1
|
Bhandarkar NS, Shetty K, Narendra P, Kiran A, Shetty R, Shetty KB. Nutrition and diet for dry eye disease: Insights toward holistic management. Indian J Ophthalmol 2024; 72:1412-1423. [PMID: 39331431 DOI: 10.4103/ijo.ijo_2899_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/22/2024] [Indexed: 09/28/2024] Open
Abstract
Dry eye disease (DED) is one of the most common eye problems in the aging population. Hyperosmolarity triggers the immune response in DED and consequently activates the self-perpetuating immune cycle, leading to chronic damage of the ocular surface. This event causes symptoms such as a burning sensation, irritation, redness, photophobia, and blurred vision in DED patients. Subsequently, the quality of life gets significantly affected. The rising demand for DED management and treatment solutions, and the desirable outcomes from innovative therapies that draw global interest provide evidence to demonstrate the role of diet and nutrition in DED. Nutritional deficiency and a Westernized diet contribute to the chronic systemic progression of DED symptoms. It has been revealed in several published studies that the use of nutrients and dietary supplements improves the ocular surface and acts as a protective factor against DED. - We reviewed nutrition and dietary aspects in managing DED and its associated consequences, based on published studies, and reached an evidence-based conclusion.
Collapse
Affiliation(s)
- Nikhil S Bhandarkar
- GROW Research Laboratory, Narayana Nethralaya Foundation, Narayana Nethralaya Eye Hospital, Bangalore, Karnataka, India
| | | | - P Narendra
- Narayana Nethralaya, Bengaluru, Karnataka, India
| | | | - Rohit Shetty
- Narayana Nethralaya, Bengaluru, Karnataka, India
| | | |
Collapse
|
2
|
Kasetsuwan N, Reinprayoon U, Uthaithammarat L, Sereemaspun A, Sae-Liang N, Chaichompoo W, Suksamrarn A. Anti-inflammatory effect of curcuminoids and their analogs in hyperosmotic human corneal limbus epithelial cells. BMC Complement Med Ther 2024; 24:172. [PMID: 38654265 DOI: 10.1186/s12906-024-04448-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To assess the efficacy of curcuminoids (curcumin, demethoxycurcumin, bisdemethoxycurcumin [BDC]) and their analogs (tetrahydrocurcumin [THC], tetrahydrodemethoxycurcumin [THDC], tetrahydrobisdemethoxycurcumin) in reducing inflammatory cytokines and their toxicity to primary human corneal limbal epithelial cells, these cells were cultured and exposed to these compounds. METHODS The PrestoBlue assay assessed cell viability after treatment. Anti-inflammatory effects on hyperosmotic cells were determined using real-time polymerase chain reaction and significance was gauged using one-way analysis of variance and Tukey's tests, considering p-values < 0.05 as significant. RESULTS Curcuminoids and their analogs, at 1, 10, and 100 µM, exhibited no effect on cell viability compared to controls. However, cyclosporin A 1:500 significantly reduced cell viability more than most curcuminoid treatments, except 100 µM curcumin and BDC. All tested curcuminoids and analogs at these concentrations significantly decreased mRNA expression levels of tumor necrosis factor-α, interleukin (IL)-1β, IL-6, IL-17 A, matrix metallopeptidase-9, and intercellular adhesion molecule-1 after 90 mM NaCl stimulation compared to untreated cells. Furthermore, proinflammatory cytokine levels from hyperosmotic cells treated with 1, 10, and 100 µM curcumin, 100 µM BDC, 100 µM THC, 1 and 100 µM THDC mirrored those treated with cyclosporin A 1:500. CONCLUSION The anti-inflammatory efficiency of 1 and 10 µM curcumin, 100 µM THC, 1 and 100 µM THDC was comparable to that of cyclosporin A 1:500 while maintaining cell viability.
Collapse
Affiliation(s)
- Ngamjit Kasetsuwan
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand.
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand.
| | - Usanee Reinprayoon
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
- Department of Ophthalmology, Center of Excellence for Cornea and Stem Cell Transplantation, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Lita Uthaithammarat
- Department of Ophthalmology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Amornpun Sereemaspun
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nutchanart Sae-Liang
- Department of Anatomy, Center of Excellence in Nanomedicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| |
Collapse
|
3
|
Feng J, Zhang Y. The potential benefits of polyphenols for corneal diseases. Biomed Pharmacother 2023; 169:115862. [PMID: 37979379 DOI: 10.1016/j.biopha.2023.115862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 11/05/2023] [Indexed: 11/20/2023] Open
Abstract
The cornea functions as the primary barrier of the ocular surface, regulating temperature and humidity while providing protection against oxidative stress, harmful stimuli and pathogenic microorganisms. Corneal diseases can affect the biomechanical and optical properties of the eye, resulting in visual impairment or even blindness. Due to their diverse origins and potent biological activities, plant secondary metabolites known as polyphenols offer potential advantages for treating corneal diseases owing to their anti-inflammatory, antioxidant, and antibacterial properties. Various polyphenols and their derivatives have demonstrated diverse mechanisms of action in vitro and in vivo, exhibiting efficacy against a range of corneal diseases including repair of tissue damage, treatment of keratitis, inhibition of neovascularization, alleviation of dry eye syndrome, among others. Therefore, this article presents a concise overview of corneal and related diseases, along with an update on the research progress of natural polyphenols in safeguarding corneal health. A more comprehensive understanding of natural polyphenols provides a novel perspective for secure treatment of corneal diseases.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
| | - Yangyang Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China.
| |
Collapse
|
4
|
Islam R, Singh R. Curcumin and PCI-34051 combined treatment ameliorates inflammation and fibrosis by affecting MAP kinase pathway. Inflammopharmacology 2023; 31:3063-3079. [PMID: 37934384 DOI: 10.1007/s10787-023-01371-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 10/09/2023] [Indexed: 11/08/2023]
Abstract
OBJECTIVE Bronchoconstriction, along with inflammation and hyperresponsiveness is the characteristic feature associated with asthma, contributing to variable airflow obstruction, which manifests shortness of breath, cough and wheeze, etc. Histone deacetylases 8 (HDAC8) is the member of class I HDAC family and known to regulate microtubule integrity and muscle contraction. Therefore, we aimed to investigate the effects of HDAC8 inhibition in murine model of asthma using Pan-HDAC inhibitor curcumin (CUR) and HDAC8-specific inhibitor PCI-34051 (PCI), alone and in combination. MATERIALS AND METHODS To develop asthmatic mouse model, Balb/c mice were sensitized and challenged with ovalbumin (OVA). CUR (10 mg/kg, pre, post, alone and combined treatment) and PCI (0.5 mg/kg), were administered through intranasal (i.n) route, an hour before OVA aerosol challenge. Effects of HDAC8 inhibition by CUR and PCI pretreatments were evaluated in terms of inflammation, oxidative stress and fibrosis markers. Efficacy of curcumin post-treatment (CUR(p)) was also evaluated simultaneously. RESULTS Inflammatory cell recruitment, oxidative stress (reactive oxygen species, nitric oxide), histamine and Immunoglobulin E (IgE) levels and expression of fibrosis markers including hydroxyproline, matrix metalloproteinases-9 and alpha smooth muscle actin (MMP-9 and α-SMA) were significantly reduced by CUR, CUR(p), PCI-alone and combined treatments. Protein expressions of HDAC8, Nuclear factor-κB (NF-κB) accompanied by MAPKs (mitogen-activated protein kinases) were significantly reduced by the treatments. Structural alterations were examined by histopathological analysis and linked with the fibrotic changes. CONCLUSIONS Present study indicates protective effects of HDAC8 inhibition in asthma using HDAC8 using CUR and PCI alone or in combination, attenuates airway inflammation, fibrosis and remodeling; hence, bronchoconstriction was accompanied through modulation of MAP kinase pathway.
Collapse
Affiliation(s)
- Ramiya Islam
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India
| | - Rashmi Singh
- Department of Zoology, MMV, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
5
|
Lin S, Cai M, Zhang L, Mao Y, Wu H, Liu X, Li Y, Liang M, Cheng X, Yu F, He H, Zong R, Wu H, Liu Z, Ou S, Li W. Limbal Stem Cell Dysfunction Induced by Severe Dry Eye via Activation of the p38 MAPK Signaling Pathway. THE AMERICAN JOURNAL OF PATHOLOGY 2023; 193:1863-1878. [PMID: 37634709 DOI: 10.1016/j.ajpath.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 08/04/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023]
Abstract
Severe dry eye (SDE) can cause grievous damage to the ocular surface and result in vision impairment and even blindness. To investigate the fate of limbal stem cells in SDE and the underlying mechanism, the current study established an SDE rat model by removing the extraorbital and infraorbital lacrimal glands and maintaining them in a low-humidity environment. One month after the surgery, aqueous tear secretion was reduced dramatically, blood vessels invaded into the central cornea, and inflammatory cells infiltrated into the limbal stroma. The expressions of keratin 12 and paired box gene 6 were down-regulated dramatically, while those of keratin 10, small proline-rich protein 1b, and mucin 5AC were up-regulated in the corneal epithelium of the SDE rats. Cell proliferation in the limbal epithelium was up-regulated, while the stem/progenitor marker adenosine 5'-triphosphate-binding cassette member 2 and the limbal epithelial colony-forming efficiency were decreased in the SDE condition. Furthermore, the p38 mitogen-activated protein kinase signaling pathway was activated in the limbal corneal epithelium of SDE rats. The abnormal differentiation and stemness loss in the corneal epithelium could be reversed upon treatment with a p38 inhibitor in a SDE in vivo model and in vitro hyperosmolar corneal epithelial culture conditions. These data suggest that SDE can lead to limbal stem cell dysfunction, and p38 mitogen-activated protein kinase signaling pathway activation plays an essential role in this process.
