1
|
Hu X, Wang Y, Zhang S, Gu X, Zhang X, Li L. LncRNA HOXA10-AS as a novel biomarker and therapeutic target in human cancers. Front Mol Biosci 2025; 11:1520498. [PMID: 39830983 PMCID: PMC11738949 DOI: 10.3389/fmolb.2024.1520498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/06/2024] [Indexed: 01/22/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) are crucial regulatory molecules that participate in numerous cellular development processes, and they have gathered much interest recently. HOXA10 antisense RNA (HOXA10-AS, also known as HOXA-AS4) is a novel lncRNA that was identified to be dysregulated in some prevalent malignancies. In this review, the clinical significance of HOXA10-AS for the prognosis of various cancers is analyzed. In addition, the major advances in our understanding of the cellular biological functions and mechanisms of HOXA10-AS in different human cancers are summarized. These cancers include esophageal carcinoma (ESCA), gastric cancer (GC), glioma, laryngeal squamous cell carcinoma (LSCC), acute myeloid leukemia (AML), lung adenocarcinoma (LUAD), nasopharyngeal carcinoma (NPC), oral squamous cell carcinoma (OSCC), and pancreatic cancer. We also note that the aberrant expression of HOXA10-AS promotes malignant progression through various underlying mechanisms. In conclusion, HOXA10-AS is expected to serve as an ideal clinical biomarker and an effective cancer therapy target.
Collapse
Affiliation(s)
- Xin Hu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Yong Wang
- Shandong Provincial Engineering Research Center for Bacterial Oncolysis and Cell Treatment, Jinan, Shandong, China
| | - Sijia Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaosi Gu
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Xiaoyu Zhang
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
| | - Lianlian Li
- Department of Immunology, School of Clinical and Basic Medical Sciences, Shandong First Medical University, Jinan, Shandong, China
- Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
2
|
Zhang H, Cai W, Miao Y, Gu Y, Zhou X, Kaneda H, Wang L. Long Non-Coding RNA LINC01116 Promotes the Proliferation of Lung Adenocarcinoma by Targeting miR-9-5p/CCNE1 Axis. J Cell Mol Med 2024; 28:e70270. [PMID: 39648148 PMCID: PMC11625508 DOI: 10.1111/jcmm.70270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/10/2024] Open
Abstract
Long non-coding RNA (lncRNA) LINC01116 is crucial in promoting cell proliferation, invasion and migration in solid tumours, including lung adenocarcinoma (LUAD). LINC01116 acts as a competing endogenous RNAs (ceRNA) that binds competitively to microRNAs and plays a critical role in tumour migration and invasion. However, other mechanisms of action besides the ceRNA theory have been rarely reported and remain to be elucidated further. The differences in RNA and protein levels in cells and tissues were assessed through real-time quantitative PCR and Western blot analysis. In vitro functional assays and in vivo xenograft models were used to analyse the function of LINC01116 in LUAD. Thus, the molecular correlation between miR-9-5p and CCNE1 was investigated through direct and indirect mechanism experiments. LINC01116, miR-9-5p and CCNE1 were upregulated in LUAD cell lines and tissues and were associated with a poor prognosis in patients. LINC01116 depletion inhibited proliferation but facilitated cell apoptosis. AGO2-RNA binding protein immunoprecipitation (AGO2-RIP) experiments confirmed that AGO2 binds to LINC01116 and miR-9-5p, indicating that LINC01116 interacts with miR-9-5p. The overexpression of miR-9-5p and CCNE1 effectively counteracts the biological effects of LINC01116 knockdown on reduced proliferation and cell cycle arrest in LUAD cells. The downregulation of miR-9-5p significantly reduces the CCNE1 level in A549 cells, and the upregulation of LINC01116 counteracts the downregulation of miR-9-5p effect, restoring the expression level of CCNE1. Our data demonstrated that LINC01116 regulates the expression of CCNE1 by positively regulating miR-9-5p, thereby affecting cell cycle, proliferation and participating in the development of LUAD.
Collapse
Affiliation(s)
- Hui Zhang
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Wenwen Cai
- Sanmen County People's HospitalTaizhouChina
| | - Yiyan Miao
- The Jiangyin Clinical College of Xuzhou Medical UniversityXuzhouChina
| | - Yihang Gu
- Department of GeriatricsThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| | - Xiaorong Zhou
- Department of Immunology, School of MedicineNantong UniversityNantongChina
| | - Hiroyasu Kaneda
- Department of Clinical Oncology, Graduate School of MedicineOsaka Metropolitan UniversityOsakaJapan
| | - Lan Wang
- Department of Respiratory and Critical Care MedicineThe Jiangyin Clinical College of Xuzhou Medical UniversityJiangyinChina
| |
Collapse
|
3
|
Zhao T, Ma F. Roles of Long Noncoding RNA in Prostate Cancer Pathogenesis. Clin Genitourin Cancer 2024; 22:102213. [PMID: 39357460 DOI: 10.1016/j.clgc.2024.102213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/20/2024] [Accepted: 08/24/2024] [Indexed: 10/04/2024]
Abstract
Prostate cancer stands as the most common cancer in men, and research into its genesis and spread is still vital. The idea that the human genome's transcriptional activity is more widespread than previously thought has received empirical validation through the application of deep sequencing-based transcriptome profiling techniques. An assortment of noncoding transcripts longer than 200 nucleotides is referred to as long noncoding RNAs (lncRNAs). Transposable elements comprise a substantial portion of the human genome, with projections indicating that their prospective proportion may reach 90%. Considering they can interact directly with proteins, alter the transcriptional activity of coding genes, and perhaps encode proteins, lncRNAs possess the capability to regulate a variety of biological processes. LncRNAs have been recognized to be key factors in the development of several types of human cancers, including lung, colorectal, and breast cancers, alongside other pathological processes that have a significant impact on the diagnosis and survival of cancer individuals. Furthermore, lncRNAs' discernible expression patterns throughout various cancer scenarios significantly raise their potential as biomarkers and therapeutic targets. We conducted an extensive analysis of the prevailing academic literature on the interaction between lncRNAs and prostate cancer in order to present a solid foundation for potential future studies on the prevention and intervention of prostate cancer. The discourse additionally expands on lncRNAs' prospective applications as targets and biomarkers for medical therapies.
Collapse
Affiliation(s)
- Tongyue Zhao
- Department of Clinical Medicine, Chengdu Medical College, Chengdu City, Sichuan, China
| | - Feng Ma
- Department of Medical Oncology, Jiashan Hospital of Traditional Chinese Medicine, Jiaxing City, China.
| |
Collapse
|
4
|
Wang S, Bai Y, Ma J, Qiao L, Zhang M. Long non-coding RNAs: regulators of autophagy and potential biomarkers in therapy resistance and urological cancers. Front Pharmacol 2024; 15:1442227. [PMID: 39512820 PMCID: PMC11540796 DOI: 10.3389/fphar.2024.1442227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 10/14/2024] [Indexed: 11/15/2024] Open
Abstract
The non-coding RNAs (ncRNAs) comprise a large part of human genome that mainly do not code for proteins. Although ncRNAs were first believed to be non-functional, the more investigations highlighted tthe possibility of ncRNAs in controlling vital biological processes. The length of long non-coding RNAs (lncRNAs) exceeds 200 nucleotidesand can be present in nucleus and cytoplasm. LncRNAs do not translate to proteins and they have been implicated in the regulation of tumorigenesis. On the other hand, One way cells die is by a process called autophagy, which breaks down proteins and other components in the cytoplasm., while the aberrant activation of autophagy allegedly involved in the pathogenesis of diseases. The autophagy exerts anti-cancer activity in pre-cancerous lesions, while it has oncogenic function in advanced stages of cancers. The current overview focuses on the connection between lncRNAs and autophagy in urological cancers is discussed. Notably, one possible role for lncRNAs is as diagnostic and prognostic variablesin urological cancers. The proliferation, metastasis, apoptosis and therapy response in prostate, bladder and renal cancers are regulated by lncRNAs. The changes in autophagy levels can also influence the apoptosis, proliferation and therapy response in urological tumors. Since lncRNAs have modulatory functions, they can affect autophagy mechanism to determine progression of urological cancers.
Collapse
Affiliation(s)
- Shizong Wang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Yang Bai
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Jie Ma
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Liang Qiao
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| | - Mingqing Zhang
- Department of Urology, Weifang People’s Hospital, Weifang, Shandong, China
- Shangdong Provincial Key Laboratory for Prevention and Treatment of Urological Diseases in Medicine and Health, Weifang, Shandong, China
| |
Collapse
|
5
|
Alsaab HO, Alzahrani MS, F Alaqile A, Waggas DS, Almutairy B. Long non-coding RNAs; potential contributors in cancer chemoresistance through modulating diverse molecular mechanisms and signaling pathways. Pathol Res Pract 2024; 260:155455. [PMID: 39043005 DOI: 10.1016/j.prp.2024.155455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
One of the mainstays of cancer treatment is chemotherapy. Drug resistance, however, continues to be the primary factor behind clinical treatment failure. Gene expression is regulated by long non-coding RNAs (lncRNAs) in several ways, including chromatin remodeling, translation, epigenetic, and transcriptional levels. Cancer hallmarks such as DNA damage, metastasis, immunological evasion, cell stemness, drug resistance, metabolic reprogramming, and angiogenesis are all influenced by LncRNAs. Numerous studies have been conducted on LncRNA-driven mechanisms of resistance to different antineoplastic drugs. Diverse medication kinds elicit diverse resistance mechanisms, and each mechanism may have multiple contributing factors. As a result, several lncRNAs have been identified as new biomarkers and therapeutic targets for identifying and managing cancers. This compels us to thoroughly outline the crucial roles that lncRNAs play in drug resistance. In this regard, this article provides an in-depth analysis of the recently discovered functions of lncRNAs in the pathogenesis and chemoresistance of cancer. As a result, the current research might offer a substantial foundation for future drug resistance-conquering strategies that target lncRNAs in cancer therapies.
Collapse
Affiliation(s)
- Hashem O Alsaab
- Department of Pharmaceutics and Pharmaceutical Technology, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Mohammad S Alzahrani
- Department of Clinical Pharmacy, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Atheer F Alaqile
- College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Dania S Waggas
- Department of Pathological Sciences, Fakeeh College for Medical Sciences, Jeddah, Saudi Arabia
| | - Bandar Almutairy
- Department of Pharmacology, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia.
| |
Collapse
|
6
|
Kazmi I, Altamimi ASA, Afzal M, Majami AA, AlGhamdi AS, Alkinani KB, Abbasi FA, Almalki WH, Alzera SI, Kukreti N, Fuloria NK, Sekar M, Abida. The emerging role of non-coding RNAs in the Wnt/β-catenin signaling pathway in Prostate Cancer. Pathol Res Pract 2024; 254:155134. [PMID: 38277746 DOI: 10.1016/j.prp.2024.155134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Prostate cancer (PCa) is an important worldwide medical concern, necessitating a greater understanding of the molecular processes driving its development. The Wnt/-catenin signaling cascade is established as a central player in PCa pathogenesis, and recent research emphasizes the critical involvement of non-coding RNAs (ncRNAs) in this scenario. This in-depth study seeks to give a thorough examination of the complex relationship between ncRNAs and the Wnt/β-catenin system in PCa. NcRNAs, such as circular RNAs (circRNAs), long ncRNAs (lncRNAs), and microRNAs (miRNAs), have been recognized as essential regulators that modulate numerous facets of the Wnt/β-catenin network. MiRNAs have been recognized as targeting vital elements of the process, either enhancing or inhibiting signaling, depending on their specific roles and targets. LncRNAs participate in fine-tuning the Wnt/β-catenin network as a result of complicated interplay with both upstream and downstream elements. CircRNAs, despite being a relatively recent addition to the ncRNA family, have been implicated in PCa, influencing the Wnt/β-catenin cascade through diverse mechanisms. This article encompasses recent advances in our comprehension of specific ncRNAs that participate in the Wnt/β-catenin network, their functional roles, and clinical relevance in PCa. We investigate their use as screening and predictive indicators, and targets for treatment. Additionally, we delve into the interplay between Wnt/β-catenin and other signaling networks in PCa and the role of ncRNAs within this complex network. As we unveil the intricate regulatory functions of ncRNAs in the Wnt/β-catenin cascade in PCa, we gain valuable insights into the disease's pathogenesis. The implementation of these discoveries in practical applications holds promise for more precise diagnosis, prognosis, and targeted therapeutic approaches, ultimately enhancing the care of PCa patients. This comprehensive review underscores the evolving landscape of ncRNA research in PCa and the potential for innovative interventions in the battle against this formidable malignancy.
