell Biology and Immunology, Amsterdam Neuroscience, Multiple Sclerosis (MS) Center Amsterdam, Amsterdam, Netherlands
| | - Aniko Korosi
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Science Park, Amsterdam, Netherlands,*Correspondence: Aniko Korosi,
| |
Collapse
|
12
|
Walther A, Mackens-Kiani A, Eder J, Herbig M, Herold C, Kirschbaum C, Guck J, Wittwer LD, Beesdo-Baum K, Kräter M. Depressive disorders are associated with increased peripheral blood cell deformability: a cross-sectional case-control study (Mood-Morph). Transl Psychiatry 2022; 12:150. [PMID: 35396373 PMCID: PMC8990596 DOI: 10.1038/s41398-022-01911-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/26/2022] Open
Abstract
Pathophysiological landmarks of depressive disorders are chronic low-grade inflammation and elevated glucocorticoid output. Both can potentially interfere with cytoskeleton organization, cell membrane bending and cell function, suggesting altered cell morpho-rheological properties like cell deformability and other cell mechanical features in depressive disorders. We performed a cross-sectional case-control study using the image-based morpho-rheological characterization of unmanipulated blood samples facilitating real-time deformability cytometry (RT-DC). Sixty-nine pre-screened individuals at high risk for depressive disorders and 70 matched healthy controls were included and clinically evaluated by Composite International Diagnostic Interview leading to lifetime and 12-month diagnoses. Facilitating deep learning on blood cell images, major blood cell types were classified and morpho-rheological parameters such as cell size and cell deformability of every individual cell was quantified. We found peripheral blood cells to be more deformable in patients with depressive disorders compared to controls, while cell size was not affected. Lifetime persistent depressive disorder was associated with increased cell deformability in monocytes and neutrophils, while in 12-month persistent depressive disorder erythrocytes deformed more. Lymphocytes were more deformable in 12-month major depressive disorder, while for lifetime major depressive disorder no differences could be identified. After correction for multiple testing, only associations for lifetime persistent depressive disorder remained significant. This is the first study analyzing morpho-rheological properties of entire blood cells and highlighting depressive disorders and in particular persistent depressive disorders to be associated with increased blood cell deformability. While all major blood cells tend to be more deformable, lymphocytes, monocytes, and neutrophils are mostly affected. This indicates that immune cell mechanical changes occur in depressive disorders, which might be predictive of persistent immune response.
Collapse
Affiliation(s)
- Andreas Walther
- Biopsychology, TU Dresden, Dresden, Germany. .,Clinical Psychology and Psychotherapy, University of Zurich, Zurich, Switzerland.
| | - Anne Mackens-Kiani
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Julian Eder
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Maik Herbig
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Christoph Herold
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,Zellmechanik Dresden GmbH, Dresden, Germany
| | - Clemens Kirschbaum
- grid.4488.00000 0001 2111 7257Biopsychology, TU Dresden, Dresden, Germany
| | - Jochen Guck
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Lucas Daniel Wittwer
- grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany ,grid.434947.90000 0004 0643 2840Faculty of Informatics/Mathematics, HTW Dresden, Dresden, Germany
| | - Katja Beesdo-Baum
- grid.4488.00000 0001 2111 7257Behavioral Epidemiology, TU Dresden, Dresden, Germany
| | - Martin Kräter
- grid.4488.00000 0001 2111 7257Center for Molecular and Cellular Bioengineering, Biotechnology Center, TU Dresden, Dresden, Germany ,grid.419562.d0000 0004 0374 4283Max Planck Institute for the Science of Light & Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| |
Collapse
|
13
|
Fatty acid dysregulation in the anterior cingulate cortex of depressed suicides with a history of child abuse. Transl Psychiatry 2021; 11:535. [PMID: 34663786 PMCID: PMC8523684 DOI: 10.1038/s41398-021-01657-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 09/23/2021] [Accepted: 10/01/2021] [Indexed: 12/19/2022] Open
Abstract
Child abuse (CA) strongly increases the lifetime risk of suffering from major depression and predicts an unfavorable course for the illness. Severe CA has been associated with a specific dysregulation of oligodendrocyte function and thinner myelin sheaths in the human anterior cingulate cortex (ACC) white matter. Given that myelin is extremely lipid-rich, it is plausible that these findings may be accompanied by a disruption of the lipid profile that composes the myelin sheath. This is important to explore since the composition of fatty acids (FA) in myelin phospholipids can influence its stability, permeability, and compactness. Therefore, the objective of this study was to quantify and compare FA concentrations in postmortem ACC white matter in the choline glycerophospholipid pool (ChoGpl), a key myelin phospholipid pool, between adult depressed suicides with a history of CA (DS-CA) matched depressed suicides without CA (DS) and healthy non-psychiatric controls (CTRL). Total lipids were extracted from 101 subjects according to the Folch method and separated into respective classes using thin-layer chromatography. FA methyl esters from the ChoGpl fraction were quantified using gas chromatography. Our analysis revealed specific effects of CA in FAs from the arachidonic acid synthesis pathway, which was further validated with RNA-sequencing data. Furthermore, the concentration of most FAs was found to decrease with age. By extending the previous molecular level findings linking CA with altered myelination in the ACC, these results provide further insights regarding white matter alterations associated with early-life adversity.