Collapse
Affiliation(s)
- Sijie Lin
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minqing Cai
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Lingyu Zhang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yi Mao
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Han Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xiaodong Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Yixuan Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Minghui Liang
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Xinxuan Cheng
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Fei Yu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Hui He
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Rongrong Zong
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China
| | - Huping Wu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China
| | - Zuguo Liu
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China
| | - Shangkun Ou
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China.
| | - Wei Li
- Eye Institute of Xiamen University and affiliated Xiamen Eye Center, School of Medicine, Xiamen, China; Fujian Provincial Key Laboratory of Ophthalmology and Visual Science, Xiamen, China; Fujian Provincial Key Laboratory of Corneal & Ocular Surface Diseases, Xiamen, China; Xiang'an Hospital, Xiamen University, Xiamen, China.
| |
Collapse
|
6
|
Borselli M, Ferrari FF, Bianchi P, Rossi C, Scalzo GC, Mangialavori D, Scorcia V, Giannaccare G. Outcomes of the addition of oral administration of curcumin-phospholipid to hyaluronic acid-based tear substitute for the treatment of dry eye disease. FRONTIERS IN OPHTHALMOLOGY 2023; 3:1236525. [PMID: 38983042 PMCID: PMC11182207 DOI: 10.3389/fopht.2023.1236525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/14/2023] [Indexed: 07/11/2024]
Abstract
The aim of this study is to report the clinical outcomes of oral supplementation with curcumin-phospholipid in addition to hyaluronic acid-based tear substitute for the management of dry eye disease (DED). Patients with a diagnosis of DED confirmed by pathological values of both NIKBUT <10 s. and OSDI Questionnaire score > 12 were included. Patients were randomized to receive 2 different treatments: 0.25% hyaluronic acid-based tear substitute 3 time daily (Group 1) or as above plus curcumin-phosphatidylcholine complex tablets once a day (Group 2). Patients were evaluated at baseline (T0) and after 90 days of treatment (T1) by means of Keratograph for the measurement of NIKBUT, TMH, meibomian gland dropout and bulbar redness. Overall, data from 90 eyes of 45 patients were included. Group 1 consisted of 48 eyes of 24 patients, while group 2 included 42 eyes of 21 patients. When comparing median values of both groups at T0, no statistically significant differences were found for all parameters; instead for T1, statistically significant differences were found for redness and OSDI compared to Group 1. In group 1, a statistically significant reduction after the treatment was detected for Nikbut average and OSDI questionnaire; while in group 2, a statistically significant reduction after treatment was recorded for Nikbut average, bulbar redness and OSDI questionnaire. The addition of an oral supplement containing curcumin-phospholipid may help in a greater improvement of bulbar redness and subjective ocular symptoms compared to the treatment with tear substitutes alone for the management of DED.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Graecia of Catanzaro, Catanzaro, Italy
| |
Collapse
|
7
|
Rodella U, Honisch C, Gatto C, Ruzza P, D'Amato Tóthová J. Antioxidant Nutraceutical Strategies in the Prevention of Oxidative Stress Related Eye Diseases. Nutrients 2023; 15:nu15102283. [PMID: 37242167 DOI: 10.3390/nu15102283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
This review aims to discuss the delicate balance between the physiological production of reactive oxygen species and the role of antioxidant nutraceutical molecules in managing radicals in the complex anatomical structure of the eye. Many molecules and enzymes with reducing and antioxidant potential are present in different parts of the eye. Some of these, such as glutathione, N-acetylcysteine, α-lipoic acid, coenzyme Q10, and enzymatic antioxidants, are endogenously produced by the body. Others, such as plant-derived polyphenols and carotenoids, vitamins B2, C, and E, zinc and selenium, and omega-3 polyunsaturated fatty acids, must be obtained through the diet and are considered essential nutrients. When the equilibrium between the production of reactive oxygen species and their scavenging is disrupted, radical generation overwhelms the endogenous antioxidant arsenal, leading to oxidative stress-related eye disorders and aging. Therefore, the roles of antioxidants contained in dietary supplements in preventing oxidative stress-based ocular dysfunctions are also discussed. However, the results of studies investigating the efficacy of antioxidant supplementation have been mixed or inconclusive, indicating a need for future research to highlight the potential of antioxidant molecules and to develop new preventive nutritional strategies.
Collapse
Affiliation(s)
- Umberto Rodella
- Fondazione Banca degli Occhi del Veneto Onlus (FBOV), 30174 Zelarino, Italy
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Claudia Honisch
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Claudio Gatto
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| | - Paolo Ruzza
- Institute of Biomolecular Chemistry of CNR (ICB-CNR), Via F. Marzolo, 1, 35131 Padova, Italy
| | - Jana D'Amato Tóthová
- Research and Development, AL.CHI.MI.A. S.R.L., Viale Austria 14, 35020 Ponte San Nicoló, Italy
| |
Collapse
|
8
|
Hernández-Zulueta J, Navarro-Partida J, Sánchez-Aguilar OE, Cruz-Pavlovich HDS, Castro-Castañeda CR, González-De la Rosa A. An insight on the eye bacterial microbiota and its role on dry eye disease. APMIS 2023; 131:103-111. [PMID: 36453056 DOI: 10.1111/apm.13285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
The human ocular surface hosts a bacterial assemblage that integrates a diverse and complex microbiome. This bacterial microbiota is part of a healthy eye and plays a protective role in it. However, this ocular bacterial assemblage may alter the ocular surface inflammation response and can influence the development and progression of dry eye disease. For this reason, the present review describes the changes generated on the ocular surface by bacterial assemblages during the development of dry eye disease. Likewise, the interaction of this microbiota with the other inflammatory factors that influence the development of this disease is analyzed, as well as the use of treatments focused on modifying the bacteria on the ocular surface.
Collapse
Affiliation(s)
- Joicye Hernández-Zulueta
- Departamento de Biología Celular y Molecular, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico.,Laboratorio de Ecología Molecular, Microbiología y Taxonomía (LEMITAX), Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan, Jalisco, Mexico
| | - José Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan, Jalisco, Mexico.,Centro de Retina Medica y Quirúrgica, S.C., Centro Medico Puerta de Hierro, Zapopan, Jalisco, Mexico
| | | | | | | | - Alejandro González-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Zapopan, Jalisco, Mexico.,Centro de Retina Medica y Quirúrgica, S.C., Centro Medico Puerta de Hierro, Zapopan, Jalisco, Mexico
| |
Collapse
|
9
|
Castro-Castaneda CR, Altamirano-Lamarque F, Ortega-Macías AG, Santa Cruz-Pavlovich FJ, Gonzalez-De la Rosa A, Armendariz-Borunda J, Santos A, Navarro-Partida J. Nutraceuticals: A Promising Therapeutic Approach in Ophthalmology. Nutrients 2022; 14:5014. [PMID: 36501043 PMCID: PMC9740859 DOI: 10.3390/nu14235014] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
Abstract
Oxidative stress represents one of the main factors driving the pathophysiology of multiple ophthalmic conditions including presbyopia, cataracts, dry eye disease (DED), glaucoma, age-related macular degeneration (AMD) and diabetic retinopathy (DR). Currently, different studies have demonstrated the role of orally administered nutraceuticals in these diseases. For instance, they have demonstrated to improve lens accommodation in presbyopia, reduce protein aggregation in cataracts, ameliorate tear film stability, break up time, and tear production in dry eye, and participate in the avoidance of retinal neuronal damage and a decrease in intraocular pressure in glaucoma, contribute to the delayed progression of AMD, or in the prevention or treatment of neuronal death in diabetic retinopathy. In this review, we summarized the nutraceuticals which have presented a positive impact in ocular disorders, emphasizing the clinical assays. The characteristics of the different types of nutraceuticals are specified along with the nutraceutical concentration used to achieve a therapeutic outcome in ocular diseases.
Collapse
Affiliation(s)
| | | | - Alan Gabriel Ortega-Macías
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
| | | | - Alejandro Gonzalez-De la Rosa
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Juan Armendariz-Borunda
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Department of Molecular Biology and Genomics, Institute for Molecular Biology and Gene Therapy, University of Guadalajara, Guadalajara 44340, Mexico
| | - Arturo Santos
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| | - Jose Navarro-Partida
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Campus Guadalajara, Zapopan 45138, Mexico
- Centro de Retina Medica y Quirurgica, S.C., Hospital Puerta de Hierro, Zapopan 45116, Mexico
| |
Collapse
|
10
|
Nagaarudkumaran N, Mirzapour P, McCanna D, Ngo W. Temporal Change in Pro-Inflammatory Cytokine Expression from Immortalized Human Corneal Epithelial Cells Exposed to Hyperosmotic Stress. Curr Eye Res 2022; 47:1488-1495. [PMID: 36107828 DOI: 10.1080/02713683.2022.2125531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
PURPOSE To determine the metabolic activity, and cytokine expression over time from immortalized human corneal epithelial cells (HCECs) exposed to hyperosmotic stress. METHODS HCECs were cultured and expanded in DMEM/F-12 with 10% FBS. The cells were exposed to either normal media (295 mmol/kg) or hyperosmolar media (500 mmol/kg) for 0.25, 3, 6, and 12 hours. After each exposure duration, metabolic activity was quantified using alamarBlue, and a panel of pro-inflammatory cytokines (IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-α, IFN-γ, and IL-17A) was quantified using multiplexed electrochemiluminescence (Meso Scale Diagnostics, Rockville, MD). RESULTS Metabolic activity of the HCEC exposed to hyperosmolar conditions was significantly reduced at the 3-, 6-, and 12-hour mark compared to the control (all p < 0.01). There was no significant difference in cytokine expression between the hyperosmolar media and control at the 0.25- and 3-hour mark for all cytokines (all p ≥ 0.28). The difference in cytokine expression between the hyperosmolar media and the control was significant for IL-1β, IL-4, IL-6, IL-8, IL-12p70, IL-13, and TNF-α at the 6-hour mark (all p ≤ 0.02). No significant change in cytokine expression between the hyperosmolar media and control was noted for IL-2, IL-10, IL-17A, and IFN-γ (all p ≥ 0.74) at the 6-hour mark. CONCLUSION Hyperosmolar stress reduced cell metabolic activity and increased expression of IL-1β, IL-4, IL6, IL8, IL-12p70, IL-13, and TNF-α over a 6-hour period in an immortalized HCEC line.
Collapse
Affiliation(s)
- Nijani Nagaarudkumaran
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - Parisa Mirzapour
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - David McCanna
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada
| | - William Ngo
- Centre for Ocular Research & Education, School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada.,Centre for Eye and Vision Research (CEVR), Hong Kong SAR, China
| |
Collapse
|
11
|
Caban M, Lewandowska U. Inhibiting effects of polyphenols on angiogenesis and epithelial-mesenchymal transition in anterior segment eye diseases. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
12
|
Katsinas N, Rodríguez-Rojo S, Enríquez-de-Salamanca A. Olive Pomace Phenolic Compounds and Extracts Can Inhibit Inflammatory- and Oxidative-Related Diseases of Human Ocular Surface Epithelium. Antioxidants (Basel) 2021; 10:antiox10071150. [PMID: 34356385 PMCID: PMC8301198 DOI: 10.3390/antiox10071150] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/07/2021] [Accepted: 07/17/2021] [Indexed: 11/16/2022] Open
Abstract
Oxidative- and inflammatory-related ocular surface diseases have high prevalence and are an emerging issue in ophthalmology. Olive pomace (OP) is the olive oil's industry main by-product, and is potentially environmentally hazardous. Nevertheless, it contains phenolic compounds with important bioactivities, like oleuropein (OL) and hydroxytyrosol (HT). The antioxidant and anti-inflammatory effects of four OP extracts (CONV, OPT(1-3)), pure OL and HT, and mixtures thereof were screened on human corneal (HCE) and conjunctival epithelial (IM-ConjEpi) cells. CONV was conventionally extracted, while OPT(1-3) were produced by pressurized liquid extraction. Thanks to their improved activity, CONV and OPT3 (HT-enriched) were selected for dose-dependent studies. Cells were stimulated with tumor necrosis factor-α or ultraviolet-B radiation, measuring interleukin (IL)-1β, IL-6, IL-8, and IL-17A as well as interferon γ-induced protein [IP]-10 secretion or intracellular ROS production, respectively. On HCE, both extracts and HT inhibited the secretion of most measured ILs, demonstrating a strong anti-inflammatory effect; while in IM-ConjEpi, all samples decreased IP-10 secretion. Moreover, HT, OL, and both extracts showed strong dose-dependent antioxidant activity in both cell lines. Compared with CONV, OPT3 was active at lower concentrations, demonstrating that intensified extraction techniques are selective towards targeted biomarkers. Hence, a high-value application as potential ocular surface therapy was proposed for the OP valorization.