Collapse
Affiliation(s)
- Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | | | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Abdullah A Majami
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Abeer S AlGhamdi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Khadijah B Alkinani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia; Department of Public Health, Faculty of Health Sciences, Umm Al-Qura University, 21955 Makkah, Saudi Arabia
| | - Fahad Al Abbasi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21589, Jeddah, Saudi Arabia
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Sami I Alzera
- Department of Pharmacology, College of Pharmacy, Jouf University, 72341, Sakaka, Aljouf, Saudi Arabia
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | | | - Mahendran Sekar
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Abida
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| |
Collapse
|
7
|
Singh V, Shirbhate E, Kore R, Mishra A, Johariya V, Veerasamy R, Tiwari AK, Rajak H. Dietary Plant Metabolites Induced Epigenetic Modification as a Novel Strategy for the Management of Prostate Cancer. Mini Rev Med Chem 2024; 24:1409-1426. [PMID: 38385496 DOI: 10.2174/0113895575283895240207065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/10/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
Prostate cancer is a widespread malignancy among men, with a substantial global impact on morbidity and mortality. Despite advances in conventional therapies, the need for innovative and less toxic treatments remains a priority. Emerging evidence suggests that dietary plant metabolites possess epigenetic-modifying properties, making them attractive candidates for prostate cancer treatment. The present work reviews the epigenetic effects of dietary plant metabolites in the context of prostate cancer therapy. We first outline the key epigenetic mechanisms involved in prostate cancer pathogenesis, including histone modifications, DNA methylation, and miRNA or Long Noncoding RNA (lncRNA) dysregulation. Next, we delve into the vast array of dietary plant metabolites that have demonstrated promising anti-cancer effects through epigenetic regulation. Resveratrol, minerals, isothiocyanates, curcumin, tea polyphenols, soy isoflavones and phytoestrogens, garlic compounds, anthocyanins, lycopene, and indoles are among the most extensively studied compounds. These plant-derived bioactive compounds have been shown to influence DNA methylation patterns, histone modifications, and microRNA expression, thereby altering the gene expression allied with prostate cancer progression, cell proliferation, and apoptosis. We also explore preclinical and clinical studies investigating the efficacy of dietary plant metabolites as standalone treatments or in combination with traditional treatments for people with prostate cancer. The present work highlights the potential of dietary plant metabolites as epigenetic modulators to treat prostate cancer. Continued research in this field may pave the way for personalized and precision medicine approaches, moving us closer to the goal of improved prostate cancer management.
Collapse
Affiliation(s)
- Vaibhav Singh
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ekta Shirbhate
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Rakesh Kore
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Aditya Mishra
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Varsha Johariya
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| | - Ravichandran Veerasamy
- Departement of Pharmaceutical chemistry, Faculty of Pharmacy, AIMST University, Semeling, 08100 Bedong, Kedah Darul Aman, Malaysia
| | - Amit K Tiwari
- UAMS College of Pharmacy, College of Pharmacy and Pharmaceutical Sciences, UAMS - University of Arkansas for Medical Sciences, Arkansas, (AR) USA
| | - Harish Rajak
- Department of Pharmacy, Guru Ghasidash Vishwavidyalaya University, Bilaspur-495 009, (C.G.), India
| |
Collapse
|
8
|
Zhao J, Zhang L, Zhao Y, Wu N, Zhang X, Guo R, Li H, Li C, Zheng K, Liu D, Tang S. Long noncoding RNA HOTAIR promotes breast cancer development through the lncRNA HOTAIR/miR-1/GOLPH3 axis. Clin Transl Oncol 2023; 25:3420-3430. [PMID: 37099061 DOI: 10.1007/s12094-023-03197-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/07/2023] [Indexed: 04/27/2023]
Abstract
BACKGROUND The lncRNA HOTAIR is frequently overexpressed in breast cancer tissues and plays an important role in the development of breast cancer. Here, we investigated the effect of the lncRNA HOTAIR on the biological behaviour of breast cancer cells and its molecular mechanism. METHODS We investigated the level of HOTAIR in breast cancer and its clinical pathological characteristics by bioinformatic methods. Then, we evaluated the effects of HOTAIR and miRNA-1 expression on the biological behaviour of breast cancer cells by qPCR, Cell Counting Kit-8 (CCK-8) assay, clonogenic assays, Transwell assay and flow cytometry for cell proliferation, invasion migration and apoptosis, and cell cycle analysis. Finally, the target genes of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis were validated by luciferase reports. RESULTS The expression of HOTAIR in breast cancer tissues was significantly higher than that in normal breast tissues (P < 0.05). Silencing of HOTAIR suppressed cell proliferation, invasion and migration, promoted apoptosis and induced G1 phase block in breast cancer (P < 0.0001). We also verified that miR-1 is a target of HOTAIR and that GOLPH3 is a target of miR-1 by luciferase reporter assays (P < 0.001). CONCLUSIONS The expression of HOTAIR was significantly elevated in breast cancer tissues. Reducing the expression of HOTAIR inhibited the proliferation, invasion and migration of breast cancer cells and promoted apoptosis, and the mechanism was mainly the effect of the lncRNA HOTAIR/miR-1/GOLPH3 regulatory axis on the biological behaviour of breast cancer cells.
Collapse
Affiliation(s)
- Jiawen Zhao
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Lei Zhang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Yingzhu Zhao
- Department of Breast and Thyroid Surgery, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Nan Wu
- Department of Medical School, Yunnan College of Business Management, Kunming, China
| | - Xi Zhang
- Department of Clinical Laboratory, Yunnan Cancer Hospital, Kunming, China
| | - Rong Guo
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Huimeng Li
- Second Department of General Surgery, Southern Central Hospital of Yunnan Province, The First People's Hospital of Honghe State, Honghe Hospital Affiliated to Kunming Medical University, Mengzi, Honghe, China
| | - Chunxiang Li
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China
| | - Kai Zheng
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| | - Dequan Liu
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| | - Shicong Tang
- Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, China.
| |
Collapse
|
9
|
Tao W, Wang BY, Luo L, Li Q, Meng ZA, Xia TL, Deng WM, Yang M, Zhou J, Zhang X, Gao X, Li LY, He YD. A urine extracellular vesicle lncRNA classifier for high-grade prostate cancer and increased risk of progression: A multi-center study. Cell Rep Med 2023; 4:101240. [PMID: 37852185 PMCID: PMC10591064 DOI: 10.1016/j.xcrm.2023.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/03/2023] [Accepted: 09/21/2023] [Indexed: 10/20/2023]
Abstract
To construct a urine extracellular vesicle long non-coding RNA (lncRNA) classifier that can detect high-grade prostate cancer (PCa) of grade group 2 or greater and estimate the risk of progression during active surveillance, we identify high-grade PCa-specific lncRNAs by combined analyses of cohorts from TAHSY, TCGA, and the GEO database. We develop and validate a 3-lncRNA diagnostic model (Clnc, being made of AC015987.1, CTD-2589M5.4, RP11-363E6.3) that can detect high-grade PCa. Clnc shows higher accuracy than prostate cancer antigen 3 (PCA3), multiparametric magnetic resonance imaging (mpMRI), and two risk calculators (Prostate Cancer Prevention Trial [PCPT]-RC 2.0 and European Randomized Study of Screening for Prostate Cancer [ERSPC]-RC) in the training cohort (n = 350), two independent cohorts (n = 232; n = 251), and TCGA cohort (n = 499). In the prospective active surveillance cohort (n = 182), Clnc at diagnosis remains a powerful independent predictor for overall active surveillance progression. Thus, Clnc is a potential biomarker for high-grade PCa and can also serve as a biomarker for improved selection of candidates for active surveillance.
Collapse
Affiliation(s)
- Wen Tao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Bang-Yu Wang
- Department of Anesthesiology, Shanghai General Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200080, China
| | - Liang Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Qing Li
- Food and Nutritional Sciences Programme, School of Life Sciences, The Chinese University of Hong Kong, Shatin 999077, Hong Kong
| | - Zhan-Ao Meng
- Department of Radiology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Tao-Lin Xia
- Department of Urology, Foshan First Municipal People's Hospital, Sun Yat-sen University, Foshan 528000, China
| | - Wei-Ming Deng
- Department of Urology, The First Affiliated Hospital, University of South China, Hengyang 421000, China
| | - Ming Yang
- Department of Urology, Foshan Municipal Chinese Medicine Hospital, Foshan 528000, China
| | - Jing Zhou
- Department of Pathology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xin Zhang
- Department of Pathology, Foshan First Municipal People's Hospital, Sun Yat-sen University, Foshan 528000, China
| | - Xin Gao
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Liao-Yuan Li
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Ya-Di He
- Health Management Center, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
10
|
Ma C, Wang X, Dai JY, Turman C, Kraft P, Stopsack KH, Loda M, Pettersson A, Mucci LA, Stanford JL, Penney KL. Germline Genetic Variants Associated with Somatic TMPRSS2:ERG Fusion Status in Prostate Cancer: A Genome-Wide Association Study. Cancer Epidemiol Biomarkers Prev 2023; 32:1436-1443. [PMID: 37555839 PMCID: PMC10592169 DOI: 10.1158/1055-9965.epi-23-0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/12/2023] [Accepted: 08/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.
Collapse
Affiliation(s)
- Chaoran Ma
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA
| | - Xiaoyu Wang
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
| | - James Y. Dai
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Biostatistics, University of Washington School of Public Health, Seattle, WA
| | - Constance Turman
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Program in Genetic Epidemiology and Statistical Genetics, Harvard T.H. Chan School of Public Health, Boston, MA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Konrad H. Stopsack
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Massachusetts General Hospital and Harvard Medical School, Boston, MA
| | | | - Andreas Pettersson
- Clinical Epidemiology Division, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden
| | - Lorelei A. Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchison Cancer Center, Seattle, WA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Kathryn L. Penney
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| |
Collapse
|
11
|
Bu T, Li L, Tian J. Unlocking the role of non-coding RNAs in prostate cancer progression: exploring the interplay with the Wnt signaling pathway. Front Pharmacol 2023; 14:1269233. [PMID: 37829301 PMCID: PMC10565042 DOI: 10.3389/fphar.2023.1269233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Prostate cancer (PCa) is one of the most common cancers in males, exhibiting a wide spectrum of clinical manifestations that pose challenges in its diagnosis and treatment. The Wnt signaling pathway, a conserved and complex pathway, is crucial for embryonic development, tissue homeostasis, and various physiological processes. Apart from the classical Wnt/β-catenin signaling pathway, there exist multiple non-classical Wnt signaling pathways, including the Wnt/PCP and Wnt/Ca2+ pathways. Non-coding RNAs (ncRNAs) are involved in the occurrence and development of PCa and the response to PCa treatment. ncRNAs are known to execute diverse regulatory roles in cellular processes, despite their inability to encode proteins. Among them, microRNAs, long non-coding RNAs, and circular RNAs play key roles in the regulation of the Wnt signaling pathway in PCa. Aberrant expression of these ncRNAs and dysregulation of the Wnt signaling pathway are one of the causes of cell proliferation, apoptosis, invasion, migration, and angiogenesis in PCa. Moreover, these ncRNAs affect the characteristics of PCa cells and hold promise as diagnostic and prognostic biomarkers. Herein, we summarize the role of ncRNAs in the regulation of the Wnt signaling pathway during the development of PCa. Additionally, we present an overview of the current progress in research on the correlation between these molecules and clinical features of the disease to provide novel insights and strategies for the treatment of PCa.
Collapse
Affiliation(s)
| | | | - Jiyu Tian
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
12
|
Fan X, Huang Y, Zhong Y, Yan Y, Li J, Fan Y, Xie F, Luo Q, Zhang Z. A new marker constructed from immune-related lncRNA pairs can be used to predict clinical treatment effects and prognosis: in-depth exploration of underlying mechanisms in HNSCC. World J Surg Oncol 2023; 21:250. [PMID: 37592311 PMCID: PMC10433616 DOI: 10.1186/s12957-023-03066-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/04/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Long non-coding RNA (lncRNA) plays a vital role in tumor proliferation, migration, and treatment. Since it is challenging to standardize the gene expression levels detected by different platforms, the signatures composed of many immune-related single lncRNAs are still inaccurate. Utilizing a gene pair formed of two immune-related lncRNAs and strategically assigning values can effectively meet the demand for a higher-accuracy dual biomarker combination. METHODS Co-expression and differential expression analyses were performed on immune genes and lncRNAs data from The Cancer Genome Atlas and the ImmPort database to obtain differentially expressed immune-related lncRNAs for pairwise pairing. The prognostic-related differentially expressed immune-related lncRNAs (PR-DE-irlncRNAs) pairs were then identified by univariate Cox regression and used for lasso regression to construct a prognostic model. Various methods were used to validate the predictive prognostic performance of the model. Additionally, we explored the potential guiding value of the model in immunotherapy and chemotherapy and constructed a nomogram suitable for efficient prognosis prediction. Mechanistic exploration of anti-tumor immunity and mutational perspectives are also included. We also analyzed the correlation between the model and immune checkpoint inhibitors (ICIs)-related, N6-methyadenosine (m6A)-related, and multidrug resistance genes. RESULTS We used a total of 20 pairs of PR-DE-irlncRNAs to create a prognosis model. Quantitative real-time polymerase chain reaction experiments further verified the abnormal expression of 11 lncRNAs in HNSCC cells. Various methods have confirmed the excellent performance of the model in predicting patient prognosis. We reasoned that lncRNAs/TP53 mutation might play a positive/negative anti-tumor role through the immune system by multi-perspective analyses. Finally, it was found that the prognostic model was closely related to immunotherapy and chemotherapy as well as the expression of ICIs/m6A/multidrug resistance-related genes. CONCLUSION The prognostic model performs excellently in predicting the prognosis of patients and provides the potential value of practical guidance for treatment.