Collapse
|
14
|
Homorogan C, Nitusca D, Enatescu V, Schubart P, Moraru C, Socaciu C, Marian C. Untargeted Plasma Metabolomic Profiling in Patients with Major Depressive Disorder Using Ultra-High Performance Liquid Chromatography Coupled with Mass Spectrometry. Metabolites 2021; 11:466. [PMID: 34357360 PMCID: PMC8306682 DOI: 10.3390/metabo11070466] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a neuropsychiatric illness with an increasing incidence and a shortfall of efficient diagnostic tools. Interview-based diagnostic tools and clinical examination often lead to misdiagnosis and inefficient systematic treatment selection. Diagnostic and treatment monitoring biomarkers are warranted for MDD. Thus, the emerging field of metabolomics is a promising tool capable of portraying the metabolic repertoire of biomolecules from biological samples in a minimally invasive fashion. Herein, we report an untargeted metabolomic profiling performed in plasma samples of 11 MDD patients, at baseline (MDD1) and at 12 weeks following antidepressant therapy with escitalopram (MDD2), and in 11 healthy controls (C), using ultra-high performance liquid chromatography coupled with electrospray ionization-quadrupole-time of flight-mass spectrometry (UHPLC-QTOF-(ESI+)-MS). We found two putative metabolites ((phosphatidylserine PS (16:0/16:1) and phosphatidic acid PA (18:1/18:0)) as having statistically significant increased levels in plasma samples of MDD1 patients compared to healthy subjects. ROC analysis revealed an AUC value of 0.876 for PS (16:0/16:1), suggesting a potential diagnostic biomarker role. In addition, PS (18:3/20:4) was significantly decreased in MDD2 group compared to MDD1, with AUC value of 0.785.
Collapse
Affiliation(s)
- Claudia Homorogan
- Doctoral School, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
| | - Diana Nitusca
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Virgil Enatescu
- Discipline of Psychiatry, Department of Neurosciences, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania;
- Eduard Pamfil Psychiatric Clinic, Timisoara County Emergency Clinical Hospital, 300425 Timisoara, Romania
| | - Philip Schubart
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| | - Corina Moraru
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Carmen Socaciu
- BIODIATECH, Research Center for Applied Biotechnology in Diagnosis and Molecular Therapy, 400478 Cluj-Napoca, Romania; (C.M.); (C.S.)
| | - Catalin Marian
- Department of Biochemistry, University of Medicine and Pharmacy Victor Babes Timisoara, 300041 Timisoara, Romania; (D.N.); (P.S.)
| |
Collapse
|
15
|
Tkachev A, Stekolshchikova E, Anikanov N, Zozulya S, Barkhatova A, Klyushnik T, Petrova D. Shorter Chain Triglycerides Are Negatively Associated with Symptom Improvement in Schizophrenia. Biomolecules 2021; 11:biom11050720. [PMID: 34064997 PMCID: PMC8151512 DOI: 10.3390/biom11050720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 04/30/2021] [Accepted: 05/08/2021] [Indexed: 12/29/2022] Open
Abstract
Schizophrenia is a serious mental disorder requiring lifelong treatment. While medications are available that are effective in treating some patients, individual treatment responses can vary, with some patients exhibiting resistance to one or multiple drugs. Currently, little is known about the causes of the difference in treatment response observed among individuals with schizophrenia, and satisfactory markers of poor response are not available for clinical practice. Here, we studied the changes in the levels of 322 blood plasma lipids between two time points assessed in 92 individuals diagnosed with schizophrenia during their inpatient treatment and their association with the extent of symptom improvement. We found 20 triglyceride species increased in individuals with the least improvement in Positive and Negative Syndrome Scale (PANSS) scores, but not in those with the largest reduction in PANSS scores. These triglyceride species were distinct from the rest of the triglyceride species present in blood plasma. They contained a relatively low number of carbons in their fatty acid residues and were relatively low in abundance compared to the principal triglyceride species of blood plasma.
Collapse
Affiliation(s)
- Anna Tkachev
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
- Correspondence:
| | - Elena Stekolshchikova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Nickolay Anikanov
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| | - Svetlana Zozulya
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | | | - Tatiana Klyushnik
- Mental Health Research Center, 115522 Moscow, Russia; (S.Z.); (A.B.); (T.K.)
| | - Daria Petrova
- V. Zelman Center for Neurobiology and Brain Restoration, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia; (E.S.); (N.A.); (D.P.)