Collapse
Affiliation(s)
- Nikolaos Katsinas
- Institute of Applied Ophthalmobiology (IOBA), Campus Miguel Delibes, University of Valladolid (UVa), Paseo de Belén 17, 47011 Valladolid, Spain;
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Dr. Mergelina str., 47011 Valladolid, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
| | - Soraya Rodríguez-Rojo
- High Pressure Processes Group, Department of Chemical Engineering and Environmental Technology, School of Engineering, University of Valladolid (UVa), Dr. Mergelina str., 47011 Valladolid, Spain;
| | - Amalia Enríquez-de-Salamanca
- Institute of Applied Ophthalmobiology (IOBA), Campus Miguel Delibes, University of Valladolid (UVa), Paseo de Belén 17, 47011 Valladolid, Spain;
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Av. Monforte de Lemos, 3-5, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-983-186-369
| |
Collapse
|
13
|
Radkar P, Lakshmanan PS, Mary JJ, Chaudhary S, Durairaj SK. A Novel Multi-Ingredient Supplement Reduces Inflammation of the Eye and Improves Production and Quality of Tears in Humans. Ophthalmol Ther 2021; 10:581-599. [PMID: 34129210 PMCID: PMC8319251 DOI: 10.1007/s40123-021-00357-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 05/28/2021] [Indexed: 01/21/2023] Open
Abstract
INTRODUCTION Dry eye is a multifactorial condition of the eye caused by insufficient tear production and imbalance in tear composition leading to faster evaporation of tear fluid. It is also associated with inflammation that often leads to ocular surface damage. Symptoms of dry eyes include itchiness, soreness, red eyes, a burning sensation, eye fatigue and blurred vision. The objective of this study was to evaluate the efficacy and safety of our multi-ingredient supplement in subjects with dry eye syndrome (DES). METHODS We recruited 60 subjects with mild to moderate DES who were randomized in a 1:1 ratio in a single-center study to receive LCD (lutein 20 mg, zeaxanthin 4 mg, curcumin 200 mg curcuminoids, vitamin D3 600 IU) or placebo (soybean oil) capsules for 8 weeks. The primary outcomes evaluated were changes in tear volume by Schirmer's test and ocular symptoms by the Ocular Surface Disease Index (OSDI); secondary outcomes included evaluation of changes in Standard Patient Evaluation of Eye Dryness (SPEED) questionnaire, tear film break-up time (TBUT), corneal and conjunctival staining, tear osmolarity, matrix metalloproteinase-9 (MMP-9), artificial tear use and safety assessments. The outcomes were compared between the LCD and placebo groups at baseline and day 56 of supplementation. RESULTS Fifty-nine subjects, 30 from LCD and 29 from placebo group, completed the study. The LCD group showed significant improvements (P < 0.0001) for Schirmer's test, OSDI, TBUT, SPEED, ocular staining scores, tear osmolarity (P = 0.0005), MMP-9 (P = 0.0017) and reduced artificial tear use (P = 0.0004) and its frequency of use (P < 0.0001) in subjects compared to placebo from baseline to day 56. No safety issues were observed in the study. CONCLUSION The LCD supplement showed significant improvements in the production, stability and quality of tears by reducing ocular surface damage and tear inflammation and can be used as an adjuvant to artificial tears in subjects with DES. TRIAL REGISTRATION Clinical Trials Registry of India (http://ctri.nic.in/) identifier: CTRI/2021/01/030493.
Collapse
Affiliation(s)
- Pranav Radkar
- Lifepoint Multispeciality Hospital, 145/1, Mumbai-Bangalore Highway, Wakad, Pune, Maharashtra, 411057, India
| | - Prabhu Shankar Lakshmanan
- G7 Synergon Private Limited, 537, 5th Main, 9th Cross, Sahakarnagar Post, Tatanagar, Bangalore, Karnataka, 560092, India
| | - Jenet Jemila Mary
- G7 Synergon Private Limited, 537, 5th Main, 9th Cross, Sahakarnagar Post, Tatanagar, Bangalore, Karnataka, 560092, India
| | - Sunil Chaudhary
- Lifepoint Multispeciality Hospital, 145/1, Mumbai-Bangalore Highway, Wakad, Pune, Maharashtra, 411057, India
| | - Sathish Kumar Durairaj
- G7 Synergon Private Limited, 537, 5th Main, 9th Cross, Sahakarnagar Post, Tatanagar, Bangalore, Karnataka, 560092, India.
| |
Collapse
|
14
|
Song W, Li S, Tang Q, Chen L, Yuan Z. In vitro biocompatibility and bioactivity of calcium silicate‑based bioceramics in endodontics (Review). Int J Mol Med 2021; 48:128. [PMID: 34013376 PMCID: PMC8136140 DOI: 10.3892/ijmm.2021.4961] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/19/2021] [Indexed: 12/26/2022] Open
Abstract
Calcium silicate-based bioceramics have been applied in endodontics as advantageous materials for years. In addition to excellent physical and chemical properties, the biocompatibility and bioactivity of calcium silicate-based bioceramics also serve an important role in endodontics according to previous research reports. Firstly, bioceramics affect cellular behavior of cells such as stem cells, osteoblasts, osteoclasts, fibroblasts and immune cells. On the other hand, cell reaction to bioceramics determines the effect of wound healing and tissue repair following bioceramics implantation. The aim of the present review was to provide an overview of calcium silicate-based bioceramics currently applied in endodontics, including mineral trioxide aggregate, Bioaggregate, Biodentine and iRoot, focusing on their in vitro biocompatibility and bioactivity. Understanding their underlying mechanism may help to ensure these materials are applied appropriately in endodontics.
Collapse
Affiliation(s)
- Wencheng Song
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Qingming Tang
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Lili Chen
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Zhenglin Yuan
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
15
|
Liu Y, Shu Y, Yin L, Xie T, Zou J, Zhan P, Wang Y, Wei T, Zhu L, Yang X, Wang W, Cai J, Li Y, Yao Y, Wang X. Protective roles of the TIR/BB-loop mimetic AS-1 in alkali-induced corneal neovascularization by inhibiting ERK phosphorylation. Exp Eye Res 2021; 207:108568. [PMID: 33839112 DOI: 10.1016/j.exer.2021.108568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 03/04/2021] [Accepted: 04/01/2021] [Indexed: 11/19/2022]
Abstract
Hydrocinnamoyl-L-valylpyrrolidine (AS-1), a synthetic low-molecule mimetic of myeloid differentiation primary response gene 88 (MyD88), inhibits inflammation by disrupting the interaction between the interleukin-1 receptor (IL-1R) and MyD88. Here, we describe the effects of AS-1 on injury-induced increases in inflammation and neovascularization in mouse corneas. Mice were administered a subconjunctival injection of 8 μL AS-1 diluent before or after corneal alkali burn, followed by evaluation of corneal resurfacing and corneal neovascularization (CNV) by slit-lamp biomicroscopy and clinical assessment. Corneal inflammation was assessed by whole-mount CD45+ immunofluorescence staining, and corneal hemangiogenesis and lymphangiogenesis following injury were evaluated by immunostaining for the vascular markers isolectin B4 (IB4) and the lymphatic vascularized marker lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1), respectively. Additionally, corneal tissues were collected to determine the expression of 35 cytokines, and we detected activation of IL-1RI, MyD88, and mitogen-activated protein kinase (MAPK). The results showed that alkali conditions increased the number of CD45+ cells and expression of vascular endothelial growth factor (VEGF)-A, VEGF-C, and LYVE1 in corneas, with these levels decreased in the AS-1-treated group. Moreover, AS-1 effectively prevented alkali-induced cytokine production, blocked interactions between IL-1RI and MyD88, and inhibited MAPK activation post-alkali burn. These results indicated that AS-1 prevented alkali-induced corneal hemangiogenesis and lymphangiogenesis by blocking IL-1RI-MyD88 interaction, as well as extracellular signal-regulated kinase phosphorylation, and could be efficacious for the prevention and treatment of corneal alkali burn.
Collapse
Affiliation(s)
- Yanqiu Liu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yishun Shu
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Li Yin
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tianhua Xie
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jian Zou
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Pengfei Zhan
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yangningzhi Wang
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Tingting Wei
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Lingpeng Zhu
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Xusheng Yang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Wenjuan Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Jiping Cai
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, 211100, People's Republic of China
| | - Yong Yao
- Department of Ophthalmology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| | - Xiaolu Wang
- Center of Clinical Research, The Affiliated Wuxi People's Hospital of Nanjing Medical University, 299 Qingyang Road, Wuxi, Jiangsu, 214023, People's Republic of China.
| |
Collapse
|
16
|
Health Potential of Aloe vera against Oxidative Stress Induced Corneal Damage: An "In Vitro" Study. Antioxidants (Basel) 2021; 10:antiox10020318. [PMID: 33672553 PMCID: PMC7923787 DOI: 10.3390/antiox10020318] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/05/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Fuchs endothelial corneal dystrophy (FECD) is characterized by the gradual deterioration of corneal endothelial cells (CECs) and is the most common cause of corneal transplantation worldwide. CECs apoptosis caused by oxidative stress plays a pivotal role in the pathogenesis of FECD. Antioxidant compounds have been of considerable significance as a candidate treatment in the management of corneal diseases. Based on these findings, the objective of this study was to evaluate the effects of an aloe extract with antioxidant properties, in an “in vitro” model of FECD. Human corneal epithelial (HCE) cells were preincubated with aloe extract 100 μg/mL, two hours before hydrogen peroxide (H2O2) stimulus. H2O2 challenge significantly reduced the cell viability, increased the generation of Reactive Oxygen Species (ROS) and malondialdehyde levels. Moreover, m-RNA expression and activity of Nrf-2, Catalase and Superoxide dismutase (SOD) were reduced together with an enhanced expression of IL-1β, tumor necrosis factor-α (TNF-α), IL-6, and cyclooxygenase 2 (COX-2). Furthermore, Bcl-2, Caspase-3 and Caspase-8 expression were down-regulated while Bax was up-regulated by H2O2 stimulus. Aloe extract blunted the oxidative stress-induced inflammatory cascade triggered by H2O2 and modulated apoptosis. Aloe extract defends HCE cells from H2O2-induced injury possibly due its antioxidant and anti-inflammatory activity, indicating that eye drops containing aloe extract may be used as an adjunctive treatment for FECD.
Collapse
|
17
|
Favero G, Moretti E, Krajčíková K, Tomečková V, Rezzani R. Evidence of Polyphenols Efficacy against Dry Eye Disease. Antioxidants (Basel) 2021; 10:antiox10020190. [PMID: 33525721 PMCID: PMC7911148 DOI: 10.3390/antiox10020190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/25/2021] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Dry eye disease is a multifactorial pathology compromising the quality of life of patients, resulting in significant damage of the ocular surface and discomfort. The current therapeutical strategies are not able to definitively resolve the underlying causes and stop the symptoms. Polyphenols are promising natural molecules that are receiving increasing attention for their activity/effects in counteracting the main pathologic mechanisms of dry eye disease and reducing its symptoms. In the present review, a deep literature search focusing on the main polyphenols tested against dry eye disease was conducted, analyzing related in vitro, in vivo, and clinical studies to provide a comprehensive and current review on the state of the art. Polyphenols present multiple effects against dry eye diseases-related ocular surface injury. In particular, the observed beneficial effects of polyphenols on corneal cells are the reduction of the pathological processes of inflammation, oxidative stress, and apoptosis and modulation of the tear film. Due to numerous studies reporting that polyphenols are effective and safe for treating the pathological mechanisms of this ocular surface disease, we believe that future studies should confirm and extend the evidence of polyphenols efficacy in clinical practice against dry eye disease and help to develop new ophthalmic drug(s).