Collapse
Affiliation(s)
- Xin Fan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yuhan Huang
- Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yun Zhong
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Yujie Yan
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Jiaqi Li
- School of Stomatology, Nanchang University, Nanchang, Jiangxi Province, China
| | - Yanting Fan
- The First Clinical Medical College of Nanchang University, Nanchang, Jiangxi Province, China
| | - Fei Xie
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Qing Luo
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Zhiyuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China.
| |
Collapse
|
13
|
Jiang C, Zhang J, Wang W, Shan Z, Sun F, Tan Y, Tong Y, Qiu Y. Extracellular vesicles in gastric cancer: role of exosomal lncRNA and microRNA as diagnostic and therapeutic targets. Front Physiol 2023; 14:1158839. [PMID: 37664422 PMCID: PMC10469264 DOI: 10.3389/fphys.2023.1158839] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Extracellular vesicles (EVs), including exosomes, play a crucial role in intercellular communication and have emerged as important mediators in the development and progression of gastric cancer. This review discusses the current understanding of the role of EVs, particularly exosomal lncRNA and microRNA, in gastric cancer and their potential as diagnostic and therapeutic targets. Exosomes are small membrane-bound particles secreted by both cancer cells and stromal cells within the tumor microenvironment. They contain various ncRNA and biomolecules, which can be transferred to recipient cells to promote tumor growth and metastasis. In this review, we highlighted the importance of exosomal lncRNA and microRNA in gastric cancer. Exosomal lncRNAs have been shown to regulate gene expression by interacting with transcription factors or chromatin-modifying enzymes, which regulate gene expression by binding to target mRNAs. We also discuss the potential use of exosomal lncRNAs and microRNAs as diagnostic biomarkers for gastric cancer. Exosomes can be isolated from various bodily fluids, including blood, urine, and saliva. They contain specific molecules that reflect the molecular characteristics of the tumor, making them promising candidates for non-invasive diagnostic tests. Finally, the potential of targeting exosomal lncRNAs and microRNAs as a therapeutic strategy for gastric cancer were reviewed as wee. Inhibition of specific molecules within exosomes has been shown to suppress tumor growth and metastasis in preclinical models. In conclusion, this review article provides an overview of the current understanding of the role of exosomal lncRNA and microRNA in gastric cancer. We suggest that further research into these molecules could lead to new diagnostic tools and therapeutic strategies for this deadly disease.
Collapse
Affiliation(s)
- Chengyao Jiang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Wentao Wang
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Zexing Shan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Fan Sun
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yuen Tan
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yilin Tong
- Department of Gastric Surgery, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Yue Qiu
- Medical Oncology Department of Gastrointestinal Cancer, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
14
|
Ruiz C, Alborelli I, Manzo M, Calgua B, Keller E, Vuaroqueaux V, Quagliata L, Rentsch CA, Spagnoli GC, Diener PA, Bubendorf L, Morant R, Eppenberger-Castori S. Critical Evaluation of Transcripts and Long Noncoding RNA Expression Levels in Prostate Cancer Following Radical Prostatectomy. Pathobiology 2023; 90:400-408. [PMID: 37463569 PMCID: PMC10733933 DOI: 10.1159/000531175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 07/20/2023] Open
Abstract
INTRODUCTION The clinical course of prostate cancer (PCa) is highly variable, ranging from indolent behavior to rapid metastatic progression. The Gleason score is widely accepted as the primary histologic assessment tool with significant prognostic value. However, additional biomarkers are required to better stratify patients, particularly those at intermediate risk. METHODS In this study, we analyzed the expression of 86 cancer hallmark genes in 171 patients with PCa who underwent radical prostatectomy and focused on the outcome of the 137 patients with postoperative R0-PSA0 status. RESULTS Low expression of the IGF1 and SRD52A, and high expression of TIMP2, PLAUR, S100A2, and CANX genes were associated with biochemical recurrence (BR), defined as an increase of prostate-specific antigen above 0.2 ng/mL. Furthermore, the analysis of the expression of 462 noncoding RNAs (ncRNA) in a sub-cohort of 39 patients with Gleason score 7 tumors revealed that high levels of expression of the ncRNAs LINC00624, LINC00593, LINC00482, and cd27-AS1 were significantly associated with BR. Our findings provide further evidence for tumor-promoting roles of ncRNAs in PCa patients at intermediate risk. The strong correlation between expression of LINC00624 and KRT8 gene, encoding a well-known cell surface protein present in PCa, further supports a potential contribution of this ncRNA to PCa progression. CONCLUSION While larger and further studies are needed to define the role of these genes/ncRNA in PCa, our findings pave the way toward the identification of a subgroup of patients at intermediate risk who may benefit from adjuvant treatments and new therapeutic agents.
Collapse
Affiliation(s)
- Christian Ruiz
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Ilaria Alborelli
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Massimiliano Manzo
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Byron Calgua
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eveline Keller
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Luca Quagliata
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
| | - Cyrill A. Rentsch
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Giulio C. Spagnoli
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
| | | | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Rudolf Morant
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | - on behalf of the former members of the Urology Team in St. Gallen**
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
- 4HF Biotec, Freiburg, Germany
- Medical Affairs Team, Genetic Sciences Group, Thermo Fisher Scientific, Monza, Italy
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
- National Research Council, Institute of Translational Pharmacology, Rome, Italy
- Pathology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Tumor-und Brustzentrum ZeTuP, St. Gallen, Switzerland
| | | |
Collapse
|
15
|
Yang M, Huang S, Zhao Y, Xie B, Hu X, Cai Y. Novel LncRNA AK023507 inhibits cell metastasis and proliferation in Papillary Thyroid Cancer through β-catenin/Wnt Signaling Pathway. Biochem Biophys Res Commun 2023; 655:104-109. [PMID: 36934585 DOI: 10.1016/j.bbrc.2023.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/14/2023]
Abstract
INTRODUCTION Papillary Thyroid Cancer (PTC) represents a commonly encountered type of thyroid malignancy whose occurrence and development is influenced by long non-coding RNA (LncRNA). A novel lncRNA (LncRNA AK023507), known to have tumor suppressive functions, was shown to prevent breast cancer cells from proliferating and metastasizing, but its mechanism in PTC is unclear. METHODS Using PTC tissues and cell lines, the expression of LncRNA AK023507 was investigated by quantitative Real-time Polymerase Chain Reaction (qRT-PCR). The effects of knockdown or overexpression of LncRNA AK023507 on cell growth and movement were investigated through various cell experiments in vitro. The presence of important functional proteins was determined by Western blotting, with the recovery experiment used for verification. RESULTS LncRNA AK023507 was found to have low expression in both the PTC cell lines and tissue samples. Knockdown of LncRNA AK023507 in PTC cells significantly promoted cell proliferation, migration, and invasion, while overexpression of LncRNA AK023507 resulted in the opposite effects. Furthermore, LncRNA AK023507 could regulate the expression of β-catenin/Wnt signaling pathway as confirmed by recovery experiment. CONCLUSION By acting through the β-catenin/Wnt signaling pathway, LncRNA AK023507 prevented PTC cells from proliferating and metastasizing. These novel findings indicate that LncRNA AK023507 could be of prognostic and diagnostic value as a potential biomarker of PTC.
Collapse
Affiliation(s)
- Mingyao Yang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, China
| | - Shifen Huang
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, China
| | - Yelu Zhao
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, China
| | - Bojian Xie
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, China
| | - Xiaoqu Hu
- The First Affiliated Hospital of Wenzhou Medical University, China
| | - Yangjun Cai
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, China.
| |
Collapse
|
16
|
Emerging RNA-Based Therapeutic and Diagnostic Options: Recent Advances and Future Challenges in Genitourinary Cancers. Int J Mol Sci 2023; 24:ijms24054601. [PMID: 36902032 PMCID: PMC10003365 DOI: 10.3390/ijms24054601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/15/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Renal cell carcinoma, bladder cancer, and prostate cancer are the most widespread genitourinary tumors. Their treatment and diagnosis have significantly evolved over recent years, due to an increasing understanding of oncogenic factors and the molecular mechanisms involved. Using sophisticated genome sequencing technologies, the non-coding RNAs, such as microRNAs, long non-coding RNAs, and circular RNAs, have all been implicated in the occurrence and progression of genitourinary cancers. Interestingly, DNA, protein, and RNA interactions with lncRNAs and other biological macromolecules drive some of these cancer phenotypes. Studies on the molecular mechanisms of lncRNAs have identified new functional markers that could be potentially useful as biomarkers for effective diagnosis and/or as targets for therapeutic intervention. This review focuses on the mechanisms underlying abnormal lncRNA expression in genitourinary tumors and discusses their role in diagnostics, prognosis, and treatment.
Collapse
|
17
|
Yu Y, Xu Z, Ni H, Jin M, Dai C. Clinicopathological and prognostic value of long non-coding RNA CCAT1 expression in patients with digestive system cancer. Oncol Lett 2023; 25:73. [PMID: 36688111 PMCID: PMC9843303 DOI: 10.3892/ol.2023.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/09/2022] [Indexed: 01/03/2023] Open
Abstract
Colon cancer associated transcript-1 (CCAT1) is known to play an important role in numerous types of human cancer, including bladder, prostate and ovarian cancer. However, a consistent perspective has not been established in digestive system cancer (DSC). To explore the prognostic value of CCAT1 in patients with DSC, a meta-analysis was performed. A systematic search of PubMed, Embase, Web of Science, China National Knowledge Infrastructure, Chinese Biological Medical Literature database, Cochrane Library and WanFang database was applied to select eligible articles. Pooled odds ratios (ORs) or hazard ratios (HRs) with corresponding 95% confidence intervals (CIs) were calculated to estimate the effects of CCAT1 on pathological or clinical features. A total of 1,719 patients from 12 eligible articles were enrolled in the meta-analysis. The results revealed that elevated CCAT1 expression was significantly related to larger tumor size (OR, 1.81; 95% CI, 1.31-2.48), poorer differentiation (OR, 0.45; 95% CI, 0.31-0.64), earlier lymph node metastasis (OR, 3.14; 95% CI, 2.34-4.22) and advanced TNM stage (OR, 3.08; 95% CI, 2.07-4.59). In addition, high CCAT1 expression predicted a poorer outcome for overall survival rate (HR, 2.37; 95% CI, 2.11-2.67) and recurrence-free survival rate (HR, 2.16, 95% CI, 1.31-3.57). High expression levels of CCAT1 were therefore related to unfavorable clinical outcomes of patients with DSC. These results demonstrated that CCAT1 could serve as a prognostic predictor in human DSC.
Collapse
Affiliation(s)
- Yue Yu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Zhihua Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Hao Ni
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Mengxian Jin
- Department of Endocrinology, Suzhou Xiangcheng People's Hospital, Suzhou, Jiangsu 215131, P.R. China,Correspondence to: Dr Mengxian Jin, Department of Endocrinology, Suzhou Xiangcheng People's Hospital, 1060 Huayuan Road, Xiangcheng, Suzhou, Jiangsu 215131, P.R. China, E-mail:
| | - Chen Dai
- Department of Thyroid and Breast Surgery, Ningbo First Hospital, Ningbo, Zhejiang 315010, P.R. China,Dr Chen Dai, Department of Thyroid and Breast Surgery, Ningbo First Hospital, 59 Liu Ting Street, Haishu, Ningbo, Zhejiang 315010, P.R. China, E-mail:
| |
Collapse
|
18
|
Yang HW, Ju SP, Tseng TF. Design the RNA aptamer of PCA3 long non-coding ribonucleic acid by the coarse-grained molecular mechanics. J Biomol Struct Dyn 2022; 40:13833-13847. [PMID: 34693888 DOI: 10.1080/07391102.2021.1994881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The stochastic tunneling-basin hopping-discrete molecular dynamics (STUN-BH-DMD) method was applied to predict the tertiary structure of the prostate cancer marker PCA3 using two respective secondary structures predicted by the Vienna RNA package and Mathews lab package. The RNA CG force field with the geometrical restraints for maintaining PCA3 secondary structures is used. For each secondary structure, 5000 PCA3 structures were predicted by using 5000 independent initial structures. These structures were then evaluated by a scoring function, considering the contributions from the radius of gyration, contact energy, and surface fraction of complementary nucleotides to ASO683 and ASO735 used in the related experiment. For each secondary structure, the PCA3 structures with the highest three scores were selected for aptamer design and further adsorption simulation. The ASOs complementary to PCA3 surface segments possessing relatively higher RMSF values are selected to be the potential PCA3 aptamers. After the adsorption simulation, the adsorption energies of ASO961, ASO3181, ASO3533, and ASO3595 are higher than or comparable to those of ASO683 and ASO735 used in the experiment. The NEB method was used to obtain MEPs for the adsorption process of all predicted ASOs onto PCA3. The adsorption barriers range between 29 ∼ 39 kcal/mol, while the desorption barriers range between 112 ∼ 352 kcal/mol, indicating these aptamer/PCA3 complexes are very stable. Using PCA3 surface segments with relatively higher RMSF values, longer ASOs can be also obtained and most longer ASOs possess lower binding energy, ranging between -486.1 and -618.2 kcal/mol.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hung-Wei Yang
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Shin-Pon Ju
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan.,Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ta-Feng Tseng
- Department of Mechanical and Electro-Mechanical Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
19
|
Wang Q, Chen C, Xu X, Shu C, Cao C, Wang Z, Fu Y, Xu L, Xu K, Xu J, Xia A, Wang B, Xu G, Zou X, Su R, Kang W, Xue Y, Mo R, Sun B, Wang S. APAF1-Binding Long Noncoding RNA Promotes Tumor Growth and Multidrug Resistance in Gastric Cancer by Blocking Apoptosome Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201889. [PMID: 35975461 PMCID: PMC9534967 DOI: 10.1002/advs.202201889] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/13/2022] [Indexed: 05/29/2023]
Abstract
Chemotherapeutics remain the first choice for advanced gastric cancers (GCs). However, drug resistance and unavoidable severe toxicity lead to chemotherapy failure and poor prognosis. Long noncoding RNAs (lncRNAs) play critical roles in tumor progression in many cancers, including GC. Here, through RNA screening, an apoptotic protease-activating factor 1 (APAF1)-binding lncRNA (ABL) that is significantly elevated in cancerous GC tissues and an independent prognostic factor for GC patients is identified. Moreover, ABL overexpression inhibits GC cell apoptosis and promotes GC cell survival and multidrug resistance in GC xenograft and organoid models. Mechanistically, ABL directly binds to the RNA-binding protein IGF2BP1 via its KH1/2 domain, and then IGF2BP1 further recognizes the METTL3-mediated m6A modification on ABL, which maintains ABL stability. In addition, ABL can bind to the WD1/WD2 domain of APAF1, which competitively prevent cytochrome c from interacting with APAF1, blocking apoptosome assembly and caspase-9/3 activation; these events lead to resistance to cell death in GC cells. Intriguingly, targeting ABL using encapsulated liposomal siRNA can significantly enhance the sensitivity of GC cells to chemotherapy. Collectively, the results suggest that ABL can be a potential prognostic biomarker and therapeutic target in GC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Chen Chen
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Xiao Xu
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Chuanjun Shu
- Department of BioinformaticsSchool of Biomedical Engineering and InformaticsNanjing Medical UniversityNanjing210000China
| | - Changchang Cao
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Zhangding Wang
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Yao Fu
- Department of PathologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Lei Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Kaiyue Xu
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Jiawen Xu
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
| | - Anliang Xia
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Bo Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Guifang Xu
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Xiaoping Zou
- Department of GastroenterologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
| | - Ruibao Su
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Wei Kang
- Department of Anatomical and Cellular PathologyInstitute of Digestive DiseaseState Key Laboratory of Digestive DiseaseState Key Laboratory of Translational OncologyPrince of Wales HospitalThe Chinese University of Hong KongHong KongSAR999077China
| | - Yuanchao Xue
- Key Laboratory of RNA BiologyInstitute of BiophysicsChinese Academy of SciencesBeijing100101China
| | - Ran Mo
- State Key Laboratory of Natural MedicinesJiangsu Key Laboratory of Drug Discovery for Metabolic DiseasesCenter of Advanced Pharmaceuticals and BiomaterialsSchool of Life Science and TechnologyChina Pharmaceutical UniversityNanjing210000China
| | - Beicheng Sun
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| | - Shouyu Wang
- Department of Hepatobiliary SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210000China
- Jiangsu Key Laboratory of Molecular MedicineMedical School of Nanjing UniversityNanjing210000China
- Center for Public Health ResearchMedical School of Nanjing UniversityNanjing210000China
| |
Collapse
|
20
|
Baldelli E, Mandarano M, Bellezza G, Petricoin EF, Pierobon M. Analysis of neuroendocrine clones in NSCLCs using an immuno-guided laser-capture microdissection-based approach. CELL REPORTS METHODS 2022; 2:100271. [PMID: 36046628 PMCID: PMC9421534 DOI: 10.1016/j.crmeth.2022.100271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 06/03/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022]
Abstract
Clonal evolution and lineage plasticity are key contributors to tumor heterogeneity and response to treatment in cancer. However, capturing signal transduction events in coexisting clones remains challenging from a technical perspective. In this study, we developed and tested a signal-transduction-based workflow to isolate and profile coexisting clones within a complex cellular system like non-small cell lung cancers (NSCLCs). Cooccurring clones were isolated under immunohistochemical guidance using laser-capture microdissection, and cell signaling activation portraits were measured using the reverse-phase protein microarray. To increase the translational potential of this work and capture druggable vulnerabilities within different clones, we measured expression/activation of a panel of key drug targets and downstream substrates of FDA-approved or investigational agents. We isolated intermixed clones, including poorly represented ones (<5% of cells), within the tumor microecology and identified molecular characteristics uniquely attributable to cancer cells that undergo lineage plasticity and neuroendocrine transdifferentiation in NSCLCs.