| |
Collapse
|
16
|
MahmoudianDehkordi S, Ahmed AT, Bhattacharyya S, Han X, Baillie RA, Arnold M, Skime MK, John-Williams LS, Moseley MA, Thompson JW, Louie G, Riva-Posse P, Craighead WE, McDonald W, Krishnan R, Rush AJ, Frye MA, Dunlop BW, Weinshilboum RM, Kaddurah-Daouk R. Alterations in acylcarnitines, amines, and lipids inform about the mechanism of action of citalopram/escitalopram in major depression. Transl Psychiatry 2021; 11:153. [PMID: 33654056 PMCID: PMC7925685 DOI: 10.1038/s41398-020-01097-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 10/01/2020] [Accepted: 10/26/2020] [Indexed: 12/11/2022] Open
Abstract
Selective serotonin reuptake inhibitors (SSRIs) are the first-line treatment for major depressive disorder (MDD), yet their mechanisms of action are not fully understood and their therapeutic benefit varies among individuals. We used a targeted metabolomics approach utilizing a panel of 180 metabolites to gain insights into mechanisms of action and response to citalopram/escitalopram. Plasma samples from 136 participants with MDD enrolled into the Mayo Pharmacogenomics Research Network Antidepressant Medication Pharmacogenomic Study (PGRN-AMPS) were profiled at baseline and after 8 weeks of treatment. After treatment, we saw increased levels of short-chain acylcarnitines and decreased levels of medium-chain and long-chain acylcarnitines, suggesting an SSRI effect on β-oxidation and mitochondrial function. Amines-including arginine, proline, and methionine sulfoxide-were upregulated while serotonin and sarcosine were downregulated, suggesting an SSRI effect on urea cycle, one-carbon metabolism, and serotonin uptake. Eighteen lipids within the phosphatidylcholine (PC aa and ae) classes were upregulated. Changes in several lipid and amine levels correlated with changes in 17-item Hamilton Rating Scale for Depression scores (HRSD17). Differences in metabolic profiles at baseline and post-treatment were noted between participants who remitted (HRSD17 ≤ 7) and those who gained no meaningful benefits (<30% reduction in HRSD17). Remitters exhibited (a) higher baseline levels of C3, C5, alpha-aminoadipic acid, sarcosine, and serotonin; and (b) higher week-8 levels of PC aa C34:1, PC aa C34:2, PC aa C36:2, and PC aa C36:4. These findings suggest that mitochondrial energetics-including acylcarnitine metabolism, transport, and its link to β-oxidation-and lipid membrane remodeling may play roles in SSRI treatment response.
Collapse
Affiliation(s)
- Siamak MahmoudianDehkordi
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Ahmed T. Ahmed
- grid.66875.3a0000 0004 0459 167XDepartment of Neurology, Mayo Clinic, Rochester, MN USA
| | - Sudeepa Bhattacharyya
- grid.252381.f0000 0001 2169 5989Department of Biological Sciences and Arkansas Biosciences Institute, Arkansas State University, Jonesboro, AR USA
| | - Xianlin Han
- grid.267309.90000 0001 0629 5880University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | | | - Matthias Arnold
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.4567.00000 0004 0483 2525Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Michelle K. Skime
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Lisa St. John-Williams
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - M. Arthur Moseley
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - J. Will Thompson
- grid.26009.3d0000 0004 1936 7961Proteomics and Metabolomics Shared Resource, Center for Genomic and Computational Biology, Duke University, Durham, NC 27710 USA
| | - Gregory Louie
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA
| | - Patricio Riva-Posse
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - W. Edward Craighead
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - William McDonald
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Ranga Krishnan
- grid.262743.60000000107058297Department of Psychiatry, Rush Medical College, Chicago, IL USA
| | - A. John Rush
- grid.26009.3d0000 0004 1936 7961Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC USA ,grid.26009.3d0000 0004 1936 7961Professor Emeritus, Department of Pediatrics, Duke University School of Medicine, Durham, NC USA ,grid.416992.10000 0001 2179 3554Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX USA
| | - Mark A. Frye
- grid.66875.3a0000 0004 0459 167XDepartment of Psychiatry and Psychology, Mayo Clinic, Rochester, MN USA
| | - Boadie W. Dunlop
- grid.189967.80000 0001 0941 6502Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Richard M. Weinshilboum
- grid.66875.3a0000 0004 0459 167XDepartment of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA. .,Duke Institute of Brain Sciences, Duke University, Durham, NC, USA.
| | | |
Collapse
|
17
|
A metabolome-wide association study in the general population reveals decreased levels of serum laurylcarnitine in people with depression. Mol Psychiatry 2021; 26:7372-7383. [PMID: 34088979 PMCID: PMC8873015 DOI: 10.1038/s41380-021-01176-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Depression constitutes a leading cause of disability worldwide. Despite extensive research on its interaction with psychobiological factors, associated pathways are far from being elucidated. Metabolomics, assessing the final products of complex biochemical reactions, has emerged as a valuable tool for exploring molecular pathways. We conducted a metabolome-wide association analysis to investigate the link between the serum metabolome and depressed mood (DM) in 1411 participants of the KORA (Cooperative Health Research in the Augsburg Region) F4 study (discovery cohort). Serum metabolomics data comprised 353 unique metabolites measured by Metabolon. We identified 72 (5.1%) KORA participants with DM. Linear regression tests were conducted modeling each metabolite value by DM status, adjusted for age, sex, body-mass index, antihypertensive, cardiovascular, antidiabetic, and thyroid gland hormone drugs, corticoids and antidepressants. Sensitivity analyses were performed in subcohorts stratified for sex, suicidal ideation, and use of antidepressants. We replicated our results in an independent sample of 968 participants of the SHIP-Trend (Study of Health in Pomerania) study including 52 (5.4%) individuals with DM (replication cohort). We found significantly lower laurylcarnitine levels in KORA F4 participants with DM after multiple testing correction according to Benjamini/Hochberg. This finding was replicated in the independent SHIP-Trend study. Laurylcarnitine remained significantly associated (p value < 0.05) with depression in samples stratified for sex, suicidal ideation, and antidepressant medication. Decreased blood laurylcarnitine levels in depressed individuals may point to impaired fatty acid oxidation and/or mitochondrial function in depressive disorders, possibly representing a novel therapeutic target.