Collapse
Affiliation(s)
- Gaia Favero
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Enrico Moretti
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
| | - Kristína Krajčíková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Vladimíra Tomečková
- Department of Medical and Clinical Biochemistry, Faculty of Medicine, Pavol Jozef Šafárik University, 040 12 Košice, Slovakia; (K.K.); (V.T.)
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy; (G.F.); (E.M.)
- Interdipartimental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
- Correspondence:
| |
Collapse
|
18
|
Caban M, Owczarek K, Chojnacka K, Lewandowska U. Overview of Polyphenols and Polyphenol-rich Extracts as Modulators of Inflammatory Response in Dry Eye Syndrome. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1874412] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Miłosz Caban
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Owczarek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Chojnacka
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Urszula Lewandowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Hao J, Dai X, Gao J, Li Y, Hou Z, Chang Z, Wang Y. Curcumin suppresses colorectal tumorigenesis via the Wnt/β-catenin signaling pathway by downregulating Axin2. Oncol Lett 2021; 21:186. [PMID: 33574925 PMCID: PMC7816292 DOI: 10.3892/ol.2021.12447] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is the third most common cancer worldwide, with high incidence and mortality rates. Conventional therapies, including surgery, chemotherapy and radiation, are extensively used for the treatment of CRC. However, patients present with adverse effects, such as toxicity, hepatic injury and drug resistance. Thus, there is an urgent requirement to identify effective and safe therapy for CRC. Curcumin (CUR), a polyphenol substrate extracted from the rhizome of Curcuma longa, has been extensively studied for the treatment of CRC due to its high efficacy and fewer side effects. Previous studies have reported that several signaling pathways, such as NF-κB, Wnt/β-catenin, are involved in the antitumor effects of CUR in vitro. However, the effect and mechanisms in vivo are not yet fully understood. The present study aimed to determine the molecular mechanism of colorectal cancer in vivo. Reverse transcription-quantitative PCR, western blot and immunohistochemistry analyses were performed to determine the underlying molecular mechanism of curcumin's anti-cancer effect in azoxymethane-dextran sodium sulfate induced colorectal cancer. The results of the present study demonstrated that CUR suppressed tumorigenesis in AOM-DSS induced CRC in mice, and anticancer effects were exerted by suppressing the expression of pro-inflammatory cytokines, and downregulating Axin2 in the Wnt/β-catenin signaling pathway. Taken together, these results exhibit the potential in vivo mechanisms of the anticancer effects of CUR, and highlight Axin2 as a potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Jiaxue Hao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Xufen Dai
- Food and Drug Technology Research Center, Shaanxi Province Food and Drug Supervision and Inspection Research, Shaanxi Institute for Food and Drug Control, Xi'an, Shaanxi 710065, P.R. China
| | - Juan Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuexuan Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhaoling Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Zhongman Chang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| | - Yuxin Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education/College of Life Science, Northwest University, Xi'an, Shaanxi 710069, P.R. China
| |
Collapse
|
20
|
Pigment epithelium-derived factor (PEDF) plays anti-inflammatory roles in the pathogenesis of dry eye disease. Ocul Surf 2021; 20:70-85. [PMID: 33412338 DOI: 10.1016/j.jtos.2020.12.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To investigate the expression of pigment epithelium-derived factor (PEDF) in ocular surface in dry eye disease (DED) and its anti-inflammatory roles and mechanisms, clinically and by experiments in vivo and in vitro. METHODS A cross-sectional study was conducted to detect the expression of PEDF in tears of dry eye patients by enzyme-linked immunosorbent assay (ELISA). Using dry eye mouse model and human corneal epithelial cells (hCECs) stimulated by hyperosmolarity or inflammatory cytokines, expression of PEDF in corneal epithelial cells, stroma and conjunctiva was quantified by real-time polymerase chain reaction, ELISA and Western blot. Next, either dry eye mice or hyperosmotic hCECs were treated with recombinant PEDF or neutralizing antibodies, and the expressions of inflammatory cytokines and immune cells were detected. Finally, Western blot was performed on MAPK and NF-κB to investigate the signaling pathways by which PEDF played its roles. RESULTS Concentrations of PEDF were increased in tears of dry eye patients. Increased PEDF was observed in corneal epithelial cells (CECs) rather than corneal stroma or conjunctiva in dry eye mice. Furthermore, hCECs exposed to hyperosmolarity showed upregulation of PEDF. In vivo and in vitro studies showed that PEDF suppressed the expression of inflammatory cytokines including IL-1β, IL-6, TNF-α and IL-17A, as well as the percentage of Th17 cells in DED. Further investigation showed that PEDF inhibited the phosphorylation of MAPK p38 and JNK in hyperosmotic hCECs. CONCLUSIONS CECs derived PEDF is increased in DED. PEDF plays anti-inflammatory and immunoregulatory roles in the pathogenesis of DED.
Collapse
|
21
|
Muz OE, Orhan C, Erten F, Tuzcu M, Ozercan IH, Singh P, Morde A, Padigaru M, Rai D, Sahin K. A Novel Integrated Active Herbal Formulation Ameliorates Dry Eye Syndrome by Inhibiting Inflammation and Oxidative Stress and Enhancing Glycosylated Phosphoproteins in Rats. Pharmaceuticals (Basel) 2020; 13:ph13100295. [PMID: 33036453 PMCID: PMC7599565 DOI: 10.3390/ph13100295] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/26/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023] Open
Abstract
Dry eye syndrome (DES) is a chronic condition of the eye with insufficient production of tears leading to inadequate lubrication of eyes. Symptoms of DES are associated with discomfort and redness of the eye, blurred vision, and tear film instability which leads to the damaged ocular surface. Inflammation and oxidative stress play a significant role in the pathogenesis of the disease. In this study, the protective effect of different doses (100 or 200 mg/kg) of a novel multi-component oral formulation of lutein/zeaxanthin, curcumin, and vitamin D3 (LCD) was evaluated using a rat model with benzalkonium chloride (BAC)-induced dry eye syndrome. The formulation was administered orally to rats for 4 weeks. We observed a significant improvement in tear volume, tear breakup time, tear film integrity, and reduction in overall inflammation in rats fed with the LCD at dose 200 mg/kg performing better than 100 mg/kg. Furthermore, the formulation helped in lowering oxidative stress by increasing antioxidant levels and restored protective tear protein levels including MUC1, MUC4, and MUC5AC with 200 mg of LCD having the most significant effect. The results strongly suggest that the combination of lutein/zeaxanthin, curcumin, and vitamin-D3 is effective in alleviating the symptoms of dry eye condition with a multi-modal mechanism of action.
Collapse
Affiliation(s)
- Omer Ersin Muz
- Department of Ophthalmology, Eskisehir Yunus Emre State Hospital, Eskisehir 26190, Turkey;
| | - Cemal Orhan
- Department of Animal Nutrition, Veterinary Medicine, Firat University, Elazig 23119, Turkey;
| | - Fusun Erten
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey; (F.E.); (M.T.)
| | - Mehmet Tuzcu
- Department of Biology, Faculty of Science, Firat University, Elazig 23119, Turkey; (F.E.); (M.T.)
| | | | - Prafull Singh
- OmniActive Health Technologies, Phoenix House, T- 8, A Wing 462 Senapati Bapat Marg, Lower Parel, Mumbai 400 013, India; (P.S.); (A.M.); (M.P.); (D.R.)
| | - Abhijeet Morde
- OmniActive Health Technologies, Phoenix House, T- 8, A Wing 462 Senapati Bapat Marg, Lower Parel, Mumbai 400 013, India; (P.S.); (A.M.); (M.P.); (D.R.)
| | - Muralidhara Padigaru
- OmniActive Health Technologies, Phoenix House, T- 8, A Wing 462 Senapati Bapat Marg, Lower Parel, Mumbai 400 013, India; (P.S.); (A.M.); (M.P.); (D.R.)
| | - Deshanie Rai
- OmniActive Health Technologies, Phoenix House, T- 8, A Wing 462 Senapati Bapat Marg, Lower Parel, Mumbai 400 013, India; (P.S.); (A.M.); (M.P.); (D.R.)
| | - Kazim Sahin
- Department of Animal Nutrition, Veterinary Medicine, Firat University, Elazig 23119, Turkey;
- Correspondence: ; Tel.: +90-4242373938
| |
Collapse
|
22
|
Hassanzadeh K, Buccarello L, Dragotto J, Mohammadi A, Corbo M, Feligioni M. Obstacles against the Marketing of Curcumin as a Drug. Int J Mol Sci 2020; 21:E6619. [PMID: 32927725 PMCID: PMC7554750 DOI: 10.3390/ijms21186619] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/07/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Among the extensive public and scientific interest in the use of phytochemicals to prevent or treat human diseases in recent years, natural compounds have been highly investigated to elucidate their therapeutic effect on chronic human diseases including cancer, cardiovascular disease, and neurodegenerative disease. Curcumin, an active principle of the perennial herb Curcuma longa, has attracted an increasing research interest over the last half-century due to its diversity of molecular targets, including transcription factors, enzymes, protein kinases, growth factors, inflammatory cytokines, receptors, and it's interesting pharmacological activities. Despite that, the clinical effectiveness of the native curcumin is weak, owing to its low bioavailability and rapid metabolism. Preclinical data obtained from animal models and phase I clinical studies done in human volunteers confirmed a small amount of intestinal absorption, hepatic first pass effect, and some degree of intestinal metabolism, might explain its poor systemic availability when it is given via the oral route. During the last decade, researchers have attempted with new pharmaceutical methods such as nanoparticles, liposomes, micelles, solid dispersions, emulsions, and microspheres to improve the bioavailability of curcumin. As a result, a significant number of bioavailable curcumin-based formulations were introduced with a varying range of enhanced bioavailability. This manuscript critically reviews the available scientific evidence on the basic and clinical effects and molecular targets of curcumin. We also discuss its pharmacokinetic and problems for marketing curcumin as a drug.
Collapse
Affiliation(s)
- Kambiz Hassanzadeh
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Biotechnology and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Lucia Buccarello
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Jessica Dragotto
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
| | - Asadollah Mohammadi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj 66177-15175, Iran;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| | - Marco Feligioni
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Viale Regina Elena 295, 00161 Rome, Italy; (K.H.); (L.B.); (J.D.)
- Department of Neurorehabilitation Sciences, Casa Cura Policlinico, 20144 Milano, Italy;
| |
Collapse
|
23
|
Ontawong A, Srimaroeng C, Boonphang O, Phatsara M, Amornlerdpison D, Duangjai A. Spirogyra neglecta Aqueous Extract Attenuates LPS-Induced Renal Inflammation. Biol Pharm Bull 2020; 42:1814-1822. [PMID: 31685765 DOI: 10.1248/bpb.b19-00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Spirogyra neglecta (SN), commonly named "Tao" in Thai, is a genus of filamentous green macroalgae. SN contains polyphenols such as isoquercetin, catechin, hydroquinone and kaempferol. These constituents exhibit beneficial effects including anti-oxidant, anti-gastric ulcer, anti-hyperglycaemia and anti-hyperlipidaemia in both in vitro and in vivo models. Whether SN extract (SNE) has an anti-inflammatory effect in vivo remains unclear. This study examined the effect of SNE on renal function and renal organic transport in lipopolysaccharide (LPS)-induced renal inflammation in rats. Rats were randomised and divided into normal saline (NS), NS supplemented with 1000 mg/kg body weight (BW) of SNE (NS + SNE), intraperitoneally injected with 12 mg/kg BW of LPS and LPS treated with 1000 mg/kg BW of SNE (LPS + SNE). Biochemical parameters in serum and urine, lipid peroxidation concentration, kidney function and renal organic anion and cation transports were determined. LPS-injected rats developed renal injury and inflammation by increasing urine microalbumin, total malondialdehyde (MDA) and inflammatory cytokines, tumor necrosis factor (TNF)-α and interleukin (IL)-1β protein expression, respectively. In addition, uptake of renal organic anion, [3H]-oestrone sulphate (ES), was reduced in LPS-injected rats together with increased expression of organic anion transporter 3 (Oat3). However, the renal injury and inflammation, as well as impaired Oat3 function and protein expression, were restored in LPS + SNE rats. Accordingly, SNE could be developed as nutraceutical product to prevent inflammation-induced nephrotoxicity.