Collapse
Affiliation(s)
- Elisa Baldelli
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Martina Mandarano
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Guido Bellezza
- Department of Medicine and Surgery, Section of Anatomic Pathology and Histology, University of Perugia, Perugia, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| | - Mariaelena Pierobon
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
- School of Systems Biology, George Mason University, Manassas, VA, USA
| |
Collapse
|
21
|
Liu F, Shi X, Wang F, Han S, Chen D, Gao X, Wang L, Wei Q, Xing N, Ren S. Evaluation and multi-institutional validation of a novel urine biomarker lncRNA546 to improve the diagnostic specificity of prostate cancer in PSA gray-zone. Front Oncol 2022; 12:946060. [PMID: 36033474 PMCID: PMC9411806 DOI: 10.3389/fonc.2022.946060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Background and objectives Prostate specific antigen (PSA) is currently the most commonly used biomarker for prostate cancer diagnosis. However, when PSA is in the gray area of 4-10 ng/ml, the diagnostic specificity of prostate cancer is extremely low, leading to overdiagnosis in many clinically false-positive patients. This study was trying to discover and evaluate a novel urine biomarker long non-coding RNA (lncRNA546) to improve the diagnostic accuracy of prostate cancer in PSA gray-zone. Methods A cohort study including consecutive 440 participants with suspected prostate cancer was retrospectively conducted in multi-urology centers. LncRNA546 scores were calculated with quantitative real-time polymerase chain reaction. The area under the receiver operating characteristic curve (AUROC), decision curve analysis (DCA) and a biopsy-specific nomogram were utilized to evaluate the potential for clinical application. Logistic regression model was constructed to confirm the predictive power of lncRNA546. Results LncRNA546 scores were sufficient to discriminate positive and negative biopsies. ROC analysis showed a higher AUC for lncRNA546 scores than prostate cancer antigen 3 (PCA3) scores (0.78 vs. 0.66, p<0.01) in the overall cohort. More importantly, the AUC of lncRNA546 (0.80) was significantly higher than the AUCs of total PSA (0.57, p=0.02), percentage of free PSA (%fPSA) (0.64, p=0.04) and PCA3 (0.63, p<0.01) in the PSA 4-10 ng/ml cohort. A base model constructed by multiple logistic regression analysis plus lncRNA546 scores improved the predictive accuracy (PA) from 79.8% to 86.3% and improved AUC results from 0.862 to 0.915. DCA showed that the base model plus lncRNA546 displayed greater net benefit at threshold probabilities beyond 15% in the PSA 4-10 ng/ml cohort. Conclusion LncRNA546 is a promising novel biomarker for the early detection of prostate cancer, especially in the PSA 4-10 ng/ml cohort.
Collapse
Affiliation(s)
- Fei Liu
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Fei Liu, ; Shancheng Ren,
| | - Xiaolei Shi
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Fangming Wang
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sujun Han
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dong Chen
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu Gao
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Linhui Wang
- Department of Urology, Shanghai Changhai Hospital, Shanghai, China
| | - Qiang Wei
- Department of Urology, West China Hospital, Chengdu, China
| | - Nianzeng Xing
- Department of Urology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changzheng Hospital, Shanghai, China
- *Correspondence: Fei Liu, ; Shancheng Ren,
| |
Collapse
|
22
|
Shen D, Peng H, Xia C, Deng Z, Tong X, Wang G, Qian K. The Role of Long Non-Coding RNAs in Epithelial-Mesenchymal Transition-Related Signaling Pathways in Prostate Cancer. Front Mol Biosci 2022; 9:939070. [PMID: 35923466 PMCID: PMC9339612 DOI: 10.3389/fmolb.2022.939070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/10/2022] [Indexed: 11/17/2022] Open
Abstract
Prostate cancer (PCa) is one of the most common male malignancies with frequent remote invasion and metastasis, leading to high mortality. Epithelial-mesenchymal transition (EMT) is a fundamental process in embryonic development and plays a key role in tumor proliferation, invasion and metastasis. Numerous long non-coding RNAs (lncRNAs) could regulate the occurrence and development of EMT through various complex molecular mechanisms involving multiple signaling pathways in PCa. Given the importance of EMT and lncRNAs in the progression of tumor metastasis, we recapitulate the research progress of EMT-related signaling pathways regulated by lncRNAs in PCa, including AR signaling, STAT3 signaling, Wnt/β-catenin signaling, PTEN/PI3K/AKT signaling, TGF-β/Smad and NF-κB signaling pathways. Furthermore, we summarize four modes of how lncRNAs participate in the EMT process of PCa via regulating relevant signaling pathways.
Collapse
Affiliation(s)
- Dexin Shen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
| | - Hongwei Peng
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Caixia Xia
- President’s Office, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhao Deng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xi Tong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Gang Wang
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| | - Kaiyu Qian
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
- Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
- Human Genetic Resource Preservation Center of Hubei Province, Wuhan, China
- *Correspondence: Gang Wang, ; Kaiyu Qian,
| |
Collapse
|
23
|
Transcriptome profiling of kisspeptin neurons from the mouse arcuate nucleus reveals new mechanisms in estrogenic control of fertility. Proc Natl Acad Sci U S A 2022; 119:e2113749119. [PMID: 35763574 PMCID: PMC9271166 DOI: 10.1073/pnas.2113749119] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Kisspeptin neurons in the mediobasal hypothalamus (MBH) are critical targets of ovarian estrogen feedback regulating mammalian fertility. To reveal molecular mechanisms underlying this signaling, we thoroughly characterized the estrogen-regulated transcriptome of kisspeptin cells from ovariectomized transgenic mice substituted with 17β-estradiol or vehicle. MBH kisspeptin neurons were harvested using laser-capture microdissection, pooled, and subjected to RNA sequencing. Estrogen treatment significantly (p.adj. < 0.05) up-regulated 1,190 and down-regulated 1,139 transcripts, including transcription factors, neuropeptides, ribosomal and mitochondrial proteins, ion channels, transporters, receptors, and regulatory RNAs. Reduced expression of the excitatory serotonin receptor-4 transcript (Htr4) diminished kisspeptin neuron responsiveness to serotonergic stimulation. Many estrogen-regulated transcripts have been implicated in puberty/fertility disorders. Patients (n = 337) with congenital hypogonadotropic hypogonadism (CHH) showed enrichment of rare variants in putative CHH-candidate genes (e.g., LRP1B, CACNA1G, FNDC3A). Comprehensive characterization of the estrogen-dependent kisspeptin neuron transcriptome sheds light on the molecular mechanisms of ovary-brain communication and informs genetic research on human fertility disorders.
Collapse
|
24
|
Tang L, Li W, Xu H, Zheng X, Qiu S, He W, Wei Q, Ai J, Yang L, Liu J. Mutator-Derived lncRNA Landscape: A Novel Insight Into the Genomic Instability of Prostate Cancer. Front Oncol 2022; 12:876531. [PMID: 35860569 PMCID: PMC9291324 DOI: 10.3389/fonc.2022.876531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
Background Increasing evidence has emerged to reveal the correlation between genomic instability and long non-coding RNAs (lncRNAs). The genomic instability-derived lncRNA landscape of prostate cancer (PCa) and its critical clinical implications remain to be understood. Methods Patients diagnosed with PCa were recruited from The Cancer Genome Atlas (TCGA) program. Genomic instability-associated lncRNAs were identified by a mutator hypothesis-originated calculative approach. A signature (GILncSig) was derived from genomic instability-associated lncRNAs to classify PCa patients into high-risk and low-risk groups. The biochemical recurrence (BCR) model of a genomic instability-derived lncRNA signature (GILncSig) was established by Cox regression and stratified analysis in the train set. Then its prognostic value and association with clinical features were verified by Kaplan–Meier (K-M) analysis and receiver operating characteristic (ROC) curve in the test set and the total patient set. The regulatory network of transcription factors (TFs) and lncRNAs was established to evaluate TF–lncRNA interactions. Results A total of 95 genomic instability-associated lncRNAs of PCa were identified. We constructed the GILncSig based on 10 lncRNAs with independent prognostic value. GILncSig separated patients into the high-risk (n = 121) group and the low-risk (n = 121) group in the train set. Patients with high GILncSig score suffered from more frequent BCR than those with low GILncSig score. The results were further validated in the test set, the whole TCGA cohort, and different subgroups stratified by age and Gleason score (GS). A high GILncSig risk score was significantly associated with a high mutation burden and a low critical gene expression (PTEN and CDK12) in PCa. The predictive performance of our BCR model based on GILncSig outperformed other existing BCR models of PCa based on lncRNAs. The GILncSig also showed a remarkable ability to predict BCR in the subgroup of patients with TP53 mutation or wild type. Transcription factors, such as FOXA1, JUND, and SRF, were found to participate in the regulation of lncRNAs with prognostic value. Conclusion In summary, we developed a prognostic signature of BCR based on genomic instability-associated lncRNAs for PCa, which may provide new insights into the epigenetic mechanism of BCR.
Collapse
Affiliation(s)
- Liansha Tang
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- West China Medical School of Sichuan University, Chengdu, China
| | - Wanjiang Li
- Department of Radiology, West China Hospital of Sichuan University, Chengdu, China
| | - Hang Xu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Xiaonan Zheng
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- Institute of System Genetics, West China Hospital of Sichuan University, Chengdu, China
| | - Shi Qiu
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Wenbo He
- West China Medical School of Sichuan University, Chengdu, China
| | - Qiang Wei
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Jianzhong Ai
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Yang
- Department of Urology, Institute of Urology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| | - Jiyan Liu
- Department of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Lu Yang, ; Jiyan Liu,
| |
Collapse
|
25
|
Xie J, Chen X, wang W, Guan Z, Hou J, Lin J. Long non-coding RNA PCDRlnc1 confers docetaxel resistance in prostate cancer by promoting autophagy. J Cancer 2022; 13:2138-2149. [PMID: 35517427 PMCID: PMC9066218 DOI: 10.7150/jca.65329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 03/06/2022] [Indexed: 12/24/2022] Open
Abstract
Docetaxel resistance seriously affects its clinical application in prostate cancer (PCa). Long noncoding RNAs (lncRNAs) influence the chemosensitivity of various cancers. However, the potential involvement of lncRNAs in docetaxel sensitivity remains largely unknown in PCa. In the present study, we used RNA sequencing to compare the expression profiles of lncRNAs in docetaxel-resistant PCa cells and their parental cells and identified a novel lncRNA, ENSG00000234147, termed as PCa docetaxel resistance-associated lncRNA1 (PCDRlnc1). Our results indicated that PCDRlnc1 is closely associated with docetaxel resistance in PCa, and PCDRlnc1 knockout markedly sensitized the resistant cells to docetaxel in vitro and in vivo. In addition, PCDRlnc1 inhibition markedly suppressed docetaxel-induced autophagy. Conversely, PCDRlnc1 overexpression promoted autophagy. Mechanistically, PCDRlnc1 interacted with UHRF1 (ubiquitin-like with plant homeodomain and ring finger domains 1) and promoted its transcription level in PCa cells, leading to the activation of autophagic Beclin-1 signaling. Together, our data demonstrate that PCDRlnc1 is a novel key regulator of PCa docetaxel resistance, suggesting that it may be used as a potential biomarker of docetaxel resistance and therapeutic target in PCa.