Collapse
|
18
|
Jiao Z, Zhao H, Huang W, Liang R, Liu Y, Li Z, Li L, Xu Y, Gao S, Gao S, Li Y, Yu C. An investigation of the antidepressant‐like effect of Jiaotaiwan in rats by nontargeted metabolomics based on ultra‐high‐performance liquid chromatography quadrupole time‐of‐flight mass spectrometry. J Sep Sci 2020; 44:645-655. [DOI: 10.1002/jssc.202000576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/29/2020] [Accepted: 10/31/2020] [Indexed: 12/17/2022]
Affiliation(s)
- Ziyi Jiao
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Huan Zhao
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Wei Huang
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Ru Liang
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yijia Liu
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Zhu Li
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Lin Li
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yilan Xu
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Shuming Gao
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Shan Gao
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Yubo Li
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| | - Chunquan Yu
- Research Institute of Traditional Chinese Medicine Tianjin University of Traditional Chinese Medicine Tianjin P. R. China
| |
Collapse
|
19
|
Djekic D, Shi L, Calais F, Carlsson F, Landberg R, Hyötyläinen T, Frøbert O. Effects of a Lacto-Ovo-Vegetarian Diet on the Plasma Lipidome and Its Association with Atherosclerotic Burden in Patients with Coronary Artery Disease-A Randomized, Open-Label, Cross-over Study. Nutrients 2020; 12:E3586. [PMID: 33238431 PMCID: PMC7700669 DOI: 10.3390/nu12113586] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 02/07/2023] Open
Abstract
A vegetarian diet has been associated with a lower risk of coronary artery disease (CAD). Plasma triacylglycerols, ceramides, and phosphatidylcholines may improve prediction of recurrent coronary events. We sought to investigate effects of a lacto-ovo-vegetarian diet (VD) on plasma lipidome in CAD patients and simultaneously assess associations of plasma lipids with the extent of coronary atherosclerotic burden. We analyzed 214 plasma lipids within glycerolipid, sphingolipid, and sterol lipid classes using lipidomics from a randomized controlled, crossover trial comprising 31 CAD patients on standard medical therapy. Subjects completed a four-week intervention with VD and isocaloric meat diet (MD), separated by a four-week washout period. The VD increased levels of 11 triacylglycerols and lowered 7 triacylglycerols, 21 glycerophospholipids, cholesteryl ester (18:0), and ceramide (d18:1/16:0) compared with MD. VD increased triacylglycerols with long-chain polyunsaturated fatty acyls while decreased triacylglycerols with saturated fatty acyls, phosphatidylcholines, and sphingomyelins than MD. The Sullivan extent score (SES) exhibited on coronary angiograms were inversely associated with triacylglycerols with long-chain unsaturated fatty acyls. Phosphatidylcholines that were lower with VD were positively associated with SES and the total number of stenotic lesions. The VD favorably changed levels of several lipotoxic lipids that have previously been associated with increased risk of coronary events in CAD patients.
Collapse
Affiliation(s)
- Demir Djekic
- Department of Cardiology, Faculty of Health, Örebro University Hospital, 701 85 Örebro, Sweden; (D.D.); (F.C.); (O.F.)
| | - Lin Shi
- School of Food Engineering and Nutritional Science, Shaanxi Normal University, 710061 Xi’an, China
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (F.C.); (R.L.)
| | - Fredrik Calais
- Department of Cardiology, Faculty of Health, Örebro University Hospital, 701 85 Örebro, Sweden; (D.D.); (F.C.); (O.F.)
| | - Frida Carlsson
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (F.C.); (R.L.)
| | - Rikard Landberg
- Division of Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden; (F.C.); (R.L.)
- Department of Public Health and Clinical Medicine, Umeå University, 901 87 Umeå, Sweden
| | | | - Ole Frøbert
- Department of Cardiology, Faculty of Health, Örebro University Hospital, 701 85 Örebro, Sweden; (D.D.); (F.C.); (O.F.)