Collapse
|
24
|
Pellegrini M, Senni C, Bernabei F, Cicero AFG, Vagge A, Maestri A, Scorcia V, Giannaccare G. The Role of Nutrition and Nutritional Supplements in Ocular Surface Diseases. Nutrients 2020; 12:nu12040952. [PMID: 32235501 PMCID: PMC7230622 DOI: 10.3390/nu12040952] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Dry eye disease (DED) is a multifactorial disease of the ocular surface system whose chore mechanisms are tear film instability, inflammation, tear hyperosmolarity and epithelial damage. In recent years, novel therapies specifically targeting inflammation and oxidative stress are being investigated and used in this field. Therefore, an increasing body of evidence supporting the possible role of different micronutrients and nutraceutical products for the treatment of ocular surface diseases is now available. In the present review, we analyzed in detail the effects on ocular surface of omega-3 fatty acids, vitamins A, B12, C, D, selenium, curcumin and flavonoids. Among these, the efficacy of omega-3 fatty acid supplementation in ameliorating DED signs and symptoms is supported by robust scientific evidence. Further long-term clinical trials are warranted to confirm the safety and efficacy of the supplementation of the other micronutrients and nutraceuticals.
Collapse
Affiliation(s)
- Marco Pellegrini
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
- Correspondence: ; Tel.: +39-3343-308141
| | - Carlotta Senni
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
| | - Federico Bernabei
- Ophthalmology Unit, S.Orsola-Malpighi University Hospital, University of Bologna, 40138 Bologna, Italy; (C.S.); (F.B.)
| | - Arrigo F. G. Cicero
- Medical and Surgical Sciences Department, University of Bologna, 40138 Bologna, Italy;
| | - Aldo Vagge
- Eye Clinic of Genoa, Policlinico San Martino, Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, 16132 Genoa, Italy;
| | - Antonio Maestri
- Medical Oncology Department, Santa Maria della Scaletta Hospital, 40026 Imola, Italy;
| | - Vincenzo Scorcia
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| | - Giuseppe Giannaccare
- Department of Ophthalmology, University Magna Græcia of Catanzaro, 88100 Catanzaro, Italy; (V.S.); (G.G.)
| |
Collapse
|
25
|
Grimaudo MA, Amato G, Carbone C, Diaz-Rodriguez P, Musumeci T, Concheiro A, Alvarez-Lorenzo C, Puglisi G. Micelle-nanogel platform for ferulic acid ocular delivery. Int J Pharm 2019; 576:118986. [PMID: 31870956 DOI: 10.1016/j.ijpharm.2019.118986] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/04/2019] [Accepted: 12/19/2019] [Indexed: 12/26/2022]
Abstract
Corneal wound healing after a trauma or a chemical injury has been shown to correlate with antioxidant levels at the ocular surface. However, ocular bioavailability of efficient antioxidants (e.g. ferulic acid) after topical administration is limited by their poor solubility, low stability and short residence time. The aim of this work was to formulate ferulic acid in a nanocomposite platform composed of nanogels and micelles for efficient delivery to cornea. Solubility enhancement factor of ferulic acid was found to be equal to 1.9 ± 0.3 and 3.4 ± 0.3 for 50 and 100 mg/ml Pluronic® F68 micellar solutions. Hyaluronan was added to blank and ferulic acid loaded micelles, and then cross-linked with ε-polylysine. Hyaluronan nanogels showed dimensions of ~300 nm with positive zeta potential values. The formulations were characterized in terms of rheological behavior, biocompatibility, wound healing properties, ferulic acid release pattern and penetration into excised bovine corneas. In comparison to Pluronic® micelles that released ferulic acid rapidly, micelle-nanogel composites sustained the release up to 2 days. Furthermore, the micelle-nanogel formulation favored in vitro wound closure promoting fibroblasts growth and ex vivo accumulation of ferulic acid into both healthy and damaged corneas (>100 µg/cm2).
Collapse
Affiliation(s)
- Maria Aurora Grimaudo
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy; Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Giovanni Amato
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy.
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Patricia Diaz-Rodriguez
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| | - Angel Concheiro
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Carmen Alvarez-Lorenzo
- Departamento de Farmacología, Farmacia y Tecnología Farmacéutica, I+D Farma (GI-1645), Facultad de Farmacia and Health Research Institute of Santiago de Compostela (IDIS), Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Giovanni Puglisi
- Laboratory of Drug Delivery Technology, Department of Drug Sciences, University of Catania, Catania, Italy
| |
Collapse
|
26
|
Bang SP, Yeon CY, Adhikari N, Neupane S, Kim H, Lee DC, Son MJ, Lee HG, Kim JY, Jun JH. Cyclosporine A eyedrops with self-nanoemulsifying drug delivery systems have improved physicochemical properties and efficacy against dry eye disease in a murine dry eye model. PLoS One 2019; 14:e0224805. [PMID: 31738791 PMCID: PMC6860930 DOI: 10.1371/journal.pone.0224805] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 10/22/2019] [Indexed: 11/18/2022] Open
Abstract
PURPOSE We aimed to compare the physicochemical properties and in vivo efficacy of commercially available nanoemulsion cyclosporine A (CsA) eyedrops in benzalkonium chloride (BAC)-induced dry eye disease (DED). METHODS Particle size analysis was performed on conventional 0.05% CsA (Restasis, C-CsA) and two new types of 0.05% CsA eyedrops based on a self-nanoemulsifying drug delivery system (SNEDDS, SNEDDS-N and -T). Turbidometry, pH measurements and instability indices of each CsA solution were measured. DED was induced with BAC, and animals were treated with vehicle or CsA preparations. Tear volume and fluorescein staining scores were evaluated on days 7 and 14. Eyes were enucleated and subjected to IHC, TUNEL staining, periodic acid-Schiff (PAS) staining, real-time PCR and western blotting. RESULTS Both SNEDDSs had lower and more uniform particle size distribution than C-CsA, and a similar optical density to phosphate-buffered saline and stable pH, in contrast to the high turbidity and unstable pH of C-CsA. Aqueous tear volume and fluorescein staining scores were improved in C-CsA- and SNEDDS-treated mice. Numbers of PAS-positive goblet cells and levels of inflammatory mediators were decreased by both C-CsA and SNEDDS, although SNEDDS resolved inflammation more effectively than C-CsA. CONCLUSIONS Cyclosporine A eyedrops with SNEDDS have improved physicochemical properties and treatment efficacy in BAC-induced DED.
Collapse
Affiliation(s)
- Seung Pil Bang
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
- Department of Biomedical Engineering, University of Rochester, Rochester, New York, United States of America
| | - Chang Yeor Yeon
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Nirpesh Adhikari
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Sanjiv Neupane
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Harim Kim
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
| | - Dong Cheol Lee
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
| | - Myeong Jin Son
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
| | - Hyun Gyo Lee
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR, Kyungpook National University, Daegu, Republic of Korea
| | - Jong Hwa Jun
- Department of Ophthalmology, Keimyung University School of Medicine, Dongsan Medical Centre, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
27
|
Aldina R, Sujuti H, Permatasari N, Widodo MA. The effects of genistein on estrogen receptor-β, IL-1β levels, and MUC5AC expression in ovariectomized rats with dry eye. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2017.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM, Skopiński P. Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol 2019; 44:181-189. [PMID: 31530988 PMCID: PMC6745545 DOI: 10.5114/ceji.2019.87070] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023] Open
Abstract
Curcumin (diferuloylmethane) derived from the rhizome of Curcuma longa L. has been used for thousands of years in traditional Chinese medicine and Ayurvedic medicine in Asian countries to treat liver diseases, rheumatoid diseases, diabetes, atherosclerosis, infectious diseases and cancer. It exhibits a wide range of pharmacological properties, which include antioxidant, anti-inflammatory, antimutagenic, antimicrobial and anticancer activity. Herein the mechanisms of curcumin impact on oxidative stress, angiogenesis and inflammatory processes are described indicating that curcumin use may inhibit those pathological conditions and restore body homeostasis. Its effectiveness was also proved for major eye diseases. In this review, the influence of curcumin on eye diseases, such as glaucoma, cataract, age-related macular degeneration, diabetic retinopathy, corneal neovascularization, corneal wound healing, dry eye disease, conjunctivitis, pterygium, anterior uveitis are reported. The analysis of a number of clinical and preclinical investigations indicates that curcumin may be used as a therapeutic agent in the treatment of various eye disorders.
Collapse
Affiliation(s)
| | - Anna Osiecka-Iwan
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna Hyc
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Agata Góźdź
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| | - Anna M. Dąbrowska
- Department of Ophthalmology, Second Faculty of Medicine, Medical University of Warsaw, Poland
| | - Piotr Skopiński
- Department of Histology and Embryology, Medical University of Warsaw, Poland
| |
Collapse
|
29
|
Tavakoli A, Flanagan JL. The Case for a More Holistic Approach to Dry Eye Disease: Is It Time to Move beyond Antibiotics? Antibiotics (Basel) 2019; 8:E88. [PMID: 31262073 PMCID: PMC6783892 DOI: 10.3390/antibiotics8030088] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 06/27/2019] [Indexed: 12/28/2022] Open
Abstract
Dry eye disease (DED) is one of the most frequent presentations to optometrists with over 16 million US adults (6.8% of adult population) diagnosed as having this disorder. The majority of associated marketed products offer relief from symptomatology but do not address aetiology. DED harbours many distinguishing features of a chronic inflammatory disorder. The recent explosion in human microbiome research has sparked interest in the ocular microbiome and its role in the preservation and extension of ocular surface health and in the contribution of the gut microbiome to chronic systemic inflammation and associated "Western life-style" diseases. With a significant lack of success for many patients using currently available DED treatments, in this era of the microbiome, we are interested in exploring potential novel therapies that aim to reconstitute healthy bacterial communities both locally and distally (in the gut) as a treatment for DED. Although this direction of investigation is in its infancy, burgeoning interest makes such a review timely. This paper considers a number of studies into the use functional foods and associated products to ameliorate dry eye.
Collapse
Affiliation(s)
- Azadeh Tavakoli
- School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia
| | - Judith Louise Flanagan
- School of Optometry and Vision Science, University of New South Wales, Sydney, 2052, Australia.