Collapse
Affiliation(s)
- Jianjun Xie
- Department of Urology, The First Affiliated Hospital of Soochow University, China
- Department of Urology, The Affiliated Suzhou Hospital Hospital of Nanjing Medical, University, China
| | - Xiumei Chen
- Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, China
| | - Weiwan wang
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
| | - Zhenghui Guan
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, China
| | - Jianzhong Lin
- Central Laboratory, BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing, Medical University, China
- Department of Urology, Taizhou Clinical Medical School of Nanjing Medical University, China
| |
Collapse
|
26
|
Sun J, Jin T, Niu Z, Guo J, Guo Y, Yang R, Wang Q, Gao H, Zhang Y, Li T, He W, Li Z, Ma W, Su W, Li L, Fan X, Shan H, Liang H. LncRNA DACH1 protects against pulmonary fibrosis by binding to SRSF1 to suppress CTNNB1 accumulation. Acta Pharm Sin B 2022; 12:3602-3617. [PMID: 36176913 PMCID: PMC9513499 DOI: 10.1016/j.apsb.2022.04.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease with unknown etiology and limited therapeutic options. Activation of fibroblasts is a prominent feature of pulmonary fibrosis. Here we report that lncRNA DACH1 (dachshund homolog 1) is downregulated in the lungs of IPF patients and in an experimental mouse model of lung fibrosis. LncDACH1 knockout mice develop spontaneous pulmonary fibrosis, whereas overexpression of LncDACH1 attenuated TGF-β1-induced aberrant activation, collagen deposition and differentiation of mouse lung fibroblasts. Similarly, forced expression of LncDACH1 not only prevented bleomycin (BLM)-induced lung fibrosis, but also reversed established lung fibrosis in a BLM model. Mechanistically, LncDACH1 binding to the serine/arginine-rich splicing factor 1 (SRSF1) protein decreases its activity and inhibits the accumulation of Ctnnb1. Enhanced expression of SRSF1 blocked the anti-fibrotic effect of LncDACH1 in lung fibroblasts. Furthermore, loss of LncDACH1 promoted proliferation, differentiation, and extracellular matrix (ECM) deposition in mouse lung fibroblasts, whereas such effects were abolished by silencing of Ctnnb1. In addition, a conserved fragment of LncDACH1 alleviated hyperproliferation, ECM deposition and differentiation of MRC-5 cells driven by TGF-β1. Collectively, LncDACH1 inhibits lung fibrosis by interacting with SRSF1 to suppress CTNNB1 accumulation, suggesting that LncDACH1 might be a potential therapeutic target for pulmonary fibrosis.
Collapse
Affiliation(s)
- Jian Sun
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Zhuhai People's Hospital, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, China
| | - Tongzhu Jin
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Zhihui Niu
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Jiayu Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yingying Guo
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Ruoxuan Yang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Qianqian Wang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Huiying Gao
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Yuhan Zhang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Tianyu Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wenxin He
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Zhixin Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai 200433, China
| | - Wenchao Ma
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Wei Su
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Liangliang Li
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
| | - Xingxing Fan
- State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Macau (SAR), China
| | - Hongli Shan
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
| | - Haihai Liang
- Department of Pharmacology (State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education), College of Pharmacy, Harbin Medical University, Harbin 150081, China
- Northern Translational Medicine Research and Cooperation Center, Heilongjiang Academy of Medical Sciences, Harbin Medical University, Harbin 150081, China
- Research Unit of Noninfectious Chronic Diseases in Frigid Zone (2019RU070), Chinese Academy of Medical Sciences, Harbin 150081, China
- Corresponding author.
| |
Collapse
|
27
|
Role of MicroRNAs in Neuroendocrine Prostate Cancer. Noncoding RNA 2022; 8:ncrna8020025. [PMID: 35447888 PMCID: PMC9029336 DOI: 10.3390/ncrna8020025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 11/25/2022] Open
Abstract
Therapy-induced neuroendocrine prostate cancer (t-NEPC/NEPC) is an aggressive variant of prostate cancer (PCa) that frequently emerges in castration-resistant prostate cancer (CRPC) under the selective pressure of androgen receptor (AR)-targeted therapies. This variant is extremely aggressive, metastasizes to visceral organs, tissues, and bones despite low serum PSA, and is associated with poor survival rates. It arises via a reversible trans-differentiation process, referred to as ‘neuroendocrine differentiation’ (NED), wherein PCa cells undergo a lineage switch and exhibit neuroendocrine features, characterized by the expression of neuronal markers such as enolase 2 (ENO2), chromogranin A (CHGA), and synaptophysin (SYP). The molecular and cellular mechanisms underlying NED in PCa are complex and not clearly understood, which contributes to a lack of effective molecular biomarkers for diagnosis and therapy of this variant. NEPC is thought to derive from prostate adenocarcinomas by clonal evolution. A characteristic set of genetic alterations, such as dual loss of retinoblastoma (RB1) and tumor protein (TP53) tumor suppressor genes and amplifications of Aurora kinase A (AURKA), NMYC, and EZH2, has been reported to drive NEPC. Recent evidence suggests that microRNAs (miRNAs) are important epigenetic players in driving NED in advanced PCa. In this review, we highlight the role of miRNAs in NEPC. These studies emphasize the diverse role that miRNAs play as oncogenes and tumor suppressors in driving NEPC. These studies have unveiled the important role of cellular processes such as the EMT and cancer stemness in determining NED in PCa. Furthermore, miRNAs are involved in intercellular communication between tumor cells and stromal cells via extracellular vesicles/exosomes that contribute to lineage switching. Recent studies support the promising potential of miRNAs as novel diagnostic biomarkers and therapeutic targets for NEPC.
Collapse
|
28
|
Zhuang H, Ma X, Liu X, Li C, Li X, Wu L, Wen M, Shi W, Yang X. Hyaluronan-mediated motility receptor antisense RNA 1 promotes hepatitis B virus-related hepatocellular carcinoma progression by regulating miR-627-3p/High Mobility Group AT-hook 2 axis. Bioengineered 2022; 13:8617-8630. [PMID: 35322735 PMCID: PMC9162001 DOI: 10.1080/21655979.2022.2054151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy in the world, with high mortality and poor prognosis. Hepatitis B virus (HBV) is one of the key factors implicated in the occurrence of HCC. Increasing evidence suggests that miRNAs play important roles in the development and metastasis of HBV-associated HCC (HBV-HCC). Here, we performed CCK8 (Cell count kit-8), EdU (5-ethynyl-2’-deoxyuridine) incorporation assay, wound-healing assay, transwell assay to study the changes in the cellular phenotype. Luciferase reporter assay, RNA pull-down experiment, RT-qPCR and western blotting were employed to study molecular mechanism. In addition, we also constructed a mouse HCC xenograft model to verify the functional role of HMMR-AS1/miR-627-3p/HMGA2 signal axis in vivo. Our study demonstrated that HMMR-AS1 was highly expressed in HCC tissues and cell lines, suggesting its implication in the progression of HCC. In addition, in vitro experiments showed that high HMMR-AS1 expression facilitated the migration, invasion, and proliferation of HCC cells. We further revealed that HMMR-AS1 promoted the malignant phenotype of HCC cells by regulating miR-627-3p/HMGA2 axis. Together, our data suggest that HMMR-AS1 regulates HBV-HCC progression via miR-627-3p/HMGA2 axis.
Collapse
Affiliation(s)
- Hai Zhuang
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Xiaoxia Ma
- Department of Hepato-Biliary Surgery Ward, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Xiaoyan Liu
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Chao Li
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Xinying Li
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Ling Wu
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Maofei Wen
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Wenli Shi
- Department of Infectious Diseases Ward, Baiyun Hospital Affiliated to Guizhou Medical University, Guiyang, China
| | - Xiaozhou Yang
- Department of Infectious Diseases, The Second Affifiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
29
|
Zhang L, Zhang X, Zhao W, Xiao X, Liu S, Peng Q, Jiang N, Zhou B. NLRP6-Dependent Pyroptosis-Related lncRNAs Predict the Prognosis of Hepatocellular Carcinoma. Front Med (Lausanne) 2022; 9:760722. [PMID: 35308537 PMCID: PMC8924451 DOI: 10.3389/fmed.2022.760722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 02/09/2022] [Indexed: 11/26/2022] Open
Abstract
Pyroptosis, a novel pro-inflammatory type of programmed cell death, is involved in the tumorigenesis of various cancers. Recent findings have implicated long non-coding RNAs (lncRNAs) in the serial steps of cancer development. However, the expression and prognostic signatures of pyroptosis-related lncRNAs in hepatocellular carcinoma (HCC) remain largely unknown. Therefore, a pyroptosis-related lncRNA prognostic model was constructed for HCC. Thirty-four pyroptosis-related genes were obtained from previous reviews, and gene expression data were collected from The Cancer Genome Atlas (TCGA) database. Spearman's correlation test was used to identify potential pyroptosis-related lncRNAs. Cox and LASSO regression analyses were used to construct a prognostic model. Subsequently, receiver operating characteristic (ROC) curves were constructed to assess the model's predictive ability for the overall survival (OS) of HCC patients. CytoHubba was used to screen out the potential hub gene, whose expression was verified using clinical samples from HCC patients. Finally, nine pyroptosis-related differentially expressed lncRNAs in HCC were identified, and a prognostic model with four pyroptosis-related lncRNAs was constructed with an area under the ROC curve (AUC) of approximately 0.734. Single-sample gene set enrichment analysis and TCGA revealed different immune infiltration and immune checkpoints between the two risk groups. Moreover, these lncRNAs are closely related to the pyroptosis-related gene, NLRP6, which may be considered a hub gene. NLRP6 was lower-expressed in HCC samples, and patients with lower expression of NLRP6 had the longer OS. In conclusion, NLRP6-dependent pyroptosis-related lncRNAs play important roles in tumor immunity and may be potential predictors and therapeutic targets for HCC.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiuzhen Zhang
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Wei Zhao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Xinyu Xiao
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Shanshan Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qiling Peng
- School of Basic Medical Science, Chongqing Medical University, Chongqing, China
| | - Ning Jiang
- Department of Pathology, Chongqing Medical University, Chongqing, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Liu Q. The emerging roles of exosomal long non-coding RNAs in bladder cancer. J Cell Mol Med 2022; 26:966-976. [PMID: 34981655 PMCID: PMC8831985 DOI: 10.1111/jcmm.17152] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs), especially exosomes, have been reported to play essential roles as extracellular messengers by transporting goods in various diseases, while their potential roles in bladder cancer (BC) still remain to be further studied. BC exhibits a high degree of chemoresistance and metastatic ability, which may be affected by cancer‐derived exosomes that carry proteins, lipids and RNA. To date, the most studied exosomal molecular cargo is long non‐coding RNA (lncRNA). Although there is increasing interest in its role and function, there is relatively little knowledge about it compared with other RNA transcripts. Nevertheless, in the past ten years, we have witnessed increasing interest in the role and function of lncRNA. For example, lncRNAs have been studied as potential biomarkers for the diagnosis of BC. They may play a role as a therapeutic target in precision medicine, but they may also be directly involved in the characteristics of tumour progression, such as metastasis, epithelial‐mesenchymal transition and drug resistance. Cancer cells are on chemotherapy acting. The function of lncRNA in various cancer exosomes has not yet been determined. In this review, we summarize the current studies about the prominent roles of exosomal lncRNAs in genome integrity, BC progression and carcinogenic features.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Silencing of LINC01963 enhances the chemosensitivity of prostate cancer cells to docetaxel by targeting the miR-216b-5p/TrkB axis. J Transl Med 2022; 102:602-612. [PMID: 35152275 PMCID: PMC9162921 DOI: 10.1038/s41374-022-00736-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 01/12/2023] Open
Abstract
Docetaxel (DTX) treatment effectively prolongs the overall survival of patients with prostate cancer. However, most patients eventually develop resistance to chemotherapy and experience tumor progression or even death. Long noncoding RNAs (lncRNAs) affect docetaxel chemosensitivity. However, the biological role and regulatory mechanisms of lncRNAs in docetaxel-resistant prostate cancer remain unclear. Differences in lncRNAs were evaluated by lncRNA sequencing and evaluated using quantitative real-time polymerase chain reaction, and TrkB expression was measured through western blot analysis. Proliferation was measured using the MTS, while apoptosis and cell cycle were measured using flow cytometry. In addition, migration and invasion were measured using transwell assays. Forty-eight female BALB/c nude mice were used for subcutaneous tumorigenicity and lung metastasis assays. We found that LINC01963 was overexpressed in the PC3-DR cells. LINC01963 silencing enhanced the chemosensitivity of PC3-DR to docetaxel and inhibited tumorigenicity and lung metastasis, while LINC01963 overexpression enhanced the chemoresistance of PC3 cells to docetaxel. It was found that LINC01963 bind to miR-216b-5p. The miR-216b-5p inhibitor reversed the suppressive effect of sh-LINC01963 on PC3-DR cell proliferation, migration, and invasion. Furthermore, miR-216b-5p can bind to the 3'-UTR of NTRK2 and inhibit TrkB protein levels. TrkB enhances docetaxel resistance in prostate cancer and reverses the effects of LINC01963 silencing and miR-216b-5p overexpression. In conclusion, silencing LINC01963 inhibited TrkB protein level to enhance the chemosensitivity of PC3-DR to docetaxel by means of competitively binding to miR-216b-5p. This study illustrates that LINC01963 is a novel therapeutic target for treating prostate cancer patients with DTX resistance.