| |
Collapse
|
20
|
Giordano GM, Pezzella P, Perrottelli A, Galderisi S. Die "Präzisionspsychiatrie" muss Teil der "personalisierten Psychiatrie" werden. FORTSCHRITTE DER NEUROLOGIE-PSYCHIATRIE 2020; 88:767-772. [PMID: 32869236 DOI: 10.1055/a-1211-2826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
'Precision medicine' is defined as 'an emerging approach for treatment and prevention that takes into account each person's variability in genes, environment, and lifestyle'. Sometimes the term 'personalized medicine' is also used, either as a synonym or in a broader sense. In psychiatry, the term 'personalized' applies to different levels of health-care provision, such as the service organization and the choice of treatment plans based on the characterization of the individual patient. This approach is already feasible but, currently, it is often hampered by the shortage of human and financial resources. Recently, the terminology of 'precision medicine' has been extended to psychiatry: the term 'precision psychiatry' refers to the full exploitation of recent scientific and technological advances to achieve a close match between individual biosignature and prevention / treatment strategies. This article provides an overview of recent advances in neuroimaging, multi-omics and computational neuroscience, which have contributed to foster our understanding of the neurobiology of major mental disorders, and led to the implementation of a precision medicine-oriented approach in psychiatry.We argue that, while 'precision psychiatry' represents an important step to further advance the effectiveness of the 'personalized psychiatry', the distinction between the two terms is important to avoid dangerous neglect of the current potential of personalized care in psychiatry and to underscore the need for disseminating good existing practices aimed at organizing mental health services and providing care according to person's psychopathological characteristics, illness trajectory, needs, environment and preferences.In conclusion, 'precision psychiatry' will contribute to advance 'personalized psychiatry', but for the time being keeping the distinction between the two terms will contribute to fully exploit the current potential of personalized care.
Collapse
|
21
|
Xue SS, Zhou CH, Xue F, Liu L, Cai YH, Luo JF, Wang Y, Tan QR, Wang HN, Peng ZW. The impact of repetitive transcranial magnetic stimulation and fluoxetine on the brain lipidome in a rat model of chronic unpredictable stress. Prog Neuropsychopharmacol Biol Psychiatry 2020; 102:109946. [PMID: 32325156 DOI: 10.1016/j.pnpbp.2020.109946] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 03/18/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
The antidepressant effect of repetitive transcranial magnetic stimulation (rTMS) has been extensively studied; growing evidence suggests that changes in lipid composition may be involved in the pathogenesis of depression and may be a targeted mechanism for treatment. However, the influence of rTMS on lipid composition and the differences between these effects compared to antidepressants like fluoxetine (Flx) have never been investigated. Using a chronic unpredictable stress (CUS) model in rats, we assessed the antidepressive effects of rTMS and Flx treatments and evaluated changes in lipid composition in the hippocampus and prefrontal cortex (PFC) using a mass spectrometry-based lipidomic approach. Both rTMS and Flx treatments ameliorated depressive-like behaviors induced by CUS. Moreover, changes in lipid composition, especially glycerophospholipids, sphingolipids, and glycerolipids induced by CUS in the hippocampus were more robust than those observed in the PFC. CUS led to decreased levels of 20 carbon-containing fatty acyls and polyunsaturated fatty acyls in the PFC, and decreased levels of acyl carnitines (AcCa) in both the hippocampus and PFC. Notably, rTMS treatment had higher impact than Flx on composition of glycerophospholipids and sphingolipids in the hippocampus that were altered by CUS, while Flx attenuated CUS-induced changes in the PFC to a greater extent than rTMS. However, neither was able to restore fatty acyls and AcCa to baseline levels. Altogether, modulation of the brain lipidome may be involved in the antidepressant action of rTMS and Flx, and the degree to which these treatments induce changes in lipid composition within the hippocampus and PFC might explain their differential antidepressant effects.
Collapse
Affiliation(s)
- Shan-Shan Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Cui-Hong Zhou
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China
| | - Fen Xue
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ling Liu
- Institute of Neuroscience, Fourth Military Medical University, Xi'an 710032, China
| | - Yan-Hui Cai
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Jian-Feng Luo
- Department of Pediatrics, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Ying Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Qing-Rong Tan
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hua-Ning Wang
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China.
| | - Zheng-Wu Peng
- Department of Psychiatry, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China; Department of Toxicology, Shaanxi Key Lab of Free Radical Biology and Medicine, The Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public Health, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
22
|
The impact of Dl-3-n-butylphthalide on the lipidomics of the hippocampus in a rat model of lipopolysaccharide-induced depression. Prostaglandins Other Lipid Mediat 2020; 150:106464. [PMID: 32464175 DOI: 10.1016/j.prostaglandins.2020.106464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/15/2020] [Accepted: 05/19/2020] [Indexed: 11/22/2022]
Abstract
Elevated inflammation is commonly observed in depression, but whether this association is causal is not determined. Our previous basic research indicated that Dl-3-n-butylphthalide (NBP) possessed an anti-inflammatory effect. Additional recent evidence consistently suggests that depression is associated with lipid metabolism. Therefore, our study performed an untargeted lipidomics approach of ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) to reveal the potential discriminating lipid profile of the hippocampus for NBP involvement in lipopolysaccharide (LPS)-induced depression. Male Sprague-Dawley(SD) rats were randomly allocated to one of three groups (n = 6): control, LPS-induced model of depression (LPS), or NBP involvement in the LPS-induced model of depression (LPS + NBP). Statistical analysis was used to identify differential hippocampus lipids in the LPS, NBP + LPS, and control groups. Our study demonstrated that most of the differentially expressed lipid metabolites were involved in glycerophospholipid metabolism, sphingolipid metabolism, glycerolipid metabolism, and glycosylphosphatidylinositol(GPI)-anchor biosynthesis, which may partially account for the pathophysiological process of depression. However, more pre-clinical and clinical evidence is warranted to determine the extent and consistency of the role of NBP and further elucidate the pathophysiological mechanisms underlying inflammation-induced depression.