- Brien Holden Vision Institute, Sydney, 2052, Australia.
| |
Collapse
|
30
|
Curcumin: a modulator of inflammatory signaling pathways in the immune system. Inflammopharmacology 2019; 27:885-900. [DOI: 10.1007/s10787-019-00607-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 05/20/2019] [Indexed: 12/24/2022]
|
31
|
Zhao M, Liu L, Zheng Y, Liu G, Che B, Li P, Chen H, Dong C, Lin L, Du Z. Anti-inflammatory effects of paeoniflorin from Paeonia lactiflora Pall. on human corneal epithelial cells and a mouse model of dry eye disease. RSC Adv 2019; 9:12998-13006. [PMID: 35520788 PMCID: PMC9063770 DOI: 10.1039/c8ra09060b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/24/2019] [Indexed: 11/21/2022] Open
Abstract
Dry eye disease (DED) is characterized by increased osmolality of tears due to a lack of production or increased evaporation of tears. Hyperosmolarity is involved in DED pathogenesis, which damages ocular surface cells and leads to inflammation of the ocular surface. We investigated the anti-inflammatory effect of paeoniflorin (PF) from Paeonia lactiflora Pall. on human corneal epithelial (HCE) cells and its molecular mechanisms, and its therapeutic effects on a mouse model of experimental dry eye (EDE). HCE cells were treated with PF-1 (PF prepared in vitro; 0.01%, 0.1% and 1.0%). Protein production/activity was determined by Western blotting, RT-PCR and immunofluorescent staining. Meanwhile, eye drops containing 0.01%, 0.1% and 1.0% of PF-2 (PF prepared in vivo) were applied to the EDE, and the tear volume, corneal fluorescein-staining score, detachment of the corneal epithelium, and immunohistochemical staining were measured after 28 days of treatment. PF reduced expression of proinflammatory factors such as interleukin (IL)-1, IL-6, and tumor necrosis factor (TNF)-α in HCE cells, and significantly improved dry-eye signs, including tear volume, desquamation of the corneal epithelium and ocular surface inflammation in mice treated with 1.0% PF-2. Further study showed that PF improved EDE by inhibiting mitogen-activated protein kinase (MAPK), phosphorylated (p)-c-Jun N-terminal kinase (JNK) and pp-38, and nuclear factor kappa B (NF-κB) signaling pathways. These data suggest that PF can improve dry-eye symptoms and reduce expression of proinflammatory mediators. Hence, eye drops containing PF could be used as an adjunctive treatment for DED.
Collapse
Affiliation(s)
- Mincong Zhao
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
| | - Li Liu
- Infinitus (China) Company Ltd Jiangmen 529156 China
| | - Yating Zheng
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
| | | | - Biao Che
- Infinitus (China) Company Ltd Jiangmen 529156 China
| | - Penghui Li
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
| | - Huixiong Chen
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
- CNRS, UMR8601, Laboratoire de Chimine et Biochimie Pharmacologiques et Toxicologiques, CBNIT, Universite Paris Descartes PRES Sorbonne Paris Cite, UFR Biomedicale 45 Rue des Saints-Peres 75270 Paris Cedex 06 France
| | - Changzhi Dong
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
- Universite Paris Diderot, Sorbonne Paris Cite, ITODYS, UMR 7086 CNRS 15 Rue J-A de Baif 75270 Pairs Cedex 13 France
| | - Li Lin
- Allan Conney Biotechnology Company Ltd Foshan 528000 China
| | - Zhiyun Du
- Institute of Natural Medicine & Green Chemistry, School of Biomedical and Pharmaceutical Engineering, Guandong University of Technology Guangzhou 510006 China +86-20-3932-2235
| |
Collapse
|
32
|
Effects of Different Calcium Silicate Cements on the Inflammatory Response and Odontogenic Differentiation of Lipopolysaccharide-Stimulated Human Dental Pulp Stem Cells. MATERIALS 2019; 12:ma12081259. [PMID: 30999582 PMCID: PMC6514726 DOI: 10.3390/ma12081259] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 11/17/2022]
Abstract
This study aimed to analyze the effects of different calcium silicate cements (CSCs) on the inflammatory response and odontogenic differentiation of lipopolysaccharide-stimulated human dental pulp stem cells. Human dental pulp stem cells (hDPSCs) were stimulated with lipopolysaccharide (LPS) to induce inflammation. These LPS-induced dental pulp stem cells (LDPSCs) were cultured with ProRoot MTA, Biodentine, Retro MTA, and Dycal. Cell viability was evaluated using the Cell Counting Kit-8 assay. Interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-β1 cytokine levels were assessed using the enzyme-linked immunosorbent assay. The expressions of alkaline phosphatase (ALP), osteocalcin, and runt-related transcription factor 2 (RUNX2) were analyzed through real-time polymerase chain reaction. ProRoot MTA, Biodentine, and Retro MTA did not significantly decrease the cell viability of LDPSCs for up to 48 h (p < 0.05). Retro MTA significantly decreased the expression of IL-6 and IL-8 by LDPSCs. ProRoot MTA and Biodentine significantly reduced TGF-β expression by LDPSCs (p < 0.05). Regarding odontogenic differentiation, all CSCs had no effect on ALP expression but increased the production of RUNX2 at 12 h.
Collapse
|
33
|
Sun D, Gong L, Xie J, Gu X, Li Y, Cao Q, Li Q, A L, Gu Z, Xu H. Toxicity of silicon dioxide nanoparticles with varying sizes on the cornea and protein corona as a strategy for therapy. Sci Bull (Beijing) 2018; 63:907-916. [PMID: 36658972 DOI: 10.1016/j.scib.2018.05.037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 05/17/2018] [Accepted: 05/28/2018] [Indexed: 01/21/2023]
Abstract
The human cornea is exposed directly to particulate matter (PM) in polluted air. This exposure can cause eye discomfort and corneal injury. Ultrafine PM (diameter <100 nm) is thought to be particularly harmful to health, but there is limited research investigating its toxicity to the eye. In this study, we evaluated toxicity differences among 30-, 40-, 100- and 150-nm silicon dioxide nanoparticles (SiO2 NPs) on the cornea. A 24-hour in vitro exposure of primary human corneal epithelial cells (hCECs) to ultrafine (30 and 40 nm) SiO2 NPs produced toxicity, as evidenced by cell membrane damage, reduced cell viability, increased cell death and mitochondrial dysfunction. In vivo exposure to the same nanoparticles produced observable corneal injury. These effects were more severe with ultrafine than with fine (100 and 150 nm) SiO2 NPs. Common antioxidant compounds, e.g., glutathione, did not protect the cornea from SiO2 NP-induced damage. However, foetal bovine serum (FBS) did significantly reduce toxicity, likely by forming a protective protein corona around the nanoparticles. This finding suggests that FBS (or its derivatives) may be a useful clinical therapy for corneal toxicity caused by ultrafine particulates.
Collapse
Affiliation(s)
- Dayu Sun
- Department of Physiology, Third Military Medical University (Army Medical University), Chongqing 400038, China; Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Linji Gong
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Xie
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Xianliang Gu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Yijian Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qinglin Cao
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Qiyou Li
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Luodan A
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China.; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Haiwei Xu
- Southwest Hospital/Southwest Eye Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038, China.
| |
Collapse
|
34
|
Uveal melanocytes express high constitutive levels of MMP-8 which can be upregulated by TNF-α via the MAPK pathway. Exp Eye Res 2018; 175:181-191. [PMID: 29935949 DOI: 10.1016/j.exer.2018.06.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 05/30/2018] [Accepted: 06/21/2018] [Indexed: 11/24/2022]
Abstract
Matrix metalloproteinase (MMP)-8 is the most potent MMP for degrading collagen type-1 and plays an important role in inflammatory reactions and tissue remolding processes. MMP-8 is expressed mainly by polymorphonuclear leukocytes and is not expressed constitutively by most non-leukocytes. We studied the constitutive and TNF-α-induced expression of MMP-8 in cultured human uveal melanocytes (UM) and the relevant signal pathways involved. Conditioned media and cells were collected from UM and other cell types. MMP-8 proteins and mRNA were measured using ELISA kit, western blot and real time RT-PCR, respectively. Phosphorylated p38 MAPK, ERK1/2, and JNK1/2 were measured by ELISA kit and western blot. Very high levels of MMP-8 proteins and mRNA were detected in the conditioned media and cell lysates in 11 UM cell lines and three uveal melanoma cell lines cultured without serum, but not in media and cell lysates from other ocular resident cells or 12 malignant cell lines from other tissues, with exception of cutaneous melanoma cells. TNF-α moderately increased MMP-8 mRNA and protein levels in a dose- and time-dependent manner, accompanied by a significant increase of phosphorylated JNK1/2 and ERK1/2 in cell lysates. ERK1/2 (U0126) and JNK1/2 (SP600125) inhibitors significantly blocked TNF-α-induced and constitutive expression of MMP-8 in UM. This is the first report on the expression and secretion of MMP-8 by UM and uveal melanoma cells. The data suggest that UM may play a role in the remolding process and pathogenesis of inflammatory-related diseases in the eye via secretion of MMP-8.
Collapse
|
35
|
Development of an in vitro model to study the biological effects of blinking. Ocul Surf 2018; 16:226-234. [PMID: 29309844 DOI: 10.1016/j.jtos.2017.12.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 10/12/2017] [Accepted: 12/31/2017] [Indexed: 12/30/2022]
Abstract
PURPOSE To develop a mechanical model in which a contact lens is swept over ocular surface cells under conditions that mimic the force and speed of the blink, and to investigate the resulting biological changes. METHODS A computer controlled mechanical instrument was developed to hold a dish containing 3D cultured stratified human ocular surface epithelial cells, across which an arm bearing a contact lens was swept back and forth repeatedly at a speed and force mimicking the human blink. Cells were subjected to repeated sweep cycles for up to 1 h at a speed of 120 mm/s with or without an applied force of 19.6 mN (to mimic pressure exerted by upper eyelid), after which the cell layer thickness was measured, the cell layer integrity was investigated using fluorescent quantum dots (6 and 13 nm) and the phosphorylation levels of various protein kinases were analyzed by human phospho-kinase arrays. Data for selected kinases were further quantitated by enzyme immunoassays. RESULTS The thickness of the cell layers did not change after exposure to sweep cycles with or without applied force. Quantum dots (6 and 13 nm) were able to penetrate the layers of cells exposed to sweep cycles but not layers of untreated control cells. The phosphorylation levels of HSP27 and JNK1/2/3 increased for cells exposed to sweep cycles with applied force compared to untreated control cells. CONCLUSIONS The in vitro mechanical instrument is a useful tool to investigate the effects of blinking on the ocular surface.
Collapse
|
36
|
Xu Z, Sun T, Li W, Sun X. Inhibiting effects of dietary polyphenols on chronic eye diseases. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.10.031] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
37
|
Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology 2017; 124:S4-S13. [PMID: 29055361 PMCID: PMC5657523 DOI: 10.1016/j.ophtha.2017.07.010] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/31/2022] Open
Abstract
Clinical and laboratory studies performed over the past few decades have discovered that dry eye is a chronic inflammatory disease that can be initiated by numerous extrinsic or intrinsic factors that promote an unstable and hyperosmolar tear film. These changes in tear composition, in some cases combined with systemic factors, lead to an inflammatory cycle that causes ocular surface epithelial disease and neural stimulation. Acute desiccation activates stress signaling pathways in the ocular surface epithelium and resident immune cells. This triggers production of innate inflammatory mediators that stimulate the production of matrix metalloprotease, inflammatory cell recruitment, and dendritic cell maturation. These mediators, combined with exposure of autoantigens, can lead to an adaptive T cell-mediated response. Cornea barrier disruption develops by protease-mediated lysis of epithelial tight junctions, leading to accelerated cell death; desquamation; an irregular, poorly lubricated cornea surface; and exposure and sensitization of epithelial nociceptors. Conjunctival goblet cell dysfunction and death are promoted by the T helper 1 cytokine interferon gamma. These epithelial changes further destabilize the tear film, amplify inflammation, and create a vicious cycle. Cyclosporine and lifitegrast, the 2 US Food and Drug Administration-approved therapies, inhibit T-cell activation and cytokine production. Although these therapies represent a major advance in dry eye therapy, they are not effective in improving discomfort and corneal epithelial disease in all patients. Preclinical studies have identified other potential therapeutic targets, biomarkers, and strategies to bolster endogenous immunoregulatory pathways. These discoveries will, it is hoped, lead to further advances in diagnostic classification and treatment.