Collapse
|
32
|
Hu CY, Wu KY, Lin TY, Chen CC. The Crosstalk of Long Non-Coding RNA and MicroRNA in Castration-Resistant and Neuroendocrine Prostate Cancer: Their Interaction and Clinical Importance. Int J Mol Sci 2021; 23:ijms23010392. [PMID: 35008817 PMCID: PMC8745162 DOI: 10.3390/ijms23010392] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/02/2021] [Accepted: 12/28/2021] [Indexed: 12/18/2022] Open
Abstract
Prostate cancer is featured by its heterogeneous nature, which indicates a different prognosis. Castration-resistant prostate cancer (CRPC) is a hallmark of the treatment-refractory stage, and the median survival of patients is only within two years. Neuroendocrine prostate cancer (NEPC) is an aggressive variant that arises from de novo presentation of small cell carcinoma or treatment-related transformation with a median survival of 1–2 years from the time of diagnosis. The epigenetic regulators, such as long non-coding RNAs (lncRNAs) and microRNAs (miRNAs), have been proven involved in multiple pathologic mechanisms of CRPC and NEPC. LncRNAs can act as competing endogenous RNAs to sponge miRNAs that would inhibit the expression of their targets. After that, miRNAs interact with the 3’ untranslated region (UTR) of target mRNAs to repress the step of translation. These interactions may modulate gene expression and influence cancer development and progression. Otherwise, epigenetic regulators and genetic mutation also promote neuroendocrine differentiation and cancer stem-like cell formation. This step may induce neuroendocrine prostate cancer development. This review aims to provide an integrated, synthesized overview under current evidence to elucidate the crosstalk of lncRNAs with miRNAs and their influence on castration resistance or neuroendocrine differentiation of prostate cancer. Notably, we also discuss the mechanisms of lncRNA–miRNA interaction in androgen receptor-independent prostate cancer, such as growth factors, oncogenic signaling pathways, cell cycle dysregulation, and cytokines or other transmembrane proteins. Conclusively, we underscore the potential of these communications as potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Che-Yuan Hu
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Kuan-Yu Wu
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
| | - Tsung-Yen Lin
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan;
- Division of Urology, Department of Surgery, Dou-Liou Branch, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Yunlin 640, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 600, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan 717, Taiwan
- Correspondence: (T.-Y.L.); (C.-C.C.); Tel.: +886-6235-3535 (ext. 5251) (T.-Y.L.); +886-5276-5041 (ext. 7521) (C.-C.C.)
| |
Collapse
|
33
|
Li S, Cao L. Demethyltransferase FTO alpha-ketoglutarate dependent dioxygenase (FTO) regulates the proliferation, migration, invasion and tumor growth of prostate cancer by modulating the expression of melanocortin 4 receptor (MC4R). Bioengineered 2021; 13:5598-5612. [PMID: 34787056 PMCID: PMC8974198 DOI: 10.1080/21655979.2021.2001936] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
N6-Methyladenosine (m6A) is the most abundant modifications in human messenger RNAs (mRNAs). This study aimed at investigating the function and mechanism of demethyltransferase fat mass and obesity-associated protein (FTO) in prostate cancer(PCa). The expression level of FTO in PCa was detected by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blot. Besides, the impacts of FTO on the proliferation, migration and invasion of PCa cells were also detected by cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU) and transwell assays. Furthermore, we also explored the potential mechanism of FTO in PCa. The results showed that FTO expression was decreased in PCa, and the low expression of FTO showed an obvious relevance to the clinical characteristics. Downregulation of FTO facilitated the proliferation, migration, invasion and tumor growth of PCa cells. Besides, MC4R displayed a remarkably high expression in PCa tissues, whose expression and m6A level were regulated by FTO. Meanwhile, the in vitro experiments revealed that highly expressed FTO partially reversed the facilitating effect of highly expressed MC4R on the malignant phenotype of PCa cells. Overall, FTO was downregulated in PCa and its expression level showed a relevance to the prognosis of PCa patients. Additionally, FTO could regulate the proliferation, migration and invasion of PCa via regulating the expression level of MC4R.
Collapse
Affiliation(s)
- Sheng Li
- Department of Urology Surgery, Ningbo Medical Centre LiHuiLi Hospital
| | - Lin Cao
- Department of Urology, Zhejiang Veteran Hospital
| |
Collapse
|
34
|
Xiong J, Wu L, Huang L, Wu C, Liu Z, Deng W, Ma S, Zhou Z, Yu H, Cao K. LncRNA FOXP4-AS1 Promotes Progression of Ewing Sarcoma and Is Associated With Immune Infiltrates. Front Oncol 2021; 11:718876. [PMID: 34765540 PMCID: PMC8577041 DOI: 10.3389/fonc.2021.718876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/05/2021] [Indexed: 12/25/2022] Open
Abstract
Ewing sarcoma (ES) is a highly malignant primary bone tumor with poor prognosis. Studies have shown that abnormal expression of lncRNA influences the prognosis of tumor patients. Herein, we established that FOXP4-AS1 was up-regulated in ES and this correlated with poor prognosis. Further analysis illustrated that FOXP4-AS1 down-regulation repression growth, migration, along with invasion of ES. On the contrary, up-regulation of FOXP4-AS1 promoted the growth, migration, as well as invasion of ES. To explore the mechanism of FOXP4-AS1, Spearman correlation analysis was carried out to determine genes that were remarkably linked to FOXP4-AS1 expression. The potential functions and pathways involving FOXP4-AS1 were identified by GO analysis, Hallmark gene set enrichment analysis, GSEA, and GSVA. The subcellular fractionation results illustrated that FOXP4-AS1 was primarily located in the cytoplasm of ES cells. Then a ceRNA network of FOXP4-AS1 was constructed. Analysis of the ceRNA network and GSEA yielded two candidate mRNAs for FOXP4-AS1. Results of the combined survival analysis led us to speculate that FOXP4-AS1 may affect the expression of TMPO by sponging miR-298, thereby regulating the malignant phenotype of ES. Finally, we found that FOXP4-AS1 may modulates the tumor immune microenvironment in an extracellular vesicle-mediated manner. In summary, FOXP4-AS1 correlates with poor prognosis of ES. It promotes the growth, migration, as well as invasion of ES cells and may modulate the tumor immune microenvironment.
Collapse
Affiliation(s)
- Jiachao Xiong
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Liang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Lu Huang
- Child Health Department of the Maternal and Children Health Hospital of Jiangxi Province, Nanchang, China
| | - Chunyang Wu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhiming Liu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Wenqiang Deng
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Shengbiao Ma
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhai Zhou
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honggui Yu
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Cao
- The Orthopedics Hospital, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
35
|
Ghildiyal R, Sawant M, Renganathan A, Mahajan K, Kim EH, Luo J, Dang HX, Maher CA, Feng FY, Mahajan NP. Loss of long non-coding RNA NXTAR in prostate cancer augments androgen receptor expression and enzalutamide resistance. Cancer Res 2021; 82:155-168. [PMID: 34740892 DOI: 10.1158/0008-5472.can-20-3845] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 04/19/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Androgen receptor (AR) signaling continues to play a dominant role in all stages of prostate cancer (PC), including castration-resistant prostate cancers (CRPC) that have developed resistance to second-generation AR antagonists such as enzalutamide. In this study, we identified a long non-coding RNA (lncRNA), NXTAR (LOC105373241), that is located convergent with the AR gene and is repressed in human prostate tumors and cell lines. NXTAR bound upstream of the AR promoter and promoted EZH2 recruitment, causing significant loss of AR (and AR-V7) expression. Paradoxically, AR bound the NXTAR promoter, and inhibition of AR by the ACK1/TNK2 small molecule inhibitor (R)-9b excluded AR from the NXTAR promoter. The histone acetyltransferase GCN5 bound and deposited H3K14 acetylation marks, enhancing NXTAR expression. Application of an oligonucleotide derived from NXTAR exon 5 (NXTAR-N5) suppressed AR/AR-V7 expression and prostate cancer cell proliferation, indicating the translational relevance of the negative regulation of AR. In addition, pharmacological restoration of NXTAR using (R)-9b abrogated enzalutamide-resistant prostate xenograft tumor growth. Overall, this study uncovers a positive feedback loop, wherein NXTAR acts as a novel prostate tumor-suppressing lncRNA by inhibiting AR/AR-V7 expression, which in turn upregulates NXTAR levels, compromising enzalutamide-resistant prostate cancer. The restoration of NXTAR could serve as a new therapeutic modality for patients who have acquired resistance to second-generation AR antagonists.
Collapse
Affiliation(s)
| | | | | | | | - Eric H Kim
- Siteman Cancer Center, Moffitt Cancer Center
| | - Jingqin Luo
- Division of Public Health Sciences, Department of Surgery, Washington University in St. Louis School of Medicine
| | - Ha X Dang
- Internal Medicine, Washington University in St. Louis
| | | | - Felix Y Feng
- Radiation Oncology, Helen Diller Comprehensive Cancer Center, University of California, San Francisco
| | | |
Collapse
|
36
|
Hertz P, Houlind K, Jepsen J, Bundgaard L, Jensen P, Friis M, Konge L, Bjerrum F. Identifying curriculum content for a cross-specialty robotic-assisted surgery training program: a Delphi study. Surg Endosc 2021; 36:4786-4794. [PMID: 34708292 DOI: 10.1007/s00464-021-08821-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 10/17/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Robotic-assisted surgery is increasing and there is a need for a structured and evidence-based curriculum to learn basic robotic competencies. Relevant training tasks, eligible trainees, realistic learning goals, and suitable training methods must be identified. We sought to develop a common curriculum that can ensure basic competencies across specialties. METHODS Two robotic surgeons from all departments in Denmark conducting robotic-assisted surgery within gynecology, urology, and gastrointestinal surgery, were invited to participate in a three-round Delphi study to identify learning goals and rank them according to relevance for a basic curriculum. An additional survey was conducted after the Delphi rounds on what training methods were considered best for each learning goal and who (console surgeon/patient-side assistant) should master each learning goal. RESULTS Fifty-six robotic surgeons participated and the response rates were 86%, 89%, and 77%, for rounds 1, 2 and 3, respectively. The Delphi study identified 40 potential learning goals, of which 29 were ranked as essential, e.g., Understand the link between arm placement and freedom of movement or Be able to perform emergency un-docking. In the additional survey, the response rate was 70%. Twenty-two (55%) of the identified learning goals were found relevant for the patient-side assistant and twenty-four (60%) were linked to a specific suitable learning method with > 75% agreement. CONCLUSIONS Our findings can help training centers plan their training programs concerning educational content and methods for training/learning. Furthermore, patient-side assistants should also receive basic skills training in robotic surgery.
Collapse
Affiliation(s)
- Peter Hertz
- Department of Surgery, Hospital Lillebaelt, University of Southern Denmark, Sygehusvej 24, 6000, Kolding, Denmark.
- Department of Regional Health Research, University of Southern Denmark, Kolding, Denmark.
| | - Kim Houlind
- Department of Regional Health Research, University of Southern Denmark, Kolding, Denmark
- Department of Vascular Surgery, Hospital Lillebaelt, University of Southern Denmark, Kolding, Denmark
| | - Jan Jepsen
- Department of Urology, Herlev-Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
- Center for HR and Education, Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region of Denmark, Denmark
| | - Lars Bundgaard
- Department of Surgery, Hospital Lillebaelt, University of Southern Denmark, Vejle, Denmark
| | - Pernille Jensen
- Department of Gynecology, Faculty of Health, Aarhus University Hospital, Institute of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Mikkel Friis
- Department of Skills Training and Simulation, NordSim, Aalborg University Hospital, Aalborg, Denmark
| | - Lars Konge
- Center for HR and Education, Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region of Denmark, Denmark
- University of Copenhagen, Copenhagen, Denmark
| | - Flemming Bjerrum
- Department of Surgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Center for HR and Education, Copenhagen Academy for Medical Education and Simulation (CAMES), The Capital Region of Denmark, Denmark
| |
Collapse
|
37
|
Xu Y, Yu X, Zhang M, Zheng Q, Sun Z, He Y, Guo W. Promising Advances in LINC01116 Related to Cancer. Front Cell Dev Biol 2021; 9:736927. [PMID: 34722518 PMCID: PMC8553226 DOI: 10.3389/fcell.2021.736927] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/24/2021] [Indexed: 01/11/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) are RNAs with a length of no less than 200 nucleotides that are not translated into proteins. Accumulating evidence indicates that lncRNAs are pivotal regulators of biological processes in several diseases, particularly in several malignant tumors. Long intergenic non-protein coding RNA 1116 (LINC01116) is a lncRNA, whose aberrant expression is correlated with a variety of cancers, including lung cancer, gastric cancer, colorectal cancer, glioma, and osteosarcoma. LINC01116 plays a crucial role in facilitating cell proliferation, invasion, migration, and apoptosis. In addition, numerous studies have recently suggested that LINC01116 has emerged as a novel biomarker for prognosis and therapy in malignant tumors. Consequently, we summarize the clinical significance of LINC01116 associated with biological processes in various tumors and provide a hopeful orientation to guide clinical treatment of various cancers in future studies.