Collapse
|
23
|
Mayneris-Perxachs J, Mousa A, Naderpoor N, Fernández-Real JM, de Courten B. Low AMY1 Copy Number Is Cross-Sectionally Associated to an Inflammation-Related Lipidomics Signature in Overweight and Obese Individuals. Mol Nutr Food Res 2020; 64:e1901151. [PMID: 32378791 DOI: 10.1002/mnfr.201901151] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 03/12/2020] [Indexed: 12/14/2022]
Abstract
SCOPE Reduced amylase 1 (AMY1) copy numbers are associated with obesity, insulin resistance, and inflammation. Although mechanisms linking AMY1 copy number with metabolic disorders are poorly understood, recent findings suggest that lipids play a key role. METHODS AND RESULTS Plasma lipidomic signatures associated with AMY1 copy number are explored in 57 non-diabetic overweight/obese subjects aged 18-60. Serum amylase and inflammatory cytokines levels are also measured. AMY1 copy number is strongly associated with the serum amylase concentration. Participants are divided into low-(≤4) and high-(>4) AMY1 carriers based on the median. Low-AMY1 carriers have higher BMI and fat mass. They also have higher levels of dihexosylceramides (R = -0.27, p = 0.044), cholesterol esters (CE) (R = -0.32, p = 0.020), alkylphosphatidylcholines [PC(O)] (R = -0.33, p = 0.014), and sphingomyelins (SM) (R = -0.38, p = 0.005). From 459 lipid species, 28 differ between low- and high-AMY1 carriers. These include CE species with long-chain PUFA; PC(O) and PC plasmalogens containing arachidonic acid; and PC, mono-, di-, and tri-hexosylceramides, and SM containing saturated fatty acids (mainly C16:0 and C20:0). This lipidomic signature is strongly associated with inflammatory cytokines, which are also negatively associated with the AMY1 copy number. CONCLUSION A lipidomics signature associated with low AMY1 copy numbers is revealed, which is linked to obesity and chronic low-grade inflammation.
Collapse
Affiliation(s)
- Jordi Mayneris-Perxachs
- Department of Endocrinology, Diabetes and Nutrition, Biomedical Research Institute (IdibGi) Hospital of Girona "Dr Josep Trueta", University of Girona, Girona, 17007, Spain.,CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Aya Mousa
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia
| | - Negar Naderpoor
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia
| | - José-Manuel Fernández-Real
- Department of Endocrinology, Diabetes and Nutrition, Biomedical Research Institute (IdibGi) Hospital of Girona "Dr Josep Trueta", University of Girona, Girona, 17007, Spain.,CIBERobn Pathophysiology of Obesity and Nutrition, Instituto de Salud Carlos III, Madrid, 28029, Spain
| | - Barbora de Courten
- Monash Centre for Health Research and Implementation, School of Public Health and Preventive Medicine, Monash University, Level 1, 43-51 Kanooka Grove, Clayton, Melbourne, VIC, 3168, Australia
| |
Collapse
|
24
|
Bhattacharyya S, Dunlop BW, Mahmoudiandehkordi S, Ahmed AT, Louie G, Frye MA, Weinshilboum RM, Krishnan RR, Rush AJ, Mayberg HS, Craighead WE, Kaddurah-Daouk R. Pilot Study of Metabolomic Clusters as State Markers of Major Depression and Outcomes to CBT Treatment. Front Neurosci 2019; 13:926. [PMID: 31572108 PMCID: PMC6751322 DOI: 10.3389/fnins.2019.00926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 08/19/2019] [Indexed: 11/16/2022] Open
Abstract
Major depressive disorder (MDD) is a common and disabling syndrome with multiple etiologies that is defined by clinically elicited signs and symptoms. In hopes of developing a list of candidate biological measures that reflect and relate closely to the severity of depressive symptoms, so-called “state-dependent” biomarkers of depression, this pilot study explored the biochemical underpinnings of treatment response to cognitive behavior therapy (CBT) in medication-free MDD outpatients. Plasma samples were collected at baseline and week 12 from a subset of MDD patients (N = 26) who completed a course of CBT treatment as part of the Predictors of Remission in Depression to Individual and Combined Treatments (PReDICT) study. Targeted metabolomic profiling using the AbsoluteIDQ® p180 Kit and LC-MS identified eight “co-expressed” metabolomic modules. Of these eight, three were significantly associated with change in depressive symptoms over the course of the 12-weeks. Metabolites found to be most strongly correlated with change in depressive symptoms were branched chain amino acids, acylcarnitines, methionine sulfoxide, and α-aminoadipic acid (negative correlations with symptom change) as well as several lipids, particularly the phosphatidlylcholines (positive correlation). These results implicate disturbed bioenergetics as an important state marker in the pathobiology of MDD. Exploratory analyses contrasting remitters to CBT versus those who failed the treatment further suggest these metabolites may serve as mediators of recovery during CBT treatment. Larger studies examining metabolomic change patterns in patients treated with pharmacotherapy or psychotherapy will be necessary to elucidate the biological underpinnings of MDD and the -specific biologies of treatment response.