Collapse
Affiliation(s)
| | - Cintia S de Paiva
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
38
|
Yao B, Wang S, Xiao P, Wang Q, Hea Y, Zhang Y. MAPK signaling pathways in eye wounds: Multifunction and cooperation. Exp Cell Res 2017; 359:10-16. [DOI: 10.1016/j.yexcr.2017.06.024] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 06/29/2017] [Indexed: 12/12/2022]
|
39
|
Panahi Y, Rajaee SM, Sahebkar A. Ocular Effects of Sulfur Mustard and Therapeutic Approaches. J Cell Biochem 2017; 118:3549-3560. [DOI: 10.1002/jcb.25892] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Yunes Panahi
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | - Seyyed Mahdi Rajaee
- Chemical Injuries Research CenterBaqiyatallah University of Medical SciencesTehranIran
| | | |
Collapse
|
40
|
Liu XF, Hao JL, Xie T, Mukhtar NJ, Zhang W, Malik TH, Lu CW, Zhou DD. Curcumin, A Potential Therapeutic Candidate for Anterior Segment Eye Diseases: A Review. Front Pharmacol 2017; 8:66. [PMID: 28261099 PMCID: PMC5306202 DOI: 10.3389/fphar.2017.00066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 02/01/2017] [Indexed: 12/17/2022] Open
Abstract
Curcumin, the major curcuminoid of the turmeric, has been extensively used in many countries since ancient time for preventing and/or treating a multitude of diseases. This review is to illustrate the researches on the properties of curcumin and its potential therapeutic efficacy in major anterior segment eye diseases. The bio-medical potential of curcumin is restricted because of its low solubility and digestive bioavailability. This review will discuss promising research in improving curcumin bioavailability through structural modification. In vitro and in vivo research made progress in studying the beneficial effects of curcumin on major anterior segment eye diseases, including anti-angiogenesis effect in corneal diseases; anti-inflammation or anti-allergy effects in dry eye disease, conjunctivitis, anterior uveitis; anti-proliferation and pro-apoptosis effects in pterygium; anti-oxidative stress, anti-osmotic stress, anti-lipid peroxidation, pro-apoptosis, regulating calcium homeostasis, sequestrating free radicals, protein modification and degradation effects in cataracts; neuroprotective effects in glaucoma. Curcumin exhibited to be a potent therapeutic candidate for treating those anterior segment eye diseases.
Collapse
Affiliation(s)
- Xiu-Fen Liu
- Department of Ophthalmology, The First Hospital of Jilin University Changchun, China
| | - Ji-Long Hao
- Department of Ophthalmology, The First Hospital of Jilin University Changchun, China
| | - Tian Xie
- Department of Neurosurgery, The People's Hospital of Jilin Province Changchun, China
| | - Nour Jama Mukhtar
- Department of Ophthalmology, The First Hospital of Jilin University Changchun, China
| | - Wiley Zhang
- Department of Molecular Pathology, Icahn School of Medicine at Mount Sinai, Manhattan NY, USA
| | - Tayyab Hamid Malik
- Department of Gastroenterology, The First Hospital of Jilin University Changchun, China
| | - Cheng-Wei Lu
- Department of Ophthalmology, The First Hospital of Jilin University Changchun, China
| | - Dan-Dan Zhou
- Department of Radiology, The First Hospital of Jilin University Changchun, China
| |
Collapse
|
41
|
Guzman-Aranguez A, Pérez de Lara MJ, Pintor J. Hyperosmotic stress induces ATP release and changes in P2X7 receptor levels in human corneal and conjunctival epithelial cells. Purinergic Signal 2017; 13:249-258. [PMID: 28176024 DOI: 10.1007/s11302-017-9556-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 01/25/2017] [Indexed: 12/31/2022] Open
Abstract
Tear hyperosmolarity is a key event in dry eye. In this work, we analyzed whether hyperosmolar challenge induces ATP release on the ocular surface. Moreover, as extracellular ATP can activate P2X7 receptor, the changes in P2X7 protein levels and its involvement in pathological process triggered by hypertonic treatment were also examined. High-performance liquid chromatography analysis revealed that ATP levels significantly increased in human corneal and conjunctival epithelial cells exposed to hyperosmotic challenge as well as in dry eye patients as compared to control subjects. A significant reduction in cell viability was detected after hyperosmolar treatment, indicating that the rise in ATP release was mainly due to cell lysis/death. Additionally, vesicular nucleotide transporter was identified in both cell lines and their protein expression was upregulated in hypertonic media. P2X7 receptor truncated form together with the full-length form was identified in both cell lines, and experiments using specific antagonist and agonist for P2X7 indicated that this receptor did not mediate cell death induced by hyperosmolar stress. In conclusion, hyperosmotic stress induces ATP release. Extracellular ATP can activate P2X7 receptor leading to cytotoxicity in many cells/tissues; however, this does not occur in human corneal and conjunctival epithelial cells. In these cells, the presence of P2X7 receptor truncated form together with the full-length form hinders a P2X7 apoptotic behavior on the ocular surface.
Collapse
Affiliation(s)
- Ana Guzman-Aranguez
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain.
| | - María J Pérez de Lara
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain
| | - Jesús Pintor
- Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid, C/Arcos de Jalón 118, 28037, Madrid, Spain
| |
Collapse
|
42
|
Affiliation(s)
- Hassan Ghasemi
- Department of Ophthalmology, Shahed University, Tehran, Iran
| |
Collapse
|
43
|
Boersma PM, Haarsma LD, Schotanus MP, Ubels JL. TNF-R1 and FADD mediate UVB-Induced activation of K + channels in corneal epithelial cells. Exp Eye Res 2017; 154:1-9. [PMID: 27818316 PMCID: PMC5679195 DOI: 10.1016/j.exer.2016.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/24/2016] [Accepted: 11/02/2016] [Indexed: 11/25/2022]
Abstract
The goal of this study was to elucidate the role of Fas, TNF-R1, FADD and cytochrome c in UVB-induced K+ channel activation, an early step in UVB-induced apoptosis, in human corneal limbal epithelial (HCLE) cells. HCLE cells were treated with Fas, TNF-R1 or FADD siRNA and exposed to 80 or 150 mJ/cm2 UVB. K+ channel activation and loss of intracellular K+ were measured using whole-cell patch-clamp recording and ion chromatography, respectively. Cytochrome c was measured with an ELISA kit. Cells in which Fas was knocked down exhibited identical UVB-induced K+ channel activation and loss of intracellular K+ to control cells. Cells in which TNF-R1 or FADD were knocked down demonstrated reduced K+ channel activation and decreased loss of intracellular K+ following UVB, relative to control cells. Application of TNF-α, the natural ligand of TNF-R1, to HCLE cells induced K+ channel activation and loss of intracellular K+. Cytochrome c was translocated to the cytosol by 2 h after exposure to 150 mJ/cm2 UVB. However, there was no release by 10 min post-UVB. The data suggest that UVB activates TNF-R1, which in turn may activate K+ channels via FADD. This conclusion is supported by the observation that TNF-α also causes loss of intracellular K+. This signaling pathway appears to be integral to UVB-induced K+ efflux, since knockdown of TNF-R1 or FADD inhibits the UVB-induced K+ efflux. The lack of rapid cytochrome c translocation indicates cytochrome c does not play a role in UVB-induced K+ channel activation.
Collapse
Affiliation(s)
- Peter M Boersma
- Department of Biology, Calvin College, 3201 Burton St. SE, Grand Rapids, MI 49546, USA; Department of Physics and Astronomy, Calvin College, 3201 Burton St. SE, Grand Rapids, MI 49546, USA
| | - Loren D Haarsma
- Department of Physics and Astronomy, Calvin College, 3201 Burton St. SE, Grand Rapids, MI 49546, USA
| | - Mark P Schotanus
- Department of Biology, Calvin College, 3201 Burton St. SE, Grand Rapids, MI 49546, USA
| | - John L Ubels
- Department of Biology, Calvin College, 3201 Burton St. SE, Grand Rapids, MI 49546, USA.
| |
Collapse
|
44
|
Destefanis S, Giretto D, Muscolo MC, Di Cerbo A, Guidetti G, Canello S, Giovazzino A, Centenaro S, Terrazzano G. Clinical evaluation of a nutraceutical diet as an adjuvant to pharmacological treatment in dogs affected by Keratoconjunctivitis sicca. BMC Vet Res 2016; 12:214. [PMID: 27658509 PMCID: PMC5034585 DOI: 10.1186/s12917-016-0841-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
Background Canine keratoconjunctivitis sicca (cKCS) is an inflammatory eye condition related to a deficiency in the tear aqueous fraction. Etiopathogenesis of such disease is substantially multifactorial, combining the individual genetic background with environmental factors that contribute to the process of immunological tolerance disruption and, as a consequence, to the emergence of autoimmunity disease. In this occurrence, it is of relevance the role of the physiological immune-dysregulation that results in immune-mediated processes at the basis of cKCS. Current therapies for this ocular disease rely on immunosuppressive treatments. Clinical response to treatment frequently varies from poor to good, depending on the clinical-pathological status of eyes at diagnosis and on individual response to therapy. In the light of the variability of clinical response to therapies, we evaluated the use of an anti-inflammatory/antioxidant nutraceutical diet with potential immune-modulating activity as a therapeutical adjuvant in cKCS pharmacological treatment. Such combination was administered to a cohort of dogs affected by cKCS in which the only immunosuppressive treatment resulted poorly responsive or ineffective in controlling the ocular symptoms. Results Fifty dogs of different breeds affected by immune-mediated cKSC were equally distributed and randomly assigned to receive either a standard diet (control, n = 25) or the nutraceutical diet (treatment group, n = 25) both combined with standard immunosuppressive therapy over a 60 days period. An overall significant improvement of all clinical parameters (tear production, conjunctival inflammation, corneal keratinization, corneal pigment density and mucus discharge) and the lack of food-related adverse reactions were observed in the treatment group (p < 0.0001). Conclusions Our results showed that the association of traditional immune-suppressive therapy with the antioxidant/anti-inflammatory properties of the nutraceutical diet resulted in a significant amelioration of clinical signs and symptoms in cKSC. The beneficial effects, likely due to the presence of supplemented nutraceuticals in the diet, appeared to specifically reduce the immune-mediated ocular symptoms in those cKCS-affected dogs that were poorly responsive or unresponsive to classical immunosuppressive drugs. These data suggest that metabolic changes could affect the immune response orchestration in a model of immune-mediated ocular disease, as represented by cKSC.