Collapse
Affiliation(s)
- Yating Xu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Menggang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Zongzong Sun
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Open and Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou, China
- Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou, China
| |
Collapse
|
38
|
Parra-Medina R, López-Kleine L, Ramírez-Clavijo S, Payán-Gómez C. Coexpression network analysis identified lncRNAs-mRNAs with potential relevance in African ancestry prostate cancer. Future Sci OA 2021; 7:FSO749. [PMID: 34737889 PMCID: PMC8558852 DOI: 10.2144/fsoa-2021-0076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022] Open
Abstract
AIM This study aims to investigate similarities and differences using lncRNA and mRNA coexpression network analysis in African ancestry (AA) and European ancestry (EA) among prostate cancer (PCa) patients. METHODS We performed weighted gene coexpression network analysis of the expression from 49 of AA and 49 of EA to identify lncRNAs-mRNAs. RESULTS 27 lncRNAs and 36 mRNAs were highly expressed in patients of AA. Two mRNAs and their antisense lncRNAs were expressed. Additionally, seven mRNAs were DE or coexpressed and had an impact on survival. CONCLUSION We present a list of lncRNAs and mRNAs that were DE and coexpressed when comparing patients of AA and EA, and these data are a resource for future studies to understand the role of lncRNAs.
Collapse
Affiliation(s)
- Rafael Parra-Medina
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
- Department of Pathology, Research Institute, Fundación Univeristaria de Ciencias de la Salud, Bogotá, Colombia
- Deparment of Pathology, Instituto Nacional de Cancerología, Bogotá, Colombia
| | - Liliana López-Kleine
- Department of Statistics, Faculty of Science, Universidad Nacional de Colombia, Bogotá, Colombia
| | | | - César Payán-Gómez
- Faculty of Natural Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
39
|
Hu JC, Wang SS, Chou YE, Chiu KY, Li JR, Chen CS, Hung SC, Yang CK, Ou YC, Cheng CL, Lin CY, Yang SF. Associations between LncRNA MALAT1 Polymorphisms and Lymph Node Metastasis in Prostate Cancer. Diagnostics (Basel) 2021; 11:diagnostics11091692. [PMID: 34574033 PMCID: PMC8468695 DOI: 10.3390/diagnostics11091692] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022] Open
Abstract
Current evidence elucidates that long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) could regulate genetic expression and play a crucial role in both the diagnosis and prognosis of prostate cancer. Single-nucleotide polymorphisms (SNPs) of MALAT1 could alter the oncogenesis in various cancers. However, the associations between MALAT1 SNPs and prostate cancer have barely been investigated to date. This study included 579 patients with prostate cancer who received robotic-assisted radical prostatectomy at Taichung Veterans General Hospital from 2012 to 2017. Three SNPs of MALAT1 were analyzed to identify the impacts of SNPs on the clinicopathologic features in Taiwanese prostate cancer. Our results show that patients with a polymorphic G allele at rs619586 had a significantly higher risk of being in an advanced Gleason grade group (AOR: 1.764; 95% CI: 1.011–3.077; p = 0.046). Moreover, individuals with at least one polymorphic A allele at MALAT1 rs1194338 in the PSA >10 ng/mL group were positively associated with node-positive prostate cancer. In conclusion, MALAT1 SNPs are significantly associated with the susceptibility to both advanced Gleason grade and nodal metastasis in prostate cancer. The presence of MALAT1 SNPs rs619586 and rs1194338 seems to enhance oncogenesis in prostate cancer.
Collapse
Affiliation(s)
- Ju-Chuan Hu
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Division of Urology, Department of Surgery, Chiayi Branch, Taichung Veterans General Hospital, Chiayi 600, Taiwan
| | - Shian-Shiang Wang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Ying-Erh Chou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- School of Medicine, Chung Shan Medical University, Taichung 402, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
| | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Department of Applied Chemistry, National Chi Nan University, Nantou 545, Taiwan
| | - Jian-Ri Li
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Department of Medicine and Nursing, Hung Kuang University, Taichung 433, Taiwan
| | - Chuan-Shu Chen
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
| | - Sheng-Chun Hung
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
| | - Cheng-Kuang Yang
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
| | - Yen-Chuan Ou
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Department of Urology, Tung’s Taichung MetroHarbor Hospital, Taichung 433, Taiwan
| | - Chen-Li Cheng
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
| | - Chia-Yen Lin
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 407, Taiwan; (K.-Y.C.); (C.-K.Y.)
- Correspondence: (C.-Y.L.); (S.-F.Y.)
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung 402, Taiwan; (J.-C.H.); (S.-S.W.); (Y.-E.C.); (J.-R.L.); (C.-S.C.); (S.-C.H.); (Y.-C.O.); (C.-L.C.)
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung 402, Taiwan
- Correspondence: (C.-Y.L.); (S.-F.Y.)
| |
Collapse
|
40
|
Stabile A, Mazzone E, Cirulli GO, De Cobelli F, Grummet J, Thoeny HC, Emberton M, Pokorny M, Pinto PA, Taneja SS. Association Between Multiparametric Magnetic Resonance Imaging of the Prostate and Oncological Outcomes after Primary Treatment for Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol Oncol 2021; 4:519-528. [PMID: 33384275 DOI: 10.1016/j.euo.2020.11.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 11/10/2020] [Accepted: 11/27/2020] [Indexed: 12/25/2022]
Abstract
CONTEXT The diagnostic accuracy of multiparametric magnetic resonance imaging (mpMRI) for prostate cancer (PCa) diagnosis has been extensively explored. Little is known about the prognostic value of mpMRI suspicion scores and other quantitative mpMRI information. OBJECTIVE To systematically review the current literature assessing the relationship between pretreatment mpMRI and oncological outcomes after primary treatment for PCa to assess the role of mpMRI as a prognostic tool. EVIDENCE ACQUISITION A computerized bibliographic search of MEDLINE/PubMed, EMBASE, Scopus, and the Cochrane Library CENTRAL databases was performed for all studies assessing the relationship between mpMRI and oncological outcomes after primary treatment for PCa. The review protocol is registered in the PROSPERO database (CRD42020209899). EVIDENCE SYNTHESIS A total of six studies were included. Reliable evidence is still limited in this field. The Prostate Imaging-Reporting and Data System (PI-RADS) score was an independent predictor of biochemical recurrence (BCR) after radical prostatectomy (RP) in the majority of the studies included. The tumor volume at mpMRI was not significantly associated with BCR after RP for PCa. Data on disease progression and PCa-specific mortality are limited. Heterogeneity among the studies was substantial. CONCLUSIONS The review shows that PI-RADS scores provide information on the future likelihood of cancer recurrence or progression, at least for men undergoing RP. We are of the view that this information should be taken into account to identify men at higher risk of unfavorable outcomes. PATIENT SUMMARY A higher Prostate Imaging-Reporting and Data System score for magnetic resonance imaging of the prostate seems to be positively associated with oncological failure in prostate cancer and should be incorporated into future risk models.
Collapse
Affiliation(s)
- Armando Stabile
- Department of Urology and Division of Experimental Oncology, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Elio Mazzone
- Department of Urology and Division of Experimental Oncology, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giuseppe O Cirulli
- Department of Urology and Division of Experimental Oncology, Urological Research Institute, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco De Cobelli
- Department of Radiology, Vita-Salute San Raffaele University, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Jeremy Grummet
- Department of Surgery, Central Clinical School, Monash University, Melbourne, Australia
| | - Harriet C Thoeny
- Department of Radiology, Hôpital Cantonal de Fribourg HFR, University of Fribourg, Fribourg, Switzerland
| | - Mark Emberton
- UCL Division of Surgery and Interventional Science, University College London, London, UK; Department of Urology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Morgan Pokorny
- Department of Urology, Auckland City Hospital, Auckland, New Zealand
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Samir S Taneja
- Department of Urologic Oncology, NYU Langone Medical Center, New York, NY, USA
| |
Collapse
|
41
|
Chen Z, Li Y, Tan B, Li F, Zhao Q, Fan L, Zhang Z, Zhao X, Liu Y, Wang D. Long Non-coding RNA ASNR Targeting miR-519e-5p Promotes Gastric Cancer Development by Regulating FGFR2. Front Cell Dev Biol 2021; 9:679176. [PMID: 34307360 PMCID: PMC8299726 DOI: 10.3389/fcell.2021.679176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/10/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC), as a common gastrointestinal tumor, is an important cause of death from cancer all around the world. Long non-coding RNAs (lncRNAs), a novel class of transcripts, have attracted great attention of researchers. However, the mechanisms of the clinical significance of most lncRNAs in human cancer are mainly undocumented. This research desires to explore the clinical significance, biological function, and mechanism of Lnc_ASNR (apoptosis suppressing-non-coding RNA) in GC. Cell proliferation, cell cycle, cell migration, and invasion abilities were respectively determined by 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di-phenytetrazoliumromide (MTT), flow cytometry, wound healing, and Transwell assay (Sigma-Aldrich, St. Louis, MO, United States). The association of Lnc_ASNR, miR-519e-5p, and fibroblast growth factor receptor 2 (FGFR2) was evaluated via luciferase reporter experiments. The tumor xenograft assay was conducted to confirm the results of cell experiments. High expressed Lnc_ASNR was detected in both GC cells and tissues using qRT-PCR. Downregulated Lnc_ASNR could reduce proliferation, migration, and invasion in GC cells, while upregulated Lnc_ASNR could promote the cell proliferation, migration, and invasion. Moreover, the effect of Lnc_ASNR on migration and invasion ability is closely related to epithelial-mesenchymal transition (EMT). The bioinformatics analysis, luciferase assay, and Western blot demonstrated that Lnc_ASNR inhibited miR-519e-5p expression but increased FGFR2 expression. Lnc_ASNR and FGFR2 were both targeted to miR-519e-5p, and they were negatively correlated with the expression of miR-519e-5p. All investigations indicated that Lnc_ASNR functioned as a ceRNA targeting miR-519e-5p and facilitated GC development by regulating the pathway of miR-519e-5p/FGFR2.
Collapse
Affiliation(s)
- Zihao Chen
- Graduate School of Hebei Medical University, Shijiazhuang, China.,The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yong Li
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Bibo Tan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fang Li
- Department of Pathology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qun Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liqiao Fan
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Zhidong Zhang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuefeng Zhao
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yu Liu
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dong Wang
- The Third Department of Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
42
|
Hao Q, Wang Z, Wang Q, Chen B, Qian H, Liu X, Cao H, Xia W, Jiang J, Lu Z. Identification and characterization of lncRNA AP000253 in occult hepatitis B virus infection. Virol J 2021; 18:125. [PMID: 34112188 PMCID: PMC8194241 DOI: 10.1186/s12985-021-01596-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent studies suggest that lncRNAs may play significant roles in the development of hepatitis B virus (HBV) infection. However, as a special stage of HBV infection, the lncRNA expression in occult HBV infection (OBI) remains unclear. METHODS The plasma level of 15 HBV infection-related lncRNAs was initially detected using qRT-PCR in 10 OBI and 10 healthy controls (HCs) in discovery phase. Significantly dysregulated lncRNAs were subsequently validated in another 64 OBI, 20 HCs, 31 chronic hepatitis B (CHB) and 20 asymptomatic HBsAg carriers (ASC). Moreover, the AP000253 expression in liver tissues and its potential biological functions in HBV infection were further investigate with public transcriptomic data and HBV-expressing cell lines. RESULTS Among candidate lncRNAs, the plasma level of AP000253 decreased significantly in OBI, ASC and CHB patients compared to HCs, while no difference was found among OBI, ASC and CHB patients. In liver tissues, similar AP000253 expression was also observed from the GSE83148 dataset, while that in HBV-expressing hepatoma cells was opposite. ROC curve analysis indicated that plasma AP000253 yielded an AUC of 0.73 with 60% sensitivity and 75% specificity when differentiating OBI from HCs, but it could not specifically separate the stage of chronic HBV infection. Furthermore, functional experiments suggested that AP000253 could promote HBV transcription and replication in hepatoma cell lines. CONCLUSIONS AP000253 might be involved in HBV replication, and be served as a potential biomarker for HBV infection. In the setting of blood donations, plasma AP000253 would be more useful to moderately distinguish OBI in HBsAg-negative donors. However, the AP000253 expression in liver tissues and associated molecular mechanism of HBV infection deserve further study in future.
Collapse
Affiliation(s)
- Qingqin Hao
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Zheng Wang
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China
| | - Qinghui Wang
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Bo Chen
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Huizhong Qian
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Xiao Liu
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China
| | - Hong Cao
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China
| | - Wei Xia
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China.
| | - Jian Jiang
- Department of Clinical Laboratory, Wuxi Red Cross Blood Center, 109 Xinmin Road, Wuxi, 214000, China.
| | - Zhonghua Lu
- Department of Liver Disease, Wuxi No.5 People's Hospital Affiliated to Jiangnan University, 1215 Guangrui Road, Wuxi, 214000, China.
| |
Collapse
|
43
|
Ding L, Wang R, Shen D, Cheng S, Wang H, Lu Z, Zheng Q, Wang L, Xia L, Li G. Role of noncoding RNA in drug resistance of prostate cancer. Cell Death Dis 2021; 12:590. [PMID: 34103477 PMCID: PMC8187453 DOI: 10.1038/s41419-021-03854-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 02/06/2023]
Abstract
Prostate cancer is one of the most prevalent forms of cancer around the world. Androgen-deprivation treatment and chemotherapy are the curative approaches used to suppress prostate cancer progression. However, drug resistance is extensively and hard to overcome even though remarkable progress has been made in recent decades. Noncoding RNAs, such as miRNAs, lncRNAs, and circRNAs, are a group of cellular RNAs which participate in various cellular processes and diseases. Recently, accumulating evidence has highlighted the vital role of non-coding RNA in the development of drug resistance in prostate cancer. In this review, we summarize the important roles of these three classes of noncoding RNA in drug resistance and the potential therapeutic applications in this disease.