Collapse
Affiliation(s)
- Sudeepa Bhattacharyya
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Boadie W Dunlop
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Siamak Mahmoudiandehkordi
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States
| | - Ahmed T Ahmed
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Gregory Louie
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Medicine, Duke University, Durham, NC, United States.,Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| | - Mark A Frye
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, United States
| | - Richard M Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, United States
| | - Ranga R Krishnan
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - A John Rush
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Psychiatry, Texas Tech University, Health Sciences Center, Permian Basin, TX, United States.,Duke-NUS Medical School, Singapore, Singapore
| | - Helen S Mayberg
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States.,Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - W Edward Craighead
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, United States.,Department of Medicine, Duke University, Durham, NC, United States.,Duke Institute for Brain Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
25
|
Wang C, Lin H, Yang N, Wang H, Zhao Y, Li P, Liu J, Wang F. Effects of Platycodins Folium on Depression in Mice Based on a UPLC-Q/TOF-MS Serum Assay and Hippocampus Metabolomics. Molecules 2019; 24:molecules24091712. [PMID: 31052597 PMCID: PMC6540008 DOI: 10.3390/molecules24091712] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 12/18/2022] Open
Abstract
Major depressive disorder (MDD), also known as depression, is a state characterized by low mood and aversion to activity. Platycodins Folium (PF) is the dried leaf of Platycodon grandiflorum, with anti-inflammatory and antioxidative activities. Our previous research suggested that PF was rich in flavonoids, phenols, organic acids, triterpenoid saponins, coumarins and terpenoids. This study aimed to investigate the antidepressant effect of PF using lipopolysaccharide (LPS)-induced depressive mice. Several behavior tests (sucrose preference test (SPT), forced swimming test (FST) and tail suspension test (TST)) and biochemical parameters (IL-6, TNF-α and SOD levels) were used to evaluate the antidepressive effect of PF on LPS-induced depression model. Furthermore, a UPLC-Q/TOF-MS-based metabolomics approach was applied to explore the latent mechanism of PF in attenuating depression. As a result, a total of 21 and 11 metabolites that potentially contribute to MDD progress and PF treatment were identified in serum and hippocampus, respectively. The analysis of metabolic pathways revealed that lipid metabolism, amino acid metabolism, energy metabolism, arachidonic acid metabolism, glutathione metabolism and inositol phosphate metabolism were disturbed in a model of mice undergoing MDD and PF treatment. These results help us to understand the pathogenesis of depression in depth, and to discover targets for clinical diagnosis and treatment. They also provide the possibility of developing PF into an anti-depressantive agent.
Collapse
Affiliation(s)
- Cuizhu Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Hongqiang Lin
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Na Yang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Han Wang
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Yan Zhao
- College of Chinese Medicinal Materials, Jilin Agriculture University, Xincheng Street 2888, Changchun 130118, China.
| | - Pingya Li
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Jinping Liu
- School of Pharmaceutical Sciences, Jilin University, Fujin Road 1266, Changchun 130021, China.
| | - Fang Wang
- Department of Pathogen Biology, College of Basic Medical Sciences, Jilin University, Changchun 130021, China.
| |
Collapse
|
26
|
Knowles EEM, Curran JE, Meikle PJ, Huynh K, Mathias SR, Göring HHH, VandeBerg JL, Mahaney MC, Jalbrzikowski M, Mosior MK, Michael LF, Olvera RL, Duggirala R, Almasy L, Glahn DC, Blangero J. Disentangling the genetic overlap between cholesterol and suicide risk. Neuropsychopharmacology 2018; 43:2556-2563. [PMID: 30082891 PMCID: PMC6224547 DOI: 10.1038/s41386-018-0162-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 01/03/2023]
Abstract
Suicide is major public health concern; one million individuals worldwide die by suicide each year of which there are many more attempts. Thus, it is imperative that robust and reliable indicators, or biomarkers, of suicide risk be identified so that individuals at risk can be identified and provided appropriate interventions as quickly as possible. Previous work has revealed a relationship between low levels of circulating cholesterol and suicide risk, implicating cholesterol level as one such potential biomarker, but the factors underlying this relationship remain unknown. In the present study, we applied a combination of bivariate polygenic and coefficient-of-relatedness analysis, followed by mediation analysis, in a large sample of Mexican-American individuals from extended pedigrees [N = 1897; 96 pedigrees (average size = 19.17 individuals, range = 2-189) 60% female; mean age = 42.58 years, range = 18-97 years, sd = 15.75 years] with no exclusion criteria for any given psychiatric disorder. We observed that total esterified cholesterol measured at the time of psychiatric assessment shared a significant genetic overlap with risk for suicide attempt (ρg = -0.64, p = 1.24 × 10-04). We also found that total unesterified cholesterol measured around 20 years prior to assessment varied as a function of genetic proximity to an affected individual (h2 = 0.21, se = 0.10, p = 8.73 × 10-04; βsuicide = -0.70, se = 0.25, p = 8.90 × 10-03). Finally, we found that the relationship between total unesterified cholesterol and suicide risk was significantly mediated by ABCA-1-specific cholesterol efflux capacity (βsuicide-efflux = -0.45, p = 0.039; βefflux-cholexterol = -0.34, p < 0.0001; βindirect = -0.15, p = 0.044). These findings suggest that the relatively well-delineated process of cholesterol metabolism and associated molecular pathways will be informative for understanding the neurobiological underpinnings of risk for suicide attempt.