Collapse
Affiliation(s)
- Simona Destefanis
- Clinica Veterinaria Porta Venezia, via Lambro 12, 20121, Milan, Italy
| | - Daniela Giretto
- Clinica Veterinaria Cartesio, viale Olanda 3B, Melzo, 20066, Milan, Italy
| | | | - Alessandro Di Cerbo
- School of Specialization in Clinical Biochemistry, "G. d'Annunzio" University, Chieti, Italy
| | - Gianandrea Guidetti
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy
| | - Sergio Canello
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy
| | - Angela Giovazzino
- Department of Science, University of Basilicata, Via Sauro, 85, 85100, Potenza, Italy
| | - Sara Centenaro
- Research and Development Department, SANYpet S.p.a., Bagnoli di Sopra, Padua, Italy.
| | - Giuseppe Terrazzano
- Department of Science, University of Basilicata, Via Sauro, 85, 85100, Potenza, Italy.,Department of Translational Medical Sciences, University of Naples Federico II, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
45
|
Warcoin E, Clouzeau C, Brignole-Baudouin F, Baudouin C. Hyperosmolarité : effets intracellulaires et implication dans la sécheresse oculaire. J Fr Ophtalmol 2016; 39:641-51. [DOI: 10.1016/j.jfo.2016.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 07/27/2016] [Accepted: 07/27/2016] [Indexed: 11/26/2022]
|
46
|
Warcoin E, Baudouin C, Gard C, Brignole-Baudouin F. In Vitro Inhibition of NFAT5-Mediated Induction of CCL2 in Hyperosmotic Conditions by Cyclosporine and Dexamethasone on Human HeLa-Modified Conjunctiva-Derived Cells. PLoS One 2016; 11:e0159983. [PMID: 27486749 PMCID: PMC4972436 DOI: 10.1371/journal.pone.0159983] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Accepted: 07/12/2016] [Indexed: 01/13/2023] Open
Abstract
Purpose To investigate the pro-inflammatory intracellular mechanisms induced by an in vitro model of dry eye disease (DED) on a Hela-modified conjunctiva-derived cells in hyperosmolarity (HO) stress conditions. This study focused on CCL2 induction and explored the implications of the nuclear factor of activated T-cells 5 (NFAT5) as well as mitogen-activated protein kinases (MAPK) and nuclear factor kappa B (NFĸB). This work was completed by an analysis of the effects of cyclosporine A (CsA), dexamethasone (Dex) and doxycycline (Dox) on HO-induced CCL2 and NFAT5 induction. Methods A human HeLa-modified conjunctiva-derived cell line was cultured in NaCl-hyperosmolar medium for various exposure times. Cellular viability, CCL2 secretion, NFAT5 and CCL2 gene expression, and intracytoplasmic NFAT5 were assessed using the Cell Titer Blue® assay, enzyme-linked immunosorbent assay (ELISA), RT-qPCR and immunostaining, respectively. In selected experiments, inhibitors of MAPKs or NFκB, therapeutic agents or NFAT5 siRNAs were added before the hyperosmolar stimulations. Results HO induced CCL2 secretion and expression as well as NFAT5 gene expression and translocation. Adding NFAT5-siRNA before hyperosmolar stimulation led to a complete inhibition of CCL2 induction and to a decrease in cellular viability. p38 MAPK (p38), c-Jun NH2-terminal kinase (JNK) and NFĸB inhibitors, CsA and Dex induced a partial inhibition of HO-induced CCL2, while Dox and extracellular signal-regulated kinase (ERK) inhibitor did not. Dex also induced a partial inhibition of HO-induced NFAT5 gene expression but not CsA or Dox. Conclusions These in vitro results suggest a potential role of CCL2 in DED and highlight the crucial role of NFAT5 in the pro-inflammatory effect of HO on HeLa-modified conjunctiva-derived cells, a rarely studied cellular type. This inflammatory pathway involving NFAT5 and CCL2 could offer a promising target for developing new therapies to treat DED, warranting further investigations to fully grasp the complete intracellular mechanisms.
Collapse
Affiliation(s)
- Elise Warcoin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Service Pharmacie, Paris, France
- * E-mail: (EW); (FB)
| | - Christophe Baudouin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
- CHNO des Quinze-Vingts, Service III, Paris, France
| | | | - Françoise Brignole-Baudouin
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris, France
- Faculté de Pharmacie de Paris, Univ Paris Descartes, Sorbonne Paris Cité, Paris, France
- * E-mail: (EW); (FB)
| |
Collapse
|
47
|
Effects of Lutein on Hyperosmoticity-Induced Upregulation of IL-6 in Cultured Corneal Epithelial Cells and Its Relevant Signal Pathways. J Ophthalmol 2016; 2016:8341439. [PMID: 27047687 PMCID: PMC4800098 DOI: 10.1155/2016/8341439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/15/2016] [Indexed: 12/21/2022] Open
Abstract
Dry eye is a common disorder characterized by deficiency of tear. Hyperosmoticity of tear stimulates inflammation and damage of ocular surface tissues and plays an essential role in the pathogenesis of dry eye. Cultured human corneal epithelial (CE) cells were used for the study of effects of lutein and hyperosmoticity on the secretion of IL-6 by CE cells. Cell viability of CE cells was not affected by lutein at 1–10 μM as determined by MTT assay. Hyperosmoticity significantly elevated the secretion of IL-6 by CE cells as measured by ELISA analysis. The constitutive secretion of IL-6 was not affected by lutein. Lutein significantly and dose-dependently inhibited hyperosmoticity-induced secretion of IL-6. Phosphorylated- (p)- p38 MAPK, p-JNK levels in cell lysates and NF-κB levels in cell nuclear extracts were increased by being exposed to hyperosmotic medium. JNK, p38, and NF-κB inhibitors decreased hyperosmoticity-induced secretion of IL-6. Lutein significantly inhibited hyperosmoticity-induced elevation of NF-κB, p38, and p-JNK levels. We demonstrated that lutein inhibited hyperosmoticity-induced secretion of IL-6 in CE cells through the deactivation of p38, JNK, and NF-κB pathways. Lutein may be a promising agent to be explored for the treatment of dry eye.
Collapse
|
48
|
Tsai CY, Woung LC, Yen JC, Tseng PC, Chiou SH, Sung YJ, Liu KT, Cheng YH. Thermosensitive chitosan-based hydrogels for sustained release of ferulic acid on corneal wound healing. Carbohydr Polym 2016; 135:308-15. [DOI: 10.1016/j.carbpol.2015.08.098] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 08/30/2015] [Accepted: 08/31/2015] [Indexed: 12/29/2022]
|
49
|
Riera H, Afonso V, Collin P, Lomri A. A Central Role for JNK/AP-1 Pathway in the Pro-Oxidant Effect of Pyrrolidine Dithiocarbamate through Superoxide Dismutase 1 Gene Repression and Reactive Oxygen Species Generation in Hematopoietic Human Cancer Cell Line U937. PLoS One 2015; 10:e0127571. [PMID: 25996379 PMCID: PMC4440650 DOI: 10.1371/journal.pone.0127571] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022] Open
Abstract
Pyrrolidine dithiocarbamate (PDTC) known as antioxidant and specific inhibitor of NF-κB was also described as pro-oxidant by inducing cell death and reactive oxygen species (ROS) accumulation in cancer. However, the mechanism by which PDTC indices its pro-oxidant effect is unknown. Therefore, we aimed to evaluate the effect of PDTC on the human Cu/Zn superoxide dismutase 1 (SOD1) gene transcription in hematopoietic human cancer cell line U937. We herein show for the first time that PDTC decreases SOD1 transcripts, protein and promoter activity. Furthermore, SOD1 repression by PDTC was associated with an increase in oxidative stress as evidenced by ROS production. Electrophoretic mobility-shift assays (EMSA) show that PDTC increased binding of activating protein-1 (AP-1) in dose dependent-manner suggesting that the MAPkinase up-stream of AP-1 is involved. Ectopic NF-κB p65 subunit overexpression had no effect on SOD1 transcription. In contrast, in the presence of JNK inhibitor (SP600125), p65 induced a marked increase of SOD1 promoter, suggesting that JNK pathway is up-stream of NF-κB signaling and controls negatively its activity. Indeed, using JNK deficient cells, PDTC effect was not observed nether on SOD1 transcription or enzymatic activity, nor on ROS production. Finally, PDTC represses SOD1 in U937 cells through JNK/c-Jun phosphorylation. Taken together, these results suggest that PDTC acts as pro-oxidant compound in JNK/AP-1 dependent-manner by repressing the superoxide dismutase 1 gene leading to intracellular ROS accumulation.
Collapse
Affiliation(s)
- Humberto Riera
- Unidad de Reumatología, Nivel plaza del Instituto Autónomo Hospital Universitario de Los Andes. Mérida, Venezuela
| | - Valéry Afonso
- INSERM U1029, Laboratoire de l'Angiogenèse et du Microenvironnement des Cancers, Pessac, France
| | - Pascal Collin
- UMR 8601, Laboratoire de Chimie & Biochimie Pharmacologique, Paris, France
| | - Abderrahim Lomri
- INSERM U1029, Laboratoire de l'Angiogenèse et du Microenvironnement des Cancers, Pessac, France
- * E-mail:
| |
Collapse
|
50
|
Duan Y, Cai X, Du H, Zhai G. Novel in situ gel systems based on P123/TPGS mixed micelles and gellan gum for ophthalmic delivery of curcumin. Colloids Surf B Biointerfaces 2015; 128:322-330. [PMID: 25707750 DOI: 10.1016/j.colsurfb.2015.02.007] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/25/2015] [Accepted: 02/03/2015] [Indexed: 01/08/2023]
Abstract
Curcumin, a natural polyphenol compound, has been widely reported for diverse pharmacological effects and already been investigated for eye diseases. However, the water-insolubility of curcumin and the inherent penetration barriers in cornea make it difficult for curcumin to enter eye. This work aimed to develop ion-sensitive curcumin-loaded Pluronic P123 (P123)/D-a-tocopheryl polyethylene glycolsuccinate (TPGS) mixed micelle in situ gels (CUR-MM-ISGs) to prolong ocular retention time and improve cornea permeability. Central composite design-response surface methodology was applied for the optimization of curcumin-loaded P123/TPGS mixed micelles (CUR-MMs). Characterization tests showed that CUR-MMs were in spherical shape with small size and low critical micelle concentration. After dispersing the micelles in gellan gum solution (0.2%, w/w) at the ratio of 3:1 and 1:1 (v/v), respectively, CUR-MM-ISGs were formed and presented transparent appearance. Sustained release profile was obtained in vitro for both CUR-MM-ISGs (3:1 or 1:1, v/v). The irritation test proved that CUR-MM-ISGs as ophthalmic formulations were gentle and biocompatible towards ocular tissues. In addition, the ex vivo corneal penetration study indicated that the cumulative drug permeation amount of CUR-MM-ISGs (3:1, v/v) was respectively 1.16-fold and 1.32-fold higher than CUR-MM-ISGs (1:1, v/v) and curcumin solution. It can be concluded from these results that the developed ion-sensitive mixed micelle in situ gel system is a potential ophthalmic delivery carrier for curcumin as a poorly soluble drug.
Collapse
Affiliation(s)
- Yuwei Duan
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Xiaoqing Cai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Hongliang Du
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China
| | - Guangxi Zhai
- Department of Pharmaceutics, College of Pharmacy, Shandong University, 44 Wenhua Xilu, Jinan 250012, China.
| |
Collapse
|