Collapse
Affiliation(s)
- Lifeng Ding
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ruyue Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danyang Shen
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Cheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huan Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zeyi Lu
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiming Zheng
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liqun Xia
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
44
|
Wang K, Fan Y, Sun J, Zhao L, Yu Y, Li G. Circ_0061140 stimulates the malignant development of prostate cancer by targeting miR-1193. Transl Androl Urol 2021; 10:1928-1938. [PMID: 34159074 PMCID: PMC8185672 DOI: 10.21037/tau-20-1477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Background This study sought to explore the expression pattern in prostate cancer (PCa) tissues, as well as the regulatory effects of circ_0061140 on the proliferative potential of PCa cells. Methods A quantitative real-time polymerase chain reaction (qRT-PCR) analysis was undertaken to detect circ_0061140 levels in 43 paired PCa tissues and adjacent normal tissues. After the knockdown of circ_0061140, changes in the proliferative potential of PCa cells and tumor growth in nude mice with PCa were detected. Finally, the relationship of circ_0061140 and miR-1193 in the development of PCa was assessed. Results The results showed that circ_0061140 was upregulated in PCa tissues. PCa patients with higher Gleason score or larger sized tumors expressed higher levels of circ_0061140. Additionally, the knockdown of circ_0061140 inhibited the proliferative potential of PCa cells. MiR-1193 was the target gene binding circ_0061140, and its level was negatively regulated by circ_0061140. Finally, rescue experiments showed that miR-1193 was regulated by circ_0061140 in the development of PCa. Conclusions Circ_0061140 is upregulated in PCa tissues, and is closely linked to Gleason score and tumor size in PCa. Additionally, it causes PCa cells to proliferate by negatively regulating miR-1193.
Collapse
Affiliation(s)
- Kai Wang
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Urology, Zhejiang Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Yi Fan
- Department of Urology, Zhejiang Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Ji Sun
- Department of Urology, Zhejiang Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Liwei Zhao
- Department of Urology, Zhejiang Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Yufu Yu
- Department of Urology, Zhejiang Xiaoshan Hospital Affiliated to Hangzhou Normal University, Hangzhou, China
| | - Gonghui Li
- Department of Urology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Zhao H, Dong H, Wang P, Zhu H. Long non-coding RNA SNHG17 enhances the aggressiveness of C4-2 human prostate cancer cells in association with β-catenin signaling. Oncol Lett 2021; 21:472. [PMID: 33907582 PMCID: PMC8063240 DOI: 10.3892/ol.2021.12733] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/04/2021] [Indexed: 01/04/2023] Open
Abstract
Long non-coding (lnc) RNAs have emerged as important regulators of cancer development and progression. Several lncRNAs have been reported to be associated with prostate cancer (PCa); however, the involvement of lncRNA SNHG17 in PCa remains unclear. In the present study, the mRNA expression level of SNHG17 in 58 pairs of PCa tumor samples and adjacent non-tumor tissues, as well as in PCa tumor cell lines was analyzed. The regulatory effect of SNHG17 on the oncogenic phenotypes of the C4-2 tumor cell line was also investigated. The clinicopathological analysis revealed that SNHG17 mRNA expression level was increased in the PCa tumor samples, and its high expression levels were associated with poor patient outcomes, indicating that SNHG17 may act as a biomarker for the prognosis of PCa. SNHG17 mRNA expression level was also increased in different PCa tumor cell lines. Functionally, SNHG17 increased C4-2 tumor cell growth and aggressiveness by stimulating tumor cell proliferation, survival, invasion and resistance to chemotherapy. Furthermore, SNHG17 promoted in vivo tumor growth in a xenograft mouse model. Notably, the SNHG17-induced in vitro and in vivo oncogenic effects were associated with activation of the β-catenin pathway. The results from the present study revealed that lncRNA SNHG17 could be an important regulator in the oncogenic properties of human PCa and may; therefore, represent a potential PCa therapeutic target.
Collapse
Affiliation(s)
- Haijun Zhao
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Haijing Dong
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Peng Wang
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital Affiliated to Qingdao Medical College of Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
46
|
Nitusca D, Marcu A, Dema A, Balacescu L, Balacescu O, Bardan R, Cumpanas AA, Sirbu IO, Petrut B, Seclaman E, Marian C. Long Noncoding RNA NEAT1 as a Potential Candidate Biomarker for Prostate Cancer. Life (Basel) 2021; 11:life11040320. [PMID: 33917553 PMCID: PMC8067529 DOI: 10.3390/life11040320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022] Open
Abstract
Background: Prostate cancer (PCa) remains one of the leading causes of cancer-related mortality in men worldwide, mainly due to unsatisfactory diagnostic methods used at present, which lead to overdiagnosis, unnecessary biopsies and treatment, or misdiagnosis in early asymptomatic stages. New diagnostic biomarkers are needed for a correct and early diagnosis. Long noncoding RNAs (lncRNAs) have been broadly studied for their involvement in PCa biology, as well as for their potential role as diagnostic biomarkers. Methods: We conducted lncRNA profiling in plasma and microdissected formalin-fixed paraffin-embedded (FFPE) tissues of PCa patients and attempted validation for commonly dysregulated individual lncRNAs. Results: Plasma profiling revealed eight dysregulated lncRNAs, while microarray analysis revealed 717 significantly dysregulated lncRNAs, out of which only nuclear-enriched abundant transcript 1 (NEAT1) was commonly upregulated in plasma samples and FFPE tissues. NEAT1’s individual validation revealed statistically significant upregulation (FC = 2.101, p = 0.009). Receiver operating characteristic (ROC) analysis showed an area under the curve (AUC) value of 0.7298 for NEAT1 (95% CI = 0.5812–0.8785), suggesting a relatively high diagnostic value, thus having a potential biomarker role for this malignancy. Conclusions: We present herein data suggesting that NEAT1 could serve as a diagnostic biomarker for PCa. Additional studies of larger cohorts are needed to confirm our findings, as well as the oncogenic mechanism of NEAT1 in the development of PCa.
Collapse
Affiliation(s)
- Diana Nitusca
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Anca Marcu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Alis Dema
- Department of Pathology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania;
| | - Loredana Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania; (L.B.); (O.B.)
| | - Razvan Bardan
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Alin Adrian Cumpanas
- Department of Urology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (R.B.); (A.A.C.)
- Urology Clinic, Timisoara Emergency County Hospital, 300723 Timisoara, Romania
| | - Ioan Ovidiu Sirbu
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Bogdan Petrut
- Department of Urology, The Oncology Institute “Prof. Dr. Ion Chiricuta”, 400015 Cluj-Napoca, Romania;
| | - Edward Seclaman
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
| | - Catalin Marian
- Department of Biochemistry and Pharmacology, “Victor Babeş” University of Medicine and Pharmacy, Pta Eftimie Murgu Nr. 2, 300041 Timişoara, Romania; (D.N.); (A.M.); (I.O.S.); (E.S.)
- Correspondence:
| |
Collapse
|
47
|
Wang H, Cheng Y, Mao C, Liu S, Xiao D, Huang J, Tao Y. Emerging mechanisms and targeted therapy of ferroptosis in cancer. Mol Ther 2021; 29:2185-2208. [PMID: 33794363 DOI: 10.1016/j.ymthe.2021.03.022] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 01/21/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Ferroptosis is an iron- and lipid reactive oxygen species (ROS)-dependent form of programmed cell death that is distinct from other forms of regulatory cell death at the morphological, biological, and genetic levels. Emerging evidence suggests critical roles for ferroptosis in cell metabolism, the redox status, and various diseases, such as cancers, nervous system diseases, and ischemia-reperfusion injury, with ferroptosis-related proteins. Ferroptosis is inhibited in diverse cancer types and functions as a dynamic tumor suppressor in cancer development, indicating that the regulation of ferroptosis can be utilized as an interventional target for tumor treatment. Small molecules and nanomaterials that reprogram cancer cells to undergo ferroptosis are considered effective drugs for cancer therapy. Here, we systematically summarize the molecular basis of ferroptosis, the suppressive effect of ferroptosis on tumors, the effect of ferroptosis on cellular metabolism and the tumor microenvironment (TME), and ferroptosis-inducing agents for tumor therapeutics. An understanding of the latest progress in ferroptosis could provide references for proposing new potential targets for the treatment of cancers.
Collapse
Affiliation(s)
- Haiyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Yan Cheng
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chao Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Desheng Xiao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Jun Huang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion (Central South University, Ministry of Education), Department of Pathology, Xiangya Hospital, Central South University, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medicine, Central South University, Changsha, Hunan 410078, China; Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, Changsha 410011, China.
| |
Collapse
|
48
|
Ito S, Ueda T, Yokoyama A, Fujihara A, Hongo F, Ukimura O. PCA3 controls chromatin organization and p53 signal activation by regulating LAP2α-lamin A complexes. Cancer Gene Ther 2021; 29:358-368. [PMID: 33758375 DOI: 10.1038/s41417-021-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/28/2021] [Accepted: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Prostate cancer antigen 3 (PCA3) is a prostate cancer-specific long noncoding RNA (lncRNA). Here, we report that lncRNA PCA3 plays a role in prostate cancer progression that is mediated by nucleoplasmic lamins. PCA3 interacts with the C-terminal region of lamina-associated polypeptide (LAP) 2α. The C-terminal region of LAP2α includes tumor suppressor protein retinoblastoma (pRb)- and lamin-binding domains, and it is necessary for the regulation and stabilization of the nucleoplasmic pool of lamin A. PCA3 inhibits the interaction of LAP2α with lamin A through binding with the C-terminus of LAP2α. The level of nucleoplasmic lamin A/C is increased by knockdown of PCA3. Together, the level of LAP2α within the nucleus is increased by PCA3 knockdown. In PCA3 knockdown cells, the levels of HP1γ, trimethylation of Lys9 on histone H3 (H3K9me3), and trimethylation of Lys36 on histone H3 (H3K36me3) are upregulated. In contrast, trimethylation of Lys4 on histone H3 (H3K4me3) is downregulated. We further demonstrate that activation of the p53 signaling pathway and cell cycle arrest are promoted in the absence of PCA3. These findings support a unique mechanism in which prostate cancer-specific lncRNA controls chromatin organization via regulation of the nucleoplasmic pool of lamins. This proposed mechanism suggests that cancer progression may be mediated by nuclear lamins.
Collapse
Affiliation(s)
- Saya Ito
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan.
| | - Takashi Ueda
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Atsushi Yokoyama
- Department of Molecular Endocrinology, Tohoku University Graduate School of Medicine, Sendai-City, Miyagi, Japan
| | - Atsuko Fujihara
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Fumiya Hongo
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| | - Osamu Ukimura
- Department of Urology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto-City, Kyoto, Japan
| |
Collapse
|
49
|
Abstract
Long non-coding RNAs (LncRNAs) can bind to other proteins or RNAs to regulate gene expression, and its role in tumors has been extensively studied. A common RNA binding protein, UPF1, is also a key factor in a variety of RNA decay pathways. RNA decay pathways serve to control levels of particular RNA molecules. The expression of UPF1 is often dysregulated in tumors, an observation which suggests that UPF1 contributes to development of a variety of tumors. Herein, we review evidence from studies of fourteen lncRNAs interact with UPF1. The interaction between lncRNA and UPFI provide fundamental basis for cell transformation and tumorigenic growth.
Collapse
Affiliation(s)
- Junjian He
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Shenyang, China
| |
Collapse
|
50
|
Li M, Yu X, Zheng Q, Zhang Q, He Y, Guo W. Promising role of long non-coding RNA PCAT6 in malignancies. Biomed Pharmacother 2021; 137:111402. [PMID: 33761616 DOI: 10.1016/j.biopha.2021.111402] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), a newly identified class of non-coding RNA (ncRNA), are defined as RNA molecules at least 200 nucleotides in length that are not translated into proteins. LncRNAs contribute to a wide range of biological processes and are master regulators of disease occurrence, development, and response to therapy in human malignancies. The lncRNA prostate cancer‑associated transcript 6 (PCAT6) is upregulated in various human malignancies, including lung cancer, hepatocellular carcinoma, cervical cancer, osteosarcoma, glioblastoma, colorectal cancer, breast cancer, gastric cancer, gastrointestinal stromal tumors, and pancreatic ductal adenocarcinoma. High expression of PCAT6 is closely correlated with aggressive clinicopathological characteristics and poor prognosis in cancer patients, suggesting it is an oncogenic lncRNA. PCAT6 overexpression also facilitates cell proliferation, invasion, and migration while attenuating apoptosis, indicating that it might serve as a new prognostic biomarker and therapeutic target for malignancies. Here, we discuss the molecular mechanisms, regulatory functions, and potential clinical applications of PCAT6 in cancer.
Collapse
Affiliation(s)
- Mingxing Li
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Xiao Yu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qingyuan Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Qiyao Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Key Laboratory of Hepatobiliary and Pancreatic Surgery and Digestive Organ Transplantation of Henan Province, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China; Open and Key Laboratory of Hepatobiliary & Pancreatic Surgery and Digestive Organ Transplantation at Henan Universities, Zhengzhou 450052, China; Henan Key Laboratory of Digestive Organ Transplantation, Zhengzhou 450052, China.
| |
Collapse
|