Collapse
Affiliation(s)
- Emma E. M. Knowles
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Joanne E. Curran
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| | - Peter J. Meikle
- 0000 0000 9760 5620grid.1051.5Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Kevin Huynh
- 0000 0000 9760 5620grid.1051.5Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Samuel R. Mathias
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA
| | - Harald H. H. Göring
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| | - John L. VandeBerg
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| | - Michael C. Mahaney
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| | - Maria Jalbrzikowski
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA
| | - Marian K. Mosior
- 0000 0000 2220 2544grid.417540.3Diabetes and Complications Therapeutic Area, Eli Lilly and Company, Indianapolis, IN USA
| | - Laura F. Michael
- 0000 0000 2220 2544grid.417540.3Diabetes and Complications Therapeutic Area, Eli Lilly and Company, Indianapolis, IN USA
| | - Rene L. Olvera
- 0000 0001 0629 5880grid.267309.9Department of Psychiatry, University of Texas Health Science Center at San Antonio, San Antonio, TX USA
| | - Ravi Duggirala
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| | - Laura Almasy
- 0000 0004 1936 8972grid.25879.31Department of Genetics, University of Pennsylvania, Philadelphia, PA USA ,0000 0001 0680 8770grid.239552.aDepartment of Biomedical and Health Informatics, Children’s Hospital of Philadelphia, Philadelphia, PA USA
| | - David C. Glahn
- 0000000419368710grid.47100.32Department of Psychiatry, Yale University School of Medicine, New Haven, CT USA ,0000 0001 0626 2712grid.277313.3Olin Neuropsychiatric Research Center, Institute of Living, Hartford Hospital, Hartford, CT USA
| | - John Blangero
- 0000 0004 5374 269Xgrid.449717.8South Texas Diabetes and Obesity Institute and Department of Human Genetics, University of Texas of the Rio Grande Valley School of Medicine, Brownsville, TX USA
| |
Collapse
|
27
|
Walther A, Cannistraci CV, Simons K, Durán C, Gerl MJ, Wehrli S, Kirschbaum C. Lipidomics in Major Depressive Disorder. Front Psychiatry 2018; 9:459. [PMID: 30374314 PMCID: PMC6196281 DOI: 10.3389/fpsyt.2018.00459] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 09/04/2018] [Indexed: 01/01/2023] Open
Abstract
Omic sciences coupled with novel computational approaches such as machine intelligence offer completely new approaches to major depressive disorder (MDD) research. The complexity of MDD's pathophysiology is being integrated into studies examining MDD's biology within the omic fields. Lipidomics, as a late-comer among other omic fields, is increasingly being recognized in psychiatric research because it has allowed the investigation of global lipid perturbations in patients suffering from MDD and indicated a crucial role of specific patterns of lipid alterations in the development and progression of MDD. Combinatorial lipid-markers with high classification power are being developed in order to assist MDD diagnosis, while rodent models of depression reveal lipidome changes and thereby unveil novel treatment targets for depression. In this systematic review, we provide an overview of current breakthroughs and future trends in the field of lipidomics in MDD research and thereby paving the way for precision medicine in MDD.
Collapse
Affiliation(s)
| | - Carlo Vittorio Cannistraci
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, TU Dresden, Dresden, Germany
- Brain Bio-Inspired Computing (BBC) Lab, IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
| | | | - Claudio Durán
- Biomedical Cybernetics Group, Biotechnology Center (BIOTEC), Center for Molecular and Cellular Bioengineering (CMCB), Center for Systems Biology Dresden (CSBD), Department of Physics, TU Dresden, Dresden, Germany
| | | | | | | |
Collapse
|
28
|
Dorninger F, Forss-Petter S, Berger J. From peroxisomal disorders to common neurodegenerative diseases - the role of ether phospholipids in the nervous system. FEBS Lett 2017; 591:2761-2788. [PMID: 28796901 DOI: 10.1002/1873-3468.12788] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 07/26/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023]
Abstract
The emerging diverse roles of ether (phospho)lipids in nervous system development and function in health and disease are currently attracting growing interest. Plasmalogens, a subgroup of ether lipids, are important membrane components involved in vesicle fusion and membrane raft composition. They store polyunsaturated fatty acids and may serve as antioxidants. Ether lipid metabolites act as precursors for the formation of glycosyl-phosphatidyl-inositol anchors; others, like platelet-activating factor, are implicated in signaling functions. Consolidating the available information, we attempt to provide molecular explanations for the dramatic neurological phenotype in ether lipid-deficient human patients and mice by linking individual functional properties of ether lipids with pathological features. Furthermore, recent publications have identified altered ether lipid levels in the context of many acquired neurological disorders including Alzheimer's disease (AD) and autism. Finally, current efforts to restore ether lipids in peroxisomal disorders as well as AD are critically reviewed.
Collapse
Affiliation(s)
- Fabian Dorninger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Sonja Forss-Petter
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|